Polynomials associated with equilibrium positions in Calogero–Moser systems

S Odake and R Sasaki

1 Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
2 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Received 4 July 2002
Published 17 September 2002
Online at stacks.iop.org/JPhysA/35/8283

Abstract
In a previous paper (Corrigan–Sasaki), many remarkable properties of classical Calogero and Sutherland systems at equilibrium are reported. For example, the minimum energies, frequencies of small oscillations and the eigenvalues of Lax pair matrices at equilibrium are all ‘integer valued’. The equilibrium positions of Calogero and Sutherland systems for the classical root systems (Ar, Br, Cr and Dr) correspond to the zeros of Hermite, Laguerre, Jacobi and Chebyshev polynomials. Here we define and derive the corresponding polynomials for the exceptional (E6, E7, E8, F4 and G2) and non-crystallographic (I2(m), H3 and H4) root systems. They do not have orthogonality but share many other properties with the above-mentioned classical polynomials.

PACS numbers: 02.20.−a, 02.30.Gp, 02.30.Ik

1. Introduction

The relationship between classical and quantum integrability has fascinated many physicists and mathematicians. In a recent paper by Corrigan and Sasaki [1], this issue has been extensively investigated in the framework of Calogero–Moser systems [2–4]. One major result is that certain ‘quantized’ information seems to be encoded in the classical system. For example, the eigenvalues of classical Lax pair matrices at the equilibrium points are ‘integer valued’ [1]. The connection between the zeros of Hermite and Laguerre polynomials and the equilibrium points of Ar and Br (Dr) Calogero systems has been known for many years [5–7]. In [1], it is found that the zeros of Jacobi polynomials are related to the equilibrium points of BCr (Dr) Sutherland system. In the present paper, we define and derive the polynomials associated with the equilibrium points of the other Calogero and Sutherland systems. These are associated with Calogero systems based on non-crystallographic root systems, Calogero and Sutherland systems based on the exceptional root systems and the Ar Sutherland systems. The Chebyshev polynomials (5.3) are associated with the Ar Sutherland systems.
In general, the polynomials are determined by the potential, \( q^2 + 1/q^2 \) (the Calogero system [2]) and \( 1/\sin^2 q \) (the Sutherland system [3]), the root system \( \Delta \) and the set of weights \( \mathcal{R} \). For the classical root systems and for the (non-trivial) smallest dimensional \( \mathcal{R} \), that is the set of vector weights \( V \) or the set of short roots \( \Delta_S \), the polynomials turn out to be classical orthogonal polynomials: Hermite, Laguerre, Jacobi and Chebyshev polynomials [8]. The orthogonality does not hold for the polynomials for exceptional root systems and for classical root systems with generic \( \mathcal{R} \). Like their classical counterparts, these new polynomials have ‘integer coefficients’ only, if multiplied by a certain factor. In most cases, it is possible to define the polynomials to be monic (that is, the highest degree term has unit coefficient) and integer coefficients only. Some polynomials are too lengthy to be displayed in the paper; an \( E_8 \) polynomial has 121 terms and its typical integer coefficient has about 150 digits. They are presented in [9]. Some root systems are related by Dynkin diagram foldings; \( A_{2r-1} \to C_r, D_{r+1} \to B_r, E_6 \to F_4 \) and \( D_4 \to G_2 \). These imply relations among the corresponding Calogero–Moser systems at certain ratios of the coupling constants. These, in turn, imply relations among the corresponding polynomials, which are determined independently. These relations are either identities among classical polynomials, many of which are ‘new’ in the sense that they are not listed in standard mathematical textbooks [8], or they provide non-trivial checks for the newly derived polynomials. The significance and other detailed properties of these new polynomials deserve further study.

This paper is organized as follows. In section two, a brief introduction to Calogero–Moser systems is given to set the stage and notation. Equations for determining equilibrium points are discussed in some detail. In section three, Coxeter (Weyl) invariant polynomials associated with equilibrium positions are introduced for a set of weights \( \mathcal{R} \) for Calogero and Sutherland systems. For the rational potential (Calogero systems) the definition is almost unique, whereas we have several choices of definitions of the polynomials for the trigonometric potential (Sutherland system). Sections four and five are the main body of the paper. The Coxeter (Weyl) invariant polynomials are determined and presented for all root systems \( \Delta \) and for major choices of \( \mathcal{R} \) for Calogero (section four) and Sutherland systems (section five). Section six is for summary and comments. We will present a heuristic argument for deriving the classical orthogonal polynomials starting from the pre-potentials (2.4) of Calogero and Sutherland systems.

2. Equilibrium in Calogero–Moser system

Let us start with a brief introduction of Calogero–Moser systems [2–4]. We stick to the notation of a recent paper [1], unless otherwise mentioned. Calogero–Moser systems are integrable multiparticle dynamical systems at the classical as well as quantum levels. They have a long-range potential (rational, trigonometric, hyperbolic and elliptic) and the integrable multiparticle interactions are governed by the root systems [10]. Classical integrability through the Lax formalism is known for all potentials for classical root systems [10] as well as for exceptional [11, 12] and non-crystallographic [12] root systems. Quantum integrability of the systems having degenerate potentials (rational, trigonometric and hyperbolic) is now systematically understood for all root systems in terms of the Dunkl operator formalism [13, 14] and the quantum Lax pair formalism [15, 16]. With a system of \( r \) particles in one dimension, we associate a root system \( \Delta \) of rank \( r \). This is a set of vectors in \( \mathbb{R}^r \) invariant under reflections in the hyperplane perpendicular to each vector in \( \Delta \):

\[
\Delta \ni s_\alpha(\beta) = \beta - (\alpha^\vee \cdot \beta)\alpha
\]

\[
\alpha^\vee = \frac{2\alpha}{\alpha^2}, \quad \alpha, \beta \in \Delta.
\]
The set of reflections \( \{ s_\alpha | \alpha \in \Delta \} \) generates a finite reflection group \( G_\Delta \), known as a Coxeter (or Weyl) group. Among Calogero–Moser systems the Calogero systems (with \( q^2 + 1/q^2 \) potential) and the Sutherland systems (with \( 1/\sin^2 q \) potential) have discrete energy eigenvalues only when quantized. The Calogero and Sutherland systems have equilibrium positions, which are characterized in two equivalent ways [1]. That is where the classical potential takes the absolute minimum and simultaneously the ground-state wavefunction takes the absolute maximum. At the equilibrium positions of the Calogero and Sutherland systems, associated spin exchange models are defined for each root system, including the exceptional ones [17]. The best-known example is the Haldane–Shastry model which is based on \( A \) Sutherland systems [18]. The integrability and the well-ordered spectrum of the spin exchange models are closely related to the special properties of systems at equilibrium [1]. It is interesting to investigate how knowledge of the polynomials obtained in this paper could be applied to the study of spin exchange models, etc.

The classical Hamiltonians of the Calogero and Sutherland systems read:\(^3\)

\[
\mathcal{H}_C = \frac{1}{2} p^2 + V_C = \begin{cases} 
\frac{\omega^2 q^2}{2} + \frac{1}{2} \sum_{\rho \in \Delta_+} \frac{g_\rho^2 \rho^2}{(\rho \cdot q)^2} \\
\frac{1}{2} \sum_{\rho \in \Delta_+} \frac{g_\rho^2 \rho^2}{\sin^2(\rho \cdot q)}
\end{cases}
\]  

(2.2)

In these formulae, \( \Delta_+ \) is the set of positive roots and \( \omega > 0 \) is the angular frequency of the confining harmonic potential, \((g_\rho > 0)\) are real coupling constants which are defined on orbits of the corresponding Coxeter group, i.e., they are identical for roots in the same orbit. The classical potential \( V_C \) can be written succinctly in terms of a pre-potential \( W \) [15]:

\[
V_C = \frac{1}{2} \sum_{j=1}^{r} \left( \frac{\partial W}{\partial q_j} \right)^2 + \tilde{E}_0
\]  

(2.3)

in which

\[
W = \begin{cases} 
-\frac{\omega q^2}{2} + \sum_{\rho \in \Delta_+} g_\rho \log |\rho \cdot q| \\
\sum_{\rho \in \Delta_+} g_\rho \log |\sin(\rho \cdot q)|
\end{cases}
\]  

(2.4)

and \( \tilde{E}_0 \) is the minimum energy. Let us recall that the pre-potential \( W \) is related to the ground-state wavefunction of the quantum theory \( \phi_0 \) by \( \phi_0 = e^W \) (equation (2.6) of [1]), and that \( W, V_C \) and \( \mathcal{H}_C \) are Coxeter (Weyl) invariant:

\[
\mathcal{H}_C(p, q) = \mathcal{H}_C(s_\alpha(p), s_\alpha(q)) \quad W(q) = W(s_\alpha(q)) \quad V_C(q) = V_C(s_\alpha(q))
\]  

(\( \forall \alpha \in \Delta \)).

The classical equilibrium point

\[
p = 0 \quad q = \bar{q}
\]  

(2.6)

is determined by the equations [1]

\[
\left. \frac{\partial V_C}{\partial q_j} \right|_{\bar{q}} = 0 \quad \text{or equivalently} \quad \left. \frac{\partial W}{\partial q_j} \right|_{\bar{q}} = 0 \quad (j = 1, \ldots, r).
\]  

(2.7)

\(^3\) For \( \Delta = BC_r \) the trigonometric potential should read \( g_\rho^2 \sum_{\rho \in \Delta_+} 1/\sin^2(\rho \cdot q) + 2g_\rho^2 \sum_{\rho \in \Delta_+} 1/\sin^2(\rho \cdot q) + g_S (g_S + 2g_L) \sum_{\rho \in \Delta_+} 1/\sin^2(\rho \cdot q) \), with \( \rho_4^2 = 2, \rho_2^2 = 4 \) and \( \rho_4^2 = 1. \)
In other words, it is a **minimal** point of the classical potential $V_\epsilon$, and simultaneously it is a **maximal** point of the pre-potential $W$ and of the ground-state wavefunction $\phi_0 = e^W$, since the matrix determining the frequencies of small oscillations around the equilibrium

$$\frac{\partial^2 W}{\partial q_j \partial q_l} \bigg|_{\bar{q}} \quad (j, l = 1, \ldots, r)$$

(2.8)

is negative definite [1]. The equilibrium points are not unique. There is one equilibrium point in each Weyl chamber (alcove) [1], that is if $\bar{q}$ is an equilibrium point, so is $s_\rho(\bar{q})$, $\forall \rho \in \Delta$, due to the Coxeter (Weyl) invariance of $W$ (2.5). It is also easy to see that if $\bar{q}$ is an equilibrium point, so is $-\bar{q}$.

The equilibrium equation for the pre-potential $W$, for Calogero systems based on *simply laced* root systems, that is $A_r, D_r, E_r, I_2$(odd) and $H_r$, reads:

$$\sum_{\rho \in \Delta_+} \frac{\rho}{\rho \cdot \bar{q}} = \frac{\omega}{g} \bar{q}.$$ 

For Calogero systems based on *non-simply laced* root systems, that is $B_r, C_r, F_4, G_2$ and $I_2$(even)$^4$, the equation reads:

$$\sum_{\rho \in \Delta_+} \frac{\rho}{\rho \cdot \bar{q}} + k \sum_{\rho \in \Delta_{\pm}} \frac{\rho}{\rho \cdot \bar{q}} = \frac{\omega}{g} \bar{q} \quad k = \frac{g_S}{g_L}. \tag{2.10}$$

For crystallographic *simply laced* root systems, that is $A_r, D_r$ and $E_r$, the equation for $\bar{q}$ is independent of the coupling constant:

$$\sum_{\rho \in \Delta_+} \frac{\rho \cdot \bar{q}}{\rho} = 0. \tag{2.13}$$

For crystallographic *non-simply laced* root systems, that is $B_r, C_r, F_4$ and $G_2$, the equation for $\bar{q}$ depends only on the ratio of the two coupling constants $g_S$ and $g_L$:

$$\sum_{\rho \in \Delta_+} \frac{\rho \cdot \bar{q}}{\rho} + k \sum_{\rho \in \Delta_{\pm}} \frac{\rho \cdot \bar{q}}{\rho} = 0 \quad k = \frac{g_S}{g_L} \tag{2.14}$$

$^4$ For $I_2$(even) we have $k = g_\epsilon / g_\omega$. 

For the \( BC_r \) system, which has three coupling constants \( g_S, g_M \) and \( g_L \) for the short, middle and long roots, the equation depends on two coupling ratios:

\[
\sum_{\rho \in \Delta_{1S}} \rho \cot(\rho \cdot \bar{\eta}) + k_1 \sum_{\rho \in \Delta_{1S}} \rho \cot(\rho \cdot \bar{\eta}) + k_2 \sum_{\rho \in \Delta_{1L}} \rho \cot(\rho \cdot \bar{\eta}) = 0 \quad k_1 = \frac{g_S}{g_M} \\
k_2 = \frac{g_L}{g_M}.
\]  

(2.15)

3. Polynomials

Here, we give the general definitions of the Coxeter (Weyl) invariant polynomials associated with the equilibrium positions in Calogero and Sutherland systems. Naturally, the definitions for the Calogero systems are different from those for the Sutherland systems except for the common features that the polynomials are Coxeter (Weyl) invariant and are specified by the root system \( \Delta_1 \) and a set of \( D \) vectors \( R \)

\[
R = \{ \mu^{(1)}, \ldots, \mu^{(D)} | \mu^{(\alpha)} \in \mathbb{R} \}
\]  

(3.1)

which form a single orbit of the corresponding reflection (Weyl) group \( G_\Delta \). The set of values at the equilibrium, \( \{ \mu \cdot \bar{\eta} | \mu \in R \} \), is Coxeter (Weyl) invariant. In this paper, we consider only such \( R \) that are customarily used for Lax pairs. They are the set of roots \( \Delta \) itself for simply laced root systems, the set of long (short, middle) roots \( \Delta_L (\Delta_S, \Delta_M) \) for non-simply laced root systems and the so-called sets of minimal weights. The latter is better specified by the corresponding fundamental representations, which are all the fundamental representations of \( A_r \), the vector (V), spinor (S) and conjugate spinor (\( \bar{S} \)) representations of \( D_r \) and 27 (\( 27 \)) of \( E_6 \) and 56 of \( E_7 \).

