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Abstract

We reexamine formulas for the Coulomb effects on the pion interferom-

etry given by Pratt in 1986, and derive several correct formulas. Analytic

expressions for this effect, i.e., the Coulomb correction to the Bose-Einstein

correlations, are presented. Several numerical computations are shown.

Introduction: The study of the Bose-Einstein correlations (BEC) on pions and

kaons is one of current problems. Recently the authors of NA44 experiment [1] have

mentioned a paper on the Coulomb correction to the BEC [2]. However, since there

is difference concerning treatments of the Gamow factor between Refs. [1, 2], we are

interested in this subject and reexamine several formulas given in Ref. [2]. We have

recognized that those formulas given by Pratt are very useful, and found that there

are a few improper expressions in Eq. (3.13) of Ref. [2].

In the second paragraph, we recalculate several formulas in Ref. [2], and show

numerical results. In the third paragraph, to consider the problem about the differ-

ent treatments of the Gamow factor in Refs. [1, 2], we recalculate the BEC with the

Coulomb correction and show numerical results. Concluding remarks are presented

in the final paragraph.
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Recalculation of formulas by Pratt: First of all we write down the Coulomb

relative wave function [3]:

Ψ(q, r) = Γ(1 + iγ)eπγ/2eiq·rΦ(−iγ, 1, iqr(1− cos θ)), (1)

where γ = mα/2q, and Φ is the confluent hypergeometric function:

Φ(−iγ, 1, iqr(1− cos θ)) = 1 +
∞∑

n=1

(−iγ)(1− iγ) · · · (n− 1− iγ)
(ix)n

(n!)2
, (2)

Γ(1 + iγ)Γ∗(1 + iγ) = πγ/ sinh(πγ),

where x = qr(1− cos θ). We use the following approximation for Φ, because of the

usefulness [2]. The function Φ can be expanded in power of γ. To the first order in

γ,

Φ(−iγ, 1, ix) = 1 + γ Si(x)− iγ (Ci(x)− C − ln(x)), (3)

Si(x) =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!(2n + 1)
,

Ci(x)− C − ln(x) =
∞∑

n=1

(−1)nx2n

(2n)!(2n)
,

where Si(x) and Ci(x) are the sine and cosine integral, respectively. C is the Euler’s

number. After the angular integration in θ, we have the following expressions which

correspond to Eq. (3.13) [2]. Notice that the second integrand is different from that

of Ref. [2], and different arguments in Si(x), and Ci(x)− ln(x) from Eq. (3.13) [2]:

I1(q) =
∫ ∞

0
4πg(r)r2dr[1 + 2γF (2qr)]

= 1 + δ1C , (4)

F (2qr) =
∞∑

n=0

(−1)n(2qr)2n+1

(2n + 1)!(2n + 1)(2n + 2)
.

I2(q) =
∫ ∞

0
4πg(r)r2dr

{
sin(2qr)

2qr

+γ

[
cos(2qr)

2qr
(Ci(2qr)− C − ln(2qr)) +

sin(2qr)

2qr
Si(2qr)

]}
, (5)

where g(r) is the source function. Since in the present paper the Gaussian source

function is assumed, we have to pay our attentions to mathematical property of the
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Gaussian source functions:

ρ(r1)ρ(r2) =
1

(2π)3/2R3
exp

(
− r2

1

2R2

)
1

(2π)3/2R3
exp

(
− r2

2

2R2

)

=
1

(2π)3/2(R/
√

2)3
exp

(
−R2

cm

R2

)
1

(2π)3/2(
√

2R)3
exp

(
− r2

4R2

)

= g(Rcm)g(r). (6)

In the derivation of I2(q), we take the leading terms of the following integrations

(with A = 2qr), according to [2]:

Θ(2n + 1) =
∫ 1

−1
(1− cos θ)2n+1 cos(A cos θ)d cos θ, (7)

Θ(1) =
2 sin A

A
,

Θ(3) =
23 sin A

A
+

12 cos A

A2
− 12 sin A

A3
,

.....,

Θ(2n + 1)leading =
22n+1 sin A

A
,

Θ(2n) = ∓
∫ 1

−1
(1± cos θ)2n sin(A cos θ)d cos θ, (8)

Θ(2) =
22 cos A

A
− 22 sin A

A2
,

Θ(4) =
24 cos A

A
− 25 sin A

A2
− 3 · 24 cos A

A3
+

3 · 24 cos A

A4
,

.....,

Θ(2n)leading =
22n cos A

A
.

