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Abstract

We study the Bose-Einstein correlations (BEC) with the final state interactions (FSI) based on

a framework of Bowler. Several new formulae including the FSI are utilized in analyses of data for

π±π± production in e+e− annihilation by TPC, OPAL, DELPHI, and ALEPH Collaborations. Our

results show that when the exponential and Gaussian distributions are used as the source functions

the degree of coherence approaches approximately unity here. We analyse also data for K0
SK0

S pairs

at Z-pole in e+e− annihilation and show that within the present statistical errors there is no difference

between the BEC for pions and kaons. Moreover, using the same formulae we obtain a fractional

degree of coherence for the data for BEC in p + p collision by NA27 Collaboration.
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1 Introduction

Study of the Bose-Einstein correlations (BEC) between identical particles (bosons), i.e., the GGLP ef-

fect [1], is one of current subjects in high energy physics and heavy-ion collisions [2∼9]. In the analyses

of data, the following formulae are usually used:

N (±±)/NBG = c
[
1 + λe−β2Q2

]
(1 + γQ), (1)

N (±±)/NBG = c
[
1 + λe−2ηQ

]
(1 + γQ). (2)

Here N (±±) and NBG denote the distribution of two identical particles (positive (++) and negative (−−)

charged pairs) and the background, respectively. The fact that in source region of phase space the ratio

N (±±)/NBG > 1 is named the BEC, or the GGLP effect [1∼3]. (In papers on heavy-ion collisions, it

is often called the Hanbury-Brown Twiss (HBT) effect.) The β and η are parameters describing the

apparent size of the source emitting particles whereas λ is usually supposed to characterize its degree

of coherence (notice that for λ = 1, i.e., for purely ”chaotic” source, BEC are the strongest whereas for

”coherent” source i.e., for λ = 0, it vanishes 1 . Q2 is the squared four momentum difference between

two identical particles: Q2 = (p1 − p2)2 = M2
ππ − 4M2

π for pions, and Q2 = M2
KK − 4M2

K for kaons. It

should be noticed that (1) and (2) do not contain the final state interactions (FSI). On the other hand,

from theoretical studies on BEC, some authors have pointed out that the FSI [10, 13, 14], resonances

effect [15, 16] and different choices of source functions [17] are important in the proper description of this

ratio. By FSI we understand here (following [14]) the apparent strong repulsion between pions in isospin

channel I = 2.

In this paper we extend the analysis of BEC with FSI performed by Bowler [14] to the new high energy

e+e− annihilation data presented recently by TPC, OPAL, DELPHI, and ALEPH Collaborations [4∼7]

and perform it also for Gaussian and Lorentzian shapes of source functions. For comparison, we have

analysed also data on the BEC for K0
SK0

S pairs at Z-pole in e+e− annihilation [18, 19] and data on

hadron-hadron collisions by NA27 Collaboration [8]. The relevant analytic formulae with hard core

(r0 ≤ r < ∞) for exponential and Gaussian source functions are presented in the Appendix.

2 FSI with exponential source function

To study the FSI in the BEC, Bowler [14] has proposed that the following amplitude describes the

identical particle effect:

A12 =
1√
2
ei(p1+p2)·R

[(
e2iδ − 1

)

ikr
eikr + eik·r + e−ik·r

]
, (3)

where R = (r1 + r2)/2, k = (p1−p2)/2, and r = (r1− r2). It should be noted that the rest frame of the

pair is used in (3). The δ denotes the phase shift describing the FSI. For pion-pion collision the phase

shift of an s-wave with I = 2 is taken the same as in Fig. 2 of [13], and [20], i.e., it is approximately

expressed by δ
(2)
0 = 1

2a
(2)
0 Q/(1 + 0.5Q2) with a

(2)
0 ' −1.2.