For Calogero systems the definition is rather unique and is given by

\[
P_{\Delta, c}^R(k|x) = \prod_{\mu \in R} (x - \cos(\mu \cdot \bar{\eta}))
\]  

(3.2)

in which \( k \) denotes the possible dependence on the ratio of the coupling constants, for the systems based on non-simply laced root systems (2.12). It should be noted that the above polynomial depends on the normalization of the vectors \( \mu \in R \) implicitly. Changing \( R \to cR (\mu \to c\mu) \) can be absorbed by rescaling \( x \):

\[
P_{\Delta, c}^c(k|x) = \prod_{\mu \in R} (x - c\mu \cdot \bar{\eta}) = c^D P_{\Delta}^R(k|x/c).
\]  

(3.3)

For Sutherland systems we have several candidates for polynomials:

\[
P_{\Delta, c}^R(k|x) = \prod_{\mu \in R} (x - \sin(\mu \cdot \bar{\eta}))
\]  

(3.4)

\[
P_{\Delta, c}^R(k|x) = \prod_{\mu \in R} (x - \cos(2\mu \cdot \bar{\eta}))
\]  

(3.5)

in which \( k \) denotes the possible dependence on the ratio(s) of coupling constants, as before. Not all of them give interesting objects, as we will see presently. In all cases the polynomials are monic and of degree \( D \).

In the case \( R \) is even, that is,

\[
\mu \in R \iff -\mu \in R
\]  

(3.6)
then sometimes it is advantageous to consider $P^R_{\Delta,1}(k|x)$, $P^R_{\Delta,s}(k|x)$ and $P^R_{\Delta,c2}(k|x)$ as polynomials in $y \equiv x^2$ of degree $D/2$:

$$\prod_{\mu \in R_+} (y - (\mu \cdot \tilde{q})) \prod_{\mu \in R_+} (y - \sin^2(\mu \cdot \tilde{q})) \prod_{\mu \in R_+} (y - \sin^2(2\mu \cdot \tilde{q}))$$ (3.7)

in which $R_+$ is the positive part of $R$. In this case the ‘cosine’ polynomials $P^R_{\Delta,c2}(k|x)$, (3.5), should better be redefined as

$$P^R_{\Delta,c}(k|x) = \prod_{\mu \in R_+} (x - \cos(\mu \cdot \tilde{q}))$$

$$P^R_{\Delta,c2}(k|x) = \prod_{\mu \in R_+} (x - \cos(2\mu \cdot \tilde{q}))$$ (3.8)

since the original polynomials (3.5) are the squares of the new ones. It is easy to see that $P^R_{\Delta,s}(k|y)$ and $P^R_{\Delta,c2}(k|x)$ are equivalent:

$$P^R_{\Delta,s}(k|x) = (-2)^{-D/2} P^R_{\Delta,c2}(k|1 - 2x^2).$$ (3.9)

Likewise, for even $R$, $P^R_{\Delta,c2}(k|x)$ is a ‘square’ of $P^R_{\Delta,c2}(k|x)$:

$$P^R_{\Delta,c2}(k|x) = \prod_{\mu \in R} (x - \sin(2\mu \cdot \tilde{q})) = \prod_{\mu \in R_+} (x^2 - \sin^2(2\mu \cdot \tilde{q}))$$

$$= \prod_{\mu \in R_+} (u - \cos(2\mu \cdot \tilde{q}))(u - \cos(2\mu \cdot \tilde{q}))$$

$$u^2 \equiv 1 - x^2$$

(3.10)

The right-hand side is an even polynomial in $u$, thus it is a polynomial in $u^2$ and in $x^2$. The change of variables $u \leftrightarrow x$ corresponds to the change in the character of the variables, $\cos \leftrightarrow \sin$. This imposes a quite non-trivial check for the $s2$ and $c2$ polynomials which are determined separately.

As shown in the following sections, the polynomials associated with the classical root systems ($A_r$, $B_r$, $C_r$, and $D_r$) and $I_2(m)$ are either classical polynomials for the smallest dimensional $R$ or those closely related to them (see, for example, (4.32), (4.33), (5.41), (5.42)). For the exceptional and non-crystallographic root systems, the equilibrium positions are evaluated numerically and the polynomials are obtained by rationalization of the coefficients in terms of Mathematica. At each step, the result is verified by many consistency checks; the ‘integer eigenvalues’ of the matrix (2.8) for the values of $\tilde{q}$, the identities implied by Dynkin diagram foldings and identities (3.10) for the polynomials. Let us conclude this section with the important remark that these polynomials are independent of the specific representation of the root and weight vectors. In other words, the polynomials are Coxeter (Weyl) invariant.

4. Calogero systems

Let us first discuss the systems based on classical root systems.

4.1. $A_r$

Equations (2.10) for $\Delta = A_r$ read

$$\sum_{\substack{i=1 \atop i \neq j}}^{r+1} \frac{1}{\tilde{q}_j - \tilde{q}_i} = \tilde{q}_j \quad (j = 1, \ldots, r + 1).$$ (4.1)
These determine \( \tilde{q}_j = \sqrt{\frac{\omega}{g}} \tilde{q}_j \mid j = 1, \ldots, r + 1 \) to be the zeros of the Hermite polynomial \( H_{r+1}(x) \) [8], with the Rodrigues formula

\[
H_n(x) = (-1)^n e^{x^2} \left( \frac{d}{dx} \right)^n e^{-x^2} = 2^n x^n + \cdots \tag{4.2}
\]

If ordered by value, \( \tilde{q}_1 > \tilde{q}_2 > \cdots > \tilde{q}_{r+1} \) or reverse, they possess the symmetry

\[
\tilde{q}_j = -\tilde{q}_{r+2-j} \tag{4.3}
\]

and especially \( \tilde{q}_{(r+2)/2} = 0 \) for \( r \) even. Thus we have

\[
\tilde{q}_1 + \tilde{q}_2 + \cdots + \tilde{q}_{r+1} = 0 \tag{4.4}
\]

4.1.1. \( R = V \) for \( A_r \). This case was reported by Calogero a quarter century ago [5]. The set of weights of the vector representation is

\[
V = \left\{ \mu_j = e_j - \frac{1}{r+1} \sum_{l=1}^{r+1} e_l \mid j = 1, \ldots, r + 1 \right\} \tag{4.5}
\]

Throughout this paper we denote an orthonormal basis of \( R^r(R^{r+1} \) for the \( A_r \) case) by \( \{ e_j \} \).

In this case, we have \( \mu_j \cdot \tilde{q} = \tilde{q}_j \) due to (4.4) and \( \mu^2 = r/(r+1) \). Polynomial (3.2) is given by the Hermite polynomial

\[
P_r^V(x) \equiv P_{A_r}^V(x) = \prod_{j=1}^{r+1} (x - \tilde{q}_j) = 2^{r+1} H_{r+1}(x). \tag{4.6}
\]

They are orthogonal to each other:

\[
\int_{-\infty}^{\infty} P_r^V(x) P_s^V(x) e^{-x^2} \, dx \propto \delta_{rs}. \tag{4.7}
\]

Needless to say, Hermite polynomials are of integer coefficients. It is interesting to note that another definition

\[
P_{A_r}^{2V}(x) = \prod_{j=1}^{r+1} (x - 2\tilde{q}_j) = H_{r+1}(x/2) = 2^{r+1} P_{A_r}^V(x/2) \tag{4.8}
\]

gives a monic polynomial with all integer coefficients.

4.1.2. \( R = V_i \) for \( A_r \). The set of weights of the \( i \)th fundamental representation (\( i \)th rank anti-symmetric tensor representation, \( 1 \leq i \leq r \)) is

\[
V_i = \left\{ \mu_j = \cdots \mu_j, \mid 1 \leq j_1 < \cdots < j_i \leq r + 1 \right\} \quad D_i = D_i \equiv \binom{r+1}{i}. \tag{4.9}
\]

The above \( V \) (4.5) is \( V = V_1 \). In this case we have \( \mu^2 = i(r+1-i)/(r+1) \). We can show that the polynomial (3.2)

\[
P_{A_r}^{V_i}(x) = \prod_{1 \leq j_1 < \cdots < j_i \leq r+1} (x - (\tilde{q}_j + \cdots + \tilde{q}_j)) = P_{A_r}^{V_{i-1}}(x) \tag{4.10}
\]

can be expressed in terms of the coefficients of \( H_{r+1}(x) \) by the same method as given in section 4.2.5, and \( P_{A_r}^{V_i}(x) \) gives a monic polynomial with integer coefficients.
Here we report only on $V_2$ because it seems that the other representations ($3 \leq i \leq r-2$) do not provide any interesting results. (For lower rank $r$, the explicit forms of the polynomials $P_{V_i}^V(x)$ can be found in [9].) Due to (4.3), equation (4.10) becomes

$$P_{A_r}^V(x) = \prod_{1 \leq j < l \leq r+1} (x - (\tilde{q}_j + \tilde{q}_l)) = \begin{cases} x^{(r+1)/2} \prod_{1 \leq j < l \leq (r+1)/2} (x^2 - (\tilde{q}_j - \tilde{q}_l)^2)(x^2 - (\tilde{q}_j + \tilde{q}_l)^2) & r : \text{odd} \\ x^{r/2} \prod_{j=1}^{r/2} (x^2 - (\tilde{q}_j - \tilde{q}_l)^2) \prod_{1 \leq j < l \leq r/2} (x^2 - (\tilde{q}_j + \tilde{q}_l)^2) & r : \text{even.} \end{cases}$$

(4.11)

Based on the fact that the zeros of Hermite and Laguerre polynomials are related as seen from the formulae (4.23), this can be expressed by using the polynomials associated with the $B_r$ Calogero systems in the following way:

$$P_{A_{r-1}}^V(x) = x^r B_r^{A_r}(1/2|x) \quad P_{A_r}^V(x) = x^{r-1} P_{A_r}^V(x) B_r^{A_r}(3/2|x).$$

(4.12)

The explicit forms of the functions $P_{B_r}^{A_r}(k|x)$ for lower $r$ are given in section 4.2.5.

4.1.3. $\mathcal{R} = \Delta$ for $A_r$. We have $\Delta = \{\pm(e_j - e_l) | 1 \leq j < l \leq r+1\}$, $D = r(r+1)$ and $\mu^2 = 2$. The polynomial has a factorized form:

$$P_{A_r}^V(x) = \prod_{1 \leq j < l \leq r+1} (x^2 - (\tilde{q}_j - \tilde{q}_l)^2) = \begin{cases} x^2 - 2 & (r = 1) \\ x^{r-1} P_{A_r}^V(x) \left(P_{A_r}^V(x)\right)^2 & (r \geq 2). \end{cases}$$

(4.13)

Another definition $P_{A_r}^{2r}(x)$ gives a monic polynomial with integer coefficients.

4.2. $B_r$ and $D_r$

Assuming $\tilde{q}_j \neq 0$, equations (2.12) for $\Delta = B_r$ with $k \equiv g_S/g_L$ read

$$\sum_{j=1}^{r} \sum_{l \neq j} \frac{1}{\tilde{q}_j^2 - \tilde{q}_l^2} + \frac{k}{2 \tilde{q}_j} = \frac{1}{2} \quad (j = 1, \ldots, r).$$

(4.14)

They determine $\{\tilde{q}_j^2 = \frac{2}{k} \tilde{q}_j^2 | j = 1, \ldots, r\}$ as the zeros of the associated Laguerre polynomial $L_r^{(\alpha)}(x)$, with $\alpha = k - 1 = g_S/g_L - 1$ [1, 8, 10]. The Rodrigues formula reads

$$L_n^{(\alpha)}(x) = \frac{e^{\frac{1}{2}x} - x^{-\alpha}}{n!} \left(x^n \frac{d}{dx}\right)^n (e^{-\frac{1}{2}x} x^{\alpha n}) = \frac{(-1)^n}{n!} x^n + \ldots.$$  

(4.15)

For the subcase with $g_S = 0$, that is $\Delta = D_r$, $\{\tilde{q}_j^2 = \frac{\alpha}{g_L} \tilde{q}_j^2 | j = 1, \ldots, r\}$ are the zeros of the associated Laguerre polynomial [8, 10],

$$r L_{r-1}^{(\alpha)}(x) = -x L_r^{(\alpha)}(x)$$

(4.16)

for which one of the $\tilde{q}_j$ is zero. This also means that the $\{\tilde{q}_j^2\}$ of $B_r$ for $g_S/g_L = 2$ or $\alpha = 1$ are the same as the non-vanishing $\{\tilde{q}_j^2\}$ of $D_{r+1}$. This can be understood easily from the Dynkin diagram folding $D_{r+1} \rightarrow B_r$. We omit the $C_r$ case, because $C_r$ is obtained from $B_r$ by interchanging the short (S) and long (L) roots.
4.2.1. \( R = \Delta_S \) for \( B_r \). Since \( \Delta_S = \{ ±e_j | j = 1, \ldots, r \} \) is even, it is advantageous to consider the polynomials in \( y \equiv x^2, (3.7) \),

\[
P_r^{\Delta}(y) = P_r^{\Delta}(k|x) = \prod_{j=1}^{r} \left( x^2 - q_j^2 \right) = (-1)^r r! L_r^{(\alpha)}(y) \quad \alpha = k - 1 = g_S/g_L - 1.
\]

They are orthogonal to each other:

\[
\int_0^{\infty} P_r^{\Delta}(y) P_s^{\Delta}(y) y^\alpha e^{-y} \, dy \propto \delta_{rs}.
\]

It should be stressed that \( P_r^{\Delta}(y) \), a monic polynomial in \( y \), is also a polynomial in the parameter \( \alpha \) with all integer coefficients.

