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Abstract

We reexamine formulas for the Coulomb effects on the pion interferom-
etry given by Pratt in 1986, and derive several correct formulas. Analytic
expressions for this effect, i.e., the Coulomb correction to the Bose-Einstein

correlations, are presented. Several numerical computations are shown.

Introduction: The study of the Bose-Einstein correlations (BEC) on pions and
kaons is one of current problems. Recently the authors of NA44 experiment [1] have
mentioned a paper on the Coulomb correction to the BEC [2]. However, since there
is difference concerning treatments of the Gamow factor between Refs. [1, 2], we are
interested in this subject and reexamine several formulas given in Ref. [2]. We have
recognized that those formulas given by Pratt are very useful, and found that there
are a few improper expressions in Eq. (3.13) of Ref. [2].

In the second paragraph, we recalculate several formulas in Ref. [2], and show
numerical results. In the third paragraph, to consider the problem about the differ-
ent treatments of the Gamow factor in Refs. [1, 2], we recalculate the BEC with the
Coulomb correction and show numerical results. Concluding remarks are presented

in the final paragraph.



Recalculation of formulas by Pratt: First of all we write down the Coulomb

relative wave function [3]:
W(q,r) = T(1 +i7)e™ 2970 (—iv, 1,igr(1 — cos b)), (1)

where v = ma/2q, and @ is the confluent hypergeometric function:

O(—iv, 1,igr(l —cosh)) =1+ 2(—2’7)(1 —iy) - (n—1—1i7) ((jjiz, (2)

I'(1+iv)I™(1 + iy) = 7y/sinh(7y),

where x = gr(1 — cos#). We use the following approximation for ®, because of the

usefulness [2]. The function ® can be expanded in power of v. To the first order in

gk

O(—iv, 1,iz) = 1 4+ vSi(x) — iy (Ci(z) — C — In(x)), (3)
) 00 (—1)”;1:2”“
Si(z) = 2 2n+ 1)!(2n + 1)’

Ci(z) —C —In(z) = i W;

n=1

where Si(x) and Ci(x) are the sine and cosine integral, respectively. C'is the Euler’s
number. After the angular integration in 6, we have the following expressions which
correspond to Eq. (3.13) [2]. Notice that the second integrand is different from that
of Ref. [2], and different arguments in Si(x), and Ci(z) — In(z) from Eq. (3.13) [2]:

Li(q) = /OOO 4rg(r)ridr[l + 2vF (2qr)]

=1+ d10, .
o0 (—=1)"(2¢r)2+!
F(2qr) =) 2n+1)!(2n +1)(2n +2)°

n=0

b(q) = [ amg(ryrar {

cos(2qr)
2qr

sin(2qr)
2qr
sin(2qr)

(Ci(2¢gr) — C —1n(2qr)) + Si(2qr)] } , ()

where ¢(r) is the source function. Since in the present paper the Gaussian source

function is assumed, we have to pay our attentions to mathematical property of the
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Gaussian source functions:

1 r? 1 3
Prp(re) = (o P\ “ope ) rpre P "Rz

= g(Rem)g(r).

EET T %) R (

ot
4R?

(6)

In the derivation of I5(q), we take the leading terms of the following integrations

(with A = 2¢r), according to [2]:

1

O2n+1) = / (1 — cos0)*"** cos(A cos 0)d cos,

-1

2sin A
1 pr—
o(1) - 24
22¢in A 12cos A 12sin A
0(3) = A + VTR
) 22n+1 : A
oz 4 i - 20

1
O(2n) = :F/ (1 4 cos §)*" sin(A cos 0)d cos 6,
-1
22cos A 2?sin A

(7)

®(2) = A - A2 )
2%cos A 2°sin A 3-2%cosA  3-2%cosA
W=~ & T
. 22" cos A
2 leading __
O(2n)eotns — 2 C004

Y

Here we show numerical results a la Pratt: The author of Ref. [2] has used the

following formula with the squared Gamow factor,

R = G(g)*[1(a)* + Ix(q)?],

(9)

where G(q) = 27y/(e*™ — 1). To confirm FIG. 2 in Ref. [2], we use Eq. (3.13) with
the above formula, CTm(k = 2q) = RE/G(q)?. (Notice that FIG. 2 (a) and

(c) in Ref. [2] are reversed.) Indeed, our numerical computations reproduce FIG. 2

in Ref. [2]. For the sake of comparisons, our new results in terms of Eqs. (4), (5),
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(6) and (9) with the same parameters are shown in FIG. 2. Due to correct factor
1/(2n 4+ 2) in Eq. (4), the intercepts at k = 0 (MeV/c) are smaller than those of
FIG. 1.