1 In fact one should keep in mind that there are apparently also other possible factors which can cause λ < 1: One of

them is the coherent property of identical bosons [11, 12].
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The distribution of identical particles is obtained by taking into account of the incoherent sum of

|A12|2:
N (±±) =

∫
|A12|2F (R)F (r)d3r1d

3r2, (4)

where F denotes the source function which in [14] is assumed to have an exponential form:

F (r) = e−αr. (5)

Because the function F (R) does not contribute to the ratio in this framework, the final formula of the

BEC is given by

N (±±)/NBG = 1 + λ

{
1

(1 + Q2/α2)2
+

sin2 δ

k2

α2

1 + Q2/α2
+ 2 sin δ cos δ

α

k

1
1 + Q2/α2

}
, (6)

where the degree of coherence (λ) is introduced by hand, and 2k = Q. In actual applications, we

introduce the normalization factor c and correction factor (1 + γQ) to explain the long range correlation

in Q variable (cf. also (1) and (2)).

In [14], (6) was used to analyse TPC Collaboration data [4]. Here we use it also to analyse data by

OPAL [5], DELPHI [6] and ALEPH [7] Collaborations and compare them with TPC data [4].2 For the

sake of comparison, we show those also the BEC without the FSI (i.e., with δ = 0 in (6)):

N (±±)/NBG = c

{
1 + λ

1
(1 + Q2/α2)2

}
(1 + γQ). (7)

Our results (with and without normalization factor c and correction factor γ) are shown in Table I and

Fig. 1 where it is evident that when (6) is used λ → 1. 3

/Table I/ /Fig.1/

3 FSI with Gaussian and Lorentzian source functions

In this paragraph we calculate new formulae based on (4), assuming Gaussian and Lorentzian source

functions.

3.1 Gaussian distribution: We assume the following Gaussian distribution as the source function

F (r) = e−r2/2β2
. (8)

After some algebra and introducing the degree of coherence (λ) as Bowler, we obtain a new formula of

the BEC,

N (2−)/NBG = 1 + λ

{
e−β2Q2/2Re[erfc(z)] +

8 sin2 δ

β2Q2
e−β2Q2/2Re[erfc(z)]

+
8 sin δ cos δ

β2Q2
e−β2Q2/2Im[erfc(z)]

}
, (9)

2 It is worthwhile to note that data by TPC, OPAL, and DELPHI Collaborations are analysed by means of Q2 (the

squared four momentum transfer), not by k2. On the other hand, the data by ALEPH Collaboration are analysed in the

rest frame of the pair. Concerning with this problem, we regard that there is no big difference between them [21].
3 Here and below all our results were obtained by using standard CERN MINUIT program, with statistical errors. The

systematic errors are not taken into account in the present analyses.
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where z = −iβQ/
√

2, and

erfc(z) =
2√
π

∫ ∞

z

e−t2dt,

where we make use of the fact that

Re[erfc(−iβQ/
√

2)] = 1. (10)

It should be noted that for δ → 0, i.e., when the FSI is ignored,

N (±±)/NBG = c
[
1 + λe−β2Q2/2

]
(1 + γQ). (9b)

The difference between (1) and (9b) is attributed to the number of integrals of N (±±) (cf. (4)). In

actual analyses, we consider two cases with and without the normalization factor c and the correction

factor (1 + γQ).

3.2 Lorentzian distribution: Finally we assume the following power function as the source function

(known as Lorentzian distribution),

F (r) =
η4

(η2 + r2)2
. (11)

After the same algebra as in (9), we obtain another new formula for the BEC:

N (±±)/NBG = 1 + λ

{
e−ηQ +

8 sin2 δ

η2Q2
(1 + ηQ)e−ηQ +

32 cos δ sin δ

Q2

η

π
I(Q, η)

}
, (12)

where

I(Q, η) =
∫ ∞

0

sin(Qx)
(x2 + η2)2

dx.

Again, for δ → 0 our expression simplifies to

N (±±)/NBG = c
[
1 + λe−ηQ

]
(1 + γQ), (12b)

where two additional terms, c and (1 + γQ), are introduced as in (6). The difference between (2) and

(12b) is also attributed to the number of integrals in N (±±).