4.2.2. \( R = V \) for \( D_r \). As in the previous example, \( V = \{ ±e_j | j = 1, \ldots, r \} \), we introduce \( y \equiv x^2, (3.7) \)

\[
P_r^{V}(y) = P_r^{V}(x) = \prod_{j=1}^{r} \left( x^2 - q_j^2 \right) = (-1)^r r! L_r^{(-1)}(y).
\]

They are orthogonal to each other:

\[
\int_0^{\infty} P_r^{V}(y) P_s^{V}(y) y^{-1} e^{-y} \, dy \propto \int_0^{\infty} L_r^{(1)}(y) L_s^{(1)}(y) e^{-y} \, dy \propto \delta_{rs}
\]

in which the identity (4.16) is used. Corresponding to the above-mentioned Dynkin diagram folding \( D_{r+1} \to B_r \) and (4.16), we obtain

\[
x^2 P_r^{\Delta}(2|x) = P_r^{V}(D_{r+1})(x) = P_r^{\Delta}(B_{r+1})(0|x).
\]

4.2.3. \( A_{2r-1} \to C_r \) and the relationship between Hermite and Laguerre polynomials. As is well known the Dynkin diagram folding \( A_{2r-1} \to C_r \) relates the \( A_{2r-1} \) Calogero system to the \( C_r \) (\( B_r \)) system with \( \omega \to 2\omega, g_S(g_L) = 2g \) and \( g_L(g_S) = g \), that is \( \alpha = -1/2 \). This would imply \( P_r^{A_{2r-1}}(x) (4.6) \) is equal to \( P_r^{B}(1/2|x) (4.17) \):

\[
P_r^{V}(A_{2r-1})(x) = P_r^{B}(1/2|x)
\]

which is equivalent to a well-known formula relating Hermite polynomials and Laguerre polynomials (equation (5.6.1) of [8]):

\[
H_{2r}(x) = (-1)^r 2^{2r} r! L_r^{(-1/2)}(x^2) \quad H_{2r+1}(x) = (-1)^r 2^{2r+1} r! x^2 L_r^{(1/2)}(x^2).
\]

The former corresponds to \( k = 1/2 \) and (4.22). The latter corresponds to \( k = 3/2 \) and implies

\[
P_r^{V}(A_{2r-1})(x) = x P_r^{B}(3/2|x).
\]

Let us recall the corresponding results in the trigonometric case [1, 8]. The polynomial \( P_{\Delta}^{\Delta}(\omega;x) = \mathcal{N}(k_1,k_2|x) \) (5.20) is proportional to Jacobi polynomial \( P_{\omega,\beta}^{(1)}(x) \) with \( \alpha = k_1 + k_2 - 1 \) and \( \beta = k_2 - 1 \). For \( k_1 = 0, k_2 = 1/2 \) \( k_1 = 0, k_2 = 3/2 \) it reduces to the Chebyshev polynomial of the first (second) kind. As above, \( k_1 = 0, k_2 = 1/2 \) corresponds to the \( A_{2r-1} \to C_r \) folding.
4.2.4. $R = S$ and $\bar{S}$ for $D_r$. The spinor $S$ and conjugate spinor $\bar{S}$ representations of $D_r$ are minimal representations with $D = 2^{r-1}$ and the natural normalization $\mu^2 = r/4$. For odd $r$, we have the equality $-S = \bar{S}$ which means $P^S_{D_r}(x) = P^\bar{S}_{D_r}(x)$ for odd $r$. In fact, the symmetry of the $D_r$ Dynkin diagram implies that the same formula holds for even $r$, too. Here we present $P^S_{D_r}(x)$ for lower members of $r$:

$$P^{S,V}_{D_4}(x) = \lambda^2(-24 + 36x^2 - 12x^4 + x^6)$$  \hspace{1cm} (4.25)

$$P^{S,S}_{D_4}(x) = 25 - 3400x^2 + 13900x^4 - 20200x^6 + 12730x^8 - 3880x^{10}$$
$$\quad + 580x^{12} - 40x^{14} + x^{16}$$  \hspace{1cm} (4.26)

$$P^\bar{S}_{D_6}(x) = 2^{-16} \left( 951356390625 - 24582413628000x^2 + 229552540380000x^4 ight.$$  
$$\quad - 1001859665040000x^6 + 2271780895320000x^8 
\quad - 2992279237056000x^{10} + 2465846485977600x^{12} 
\quad - 1332743493888000x^{14} + 4869263963520000x^{16} 
\quad - 122431951872000x^{18} + 21351239884800x^{20} - 25778891980800x^{22} 
\quad + 2127458304000x^{24} - 116686848000x^{26} + 4030446000x^{28} 
\quad - 7864320x^{30} + 65536x^{32} \right).$$  \hspace{1cm} (4.27)

The equality of the three polynomials for $V, S$ and $\bar{S}$ in $D_4$, (4.25) reflects the three-fold symmetry of the $D_4$ Dynkin diagram.

4.2.5. $R = \Delta_L$ for $B_r$ and $D_r$. The set of long roots of $B_r$ is $\Delta_L = \{ \pm (e_j - e_l), \pm (e_j + e_l) \mid 1 \leq j < l \leq r \}$. The polynomial $P^{\Delta_L}_{B_r}(k|x)$ can be expressed neatly in terms of the coefficients of the polynomial $P^{\Delta_L}_{B_r}(k|x)$ (4.17). Suppose we have two polynomials in $y$:

$$f = \prod_{i=1}^{n} (y - x_i^2) = \sum_{i=0}^{n} (-1)^i a_i y^{n-i}$$  \hspace{1cm} (4.28)

$$g = \prod_{1 \leq i < j \leq n} (y - (x_i - x_j)^2)(y - (x_i + x_j)^2).$$  \hspace{1cm} (4.29)

Let us denote $b_i = x_i^2$, then we obtain $g$ as a symmetric polynomial in $b_i$:

$$g = \prod_{1 \leq i < j \leq n} (y^2 - 2(b_i + b_j)y + (b_i - b_j)^2)$$  \hspace{1cm} (4.30)

and $\{a_i\}$ are the basis of the symmetric polynomials in $b_i$:

$$a_i = \sum_{1 \leq j_1 < \cdots < j_i \leq n} b_{j_1} \cdots b_{j_i}. \hspace{1cm} (4.31)$$

Thus $g$ can be expressed in terms of the coefficients $\{a_i\}$ of $f$ with integer coefficients. For example,

$n = 2$:  \quad $g = y^2 - 2a_1 y + a_1^2 - 4a_2$  \hspace{1cm} (4.32)

$n = 3$:  \quad $g = y^6 - 4a_1 y^5 + 2(3a_1^2 - a_2) y^4 - 2(2a_1^3 - a_1a_2 - 3a_2) y^3$
$$\quad + (a_1^4 + 2a_1^2a_2 - 7a_1^2 - 24a_1a_3) y^2 - 2(a_1^4 - 3a_2)(a_1a_2 - 9a_3)y$
$$\quad + a_1^2a_2^2 - 4a_4 - 4a_1^3a_3 + 18a_1a_2a_3 - 27a_3^2.$$

(4.33)

If $f$ is of rational coefficients, so is $g$. 

The polynomials associated with equilibrium positions in Calogero–Moser systems are presented as polynomials in $E_r$.

4.3.1. $P^\Delta_{B_r}(k|x)$ for lower members of $r$. This includes $P^\Delta_{B_6}(x)$ as a special case of $k = 0$.

As remarked before, they are presented as polynomials in $y = x^2$:

\[
P^\Delta_{B_r}(k|x) = 4(1+k) - 4(1+k)y + y^2
\]

\[
P^\Delta_{B_1}(k|x) = 108(1+k)(2+k)^2 - 324(1+k)(2+k)^2y + 9(2+k)^2(41+32k)y^2
\]

\[
- 4(2+k)(99+88k+16k^2)y^3 + 6(2+k)(17+8k)y^4
\]

\[
- 12(2+k)y^5 + y^6
\]

\[
P^\Delta_{B_4}(k|x) = 27648(1+k)(2+k)^2(3+k)^3 - 165888(1+k)(2+k)^3(3+k)^3y
\]

\[
+ 4608(2+k)^2(3+k)^3(91+82k)y^2
\]

\[
- 512(2+k)(3+k)^3(2282+2777k+792k^2)y^3
\]

\[
+ 192(2+k)(3+k)^2(15462+20235k+8336k^2+1088k^3)y^4
\]

\[
- 768(2+k)(3+k)^2(2085+2167k+688k^2+64k^3)y^5
\]

\[
+ 64(3+k)^2(17634+22113k+9480k^2+1536k^3+64k^4)y^6
\]

\[
- 768(3+k)^3(342+327k+96k^2+8k^3)y^7
\]

\[
+ 48(3+k)(2514+2465k+784k^2+80k^3)y^8
\]

\[
- 64(3+k)(186+123k+20k^2)y^9 + 240(3+k)^2y^{10} - 24(3+k)y^{11} + y^{12}.
\]

As remarked above, $P^\Delta_{B_r}(k|x)$ is a polynomial in $y$ and in $k$ with all integer coefficients and is monic in $y$. The explicit forms of the polynomials $P^\Delta_{B_r}(k|x)$ ($r = 5, 6$) and $P^\Delta_{B_6}(x)$ ($r = 4, 5, 6$) can be found in [9]. The Dynkin diagram folding $D_{r+1} \rightarrow B_r$ relates the polynomials $P^\Delta_{B_r}(2|x)(P^\Delta_{B_r}(2|x))^2 = P^\Delta_{D_{r+1}}(x) = P^\Delta_{D_{r+1}}(0|x)$ which is the root version of the identity (4.21).

Next we discuss the systems based on the exceptional root systems. For these we have relied on the numerical evaluation of the equilibrium points by Mathematica. Large enough digits of precision are maintained in internal computations, e.g., we keep 2048 digits for the $E_7$ Sutherland system. We have verified in each case that the fit of the polynomial with rational coefficients gives no detectable errors within the working precision.

4.3. $E_r$

The $E$ series of the root systems, $E_6$, $E_7$ and $E_8$, are simply laced. The corresponding polynomials do not contain any coupling constants.

4.3.1. $R = 27$ and $\Delta$ for $E_6$. Polynomials for $27$ and $\Delta$,

\[
P_{E_6}^{27}(x) = \prod_{\mu \in 27}(x - \mu \cdot \tilde{q}) \quad (\mu^2 = 4/3, \rho^2 = 2)
\]

\[
P_{E_6}^\Delta(x) = \prod_{\rho \in \Delta}(x - \rho \cdot \tilde{q}) \quad (\rho^2 = 2)
\]
are slightly simplified for a different normalization of \( \mu \in R \):

\[
P_{\frac{\sqrt{727}}{3}}(x) = 3^{-\frac{27}{2}} P_{\frac{27}{3}}(\sqrt{3}x) = \prod_{\mu \in \mathbb{Z}} (x - \mu \cdot \hat{q}) \quad (\mu = \mu/\sqrt{3}, \mu^2 = 4/9)
\]

\[
= x^3(200 - 3600x^2 + 24600x^4 - 83980x^6 + 162945x^8
\]

\[
- 192840x^{10} + 144876x^{12} - 70416x^{14} + 22170x^{16} - 4440x^{18}
\]

\[
+ 540x^{20} - 36x^{22} + x^{24})
\]

(4.40)

\[
P_{\frac{\sqrt{735}}{3}}(x) = 3^{-\frac{36}{2}} P_{\frac{36}{3}}(\sqrt{3}x) = \prod_{\rho \in \mathbb{R}} (x - \rho \cdot \hat{q}) \quad (\rho = \rho/\sqrt{3}, \rho^2 = 2/3)
\]

\[
= (81920 - 1474560x^2 + 8970240x^4 - 22749184x^6
\]

\[
+ 28505088x^8 - 19829760x^{10} + 8239872x^{12} - 2128896x^{14} + 346944x^{16}
\]

\[
- 35328x^{18} + 2160x^{20} - 72x^{22} + x^{24})(200 - 3600x^2 + 24600x^4 - 83980x^6
\]

\[
+ 162945x^8 - 192840x^{10} + 144876x^{12} - 70416x^{14} + 22170x^{16} - 4440x^{18}
\]

\[
+ 540x^{20} - 36x^{22} + x^{24})^2.
\]

(4.41)

It is interesting to note that the second factor of \( P_{\frac{36}{3}}(x) \), (4.41), is the same as \( P_{\frac{27}{3}}(x)/x^3 \), which is the same polynomial appearing in (4.40) and (4.47). Again it should be stressed that these polynomials are monic and all the coefficients are integers.

4.3.2. \( R = 56 \) for \( E_7 \). Polynomial for \( 56 \),

\[
P_{\frac{56}{E}}(x) = \prod_{\mu \in \mathbb{Z}} (x - \mu \cdot \hat{q}) \quad (\mu^2 = 3/2, \rho^2 = 2)
\]

(4.42)

is slightly simplified for a different normalization of \( \mu \):

\[
P_{\frac{\sqrt{756}}{3}}(x) = 2^8 P_{\frac{56}{E}}(x/\sqrt{3}) = \prod_{\mu \in \mathbb{Z}} (x - \mu \cdot \hat{q}) \quad (\mu = \sqrt{2}\mu, \mu^2 = 3)
\]

\[
= 2044117922661550386613265625
\]

\[
- 48583441852490416903125286500x^2
\]

\[
+ 40394343776436272104983097250x^4
\]

\[
- 1594876299784237542505579618500x^6
\]

\[
+ 342318153287468547792360316875x^8
\]

\[
- 4470973846715160163197028791000x^{10}
\]

\[
+ 3844463042762881314328636794900x^{12}
\]

\[
- 2298706753677324429083230164600x^{14}
\]

\[
+ 994190889968661674517540390225x^{16}
\]

\[
- 320292929635170629680242995500x^{18}
\]

\[
+ 786005696523626205629789205150x^{20}
\]

\[
- 14948636823173617875192068460x^{22}
\]

\[
+ 2232949785098933644991402715x^{24}
\]

\[
- 264680665744227895592493840x^{26}
\]

\[
+ 25089285771398909108223000x^{28}
\]

\[
- 1912398423761929885120080x^{30}
\]
The theory has two coupling constants $g_L$ and $g_S$ for the long ($\rho_L^2 = 2$) and short ($\rho_S^2 = 1$) roots. We present the polynomials as a function of $k \equiv g_S/g_L$.