Here we show numerical results a la Pratt: The author of Ref. [2] has used the

following formula with the squared Gamow factor,

RPratt
CC = G(q)2[I1(q)

2 + I2(q)
2], (9)

where G(q) = 2πγ/(e2πγ − 1). To confirm FIG. 2 in Ref. [2], we use Eq. (3.13) with

the above formula, CPratt(k = 2q) = RPratt
CC /G(q)2. (Notice that FIG. 2 (a) and

(c) in Ref. [2] are reversed.) Indeed, our numerical computations reproduce FIG. 2

in Ref. [2]. For the sake of comparisons, our new results in terms of Eqs. (4), (5),
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(6) and (9) with the same parameters are shown in FIG. 2. Due to correct factor

1/(2n + 2) in Eq. (4), the intercepts at k = 0 (MeV/c) are smaller than those of

FIG. 1.

Reformulation of Eq. (9): As explained in a previous paragraph, the author of

Ref. [2] has used the squared Gamow factor. However, the authors of Ref. [1] have

used the single Gamow factor [4]. By making use of a paper by Bowler [5], we

obtain the single Gamow factor. In other words, the single Gamow factor seems

to be reasonable [6, 7], because of property of the Coulomb wave function for the

system of the two charged identical bosons [3]. Actually by making use of Eq. (1)

and the following symmetrized Coulomb wave function,

ΨS(q, r) = Γ(1 + iγ)eπγ/2e−iq·rΦ(−iγ, 1, iqr(1 + cos θ)), (10)

we have the following correction formula for the exchange function, after the angular

integration in θ:

I2(q) = 4π
∫ ∞

0
g(r)r2dr

{
sin A

A
+ γ(Sp(qr) + Cp(qr))

}
,

= E2B + δEC , (11)

where

Sp(qr) =
∞∑

n=0

(−1)2n+1(qr)2n+1Θ(2n + 1)

(2n + 1)!(2n + 1)
,

Cp(qr) =
∞∑

n=1

(−1)2n(qr)2nΘ(2n)

(2n)!(2n)
.

In conclusion, we have the following formula:

RCC = G(q)[1 + δ1C + E2B + δEC ]. (12)

To compare data corrected by only the Gamow factor with theoretical calculations,

we should consider the ratio as

C(k = 2q) = RCC/G(q)

= (1 + δ1C + δEC)
[
1 +

E2B

1 + δ1C + δEC

]
. (13)
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It should be notice that the normalization and an effective degree of coherence, i.e.,

the denominator of the ratio E2B/(1+ δ1C + δEC) is relating to each other. We show

our results of the BEC with Coulomb corrections in FIG. 3. As is seen in FIG.3 (d)

and (e), it should be noticed that the numerical results depend on the source size

(R), through Θ(n). In other words, there are discrepancies between contributions

of the leading terms Θ(n)leading and exact expressions of Θ(n), as the source size

becomes large.

To apply the above equation to data corrected by the Coulomb wave function [8],

we should modify the formula as:

C(k = 2q)[CC] =
RCC

[G(q)(1 + δ1C + δEC)]

= 1 +
E2B

1 + δ1C + δEC

. (14)

The denominator of the ratio E2B/(1+δ1C +δEC) is also playing the effective degree

of coherence.

Concluding remarks: We reexamine several formulas in Ref. [2]. Moreover, we

obtain several improved formulas for Coulomb correction to the BEC, by the use of

the approximation of the first order of γ. These formulas can be used in analyses

of the BEC in which the final state interactions excluding the Coulomb effects are

weak.
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Figure Captions

Fig. 1. To reproduce FIG. 2 of Ref. [2], we use the same parameters and Eq. (3.13)

of Ref. [2] with g(r) = 1
(2π)3/2R3 exp(− r2

2R2 ). R = 2, 4, 8 fm are used in (a),(b),

and (c), respectively.The dotted lines are obtained by g(r) = 1
(π)3/2R3 exp(− r2

R2 ).

They are coincided with FIG.2 of Ref. [2].

Fig. 2. Numerical computations in terms of Eqs. (4), (5) and (9). We use the

correct expressions with g(r) = 1
(2π)3/2R3 exp(− r2

2R2 ) in the framework of Pratt.

R = 2, 4, 8 fm are used in (a),(b), and (c), respectively.

Fig. 3. Numerical computations in terms of Eqs. (4), (5), (6), (11), and (12). Here

we use g(r) = 1
(2π)3/2(

√
2R)3

exp(− r2

4R2 ), because of Eq. (6). The solid lines are

obtained by the exact expression of Θ(n). The dotted lines are obtained by

making use of Θ(n)leading. R = 2, 4, 8, 12, and 16 fm are used in (a),(b), (c),

(d), and (e), respectively.
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