We shall now analyse data by using (9) and (10) and regarding the scattering length a
(2)
0 as a free

parameter (which, as was shown in [13], should be of the order of −1.5 ≤ a
(2)
0 ≤ −0.7). Our results are

shown in Table. II and Fig. 2. For the sake of comparisons, we show also results obtained from (1). As

you see in Table II, the degree of coherence (λ) increases in TPC and OPAL data, as (9) is used (except

for the analysis with a set of 5-parameters (β, λ, a
(2)
0 , γ and c) of TPC data4 ). At present it is difficult

to elucidate why the degree of coherence (λ) estimated in analyses of the data by DELPHI and ALEPH

Collaborations is smaller than unity. To resolve this problem, we would have to consider the background

NBG which depends on proper procedures utilized by various Collaborations.

In Table III we show results of analyses obtained by means of (12) and (2). It can be seen that (12)

does not explain the data better than (6) and (9), moreover, it demands the values of a
(0)
0 parameter well

behind the estimations provided in [13] (therefore we do not show any figures in this case).

/Tables II and III/ /Figs. 2 /

4 Note that in this case we obtained also positive a
(2)
0 , i.e., we are in fact already outside the domain of FSI which, as

we said at the beginning, means in our case the repulsion between the produced bosons (pions).

4



4 BEC for the K0
SK0

S pairs produced in e+e− annihilation

OPAL and DELPHI Collaborations reported recently [18, 19] the BEC for the K0
SK0

S pairs at Z-pole.

It allows us to study the production mechanism of the strange particle and compare the BEC for pions

and kaons. The relevant phase shift of the s-wave used here [22] is shown in Fig. 3 and is fitted by the

formula:

δ
(1)
0 (deg) = aQ + bQ2 + 1800 +

3∑

i=1

ci

[
Γi/2

(Q−Qi)2 + (Γi/2)2
− Γi/2

(Qi)2 + (Γi/2)2

]

(with a = 16.35, b = 24.17, Q1 = 0.630, Γ1 = 0.071, c1 = 1.07, Q2 = 1.126, Γ2 = 0.141, c2 = 3.76,

Q3 = 1.603, Γ3 = 0.220 and c3 = 8.62). We use this expression in (6) and (9). Our results are shown in

Tables IV and V and Figs. 4 and 5. As one can see, within present errors there is no substantial difference

between BEC for K0
SK0

S pairs and pions.

/Tables IV and V/ /Figs. 3, 4 and 5/

5 Concluding remarks and discussion

Using the framework of Bowler, we have calculated FSI for Gaussian and Lorentzian source functions

(cf. also Appendix) and analysed data for π±π± production in e+e− annihilation by means of (9) and

(12) ((6) is also used in the present analyses for comparison). We have found that the power function of

Lorentzian type is not useful for the analysis of FSI.

We have found that the degree of coherence (λ) depends both on source functions and FSI and

approaches approximately unity in analyses of the TPC and OPAL data by means of (9) within the

statistical error. This fact could suggest that λ goes to unity in (1) when the FSI is taken into account.5

The data of the BEC of K0
SK0

S pairs are also analysed by the same sets of formulae. It is found that

within the present experimental errors the BEC of pions and kaons seems not to be significantly different

from each other.

To look for differences between the BEC in e+e− annihilation and hadron-hadron collisions, we have

analysed also data for p + p collision at
√

s = 400 GeV/c by NA27 Collaboration. The results are shown

in Table VI and Fig. 6. As the FSI is taken into account, the degree of coherence increases also here but

only slightly and λ is always smaller than 1 (except for case of the Lorentzian source function which,

however, as we have shown above, does not reproduce other data and was therefore disregarded here).

Note that BEC in hadron-hadron collision seem to be different from those of e+e− annihilation, especially

in what concerned parameter λ. The main reason is probably attributed to the leading particle effect

and resonances effect in p + p collision.

In the present paper we have not included the effect of resonances in the BEC. We plan to address

this problem elsewhere.