4.4.1. $\mathcal{R} = \Delta_L$ for $F_4$

$$P_L^k(y) \equiv P_{E_7}^{\Delta_L}(x) = \prod_{\rho \in \Delta_L} (y - (\rho \cdot \bar{\rho}))$$

\[
= 746496(1+k)^6(2+k)^7(1+2k) - 4478976(1+k)^6(2+k)^2(1+2k)y + 124416(1+k)^5(2+k)^4(1+2k)(91 + 64k)x^2 - 13824(1+k)^5(2+k)(2282 + 6049k + 3712k^2 + 512k^3)x^3 + 15552(1+k)^4(2+k)(718 + 5027k + 4288k^2 + 1024k^3)x^4
\]

\[
- 20736(1+k)^4(2+k)(695 + 1472k + 704k^2)y^5 + 1728(1+k)^3(5878 + 16235k + 14408k^2 + 4096k^3)x^5y^5
\]

\[
- 62208(1+k)^3(38 + 71k + 32k^2)y^7 + 432(1+k)^2(838 + 1627k + 784k^2)y^8
\]

\[
- 576(1+k)^2(62 + 61k)y^9 + 2160(1+k)^2y^{10} - 72(1+k)y^{11} + y^{12}. \tag{4.44}
\]

4.4.2. $\mathcal{R} = \Delta_S$ for $F_4$

$$P_S^k(y) \equiv P_{E_7}^{\Delta_S}(x) = \prod_{\rho \in \Delta_S} (y - (\rho \cdot \bar{\rho}))$$

\[
= 729k^5(1+k)^6(2+k)^2(1+2k)^2/4 - 2187k^6(1+k)^6(2+k)(1+2k)^2y + 243k(1+k)^5(2+k)(1+2k)(64 + 91k)y^2
\]

\[
- 27(1+k)^5(1+2k)(512 + 3712k + 6049k^2 + 2282k^3)y^3
\]

\[
+ 243(1+k)^4(1+2k)(1024 + 4288k + 5027k^2 + 1718k^3)/y^4
\]

\[
- 162(1+k)^4(1+2k)(704 + 1472k + 695k^2)y^5
\]

\[
+ 27(1+k)^4(4096 + 14408k + 16235k^2 + 5878k^3)y^6
\]

\[
- 1944(1+k)^3(32 + 71k + 38k^2)y^7 + 27(1+k)^2(784 + 1627k + 838k^2)y^8
\]

\[
- 72(1+k)^2(61 + 62k)y^9 + 540(1+k)^2y^{10} - 36(1+k)y^{11} + y^{12}. \tag{4.45}
\]

They are related to each other reflecting the self-duality of the $F_4$ root system. If one replaces $k$ by $1/k$ and $y$ by $y/(2k)$ in $P_S^k(y)$, one obtains $P_S^k(y)/(2k)^{12}$:

$$P_L^k(y) = (2k)^{12}P_S^k(1/k|y/2k) \quad \text{or} \quad P_{E_7}^{\Delta_L}(x) = (2k)^{12}P_{E_7}^{\Delta_S}(1/k|x/\sqrt{2k}). \tag{4.46}$$
It is well known that \( F_4 \) with the coupling ratio \( k = g_S/g_L = 2 \) is obtained from \( E_6 \) by folding. This relates \( F_4 \) polynomials to \( E_6 \) polynomials:

\[
P_{F_4}^{\Delta_4} (2|x) = \frac{P_{E_6}^{\Delta_4}(x)}{x^3} \quad P_{F_4}^{\Delta_4} (2|x)(P_{F_4}^{\Delta_4}(2|x))^2 = P_{E_6}^{\Delta_4}(x). \quad (4.47)
\]

Both of them have trigonometric counterparts as will be shown later (5.64)–(5.66). The two polynomials \( P_{F_4}^{\Delta_4}(k|x) \) and \( P_{E_6}^{\Delta_6}(k|x) \) have integer coefficients only. This property seems to be inherited from \( E_6 \), too.

4.5. \( G_2 \)

The theory has two coupling constants \( g_L \) and \( g_S \) for the long \( (\rho_2^L = 2) \) and short \( (\rho_2^S = 2/3) \) roots. We present the polynomials as a function of \( k = g_S/g_L \).

4.5.1. \( R = \Delta_L \) for \( G_2 \)

\[
P^L_2 (k|y) \equiv P^L_{G_2} (k|x) = \prod_{\rho \in \Delta_L} (x - \rho \cdot \bar{q}) = \prod_{\rho \in \Delta_L} (y - (\rho \cdot \bar{q})^2) \quad (\rho_2^L = 2)
\]

\[
= -27(1 + k)^2/2 + 81(1 + k)^2/2y - 9(1 + k)y^2 + y^3. \quad (4.48)
\]

4.5.2. \( R = \Delta_S \) for \( G_2 \)

\[
P^S_2 (k|y) \equiv P^S_{G_2} (k|x) = \prod_{\rho \in \Delta_S} (x - \rho \cdot \bar{q}) = \prod_{\rho \in \Delta_S} (y - (\rho \cdot \bar{q})^2) \quad (\rho_2^S = 2/3)
\]

\[
= -k(1 + k)^2/2 + 9(1 + k)^2/2y - 3(1 + k)y^2 + y^3. \quad (4.49)
\]

They are related to each other reflecting the self-duality of the \( G_2 \) root system:

\[
P^L_2 (k|y) = (3k)^3 P^S_2 (1/k|y/3k) \quad \text{or} \quad P^S_{G_2} (k|x) = (3k)^3 P^L_{G_2} (1/k|x/\sqrt{3k}). \quad (4.50)
\]

The \( G_2 \) Calogero system with the coupling ratio \( k = g_S/g_L = 3 \) is obtained from that of \( D_4 \) by the three-fold folding \( D_4 \to G_2 \). This implies analogous relations to (4.47)

\[
P^S_{G_2} (3|x) = P^S_{D_4} (x)/x^2 \quad (R = V, S, \bar{S}) \quad P^S_{G_2} (3|x)(P^S_{G_2} (3|x))^3 = P^S_{D_4} (x). \quad (4.51)
\]

Both of them have trigonometric counterparts, too, as will be shown later. The two polynomials \( P^S_{G_2} (\rho_2^L|x) \) and \( P^S_{G_2} (\rho_2^S|x) \) have integer coefficients only. This property seems to be inherited from \( D_4 \).

Thirdly, let us discuss the systems based on non-crystallographic root systems.

4.6. \( I_2 (m) \)

The equilibrium points are easily obtained when parametrized by the two-dimensional polar coordinates [1]:

\[
\vec{q} = (\bar{q}_1, \bar{q}_2) = \bar{r}(\sin \bar{\varphi}, \cos \bar{\varphi}) \quad (4.52)
\]

\[
\bar{r}^2 = \frac{mg}{\omega} \quad \bar{\varphi} = \frac{\pi}{2m} \quad (m: \text{odd})
\]

\[
\bar{r}^2 = \frac{m(g_\omega + g_{\omega})}{2\omega} \quad \tan \frac{m\bar{\varphi}}{2} = \sqrt{\frac{g_\omega}{g_{\omega}}} \quad (m: \text{even})
\]

\[
(4.53)
\]
in which \( g \) is the coupling constant in the simply laced odd \( m \) theory, whereas \( g_o \) (\( g_e \)) is the coupling constant for odd (even) roots in the non-simply laced even \( m \) theory. As \( \mathcal{R} \) we choose the set of the vertices of the regular \( m \)-gon \( R_m \) on which the dihedral group \( I_2(m) \) acts:

\[
R_m = \{(\cos(2j\pi/m + t_0), \sin(2j\pi/m + t_0)) \in \mathbb{R}^2 | j = 1, \ldots, m\}
\]

\[
t_0 = \pi/2m \quad (m: \text{odd}) \quad t_0 = 0 \quad (m: \text{even}). \tag{4.54}
\]

The polynomial \( \prod_{\mu \in R_m} (x - \mu \cdot \vec{q}) \) (3.2) is obtained trivially:

\[
P_m(x) \equiv p_{I_2(m)}^{R_m}(x) = \prod_{\mu \in R_m} (x - \mu \cdot \vec{q}) = \prod_{j=1}^{m} \left( x - \sin \left( \frac{2j\pi}{m} + \frac{\varphi_0}{m} \right) \right) \tag{4.55}
\]

in which

\[
\varphi_0 = \pi \quad (m: \text{odd}) \quad \varphi_0 = 2 \arctan \sqrt{k} \quad k \equiv g_e/g_o \quad (m: \text{even}). \tag{4.56}
\]

For odd \( m \), \( P_m(x) \) is proportional to the Chebyshev polynomial of the first kind \( T_m(x) \) (see (5.4)). For even \( m \) and for the equal coupling \( g_e = g_o \), \( P_m(x) \) is also proportional to the Chebyshev polynomial \( T_m(x) \) and thus the entire \( \{P_m(x) = 2^{1-m}T_m(x)\} \) constitute orthogonal polynomials [1]. For the generic coupling \( g_e \neq g_o \) the orthogonality no longer holds. This can be seen most easily by the explicit forms of the lower members of \( P_m(x) \) in the non-singular limiting cases, \( g_e = 0 \) and \( g_o = 0 \):

\[
g_e = 0 : x^2, x^2(x^2 - 1), x^2(x^2 - 3/4), x^2(x^2 - 1/2)^2(x^2 - 1), \ldots
\]

\[
g_o = 0 : x^2 - 1, (x^2 - 1/2)^2, (x^2 - 1)(x^2 - 1/4)^2, (x^4 - x^2 + 1/8)^2, \ldots \tag{4.57}
\]

which have definite sign in \(-1 < x < 1\).

The following equivalences are well known: \( A_2 \equiv I_2(3) \), \( B_2 \equiv I_2(4) \) and \( G_2 \equiv I_2(6) \). The \( I_2(3) \) polynomial corresponds to the \( A_2 \) polynomial of vector \( \mathbf{V} \),

\[
P_{I_2(3)}^{R_3}(x) = \frac{1}{2}T_3(x) = \frac{1}{16}\sqrt{2}H_3(\sqrt{2}x) = P_{A_2}^{V/\sqrt{2}}(x). \tag{4.58}
\]

As for the \( I_2(4) \) polynomial, we obtain from (4.55)

\[
P_{I_2(4)}^{R_4}(x) = x^4 - x^2 + \frac{k}{4(1+k)} \quad k \equiv g_e/g_o. \tag{4.59}
\]

For the \( B_2 \) system, the Laguerre polynomial with \( \alpha = k - 1 \equiv g_e/g_o - 1 \) reads

\[
L_2^{(\alpha)}(y) = \frac{1}{2}y^2 - (k+1)y + k(1+k)/2 \quad \alpha = k - 1.
\]

They are proportional to each other upon identification \( y = 2(1+k)x^2 \). The \( I_2(6) \) polynomial obtained from (4.55) reads, after some calculation,

\[
P_{I_2(6)}^{R_6}(x) = x^6 - \frac{3}{2}x^4 + \frac{9}{16}x^2 - \frac{k}{16(1+k)} \quad k = g_e/g_o \tag{4.60}
\]

which is proportional to \( P_{I_2(6)}^{S}(k|y) \) (4.49) upon the same identification as above \( y = 2(1+k)x^2 \).

### 4.7. \( H_3 \) and \( H_4 \)

The non-crystallographic \( H_3 \) and \( H_4 \) are simply laced root systems. In both cases, the roots are normalized to 2, as with the other simply laced root systems, \( \rho^2 = 2 \). Then both monic polynomials \( P_{H_3}^{R_3}(x) \) and \( P_{H_4}^{R_4}(x) \) have integer coefficients only.
4.7.1. $\mathcal{R} = \Delta$ for $H_3$

\[ P^\Delta_3(y) \equiv P^\Delta_{H_3}(x) = \prod_{\rho \in \Delta} (x - \rho \cdot \tilde{q}) = \prod_{\rho \in \Delta} (y - (\rho \cdot \tilde{q})^2) \quad (\rho^2 = 2) \]

\[ \equiv (-450 + 225 y - 30 y^2 + y^3)(5625 - 22500 y + 27000 y^2 - 9600 y^3 + 1200 y^4 - 60 y^5 + y^6)(22500 - 67500 y + 46125 y^2 - 11700 y^3 + 1275 y^4 - 60 y^5 + y^6). \]  

\[ (4.61) \]

4.7.2. $\mathcal{R} = \Delta$ for $H_4$

\[ P^\Delta_4(y) \equiv P^\Delta_{H_4}(x) = \prod_{\rho \in \Delta} (x - \rho \cdot \tilde{q}) = \prod_{\rho \in \Delta} (y - (\rho \cdot \tilde{q})^2) \quad (\rho^2 = 2) \]

\[ \equiv (656100000000 - 1093500000000 y + 601425000000 y^2 - 154305000000 y^3 + 213435000000 y^4 - 1701000000 y^5 + 8039250000 y^6 - 2250000 y^7 + 360000 y^8 - 300 y^9 + y^{10})(7473389062500000000) \]

\[ - 9964518750000000000 y + 45172485000000000000 y^2 - 90926233593750000000000 y^3 + 9292854827812500000000 y^4 - 52841916742500000000000 y^5 + 18358385767875000000000 y^6 - 4169745135000000000000 y^7 + 648844128590625000000 y^8 - 7148347281000000000000 y^9 + 570711449970000000 y^{10} - 3355802966250000000 y^{11} + 14683267406250000 y^{12} - 480384270000000 y^{13} + 117396945000000 y^{14} - 212600700000 y^{15} + 2804085000 y^{16} - 26100000 y^{17} + 1620000 y^{18} - 600 y^{19} + y^{20}) \]

\[ \times (136202515664062500000000000000000000000 \]

\[ - 204303773496093750000000000000000000000 y \]

\[ + 1106645439770507812500000000000000000 y \]

\[ - 280672524028933593750000000000000000 y^3 \]

\[ + 40655043499727460937500000000000000000 y^4 \]

\[ - 377089903500479578125000000000000000 y^5 \]

\[ + 240385775914964970703125000000000000 y^6 \]

\[ - 110467977515351929687500000000000000000 y^7 \]

\[ + 378797411102993059375000000000000000 y^8 \]

\[ - 994761504511959206250000000000000000 y^9 \]

\[ + 204128960408317542031250000000000 y^{10} \]

\[ - 3325061946787265812500000000000000 y^{11} \]

\[ + 43529340095868749062500000000000 y^{12} \]

\[ - 46245924005547293437500000000000 y^{13} \]

\[ + 401746375286214215625000000000 y^{14} \]

\[ - 28701181376029878750000000000 y^{15} \]

\[ + 16931733509215147500000000 y^{16} \]

\[ - 82699244991680625000000000 y^{17} \]

\[ + 3348318248493890625000000 y^{18} - 112349936407545000000000 y^{19} \]
Polynomials associated with equilibrium positions in Calogero–Moser systems

\[ + 3118 \, 565 \, 868 \, 993 \, 450 \, 000 \, 000 \, y^{20} - 71 \, 352 \, 951 \, 283 \, 125 \, 000 \, 000 \, y^{21} \\
+ 1337 \, 980 \, 766 \, 062 \, 500 \, 000 \, y^{22} - 20 \, 388 \, 872 \, 475 \, 000 \, 000 \, y^{23} \\
+ 249 \, 452 \, 622 \, 000 \, 000 \, y^{24} - 2408 \, 494 \, 500 \, 000 \, y^{25} \\
+ 17 \, 897 \, 422 \, 500 \, y^{26} - 98 \, 550 \, 000 \, y^{27} + 378 \, 000 \, y^{28} - 900 \, y^{29} + y^{30}. \] (4.62)

5. Sutherland systems

Let us first discuss the systems based on the classical root systems.