Reformulation of Eq. (9): As explained in a previous paragraph, the author of
Ref. [2] has used the squared Gamow factor. However, the authors of Ref. [1] have
used the single Gamow factor [4]. By making use of a paper by Bowler [5], we
obtain the single Gamow factor. In other words, the single Gamow factor seems
to be reasonable [6, 7], because of property of the Coulomb wave function for the
system of the two charged identical bosons [3]. Actually by making use of Eq. (1)

and the following symmetrized Coulomb wave function,
Us(q,r) = T(1 4 7)™ 2e D (—ivy, 1,igr(1 + cos b)), (10)

we have the following correction formula for the exchange function, after the angular

integration in 6:

Ir(q) = 4m /Ooog(r)TZdT {SizA +7(Sp(qr) + Cp(qr))} ,

= Eyp + dpc, (11)

where

)2n+1(qr)2n+1@(2n + 1)

2n+ D!I2n+1) ’
)2”(q7“)2”@(2n)
n)li(2n)

In conclusion, we have the following formula:
Ree = G(q)[1+ 61c + Eap + dpc]- (12)

To compare data corrected by only the Gamow factor with theoretical calculations,

we should consider the ratio as

C(k =2q) = Rec/G(q)

FEop
=(146 ) 14+ —==1. 13
(14 10+ drc) +1+510—|—5Eo (13)



It should be notice that the normalization and an effective degree of coherence, i.e.,
the denominator of the ratio Esp/(1+ d1c + drc) is relating to each other. We show
our results of the BEC with Coulomb corrections in FIG. 3. As is seen in FIG.3 (d)
and (e), it should be noticed that the numerical results depend on the source size
(R), through ©(n). In other words, there are discrepancies between contributions
of the leading terms ©(n)!®¥"9 and exact expressions of O(n), as the source size

becomes large.

To apply the above equation to data corrected by the Coulomb wave function [8],
we should modify the formula as:

Rece

[G(q)(1 4 01c + 0pc)]
Esp

1+ 010+ 00

C(k = 2¢)l°¢ =

14 (14)

The denominator of the ratio Fyp/(14d1c+dpc) is also playing the effective degree

of coherence.

Concluding remarks: We reexamine several formulas in Ref. [2]. Moreover, we
obtain several improved formulas for Coulomb correction to the BEC, by the use of
the approximation of the first order of 4. These formulas can be used in analyses
of the BEC in which the final state interactions excluding the Coulomb effects are

weak.
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Figure Captions

Fig. 1. Toreproduce FIG. 2 of Ref. [2], we use the same parameters and Eq. (3.13)
of Ref. [2] with ¢(r) = m exp(—%). R =24, 8 fm are used in (a),(b),
and (c), respectively. The dotted lines are obtained by g(r) = W%R"’ exp(—%).
They are coincided with FIG.2 of Ref. [2].

Fig. 2. Numerical computations in terms of Eqgs. (4), (5) and (9). We use the
correct expressions with g(r) = m exp(—%) in the framework of Pratt.

R =24, 8 fm are used in (a),(b), and (c), respectively.

Fig. 3. Numerical computations in terms of Egs. (4), (5), (6), (11), and (12). Here
we use g(r) = m exp(—%), because of Eq. (6). The solid lines are
obtained by the exact expression of ©(n). The dotted lines are obtained by
making use of O(n)leednd. R =2 4 8 12, and 16 fm are used in (a),(b), (c),

(d), and (e), respectively.
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