/Table VI/ /Fig. 6/

5 Another approach for the FSI, based on the paper of Suzuki[13], is given in [23]. The pure chaoticity for data of TPC

Collaboration is also concluded there.
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Appendix

In calculations of (6) and (9), the range of the integral is from zero to infinity. If there was a hard-core

in the interaction region, we have to take into account an effective range (r0 ≤ r ≤ ∞). We present two

formulae with the cutoff parameter r0.

For the exponential function, F (r) = e−αr, we have

N (±±)/NBG = 1 +
λ

(αr0 + 1)2 + 1

·
{

cos(Qr0)
[
2 + αr0(1 + Q2/α2)

]
+ sin(Qr0)

[
(1−Q2/α2) + αr0(1 + Q2/α2)

]
/(Q/α)

(1 + Q2/α2)2

+
2 sin2 δ

k2

α2 [cos(Qr0)− (Q/α) sin(Qr0)]
1 + Q2/α2

+
2 sin δ cos δ

k2

α2 [(Q/α) cos(Qr0) + sin(Qr0)]
1 + Q2/α2

}
.

(A1)

As r0 → 0, we obtain (6).

For the Gaussian distribution, F (r) = e−r2/2β2
, we have

N (±±)/NBG = 1 +
λ√

π

2
β3erfc

(
r0√
2β

)
+ β2r0 exp

(
− r2

0

2β2

)

·
{

β2Im
[

1
Q

exp
(
− r2

0

2β2

)
[cos(Qr0) + i sin(Qr0)] + iF2

]

+
2 sin2 δ

k2
Re(F2) +

2 sin δ cos δ

k2
Im(F2)

}
, (A2)

where

F2 =
√

π

2
βe−β2Q2/2erfc

(
r0√
2β

− i
βQ√

2

)
.

As r0 → 0, we obtain (9).

For the power function of the Lorentzian, we have no-analytic expression.
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Table I: The data (π±π±) in e+e− annihilation by TPC, OPAL, DELPHI, and ALEPH Collaborations

are analysed by means of (6) and (7). Several sets of parameters are used.

α [GeV] λ a
(2)
0 [GeV−1] γ c χ2/NDF

−1.5 ≤ a
(2)
0 ≤ −0.7

TPC eq. (6) 0.461±0.035 1.162±0.084 -0.794±0.027 — — 42.4/36

0.505±0.053 1.272±0.122 -0.854±0.049 — 1.024±0.021 41.0/35

0.465±0.045 1.152±0.091 -0.700±0.778 0.041±0.018 0.953±0.014 40.7/34

eq. (7) 0.364±0.034 0.785±0.073 — 0.128±0.034 0.830±0.031 41.4/35

OPAL eq. (6) 0.293±0.010 1.261±0.054 -0.897±0.014 — — 110.0/75

0.299±0.012 1.267±0.053 -0.916±0.024 — 1.003±0.003 109.1/74

0.302±0.017 1.273±0.059 -0.933±0.074 -0.002±0.011 1.007±0.018 109.0/73

eq. (7) 0.209±0.008 1.012±0.065 — 0.055±0.005 0.917±0.005 146.5/74

DELPHI eq. (6) 0.317±0.012 0.744±0.027 -0.700±0.008 — — 125.9/74

0.385±0.020 0.910±0.055 -0.924±0.034 — 1.026±0.005 86.5/73

0.410±0.039 0.985±0.116 -1.018±0.119 -0.013±0.019 1.053±0.040 85.9/72

eq. (7) 0.268±0.012 0.543±0.028 — 0.042±0.007 0.949±0.009 99.8/73

ALEPH eq. (6) 0.359±0.013 1.091±0.037 -0.700±0.009 — — 101.1/70

0.389±0.022 1.175±0.069 -0.794±0.039 — 1.017±0.006 89.6/69

0.448±0.037 1.372±0.110 -1.027±0.084 -0.049±0.022 1.118±0.051 84.0/68

eq. (7) 0.290±0.013 0.766±0.040 — 0.050±0.010 0.928±0.013 114.5/69
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Table II: The same as Table I but (9) and (1).