5.1. \( A_r \)

The equilibrium position is ‘equally-spaced’ (see equation (5.14) of [1]) and translational invariant. We choose the constant shift such that the coordinate of ‘centre of mass’ vanishes, \( \sum_{j=1}^{r+1} \bar{q}_j = 0 \):

\[ \bar{q}_j = \frac{\pi (r+1-j)}{r+1} - \frac{\pi r}{2(r+1)} = \frac{\pi}{2} - \frac{\pi (2j-1)}{2(r+1)} = -\bar{q}_{r+2-j} \quad (j = 1, \ldots, r+1). \] (5.1)

5.1.1. \( R = V \) for \( A_r \). For the vector weight \( \mu_j \in V \) (4.5), \( \mu_j \cdot \bar{q} \) is independent of the constant shift of \( \bar{q} \). The above choice (5.1) leads to

\[ \mu_j \cdot \bar{q} = \frac{\pi}{2} - \frac{\pi (2j-1)}{2(r+1)} = \bar{q}_j - \frac{\pi}{2} < \mu_j \cdot \bar{q} < \frac{\pi}{2} \quad (j = 1, \ldots, r+1). \] (5.2)

In this case the polynomial (3.4) is given by

\[ P^V_r(x) \equiv P^V_{A_r,s}(x) = \prod_{j=1}^{r+1} (x - \sin(\mu_j \cdot \bar{q})) = \prod_{j=1}^{r+1} (x - \cos \frac{\pi (2j-1)}{2(r+1)}) = 2^{-r} T_{r+1}(x). \] (5.3)

Here \( T_n(\cos \varphi) = \cos(n\varphi) \) is the Chebyshev polynomial of the first kind, whose Rodrigues formula is

\[ T_n(x) = \frac{(-1)^n}{(2n-1)!!} (1-x^2)^{n/2} \frac{d^n}{dx^n} (1-x^2)^{-n/2} = 2^{n-1} x^n + \cdots. \] (5.4)

They are orthogonal to each other:

\[ \int_{-1}^{1} P^V_r(x) P^V_s(x) \sqrt{1-x^2} \, dx \propto \delta_{rs}. \] (5.5)

This relation between the classical equilibrium point of the \( A_r \) Sutherland model and the Chebyshev polynomial is a new result. Another definition

\[ P^V_{A_r,s}(x) = \prod_{j=1}^{r+1} (x - 2 \sin(\mu_j \cdot \bar{q})) = 2 T_{r+1}(x/2) = 2^{r+1} P^V_{A_r,s}(x/2) \] (5.6)

provides a monic polynomial with all integer coefficients.

It is easy to see that

\[ P^V_{A_r,s}(x) = \prod_{j=1}^{r+1} (x - \cos(\mu_j \cdot \bar{q})) = \prod_{j=1}^{r+1} (x - \sin \frac{\pi (2j-1)}{2(r+1)}) \]
does not give rational polynomials, for example, $P_{A,c}^V(x) = x^2 - \sqrt{3}x + 1/2$. In fact, in most cases the polynomial $P_{A,c}^R(x)$ is not of rational coefficients. In the rest of this paper we will not consider this type of polynomial.

The other polynomials

$$P_{A,c}^V(x) = \prod_{j=1}^{r+1} (x - \sin(2\mu_j \cdot \bar{\varphi})) = \prod_{j=1}^{r+1} \left( x - \sin \frac{\pi(2j - 1)}{r + 1} \right)$$

are essentially the same as $P_{A,c}^V(x)$, (5.3). Only the constant term can be different:

$$P_{A,c}^V(x) - P_{A,c}^V(x) = -2^{-r} \sin \frac{\pi r}{2} \quad P_{A,c}^V(x) - P_{A,c}^V(x) = (-1)^{r+1} 2^{-r}. \quad (5.7)$$

Thus we consider only the polynomial $P_{A,c}^V(x) = \prod_{\mu \in \mathcal{R}} (x - \sin(\mu \cdot \bar{\varphi}))$ for various $\mathcal{R}$ of $A_r$.

5.1.2. $\mathcal{R} = V_i$ for $A_r$. From (4.9) and (5.2), the polynomial (3.4) is given by

$$P_{A,c}^V(x) = \prod_{1 \leq j_1 < \cdots < j_r \leq r+1} (x - \sin(\bar{q}_{j_1} + \cdots + \bar{q}_{j_r})) = P_{A,c}^{V_i-1}(x). \quad (5.8)$$

This polynomial can be expressed in terms of the coefficients of $T_{r+1}(x)$ by the same method as given in section 5.2.5, and $2^0 P_{A,c}^{V_i}(x/2)$ gives a monic polynomial with integer coefficients. See [9] for the explicit forms of the polynomials $P_{A,c}^{V_i}(x)$ of lower rank $r$.

As in the Calogero case, we report only on $V_2^V$:

$$P_{A,c}^{V_2}(x) = \prod_{1 \leq j_1 < j_2 \leq r+1} (x - \sin(\bar{q}_{j_1} + \bar{q}_{j_2})) =$$

$$= \begin{cases} x^{(r+1)/2} \prod_{1 \leq j_1 < \cdots < j_r+1} (x - \sin^2(\bar{q}_{j_1} - \bar{q}_{j_1}))(x^2 - \sin^2(\bar{q}_{j_1} + \bar{q}_{j_1})) & r: \text{odd} \\
  x^{r/2} \prod_{1 \leq j_1 < \cdots < j_{r+1}} (x^2 - \sin^2(\bar{q}_{j_1} - \bar{q}_{j_1}))(x^2 - \sin^2(\bar{q}_{j_1} + \bar{q}_{j_1})) & r: \text{even} \end{cases} \quad (5.9)$$

Based on the fact that the zeros of Chebyshev and Jacobi polynomials are related as seen from the formulae (5.28) and (5.29), this can be expressed by using the polynomials associated with the $BC$ Sutherland systems in the following way:

$$P_{A_{BC},c}^{V_2}(x) = 2^{-r-1} x r P_{BC,c}^{\Delta_{A_{BC},c}}(0, 1/2|1 - 2x^2) \quad (5.10)$$

$$P_{A_{BC},c}^{V_2}(x) = 2^{-r-1} x r^{-1} P_{A_{BC},c}^{V_2}(x) P_{BC,c}^{\Delta_{A_{BC},c}}(1, 1/2|1 - 2x^2). \quad (5.11)$$

The explicit forms of the functions $P_{A,c}^{\Delta_{A_{BC},c}}(k_1, k_2|x)$ for lower $r$ are given in section 5.2.5.

5.1.3. $\mathcal{R} = \Delta$ for $A_r$. The polynomial has a factorized form:

$$P_{A,c}^{\Delta}(x) = \prod_{1 \leq j_1 < \cdots < j_r+1} (x^2 - \sin^2(\bar{q}_{j_1} - \bar{q}_{j_1})) =$$

$$= \begin{cases} x^2 - 1 \quad r = 1 \\
 x^{-r-1} P_{A,c}^{V_2}(x) (P_{A,c}^{V_2}(x))^2 & r \geq 2. \end{cases} \quad (5.12)$$
It is elementary to evaluate $P^{\Delta}_{\Delta_{r,s}}(x)$ for lower rank:

$$P^{\Delta}_{\Delta_{r,s}}(x) = \prod_{1 \leq j < l < r+1} \left( x^2 - \sin^2 \left( \frac{\pi(l-j)}{r+1} \right) \right)$$

$P^{\Delta}_{\Delta_{r,s}}(x) = x^2 - 1$

$P^{\Delta}_{\Delta_{r,s}}(x) = 2^{-6}(4x^2 - 3)^3$

$P^{\Delta}_{\Delta_{r,s}}(x) = 2^{-4}(x^2 - 1)^2(2x^2 - 1)^4$

$P^{\Delta}_{\Delta_{r,s}}(x) = 2^{-20}(5 - 20x^2 + 16x^4)^5$

$P^{\Delta}_{\Delta_{r,s}}(x) = 2^{-24}(x^2 - 1)^3(4x^2 - 1)^6(4x^2 - 3)^6$

$P^{\Delta}_{\Delta_{r,s}}(x) = 2^{-42}(-7 + 56x^2 - 112x^4 + 64x^6)^7$.

For $r = 1, 3$ and 5, $P^{\Delta}_{\Delta_{r,s}}(x)$ are of definite sign in $-1 < x < 1$. They can never be orthogonal to each other for whichever choice of the positive definite weight function.

5.2. $BC_r$ and $D_r$

As shown in [1], equations (2.7) for $\Delta = BC_r$ read

$$-2gM \sum_{l=1}^{r} \frac{\sin 2\bar{q}_l}{\cos 2\bar{q}_l - \cos 2\tilde{q}_l} + g_S \frac{\cos \bar{q}_l}{\sin \bar{q}_l} + 2gL \frac{\cos 2\bar{q}_l}{\sin 2\bar{q}_l} = 0 \quad (j = 1, \ldots, r). \quad (5.13)$$

For non-vanishing $g_S$ and $g_L$, $\sin 2\bar{q}_j = 0$ cannot satisfy the above equation. Thus dividing by $\sin 2\bar{q}_j$ we obtain for $k_1 \equiv g_S/g_M$, $k_2 \equiv g_L/g_M$:

$$\sum_{l=1}^{r} \frac{1}{x_j - x_l} + \frac{k_1 + k_2}{2(x_j - 1)} + \frac{k_2}{2(x_j + 1)} = 0 \quad (j = 1, \ldots, r) \quad (5.14)$$

in which $\bar{x}_j \equiv \cos 2\bar{q}_j$. These are the equations satisfied by the zeros $\{\bar{x}_j| j = 1, \ldots, r\}$ of the Jacobi polynomial $P^{(\alpha,\beta)}_{n}(x)$ [8] with

$$\alpha = k_1 + k_2 - 1 \quad \beta = k_2 - 1. \quad (5.15)$$

The Rodrigues formula for the Jacobi polynomial $P^{(\alpha,\beta)}_{n}(x)$ reads

$$P^{(\alpha,\beta)}_{n}(x) = \frac{(-1)^n}{2^n n!} (1 - x)^{\alpha-n} (1 + x)^{\beta-n} \left( \frac{d}{dx} \right)^n ((1 - x)^\alpha (1 + x)^\beta)$$

$$= \frac{1}{2^n n!} \Gamma(2n + \alpha + \beta + 1) \frac{\Gamma(2n + \alpha + \beta + 1)}{\Gamma(n + \alpha + \beta + 1)} x^n + \cdots \quad (5.16)$$

For $\Delta = D_r$, we have $g_S = g_L = 0$, implying $\alpha = \beta = -1$. We choose

$$\tilde{q}_1 = 0 \quad \tilde{q}_r = \pi/2 \quad (\iff \cos 2\tilde{q}_1 = 1 \quad \cos 2\tilde{q}_r = -1)$$

then (2.7) read

$$\sum_{l=1}^{r-1} \frac{1}{\bar{x}_j - \bar{x}_l} + \frac{1}{\bar{x}_j - 1} + \frac{1}{\bar{x}_j + 1} = 0 \quad (j = 2, \ldots, r - 1) \quad (5.17)$$

in which $\bar{x}_j \equiv \cos 2\bar{q}_j \ (j = 2, \ldots, r - 1)$. These are the equations satisfied by the zeros $\{\bar{x}_j| j = 2, \ldots, r - 1\}$ of the Jacobi polynomial $P^{(1,1)}_{r-2}(x)$ [8]. In fact, there is an identity

$$4P^{(1,-1)}_{r-1}(x) = (x^2 - 1)P^{(1,1)}_{r-2}(x) \quad (5.18)$$
which means that \([1, \bar{x}_2, \ldots, \bar{x}_{r-1}, -1]\) are the zeros of \(P^{(r-1,-1)}_{x}(x)\). This allows us to treat \(D_{x}\) as a limiting case of \(BC_{r}\).

The possible \(R\) for \(BC_{r}\) are \(\Delta_{S}, \Delta_{M}\) and \(\Delta_{L}\). Since \(\Delta_{S} = \{\pm e_{j} | j = 1, \ldots, r\}\) and \(\Delta_{L} = \{\pm 2e_{j} | j = 1, \ldots, r\}\), we have trivial identities among the polynomials

\[
P_{B_{C_{1,2}}}(k, k_{2}; x) = P_{B_{C_{1,2}}}(k_{1}, k_{2}; x)
\]

In other words, these relations prompted us to introduce the polynomials of the forms \(\prod_{i \in R}(x - \sin(2\mu \cdot q))\) and \(\prod_{i \in R}(x - \cos(2\mu \cdot q))\). For the \(BC_{r}\) Sutherland system we consider \(R = \Delta_{S}\) and \(\Delta_{M}\) only.

