Polynomials Associated with Equilibria of Affine Toda-Sutherland Systems

S. Odakea and R. Sasakib

a Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
b Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Abstract

An affine Toda-Sutherland system is a \textit{quasi-exactly solvable} multi-particle dynamics based on an affine simple root system. It is a ‘cross’ between two well-known integrable multi-particle dynamics, an affine Toda molecule and a Sutherland system. Polynomials describing the equilibrium positions of affine Toda-Sutherland systems are determined for all affine simple root systems.

1 Introduction

Given a multi-particle dynamical system, to find and describe its equilibrium position has practical as well as theoretical significance. As is well-known, near the equilibrium the system is reduced to a collection of harmonic oscillators and that their spectra give the exact order \hbar part of the full quantum spectra [1]. Naively, one could describe the equilibrium position by zeros of a certain polynomial. In this way one obtains the celebrated classical orthogonal polynomials for \textit{exactly solvable} multi-particle dynamics. For the Calogero systems [2] based on the A and B (C, BC and D) root systems, the equilibrium positions correspond to the
zeros of the Hermite and Laguerre polynomials \[3, 4, 5, 6\]. For the Sutherland systems \[7\] based on the \(A\) and \(B\) (\(C, BC\) and \(D\)) root systems, the equilibrium positions correspond to the zeros of the Chebyshev and Jacobi polynomials \[6\]. Polynomials describing the equilibria of the Calogero and Sutherland systems based on the exceptional root systems are also determined \[8\]. In all these cases the frequencies of small oscillations at the equilibrium are “quantised” \[6, 9\]. For another family of multi-particle dynamics based on root systems, the Ruijsenaars-Schneider systems \[10\], which are deformation of the Calogero and Sutherland systems, the corresponding polynomials are determined \[11, 12\]. They turn out to be deformation of the Hermite, Laguerre and Jacobi polynomials which inherit the orthogonality \[12\]. The frequencies of small oscillations at the equilibrium are also “quantised” \[11\]. Another interesting feature is that the equations determining the equilibrium look like Bethe ansatz equations.

One is naturally led to a similar investigation for partially solvable or quasi-exactly solvable \[13\] multi-particle dynamics. From a not-so-long list of known quasi-exactly solvable multi-particle dynamical systems \[14\], we pick up the so-called affine Toda-Sutherland systems \[15\] and determine polynomials describing the equilibrium positions. These polynomials, as well as all the polynomials mentioned above, are characterised as having integer coefficients only.

2 affine Toda-Sutherland systems

The affine Toda-Sutherland systems are quasi-exactly solvable \[13\] multi-particle dynamics based on any crystallographic root system. Roughly speaking, they are obtained by ‘crossing’ two well-known integrable dynamics, the affine-Toda molecule and the Sutherland system. Given a set of affine simple roots \(\Pi_0 = \{\alpha_0, \alpha_1, \ldots, \alpha_r\}, \alpha_j \in \mathbb{R}^r\), let us introduce a prepotential \(W\) \[16\]

\[
W(q) = g \sum_{j=0}^{r} n_j \log |\sin(\alpha_j \cdot q)|, \quad q = (q_1, \ldots, q_r) \in \mathbb{R}^r, \quad (1)
\]

in which \(g\) is a positive coupling constant and \(\{n_j\}\) are the Dynkin-Kac labels for \(\Pi_0\). That is, they are the integer coefficients of the affine simple root \(\alpha_0\): \(-\alpha_0 = \sum_{j=1}^{r} n_j \alpha_j, n_0 \equiv 1\). For simply-laced and un-twisted non-simply laced affine root systems \(\alpha_0\) is the lowest long root, whereas for twisted non-simply laced affine root systems, \(\alpha_0\) is the lowest short root.
In either case $h \overset{\text{def}}{=} \sum_{j=0}^{r} n_{j}$ is the Coxeter number. This leads to the classical Hamiltonian

$$H_C = \frac{1}{2} \sum_{j=1}^{r} p_j^2 + \frac{1}{2} \sum_{j=1}^{r} \left(\frac{\partial W(q)}{\partial q_j} \right)^2.$$ \hspace{1cm} (2)

It is shown \cite{15} that the equilibrium position \bar{q} is given by a universal formula in terms of the dual Weyl vector $\check{\rho}$:

$$\frac{\partial W(q)}{\partial q_j} = 0 \iff \bar{q} = \frac{\pi}{h} \check{\rho}^\vee, \quad \check{\rho}^\vee \overset{\text{def}}{=} \sum_{j=1}^{r} \lambda_j^\vee. \hspace{1cm} (3)$$