β [fm] λ a
(2)
0 [GeV−1] γ c χ2/NDF

−1.5 ≤ a
(2)
0 ≤ −0.7

TPC eq. (9) 0.747±0.045 1.059±0.079 -0.868±0.029 — — 43.9/36

0.762±0.066 1.028±0.126 -0.846±0.077 — 0.995±0.015 43.8/35

0.796±0.055 0.934±0.073 -0.700±0.021 0.031±0.018 0.952±0.015 42.5/34

eq. (1) 0.644±0.044 0.611±0.054 — 0.083±0.025 0.881±0.023 41.0/35

OPAL eq. (9) 1.058±0.026 1.024±0.038 -0.962±0.018 — — 126.7/75

1.104±0.033 0.989±0.041 -0.893±0.036 — 0.993±0.003 119.7/74

1.166±0.029 0.914±0.037 -0.700±0.015 0.017±0.004 0.969±0.004 113.3/73

eq. (1) 0.946±0.025 0.713±0.036 — 0.040±0.004 0.936±0.004 118.7/74

DELPHI eq. (9) 1.067±0.029 0.630±0.022 -0.700±0.014 — — 110.1/74

0.900±0.042 0.872±0.071 -1.008±0.042 — 1.017±0.004 88.6/73

0.998±0.109 0.699±0.168 -0.760±0.303 0.018±0.014 0.987±0.022 87.1/72

eq. (1) 0.827±0.027 0.451±0.020 — 0.033±0.007 0.963±0.008 89.1/73

ALEPH eq. (9) 0.982±0.027 0.920±0.032 -0.700±0.012 — — 85.8/70

0.992±0.029 0.911±0.033 -0.700±0.012 — 1.004±0.003 84.3/69

0.998±0.036 0.906±0.039 -0.700±0.002 -0.002±0.007 1.006±0.009 84.2/68

eq. (1) 0.797±0.026 0.630±0.030 — 0.024±0.009 0.964±0.011 87.3/69

Table III: The same as Table I but (12) and (2).

η [fm] λ a
(2)
0 [GeV−1] γ c χ2/NDF

−1.5 ≤ a
(2)
0 ≤ −0.7

TPC eq. (12) 1.630±0.116 1.585±0.176 -1.500±0.504 — 0.952±0.007 60.2/35

1.333±0.097 1.831±0.165 -1.500±0.733 0.112±0.031 0.849±0.027 40.7/34

eq. (2) 0.489±0.061 1.213±0.116 — 0.133±0.040 0.826±0.037 42.3/35

OPAL eq. (12) 2.470±0.075 2.431±0.161 -1.500±0.117 — 0.973±0.002 259.6/74

2.115±0.068 2.287±0.133 -1.500±0.116 0.048±0.005 0.927±0.005 136.5/73

eq. (2) 0.995±0.037 1.761±0.116 — 0.049±0.005 0.925±0.005 144.8/74

DELPHI eq. (12) 1.950±0.071 1.184±0.069 -1.500±0.168 — 1.002±0.002 134.4/73

1.690±0.065 1.258±0.062 -1.500±0.106 0.039±0.007 0.955±0.009 99.7/72

eq. (2) 0.693±0.038 0.863±0.051 — 0.040±0.007 0.953±0.009 106.6/73

ALEPH eq. (12) 1.763±0.057 1.644±0.091 -1.500±0.063 — 0.992±0.003 141.1/69

1.583±0.058 1.770±0.089 -1.500±0.057 0.043±0.010 0.938±0.012 119.4/68

eq. (2) 0.642±0.034 1.203±0.069 — 0.045±0.011 0.936±0.013 136.0/69
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Table IV: Analyses of the data of K0
SK0

S pairs at Z-pole by OPAL Collaboration by means of (6)-(7),

(9)-(1) and (2). The Phase shift a
(1)
0 is used by means of phenomenological fit in Fig. 3.