5.2.1. \(R = \Delta_{S}\) for \(BC_{r}\). Since \(\Delta_{S}\) is even and \([\bar{x}_j = \cos2q_j | j = 1, \ldots, r]\) are the zeros of the Jacobi polynomial, it is natural to consider the polynomial (3.8)

\[
P_{B_{C_{1,2}}}(k, k_{2}; x) = \prod_{j=1}^{r}(x - \cos 2\bar{q}_{j}) = 2^{r} r! \frac{\Gamma(r + \alpha + \beta + 1)}{\Gamma(2r + \alpha + \beta + 1)} P_{r}^{(\alpha, \beta)}(x)
\]

with \(\alpha = k + k_{2} = 1\) and \(\beta = k_{2} = 1\). They are orthogonal to each other:

\[
\int_{-1}^{1} P_{r}^{(\alpha, \beta)}(x) P_{s}^{(\alpha, \beta)}(x)(1 - x)^{\alpha}(1 + x)^{\beta} dx \propto \delta_{rs}.
\]

As remarked in (3.9), the polynomial \(P_{B_{C_{1,2}}}(k, k_{2}; x)\) is equivalent to \(P_{B_{C_{1,2}}}(k_{1}, k_{2}; x)\). Needless to say, \(2^{2n} P_{r}^{(\alpha, \beta)}(x)\) is a polynomial in the parameters \(\alpha\) and \(\beta\) with integer coefficients. Thus \(P_{B_{C_{1,2}}}(k_{1}, k_{2}; x)\) (5.20) is a rational function in \(\alpha\) and \(\beta\) with integer coefficients.

The other polynomial \(P_{B_{C_{1,2}}}(k_{1}, k_{2}; x)\) can easily be obtained by (3.10):

\[
P_{B_{C_{1,2}}}(k, k_{2}; x) = \prod_{j=1}^{r}(x^{2} - \sin^{2}(2\bar{q}_{j}))
\]

\[
= (-1)^{r} \left(2^{r} r! \frac{\Gamma(r + \alpha + \beta + 1)}{\Gamma(2r + \alpha + \beta + 1)}\right)^{2} P_{r}^{(\alpha, \beta)}(u) P_{r}^{(\beta, \alpha)}(u)
\]

in which \(u^{2} = 1 - x^{2}\). Remark that \(P_{r}^{(\alpha, \beta)}(-x) = (-1)^{r} P_{r}^{(\beta, \alpha)}(x)\).

5.2.2. \(R = V\) for \(D_{x}\). This is a special \((k_{1} = k_{2} = 0 \text{ or } \alpha = \beta = -1)\) case of the previous example. As in the previous example, we introduce

\[
P_{x}^{V}(x) \equiv P_{D_{x}}^{V}(x) = \prod_{j=1}^{r}(x - \cos 2\bar{q}_{j}) = \frac{2^{r} r!(r - 2)!}{(2r - 2)!} P_{r}^{(r-1,-1)}(x)
\]

\[
= (x + 1)(x - 1) \prod_{j=2}^{r-1}(x - \bar{x}_{j}) = \frac{2^{r-2} r!(r - 2)!}{(2r - 2)!} (x + 1)(x - 1) P_{r-2}^{(1,1)}(x).
\]

They are orthogonal to each other:

\[
\int_{-1}^{1} P_{x}^{V}(x) P_{s}^{V}(x)(1 - x)^{-1}(1 + x)^{-1} dx \propto \int_{-1}^{1} P_{r-2}^{(1,1)}(x) P_{s-2}^{(1,1)}(x)(1 - x)(1 + x) dx \propto \delta_{rs}.
\]
Corresponding to the Dynkin diagram folding $D_{r+1} \rightarrow B_r$ and (5.23), we obtain

$$ (x - 1) P_{D_{r+1}, e}^{\Delta_r}(2, 0|x) = P_{B_{r+1}, c}^{\Delta_r}(x) = P_{B_{r+1}, c}^{\Delta_r}(0, 0|x) $$

(5.25)

which is the trigonometric counterpart of (4.21).

The other polynomial $P_{D_{r}, c}^{\Delta_r}(x)$ has a simple form

$$ P_{D_{r}, c}^{\Delta_r}(x) = \prod_{j=1}^{r} (x^2 - \sin^2(2\varphi_j)) $$

$$ = (-1)^r \left( \frac{2^{r-1}r!(r-2)!}{(2r-2)!} \right)^2 x^4 \left( P_{r-2}^{(1, -1)}(u) \right)^2 $$

(5.26)

which is of definite sign in $-1 < x < 1$. Thus they do not form any orthogonal polynomials.

5.2.3. $A_{2r-1} \rightarrow C_r$ and the relationship between Chebyshev and Jacobi polynomials. As in the Calogero case, the Dynkin diagram folding $A_{2r-1} \rightarrow C_r$ implies

$$ P_{A_{2r-1}, s}^{\Delta_r}(x) = (-1)^{r} T_{2r}^{\Delta_r}(x) $$

(5.27)

Indeed, there are relations between Chebyshev and Jacobi polynomials:

$$ 2^{1-2r} T_{2r}^{\Delta_r}(x) = (-1)^{r} \left( \frac{r!}{(2r-2)!} \right)^2 x^4 P_{r}^{(1, -1)}(1 - 2x^2) $$

(5.28)

$$ 2^{-2r} T_{2r+1}^{\Delta_r}(x) = (-1)^{r} \left( \frac{r!}{(2r)!} \right)^2 x^4 P_{r}^{(1, -1)}(1 - 2x^2) $$

(5.29)

on top of the well-known relations (equation (4.17) of [8]):

$$ \frac{1 \cdot 3 \cdots (2r-1)}{2 \cdot 4 \cdots 2r} T_r^{\Delta_r}(x) = P_{r}^{(1, -1)}(x). $$

The former corresponds to (5.27) and the latter implies

$$ P_{A_{2r-1}, s}^{\Delta_r}(x) = (-2)^{r} x \left( \frac{r!}{(2r)!} \right)^2 x^4 P_{r}^{(1, -1)}(1 - 2x^2). $$

(5.30)

5.2.4. $R = S$ and $\bar{S}$ for $D_r$. As in the Calogero systems, the symmetry of the $D_r$ Dynkin diagram implies that $P_{D_{1}, a}^{\Delta_r}(x) = P_{D_{1}, a}^{S}(x)$, $a = s, c, s2, c2$. Among them $P_{D_{1}, c}^{S}(x)$ do not always give rational polynomials. As remarked above (3.9), $P_{D_{1}, c}^{S}(x)$ are equivalent to $P_{D_{1}, c}^{S}(x)$ for even rank $r$. Thus we list for lower rank $r$ the polynomials $P_{D_{1}, c}^{S}(x)$ and $P_{D_{1}, c}^{S}(x)$:

$$ P_{D_{1}, c}^{S}(x) = (x^2 - 1)(x^2 - 1/5) $$

(5.31)

$$ P_{D_{1}, c}^{S}(x) = x^4(x^2 - 4/5)^2 $$

(5.32)

$$ P_{D_{1}, c}^{S}(x) = (x^2 - 1/2)^4(x^4 - x^2 - 1/196)^2 $$

(5.33)

$$ P_{D_{1}, c}^{S}(x) = (x^2 - 1/2)^4(x^4 - x^2 - 1/196)^2 $$

(5.34)

$$ P_{D_{1}, c}^{S}(x) = 3^{-4}4^{-7}x^4(21x^4 - 28x^2 + 8)^2(63x^4 - 72x^2 + 16) $$

(5.35)

$$ P_{D_{1}, c}^{S}(x) = 3^{-8}7^{-6}(x^2 - 1)^4(21x^4 - 14x^2 + 1)^4(63x^4 - 54x^2 + 7)^2. $$

(5.36)

It is interesting to note that the formula (3.10) applies to $D_5$ (conjugate) spinor representation $S$ ($\bar{S}$), which is not even. This is because the set of values $\{|\mu \cdot \varphi|\mu \in S\}$ is even. Moreover, the function in (5.33) is invariant under $x^2 \rightarrow 1 - x^2$. 


5.2.5. $R = \Delta_M$ for $BC_r$. The set of middle roots is $\Delta_M = \{ \pm(e_j - e_l), \pm(e_j + e_l) | 1 \leq j < l \leq r \}$. As in the Calogero systems in section 4.2.5, the polynomial $P^{\Delta_M}_{BC_r}(k_1, k_2 | x)$ can be expressed neatly in terms of the coefficients of the polynomial $P^{\Delta_M}_{BC_r}(k_1, k_2 | x)$. Suppose we have two polynomials in $y$:
\[ f = \prod_{i=1}^{n} (y - \sin^2 x_i) = \sum_{i=0}^{n} (-1)^{i} a_i y^{n-i} \]  \hspace{1cm} (5.37)
\[ g = \prod_{1 \leq i < j \leq n} (y - \sin^2(x_i - x_j))(y - \sin^2(x_i + x_j)). \]  \hspace{1cm} (5.38)

Let us denote $b_i = \sin^2 x_i$, then we obtain $g$ as a symmetric polynomial in $b_i$:
\[ g = \prod_{1 \leq i < j \leq n} (y^2 - 2(b_i + b_j - 2b_ib_j)y + (b_i - b_j)^2) \]  \hspace{1cm} (5.39)
and $\{a_i\}$ are the basis of the symmetric polynomials in $b_i$:
\[ a_i = \sum_{1 \leq j_1 < \cdots < j_i \leq n} b_{j_1} \cdots b_{j_i}. \]  \hspace{1cm} (5.40)

Thus $g$ can be expressed in terms of the coefficients $\{a_i\}$ of $f$ with integer coefficients. For example,
\[ n = 2: \quad g = y^4 - 2(a_1 - 2a_2)y + a_1^2 - 4a_2 \]  \hspace{1cm} (5.41)
\[ n = 3: \quad g = y^6 - 4(a_1 - a_2)y^5 + 2(3a_1^2 - a_2 - 4a_1a_2 - 12a_3 + 8a_1a_3) y^4 - 2(a_1^3 - a_1a_2 - 13a_3 - 2a_2^2a_3 - 4a_2^3 - 2a_2a_3 + 32a_2a_3 - 32a_2^3) y^3 + (a_1^4 + 2a_1^2a_2 - 7a_2^2 - 24a_1a_3 - 8a_1^2a_3 - 16a_1^2a_3 + 120a_2a_3 + 16a_1^2a_3 - 144a_1^3a_3) y^2 - 2(a_1^3a_2 - 3a_1^2a_2^2 - 9a_1^2a_3^2 + 27a_2a_2a_3 - 2a_1^3 - 2a_1a_2^2 - 18a_2a_2a_3 - 18a_1a_2a_3 - 27a_2^3). \]  \hspace{1cm} (5.42)

If $f$ is of rational coefficients, so is $g$.

Here are some explicit forms of $P^{\Delta_M}_{BC_r}(k_1, k_2 | x)$ for lower rank $r$ (see also [9]):
\[ P^{\Delta_M}_{BC_r}(k_1, k_2 | x) = \frac{4(1 + k_2)(1 + k_1 + k_2)}{(1 + k_1 + 2k_2)(2 + k_1 + 2k_2)^2} - \frac{4(1 + k_2)(1 + k_1 + k_2)}{(1 + k_1 + 2k_2)(2 + k_1 + 2k_2)^2} y + y^2 \]  \hspace{1cm} (5.43)
\[ P^{\Delta_M}_{BC_r}(k_1, k_2 | x) = \frac{108(1 + k_2)(2 + k_2)^2(1 + k_1 + k_2)(2 + k_1 + k_2)^2}{(2 + k_1 + 2k_2)^3(3 + k_1 + 2k_2)^4(4 + k_1 + 2k_2)^4} - \frac{108(1 + k_2)(2 + k_2)^2(1 + k_1 + k_2)(2 + k_1 + k_2)^2(10 + 3k_1 + 6k_2)^3}{(2 + k_1 + 2k_2)^2(3 + k_1 + 2k_2)^3(4 + k_1 + 2k_2)^4} y + \frac{9(2 + k_1 + 2k_2)^2(2 + k_1 + 2k_2)^2}{(2 + k_1 + 2k_2)^2(3 + k_1 + 2k_2)^3(4 + k_1 + 2k_2)^4}(164 + 196k_1 + 41k_1^2 + 392k_2 + 292k_1k_2 + 32k_1^2k_2 + 292k_2^2 + 96k_1k_2^2 + 64k_2^3) y^2 - \frac{4(2 + k_2)(2 + k_1 + k_2)}{(2 + k_1 + 2k_2)^2(3 + k_1 + 2k_2)^2(4 + k_1 + 2k_2)^3} (792 + 1278k_1 + 639k_1^2 + 992k_1^2 + 2556k_2 + 3088k_1k_2 + 1052k_1^2k_2 + 88k_1^3k_2 + 3088k_2^2 + 2562k_1k_2^2 + 504k_1^2k_2^2 + 16k_1^3k_2^2 + 1708k_2^3 + 832k_1k_2^3 + 64k_1^2k_2^3 + 416k_2^4 + 80k_1k_2^4 + 32k_2^5) y^3. \]  \hspace{1cm} (5.44)
Polynomials associated with equilibrium positions in Calogero–Moser systems

5.2.6. \( \mathcal{R} = \Delta \) for \( D_r \). These are the \( k_1 = 0 \) and \( k_2 = 0 \) limits of the formulae given in the previous subsection.

\[
P_{D_{2r},c}^\Delta(x) = (1 + x)^3(-3/5 + x)(-1/5 + x^2)^4
\]
(5.45)

\[
P_{D_{2r},s}^\Delta(x) = x^6(-4/5 + x^2)^8(-16/25 + x^2)
\]
(5.46)

\[
P_{D_{2r},c}^\Delta(x) = x^4(1 + x)^3(-1/7 + x)(-4/7 + x^2)^2(-3/7 + x^2)^4
\]
(5.47)

\[
P_{D_{2r},s}^\Delta(x) = (-1 + x^2)^4x^6(-4/7 + x^2)^8(-3/7 + x^2)^4(-48/49 + x^2)
\]
(5.48)

\[
P_{D_{2r},c}^\Delta(x) = 3^{-97/7}(1 + x)^4(-3 - 14x + 21x^2)(1 - 14x^2 + 21x^4)^2(7 - 54x^2 + 63x^4)^2
\]
(5.49)

\[
P_{D_{2r},s}^\Delta(x) = 3^{-18/7 - 14}x^8(8 - 28x^2 + 21x^4)^8(16 - 72x^2 + 63x^4)^4(128 - 560x^2 + 441x^4).
\]
(5.50)

It is trivial to verify that (3.10) are satisfied:

\[
P_{D_{2r},s}^\Delta(x) = P_{D_{2r},c}^\Delta(u) P_{D_{2r},s}^\Delta(-u)
\]
(5.51)

The Dynkin diagram folding \( D_{2r+1} \rightarrow B_r \) relates the functions

\[
P_{BC_{r+1},c}^{\Delta\alpha}(2, 0|x)(P_{BC_{r+1},s}^{\Delta\alpha}(2, 0|x))^2 = P_{D_{2r+1},c}^{\Delta\alpha}(x) = P_{BC_{r+1},c}^{\Delta\alpha}(0, 0|x)
\]
(5.52)

which is the trigonometric counterpart of the identity (4.37).