The dual fundamental weight λ_j^\vee is defined in terms of the fundamental weight λ_j by $\lambda_j^\vee \overset{\text{def}}{=} (2/\alpha_j^2) \lambda_j$, which satisfies $\alpha_j \cdot \lambda_k^\vee = \delta_{j,k}$. At the equilibrium, the classical multi-particle dynamical system \cite{2} is reduced to a set of harmonic oscillators. The frequencies (not frequencies squared) of small oscillations at the equilibrium of the affine Toda-Sutherland model are given up to the coupling constant g by \cite{15}

$$\frac{1}{\sin^2 \frac{\pi}{h}} \{ m_1^2, m_2^2, \ldots, m_r^2 \},$$

in which m_j^2 are the so-called affine Toda masses \cite{17}. Namely, they are the eigenvalues of a symmetric $r \times r$ matrix M, $M_{kl} = \sum_{j=0}^{r} n_{j} (\alpha_j)_k (\alpha_j)_l$, or $M = \sum_{j=0}^{r} n_{j} \alpha_j \otimes \alpha_j$, which encode the integrability of affine Toda field theory. In \cite{17} it is shown for the non-twisted cases that the vector $\mathbf{m} = \{m_1, \ldots, m_r\}$, if ordered properly, is the Perron-Frobenius eigenvector of the incidence matrix (the Cartan matrix) of the corresponding root system.

The corresponding quantum Hamiltonian \cite{11,16} is

$$H_Q = \frac{1}{2} \sum_{j=1}^{r} p_j^2 + \frac{1}{2} \sum_{j=1}^{r} \left[\left(\frac{\partial W(q)}{\partial q_j} \right)^2 + \frac{\partial^2 W(q)}{\partial q_j^2} \right], \hspace{1cm} (4)$$

which is partially solvable or quasi-exactly solvable for some affine simple root systems. Namely for $A_{r-1}^{(1)}$, $D_3^{(1)}$, $D_{r+1}^{(2)}$, $C_r^{(1)}$ and $A_{2r}^{(2)}$, the above Hamiltonian \cite{11} is known to have a few exact eigenvalues and corresponding exact eigenfunctions \cite{15}.

The polynomials related to the equilibrium position \bar{q} are easy to define for the classical root systems, A, B, C and D. As in the Sutherland cases, we introduce a polynomial having zeros at $\{ \sin \bar{q}_j \}$ or $\{ \cos 2\bar{q}_j \}$:

$$P_r(q) \propto \prod_{j=1}^{r} (x - \sin \bar{q}_j), \quad \prod_{j=1}^{r} (x - \cos 2\bar{q}_j). \hspace{1cm} (5)$$
For the exceptional root systems, let us choose a set of D vectors \mathcal{R}
\[
\mathcal{R} = \{ \mu^{(1)}, \ldots, \mu^{(D)} \mid \mu^{(a)} \in \mathbb{R}^r \},
\]
which form a single orbit of the corresponding Weyl group. For example, they are the set
of roots Δ itself for simply laced root systems, the set of long (short, middle) roots Δ_L
(Δ_S, Δ_M) for non-simply laced root systems and the so-called sets of minimal weights. The
latter is better specified by the corresponding fundamental representations, which are all
the fundamental representations of A_r, the vector (V), spinor (S) and conjugate spinor (\bar{S})
representations of D_{r} and 27 ($2\overline{7}$) of E_6 and 56 of E_7. By generalising the above examples
(5), we define polynomials
\[
P_{\Delta}^\mathcal{R}(x) \propto \prod_{\mu \in \mathcal{R}} \left(x - \sin(\mu \cdot \bar{q})\right), \quad \prod_{\mu \in \mathcal{R}} \left(x - \cos(2\mu \cdot \bar{q})\right).
\]

(6)

For more general treatment we refer to our previous article [8].

The resulting polynomials for various affine root systems Π_0 are (we follow the affine Lie
algebra notation used in [15, 17]):

$A_{r-1}^{(1)}$: In this case the equilibrium position is exactly the same as that of the A_{r-1} Sutherland
[10] and A_{r-1} Ruijsenaars-Sutherland system [12], $\bar{q} = (\pi/2h)^{r}(r-1, r-3, \ldots, -(r-1))$
with $h = r$. Thus the polynomial is also the same, the Chebyshev polynomial of the first
kind: $2^{r-1} \prod_{j=1}^{r} (x - \sin \bar{q}_j) = T_r(x) = \cos r\varphi, x = \cos \varphi$.