α [GeV], β or η [fm] λ γ c χ2/NDF

eq. (6) 0.265±0.073 1.240±0.608 0.260±0.247 0.727±0.194 2.8/6

eq. (7) 0.364±0.129 1.191±0.517 0.150±0.131 0.836±0.126 2.1/6

eq. (9) 0.998±0.235 0.740±0.353 0.159±0.128 0.829±0.116 2.1/6

eq. (1) 0.609±0.158 0.902±0.379 0.105±0.096 0.892±0.093 2.0/6

eq. (2) 0.496±0.219 1.784±0.789 0.147±0.145 0.840±0.144 2.2/6

Table V: The same as in Table IV but for DLEPHI Collaboration data.

α [GeV], β or η [fm] λ γ c χ2/NDF

eq. (6) 0.200±0.070 1.337±0.804 0.131±0.143 0.839±0.141 9.9/8

eq. (7) 0.267±0.096 1.411±0.739 0.085±0.100 0.892±0.104 9.0/8

eq. (9) 1.309±0.308 0.999±0.531 0.091±0.097 0.887±0.098 8.8/8

eq. (1) 0.839±0.206 1.224±0.590 0.052±0.078 0.935±0.083 8.5/8

eq. (2) 0.709±0.314 2.143±1.234 0.074±0.099 0.908±0.107 9.2/8

Table VI: Analyses of the data (π±π±) of p + p collision by NA27 Collaboration by means of (6)-(7),

(9)-(1) and (2).

α [GeV] or β [fm] λ a
(2)
0 [GeV−1] γ c χ2/NDF

−1.5 ≤ a
(2)
0 ≤ −0.7

eq. (6) 0.190±0.006 0.665±0.022 -0.747±0.038 — — 71.4/37

0.246±0.012 0.845±0.036 -1.384±0.070 — 1.045±0.009 38.1/36

0.221±0.009 0.729±0.025 -0.700±0.000 0.135±0.026 0.942±0.011 34.1/35

eq. (7) 0.203±0.008 0.628±0.022 — 0.223±0.034 0.884±0.015 32.0/36

eq. (9) 1.641±0.030 0.529±0.015 -0.700±0.011 — — 68.9/37

1.580±0.064 0.584±0.038 -0.979±0.155 — 1.011±0.005 58.5/36

1.604±0.043 0.546±0.017 -0.700±0.009 0.038±0.018 0.987±0.008 55.8/35

eq. (1) 1.192±0.032 0.453±0.015 — 0.084±0.021 0.957±0.009 51.9/36

eq. (2) 0.818±0.052 1.032±0.043 — 0.315±0.061 0.844±0.026 27.8/36
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Figure Captions

Fig. 1: (a) The data for (π±π±) production at Z-pole by OPAL Collaboration are analysed by means

of (6) and (7). (b) The same as Fig. 1 (a) but for DELPHI Collaboration. Data expressed by open

circles are not take into account in analyses, due to resonances. (c) The same as Fig. 1 (a) but for

ALEPH Collaboration. Data are read by eye-ball.

Fig. 2: (a) The data by TPC Collaboration are analysed by means of (9) and (1). (b) The same as

Fig. 2 (a) but for OPAL Collaboration. (c) The same as Fig. 2 (a) but DELPHI Collaboration. (d)

The same as Fig. 2 (a) but for ALEPH Collaboration. Data are read by eye-ball.

Fig. 3: Phase shift of s-wave of K0
SK0

S collisions used in our calculations. The following parameters are

used: a = 16.35, b = 24.17, Q1 = 0.630, Γ1 = 0.071, c1 = 1.07, Q2 = 1.126, Γ2 = 0.141, c2 = 3.76,

Q3 = 1.603, Γ3 = 0.220, and c3 = 8.62.

Fig. 4: (a) Analyses of the data of K0
SK0

S pairs at Z-pole by OPAL Collaboration by means of (6) and

(7). (b) The same as Fig. 4 (a) but (9) and (1).

Fig. 5: The same as in Fig. 4 but for data by DELPHI Collaboration.

Fig. 6: (a) Analyses of the data of p + p collision by NA27 Collaboration by means of (6) and (7). (b)

The same as Fig. 6 (a) but (9) and (1).
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