Next we discuss the systems based on the exceptional root systems. As in the Calogero systems, we have relied on numerical evaluation of the equilibrium points.

5.3. \( E_r \)

5.3.1. \( \mathcal{R} = 27 \) and \( \Delta \) for \( E_6 \). We have evaluated two polynomials independently:

\[
P_{E_{6},c}^{27}(x) = \prod_{\mu \in 27} (x - \cos(2\mu \cdot \bar{q}))
\]

\[
= \frac{(-1 + x)^4(1 + 2x)^6}{2^{18741116}}(-743 - 42651x + 708939x^2 - 170045x^3
\]

\[
- 1890504x^4 + 7043652x^5 + 1260336x^6 - 9391536x^7 + 4174016x^8)^2
\]
(5.53)

and

\[
P_{E_{6},s}^{27}(x) = \prod_{\mu \in 27} (x - \sin(2\mu \cdot \bar{q}))
\]

\[
= \frac{x^3(-3 + 4x^2)^3}{2^{18741116}}(-221709312 + 39409774992x^2 - 786312492840x^4
\]

\[
+ 680404866593x^6 - 32072860850184x^8 + 89147361696624x^{10}
\]

\[
- 149154571577088x^{12} + 147001580732160x^{14} - 78400843057152x^{16}
\]

\[+ 17422409568256x^{18}).
\]
(5.54)
Although the set of minimal weights $27$ is not even, that is $-27 \neq 27$, these two polynomials are related. The formula (3.10) is valid,

$$P_{E_6,c}^{27}(x) = \sqrt{P_{E_6,c}^{27}(u)} \sqrt{P_{E_6,c}^{27}(-u)}_{u^2 = -1}.$$  \hfill (5.55)

This is the same situation encountered in the $D_5$ (conjugate) spinor representations $S$ ($\bar{S}$) in (5.33). This provides a strong support for the above results.

As for $R = \Delta$, we have

$$P_{E_6,c}^{\Delta}(x) = \prod_{\rho \in \Delta} (x - \cos(2\rho \cdot \vec{q})) = \frac{(2x + 1)^6}{2^{24}7^{11}} (-235 - 627x + 231x^2 + 847x^3)$$

$$\times (-743 - 42651x + 708939x^2 - 1704045x^3 - 1890504x^4 + 7043652x^5 + 1260336x^6 - 9391536x^7 + 4174016x^8)^3.$$ \hfill (5.56)

$$P_{E_6,c}^{\Delta}(x) = \prod_{\rho \in \Delta} (x^2 - \sin(2\rho \cdot \vec{q})) = \frac{(-3 + 4x^2)^6}{2^{24}7^{11}} (-48384 + 422928x^2 - 1036728x^4$$

$$+ 680404866593x^6 - 3207286050184x^8 + 89143736169624x^{10}$$

$$- 149154571577088x^{12} + 147001580732160x^{14} - 78400843057152x^{16} + 174220496256x^{18})^3.$$ \hfill (5.57)

5.3.2. $R = 56$ for $E_7$. We have evaluated two polynomials independently:

$$P_{E_7,c}^{56}(x) = \prod_{\mu \in \Delta_5} (x - \cos(2\mu \cdot \vec{q}))$$

$$= \frac{x^4}{11^{13}3^{17}6} (9332954265600 - 345319307827200x^2$$

$$+ 5422446428313600x^4 - 47902580312348160x^6$$

$$+ 266584469614182720x^8 - 991356255189780480x^{10}$$

$$+ 254338210409514368x^{12} - 4564307435286703104x^{14}$$

$$+ 5717674981551733200x^{16} - 4899020276961851040x^{18}$$

$$+ 273636355204023600\sqrt{11}x^{20} - 8977192705823180\sqrt{11}x^{22}$$

$$+ 131214258464743597x^{24})$$ \hfill (5.58)

and

$$P_{E_7,c}^{56}(x) = \prod_{\mu \in \Delta_5} (x - \sin(2\mu \cdot \vec{q}))$$

$$= \frac{(-1 + x^2)^4}{11^{13}3^{17}6} (7824285157 - 1019921980260x^2 + 4492774774192128x^4$$

$$- 933762748142860x^6 + 105129129800x^8 + 302444017343673900x^{10}$$

$$- 85032203495681960x^{12} + 1590230624766864795x^{14}$$

$$- 195719223677842580x^{16} + 152159263409937618x^{18}$$

$$- 67685183099460480x^{20} + 131214258464743597x^{24}.$$ \hfill (5.59)
These two polynomials satisfy (3.10)

\[
p_{E_{r,c},2}^{\Delta}(x) = p_{E_{r,c},2}^{\Delta}(u) p_{E_{r,c},2}^{\Delta}(-u) \bigg|_{u^2 = 1 - x^2}. 
\] (5.60)

5.3.3. \( \mathcal{R} = \Delta \) for \( E_7 \) and \( E_8 \). The polynomials \( p_{E_{r,c},2}^{\Delta}(x) \), \( r = 7, 8 \) are too long to be displayed here. Their degrees are 63 and 126 for \( E_7 \) and 120 and 240 for \( E_8 \). They are given in [9]. They all satisfy the consistency condition (3.10)

\[
p_{E_{r,c},2}^{\Delta}(x) = p_{E_{r,c},2}^{\Delta}(u) p_{E_{r,c},2}^{\Delta}(-u) \bigg|_{u^2 = 1 - x^2} \quad (r = 6, 7, 8) 
\] (5.61) at the level of each factor.

5.4. \( F_4 \)

We present the polynomials as a function of \( k \equiv g_S/g_L \). The polynomials \( p_{F_{r,c},2}^{\Delta_2}(k|x) \) and \( p_{F_{r,c},2}^{\Delta_2}(k|x) \), satisfying the condition (3.10), are too lengthy to be displayed here. They are given in [9]. Here we give \( p_{F_{r,c},2}^{\Delta_2}(k|x) \) which have shorter forms. As before we use \( y = x^2 \).

5.4.1. \( \mathcal{R} = \Delta_L \) for \( F_4 \)

\[
p_{F_{r,c},2}^{L}(k|y) \equiv p_{F_{r,c},2}^{\Delta_2}(k|x) = \prod_{\rho \in \Delta_L} (x - \sin(\rho \cdot \bar{q})) = \prod_{\rho \in \Delta_L} (y - \sin^2(\rho \cdot \bar{q})) 
\]

\[
= 2^{12} 3^6 (1 + k)^6 (2 + k)^2 (3 + k)^3 (1 + 2k) \\
(3 + 2k)^3 (4 + 3k)^4 (5 + 3k)^3 (6 + 5k)^6 \\
- 2^{13} 3^6 (1 + k)^6 (2 + k)^2 (3 + k)^3 (1 + 2k) (14 + 9k) \\
(3 + 2k)^3 (4 + 3k)^4 (5 + 3k)^3 (6 + 5k)^6 \\
+ 2^{11} 3^5 (1 + k)^5 (2 + k)^2 (3 + k)^3 (1 + 2k) (232 + 346k + 123k^2) \\
(3 + 2k)^3 (4 + 3k)^4 (5 + 3k)^3 (6 + 5k)^6 \\
- 2^{11} 3^4 (1 + k)^5 (2 + k) (3 + k)^3 \\
(3 + 2k)^2 (4 + 3k)^4 (5 + 3k)^3 (6 + 5k)^6 \\
\big[ 30 432 + 133 672k + 211 560k^2 \\
+ 155 726k^3 + 54 075k^4 + 71 28k^5 \big] y^3 \\
(3 + 2k)^3 (4 + 3k)^4 (5 + 3k)^3 (6 + 5k)^6 \\
\times (19 296 + 90 360k + 159 652k^2 + 137 582k^3 + 61 155k^4 + 13 264k^5 + 10 88k^6) y^4 \\
+ 2^{10} 3^3 (1 + k)^4 (2 + k) (3 + k)^2 \\
(3 + 2k)^2 (4 + 3k)^4 (5 + 3k)^3 (6 + 5k)^6 \\
(283 824 + 139 572k + 271 115k^2 \\
+ 2704 381k^3 + 1489 217k^4 + 447 066k^5 + 65 952k^6 + 345k^7) y^5 \\
+ 2^{10} 3^2 (1 + k)^3 (3 + k)^2 \\
(3 + 2k)^2 (4 + 3k)^4 (5 + 3k)^3 (6 + 5k)^6 \\
\big( 1046 592 + 6283 632k + 15 907 184k^2 \\
+ 22 205 264k^3 + 18 708 264k^4 + 9754 573k^5 + 3088 726k^6 + 553 92k^7 \\
+ 47 232k^8 + 1152k^9 \big) y^6 \\
(3 + 2k)^2 (4 + 3k)^4 (5 + 3k)^3 (6 + 5k)^6 \\
(35 736 \\
+ 163 412k + 300 546k^2 + 286 499k^3 + 151 260k^4 + 43 412k^5 + 60 48k^6 \\
+ 288k^7) y^7 \\
+ 864 (1 + k)^2 (3 + k) \\
(3 + 2k)^2 (4 + 3k)^4 (5 + 3k)^3 (6 + 5k)^6 \\
(33 120 + 130 392k + 199 564k^2 + 150 034k^3 + 57 649k^4 + 10 632k^5 + 720k^6) y^8 \
\]
5.4.2. $\mathcal{R} = \Delta_{S}$ for $F_4$

$$P_{g_{s}/g_{L}}^{\Delta_{S}}(k|x) = \prod_{\rho \in \Delta_{S}}(x - \sin(\rho \cdot \bar{q})) - \prod_{\rho \in \Delta_{S}}(y - \sin^{2}(\rho \cdot \bar{q}))$$

$$= 729k^{3}(1 + k)^{6}(2 + k)(3 + k)(1 + 2k)^{2}$$

$$\left[\frac{3 + 2k}{4 + 3k}(5 + 3k)^{3}(6 + 5k)^{3}(3312 + 10668k + 12946k^{2} + 7313k^{3}) + 1899k^{4} + 180k^{5}\right]y^{9} + \frac{144(1 + k)^{2}(3 + k)(116 + 133k + 30k^{2})}{(3 + 2k)(4 + 3k)(5 + 3k)(6 + 5k)^{2}}y^{10}$$

$$- \frac{72(1 + k)(3 + k)}{(5 + 3k)(6 + 5k)}y^{11} + y^{12}. \quad (5.62)$$

The folding $E_{6} \rightarrow F_{4}$ relates $E_{6}$ polynomials to $F_{4}$ polynomials at the coupling ratio $k \equiv g_{s}/g_{L} = 2$. We have corresponding to (4.47)

$$P_{E_{6},a}^{\Delta_{S}}(2|x) = P_{E_{6},c_{2}}^{\Delta_{S}}(2|x) = P_{E_{6},c_{2}}^{\Delta_{S}}(x)/(x - 1)^{3} \quad (5.64)$$

$$P_{E_{6},a}^{\Delta_{S}}(2|x)\left(P_{E_{6},c_{2}}^{\Delta_{S}}(2|x)\right)^{2} = P_{E_{6},a}^{\Delta_{S}}(x) \quad (a = s, s2) \quad (5.65)$$

$$P_{E_{6},c_{2}}^{\Delta_{S}}(2|x)\left(P_{E_{6},c_{2}}^{\Delta_{S}}(2|x)\right)^{2} = P_{E_{6},c_{2}}^{\Delta_{S}}(x). \quad (5.66)$$
The self-duality of the $F_4$ Dynkin diagram relates $\Delta_L$ polynomials to $\Delta_S$ ones. For example, we obtain
\[
\frac{847 P_{4,1}^L(2|y)}{847y^3 - 1386y^2 + 594y - 27} = \frac{64 P_{4,1}^S(2|y)}{(4y - 3)^3} \quad (5.67)
\]
\[
\frac{717409 P_{4,2}^L(2|y)}{717409y^3 - 1036728y^2 + 422928y - 48384} = \frac{64 P_{4,2}^S(2|y)}{(4y - 3)^3} \quad (5.68)
\]
\[
\frac{847 P_{E_6,s}^L(2|x)}{847x^3 + 231x^2 - 627x - 235} = \frac{8 P_{E_6,s}^S(2|x)}{(2x + 1)^3} \quad (5.69)
\]
which are factors of the parent polynomials $P_{E_6,s}$, $P_{E_6,s}^L$ and $P_{E_6,s}^S$, respectively.

5.5. $G_2$

Two types of polynomials $\prod_{\rho \in \mathcal{R}_+} (x - \cos(2\rho \cdot \hat{q}))$ and $\prod_{\rho \in \mathcal{R}_-} (x - \sin(2\rho \cdot \hat{q}))$ are evaluated. For the latter we use $y = x^2$.