$B_{r}^{(1)}, D_{r+1}^{(2)}$ & $A_{2r}^{(2)}$: The Coxeter number is $h = 2r$ for $B_{r}^{(1)}, h = r+1$ for $D_{r+1}^{(2)}$ and
$h = 2r+1$ for $A_{2r}^{(2)}$. The equilibrium position is equally spaced $\bar{q} = (\pi/h)^{r}(r, r-1, \ldots, 1)$. We
obtain the Chebyshev polynomial of the second kind, $U_n(x) = \sin(n+1)\varphi/\sin \varphi, x = \cos \varphi$,
for $B_{r}^{(1)}$ and a product of them for $D_{r+1}^{(2)}$ and a sum of them for $A_{2r}^{(2)}$,
\[
2^{r-1} \prod_{j=1}^{r} (x - \cos 2\bar{q}_j) = \begin{cases} (x + 1)U_{r-1}(x), & B_{r}^{(1)}, \\
(x + 1)U_{r/2}(x)U_{(r-2)/2}(x) + 1/2, & D_{r+1}^{(2)}, \quad r : \text{even}, \\
(x + 1)U_{(r-1)/2}(x)^2, & D_{r+1}^{(2)}, \quad r : \text{odd}, \\
(U_r(x) + U_{r-1}(x))/2, & A_{2r}^{(2)}. \end{cases}
\]

(7)
$C_r^{(1)}$ & $A_{2r-1}^{(2)}$: The Coxeter number is $h = 2r$ for $C_r^{(1)}$ and $h = 2r - 1$ for $A_{2r-1}^{(2)}$. The equilibrium position is equally spaced $\bar{q} = (\pi/2h)^t(2r-1, 2r-3, \ldots, 3, 1)$. We obtain the Chebyshev polynomial of the first kind $T_r(x)$ for $C_r^{(1)}$ and a sum of them for $A_{2r-1}^{(2)}$.

\[
2^{r-1} \prod_{j=1}^{r} (x - \cos 2\bar{q}_j) = \begin{cases} T_r(x), & C_r^{(1)}, \\ T_r(x) + T_{r-1}(x), & A_{2r-1}^{(2)}. \end{cases}
\]

(8)

$D_r^{(1)}$: The Coxeter number is $h = 2(r-1)$ and the equilibrium position is equally spaced $\bar{q} = (\pi/h)^t(r-1, r-2, \ldots, 1, 0)$. We obtain the Chebyshev polynomial of the second kind

\[
2^{r-2} \prod_{j=1}^{r} (x - \cos 2\bar{q}_j) = (x^2 - 1)U_{r-2}(x).
\]

(9)

$E_6^{(1)}$: The Coxeter number is $h = 12$ and the equilibrium position is not equally spaced $\bar{q} = (\pi/h)^t(4\sqrt{3}, 4, 3, 2, 1, 0)$. We consider the set of minimal weights 27 and the set of positive roots Δ_+, which consists of 36 roots. The polynomials are

\[
2^{20} \prod_{\mu \in 27} (x - \sin (\mu \cdot \bar{q})) = (-1 + x) x^3 (1 + x) (-1 + 2x) (1 + 2x)^2 (-1 + 2x^2)^2 \\
\quad \times (-3 + 4x^2)^3 (1 - 16x^2 + 16x^4)^2, \\
2^{27} \prod_{\mu \in \Delta_+} (x - \cos (2\mu \cdot \bar{q})) = x^6 (1 + x)^3 (-1 + 2x)^6 (1 + 2x)^7 (-3 + 4x^2)^7.
\]

(10) (11)

$E_7^{(1)}$: The Coxeter number is $h = 18$ and the equilibrium position is not equally spaced $\bar{q} = (\pi/2h)^t(17\sqrt{2}, 10, 8, 6, 4, 2, 0)$. We consider the set of minimal weights 56 and the set of positive roots Δ_+, which consists of 63 roots. The 56 is even, i.e. if $\mu \in 56$ then $-\mu \in 56$. The positive part of 56 is denoted as 56_+. The polynomials are

\[
2^{24} \prod_{\mu \in 56_+} (x - \cos (2\mu \cdot \bar{q})) = x^4 (-3 + 4x^2)^3 (-3 + 36x^2 - 96x^4 + 64x^6)^3, \\
2^{59} \prod_{\mu \in \Delta_+} (x - \cos (2\mu \cdot \bar{q})) = (1 + x)^4 (-1 + 2x)^7 (1 + 2x)^7 \\
\quad \times (-1 + 6x + 8x^3)^8 (1 - 6x + 8x^3)^7.
\]

(12) (13)