5.5.1. $\mathcal{R} = \Delta_L$ for $G_2$

\[
P_{G_2,s}^L(k|x) = \prod_{\rho \in \Delta_L} (x - \cos(2\rho \cdot \hat{q})) = \frac{27 - 81k - 99k^2 + 107k^3 + 80k^4 - 16k^5}{2(2 + k)^2(3 + 2k)^3}
\]
\[+ \frac{3(27 - 81k^2 - 40k^3 + 16k^4)}{2(2 + k)(3 + 2k)^3} x + \frac{3(3 + 2k - 2k^2)}{(2 + k)(3 + 2k)^2} x^2 + x^3 \quad (5.70)
\]

\[
P_{G_2,s}^L(k|y) = \prod_{\rho \in \Delta_L} (y - \sin(2\rho \cdot \hat{q})) = \prod_{\rho \in \Delta_L} (y - \sin^2(2\rho \cdot \hat{q}))
\]
\[= \frac{-729(1 + k)^2(-3 + k + 8k^2)^2}{4(2 + k)^4(3 + 2k)^5}
\]
\[+ \frac{729(1 + k)^2(6 + 13k + 8k^2)(9 - 6k + 13k^2 + 8k^3)}{4(2 + k)^4(3 + 2k)^6} y
\]
\[= \frac{-27(1 + k)(9 + 12k + 13k^2 + 8k^3)}{(2 + k)^2(3 + 2k)^3} y^2 + y^3. \quad (5.71)
\]

5.5.2. $\mathcal{R} = \Delta_S$ for $G_2$

\[
P_{G_2,s}^S(k|x) = \prod_{\rho \in \Delta_S} (x - \cos(2\rho \cdot \hat{q}))
\]
\[= \frac{-9 - 21k - 13k^2 + k^3}{2(2 + k)(3 + 2k)^3} + \frac{3(-3 - 4k + k^2)}{2(2 + k)(3 + 2k)} x + \frac{3k}{3 + 2k} x^2 + x^3 \quad (5.72)
\]

\[
P_{G_2,s}^S(k|y) = \prod_{\rho \in \Delta_S} (y - \sin(2\rho \cdot \hat{q})) = \prod_{\rho \in \Delta_S} (y - \sin^2(2\rho \cdot \hat{q}))
\]
\[= \frac{27(-3 + k)^2(1 + k)^2}{4(2 + k)(3 + 2k)^4}
\]
\[+ \frac{27(1 + k)^2(9 + 12k + 2k^2 + 2k^3)}{4(2 + k)^2(3 + 2k)^3} y
\]
\[= \frac{-9(1 + k)(3 + 2k + k^2)}{(2 + k)(3 + 2k)^2} y^2 + y^3. \quad (5.73)
\]
They satisfy the formula (3.10)

\[ P_{\Delta G_{2},c2}(x) = P_{\Delta G_{2},c2}^{s}(u)P_{\Delta G_{2},c2}^{s}(-u) \bigg|_{u^2 = 1 - x^2} \]

\[ P_{\Delta G_{2},c2}(x) = P_{\Delta G_{2},c2}^{s}(u)P_{\Delta G_{2},c2}^{s}(-u) \bigg|_{u^2 = 1 - x^2}. \]  

(5.74)

The Dynkin diagram folding \( D_4 \rightarrow G_2 \) implies

\[ P_{\Delta G_{2},c2}(3|x) = P_{\Delta D_{4},c2}(x)/(x - 1) \quad P_{\Delta G_{2},c2}^{s}(3|x) = P_{\Delta D_{4},c2}^{s}(x)/x^2 \quad (R = V, S, \bar{S}) \]  

(5.75)

\[ P_{\Delta G_{2},c2}(3|x)(P_{\Delta G_{2},c2}(3|x))^3 = P_{\Delta D_{4},a}(x) \quad (a = s, s2) \]  

(5.76)

\[ P_{\Delta G_{2},c2}(3|x)(P_{\Delta G_{2},c2}(3|x))^3 = P_{\Delta D_{4},c2}(x) \]  

(5.77)

which correspond to (4.51). The self-duality of the \( G_2 \) Dynkin diagram relates \( P_{\Delta G_{2},1}(3|x) \) and \( P_{\Delta G_{2},2}(3|x) \) (see [9] for \( P_{\Delta G_{2},k}(k|x) \)):

\[ \frac{5P_{2,4}^{s}(3|y)}{5y - 1} = \frac{P_{2,4}^{s}(3|y)}{y - 1} \quad \frac{25P_{2,4}^{s}(3|y)}{25y - 16} = \frac{P_{2,4}^{s}(3|y)}{y} \]  

(5.78)

\[ \frac{5P_{\Delta G_{2},c2}(3|x)}{5x - 3} = \frac{P_{\Delta G_{2},c2}(3|x)}{x + 1} \]  

(5.79)

which are a factor of the parent polynomials, \( P_{\Delta D_{4},s}^{s}, P_{\Delta D_{4},c2}^{s} \) and \( P_{\Delta D_{4},c2}^{s}, \) respectively.

6. Summary and comments

We have derived Coxeter (Weyl) invariant polynomials associated with equilibrium points in Calogero and Sutherland systems based on all root systems. For the classical root systems, the polynomials are well-known classical orthogonal polynomials; Hermite, Laguerre, Chebyshev and Jacobi of degree equal to the rank \( r \) of the root system \( (r + 1) \) for the \( A_r \) case, when the smallest set of weights \( R \) is chosen. For the other choices of \( R, \) the polynomials are related to the corresponding classical polynomials but they no longer form an orthogonal set. For the exceptional and non-crystallographic root systems, these polynomials are new. Some polynomials are given in [9], since they are too lengthy to be displayed in this paper. These new polynomials have (much) higher degree than the rank \( r; \) 27 and 36 for \( E_6, \) 28 and 63 for \( E_7, \) 120 for \( E_8, \) 12 for \( F_4, \) 3 for \( G_2, \) \( m \) for \( I_2(m), \) 15 for \( H_3 \) and 60 for \( H_4. \) Defined only for sporadic degrees, these new polynomials do not have the orthogonality property, except for those corresponding to the dihedral group \( I_2(m) \) with uniform coupling \( g = g_s = g_c. \) In this case Chebyshev polynomials are obtained [1].

All these new polynomials share one remarkable property with the classical polynomials; their coefficients are rational functions of the ratio of the coupling constants with all integer coefficients. In most cases, they are monic polynomials with integer coefficients only. It is an interesting problem to clarify the meaning of these integers. For example, the constant term of the polynomial with \( R = \Delta \) is related to the Macdonald conjecture (proved by Opdam) [19]. We will report on this problem in future.

In the rest of this section, we give a heuristic argument for ‘deriving’ the classical orthogonal polynomials with the proper weight function from the pre-potential \( W(2.4) \) at equilibrium. We add one degree of freedom, a new coordinate \( q_{r+1} \) (\( q_{r+2} \) for \( A_r \)), to the rank \( r \)
system at equilibrium:
\[ W(q_1, \ldots, q_r) \rightarrow \tilde{W}(q_{r+1}) = W(\tilde{q}_1, \ldots, \tilde{q}_r, q_{r+1}) \] (6.1)
and consider (rescaled) \( q_{r+1} \) as the new variable. This is allowed only for the classical root systems in which \( r \) can be any positive integer. Since \( V \) of \( A_{r+2} \) has one more element \( \mu_{r+2} \) than that of \( A_r \), and \( \Delta_S \) of \( B_{r+1} \) (\( B_{Cr+1} \)) has two more elements \( e_{r+1} \) and \(-e_{r+1} \) than that of \( B_r \) (\( B_r \)), we multiply \( \sqrt{d_{qr+2}} \) for the \( A_r \) case and \( (\sqrt{d_{qr+1}})^2 = d_{qr+1} \) for the \( B_r \) (\( B_r \)) case, see (6.4), (6.7), (6.10) and (6.13).

6.1. Hermite
The pre-potential for the \( A_r \) Calogero system is
\[ W = -\frac{1}{2} \omega q^2 + g \sum_{1 \leq j < l \leq r+1} \log(q_j - q_l). \]
After rescaling
\[ q_{r+2} = \sqrt{\frac{g}{\omega}} z \] (6.2)
we obtain from (6.1)
\[ \tilde{W}(z)/g = -\frac{1}{2} z^2 + \sum_{j=1}^{r+1} \log \left( z - \sqrt{\frac{\omega}{g}} \tilde{q}_j \right) + (z\text{-indep.}). \] (6.3)
If we extract a function \( \psi_{r+1}(z) \) from
\[ e^{\tilde{W}/g} \sqrt{d_{qr+2}} = (z\text{-indep.}) \times e^{-z^2/2} \prod_{j=1}^{r+1} \left( z - \sqrt{\frac{\omega}{g}} \tilde{q}_j \right) \times \sqrt{dz} \]
\[ = (z\text{-indep.}) \times e^{-z^2/2} H_{r+1}(z) \sqrt{dz} \]
\[ = \psi_{r+1}(z) \sqrt{dz} \] (6.4)
it satisfies the orthogonality relation
\[ \int_{-\infty}^{\infty} dz \psi_n(z) \psi_m(z) \propto \delta_{n,m}. \]

6.2. Laguerre
The pre-potential for the \( B_r \) Calogero system is
\[ W = -\frac{1}{2} \omega q^2 + g_L \sum_{1 \leq j < l \leq r} \log((q_j - q_l)(q_j + q_l)) + g_S \sum_{j=1}^{r} \log q_j. \]
After rescaling
\[ q_{r+1} = \sqrt{\frac{g_L}{\omega}} z \] (6.5)
we obtain from (6.1)
\[ \tilde{W}(z)/g_L = -\frac{1}{2} z + \sum_{j=1}^{r} \log \left( z - \left( \sqrt{\frac{\omega}{g_L}} \tilde{q}_j \right)^2 \right) + \frac{k}{2} \log z + (z\text{-indep.}) \quad k \equiv g_S/g_L. \] (6.6)
If we extract a function $\psi_r(z)$ from
\[ e^{\tilde{W}/gL} \sqrt{dqr+1} = (z\text{-indep.}) \times z^{k/2} e^{-z^2/2} \prod_{j=1}^{r+1} \left( z - \left( \frac{\alpha}{\sqrt{gL}} \bar{q}_j \right)^2 \right) \times z^{-1/2} dz \]
\[ = (z\text{-indep.}) \times z^{\alpha/2} e^{-z^2/2} L_\alpha^{(2)}(z) dz \]
\[ = \psi_r(z) dz \quad \alpha \equiv k - 1 \]  
(6.7)

it satisfies the orthogonality relation
\[ \int_0^\infty dz \psi_n(z) \psi_m(z) \propto \delta_{n,m}. \]

6.3. Chebyshev

This is slightly contrived. The pre-potential for the $A_r$ Sutherland system is
\[ W = g \sum_{1 \leq j < l \leq r+1} \log \sin(q_j - q_l). \]

By the choice of $\bar{q}$ (5.1) and its property $\bar{q}_j = -\bar{q}_{r+2-j}$, after defining
\[ \sin q_{r+2} = z \]  
(6.8)

we obtain from (6.1)
\[ \tilde{W}(z)/g = \sum_{j=1}^{r+1} \log(z - \sin \bar{q}_j) + (z\text{-indep.}). \]  
(6.9)

If we extract a function $\psi_{r+1}(z)$ from
\[ e^{\tilde{W}/g} \sqrt{dqr+2} = (z\text{-indep.}) \times \prod_{j=1}^{r+1} (z - \sin \bar{q}_j) \times (1 - z^2)^{-1/4} \sqrt{dz} \]
\[ = (z\text{-indep.}) \times (1 - z^2)^{-1/4} T_{r+1}(z) \sqrt{dz} \]
\[ = \psi_{r+1}(z) \sqrt{dz} \]  
(6.10)

it satisfies the orthogonality relation
\[ \int_{-1}^1 dz \psi_n(z) \psi_m(z) \propto \delta_{n,m}. \]

6.4. Jacobi

The pre-potential for the $BC_r$ Sutherland system is
\[ W = g_M \sum_{1 \leq j < l \leq r} \log(\sin(q_j - q_l) \sin(q_j + q_l)) + \sum_{j=1}^r (gs \log \sin q_j + gL \log \sin 2q_j). \]

After defining $z$ by
\[ \cos 2q_{r+1} = z \]  
(6.11)

we obtain from (6.1) ($k_1 \equiv gs/g_M$, $k_2 \equiv gL/g_M$)
\[ \tilde{W}(z)/g_M = \sum_{j=1}^r \log(z - \cos 2\bar{q}_j) + \frac{k_1 + k_2}{2} \log(1 - z) + \frac{k_2}{2} \log(1 + z) + (z\text{-indep.}). \]  
(6.12)
If we extract a function $\psi_r(z)$ from
\[ e^{W/\hbar} d\eta_{r+1} = (z\text{-indep.}) \times (1 - z)^{(k_1+k_2)/2}(1 + z)^{k_2/2} \prod_{j=1}^{r} (z - \cos 2\theta_j) \times (1 - z^2)^{-1/2} \, dz \]
\[ = (z\text{-indep.}) \times (1 - z)^{\alpha/2}(1 + z)^{\beta/2} P_{\alpha,\beta}^{\gamma}(z) \, dz \]
\[ = \psi_r(z) \, dz \quad \alpha \equiv k_1 + k_2 - 1 \quad \beta \equiv k_2 - 1 \]
(6.13)
it satisfies the orthogonality relation
\[ \int_{-1}^{1} dz \, \psi_n(z) \psi_m(z) \propto \delta_{n,m}. \]

Acknowledgments

We thank Toshiaki Shoji for useful discussion. This work is supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, no 12640261.

References

Moser J 1975 Integrable systems of non-linear evolution equations Dynamical Systems, Theory and Applications (Lecture Notes in Physics vol 38) ed J Moser (Berlin: Springer)
Calogero F, Marchioro C and Ragnisco O 1975 Exact solution of the classical and quantal one-dimensional many body problems with the two body potential $V_2(x) = g^2 a^2 / \sinh^2 ax$ Lett. Nuovo Cimento 13 383–7


Heckman G J 1987 Root systems and hypergeometric functions II Comput. Math. 64 553–73


Shastry B S 1988 Exact solution of S = 1/2 Heisenberg antiferromagnetic chain with long-ranged interactions Phys. Rev. Lett. 60 639–42


Opdam E M 1989 Some applications of hypergeometric shift operators Invent. Math. 98 1–18