$E_8^{(1)}$: The Coxeter number is $h = 30$ and the equilibrium position is not equally spaced $\bar{q} = (\pi/h)^t(23, 6, 5, 4, 3, 2, 1, 0)$. We consider the set of positive roots Δ_+, which consists of
120 roots. The polynomial is
\[
2^{16} \prod_{\mu \in \Delta_+} \left(x - \cos(2\mu \cdot \bar{q}) \right) =
(1 + x)^4 (-1 + 2x)^8 (1 + 2x)^8 (-1 - 2x + 4x^2)^8 (-1 + 2x + 4x^2)^8
\times (1 + 8x - 16x^2 - 8x^3 + 16x^4)^8 (1 - 8x - 16x^2 + 8x^3 + 16x^4)^9.
\]

\[(14) \]

\[
F_4^{(1)} \ & E_6^{(2)} : \quad \text{The Coxeter number is } h = 12 \text{ for } F_4^{(1)} \text{ and } h = 9 \text{ for } E_6^{(2)} \text{ and the equilibrium position is not equally spaced } \bar{q} = (\pi/h)^t(8, 3, 2, 1). \text{ We consider the set of long positive roots } \Delta_{L+} \text{ and short positive roots } \Delta_{S+}, \text{ both of which consist of 12 roots reflecting the self-duality of } F_4 \text{ Dynkin diagram. The polynomials for } F_4^{(1)} \text{ are}
\]
\[
2^9 \prod_{\mu \in \Delta_{S+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = x^2 (1 + x) (-1 + 2x)^2 (1 + 2x)^3 (-3 + 4x^2)^2, \quad (15)
\]
\[
2^9 \prod_{\mu \in \Delta_{L+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = x^2 (1 + x) (-1 + 2x)^2 (1 + 2x) (-3 + 4x^2)^3. \quad (16)
\]

The polynomials associated with the twisted affine root system \(E_6^{(2)} \) are
\[
2^{12} \prod_{\mu \in \Delta_{S+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = (1 + 2x)^3 (1 - 6x + 8x^3)^3, \quad (17)
\]
\[
2^{12} \prod_{\mu \in \Delta_{L+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = 2 (-1 + x) (1 + 2x)^2 (1 - 6x + 8x^3)^3. \quad (18)
\]

\[G_2^{(1)} \ & D_4^{(3)} : \quad \text{The Coxeter number is } h = 6 \text{ for } G_2^{(1)} \text{ and } h = 4 \text{ for } D_4^{(3)} \text{ and the equilibrium position is } \bar{q} = (\pi/2h)^t(3\sqrt{6}, \sqrt{2}). \text{ We consider the set of long positive roots } \Delta_{L+} \text{ and short positive roots } \Delta_{S+}, \text{ both of which consists of 3 roots reflecting the self-duality of } G_2 \text{ Dynkin diagram. The polynomials for the untwisted } G_2^{(1)} \text{ are}
\]
\[
2^3 \prod_{\mu \in \Delta_{S+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = 2 (1 + x) (-1 + 2x) (1 + 2x), \quad (19)
\]
\[
2^3 \prod_{\mu \in \Delta_{L+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = (-1 + 2x)^2 (1 + 2x). \quad (20)
\]

The polynomials for the twisted \(D_4^{(3)} \) are
\[
\prod_{\mu \in \Delta_{S+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = x^2 (1 + x), \quad (21)
\]
\[
\prod_{\mu \in \Delta_{L+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = x^2 (-1 + x). \quad (22)
\]
Before closing this paper, let us briefly remark on the identities arising from *foldings* of root systems. Among them those relating two un-twisted root systems, *ie* with superscript (1) are quite simple.

Folding $A_{2r-1}^{(1)} \rightarrow C_r^{(1)}$: The vector weights of A_{2r-1} ($2r$ dim.) become those of C_r ($2r$ dim.). This relates T_{2r} to T_r in (8) as

$$A_{2r-1} : \quad T_{2r}(x) = (-1)^r T_r(1 - 2x^2), \quad C_r^{(1)}. \quad (23)$$

Folding $D_{r+1}^{(1)} \rightarrow B_r^{(1)}$: This gives a quite obvious relation as seen from (9) and (7).

Folding $E_6^{(1)} \rightarrow F_4^{(1)}$: In this folding the minimal weights 27 of E_6 become Δ_S (24 dim.) of F_4 plus three zero weights. Thus we obtain

$$E_6^{(1)} : \quad 2 \langle [10] \rangle / x^3 = \langle [15] \rangle x-1 - 2x^2, \quad F_4^{(1)}. \quad (24)$$

We also obtain

$$E_6^{(1)} : \quad \langle [11] \rangle = \langle [15] \rangle^2 \times \langle [10] \rangle, \quad F_4^{(1)}, \quad (25)$$

since the 72 roots of E_6 are decomposed into $2\Delta_S + \Delta_L$ (24 dim.) of F_4.

Folding $D_4^{(1)} \rightarrow G_2^{(1)}$: The vector weights of D_4 (8 dim.) decompose into Δ_S (6 dim.) plus two zero weights of G_2 leading to the identity

$$D_4^{(1)} : \quad 2 \langle [10] \rangle_{r=1}/(x - 1) = \langle [19] \rangle, \quad G_2^{(1)}. \quad (26)$$

Acknowledgements

S. O. and R. S. are supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, No.13135205 and No. 14540259, respectively.

References

8

