Polynomials Associated with Equilibria of Affine Toda-Sutherland Systems

S. Odake ${ }^{a}$ and R. Sasaki ${ }^{b}$
${ }^{a}$ Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
${ }^{b}$ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Abstract

An affine Toda-Sutherland system is a quasi-exactly solvable multi-particle dynamics based on an affine simple root system. It is a 'cross' between two well-known integrable multi-particle dynamics, an affine Toda molecule and a Sutherland system. Polynomials describing the equilibrium positions of affine Toda-Sutherland systems are determined for all affine simple root systems.

1 Introduction

Given a multi-particle dynamical system, to find and describe its equilibrium position has practical as well as theoretical significance. As is well-known, near the equilibrium the system is reduced to a collection of harmonic oscillators and that their spectra give the exact order \hbar part of the full quantum spectra [1]. Naively, one could describe the equilibrium position by zeros of a certain polynomial. In this way one obtains the celebrated classical orthogonal polynomials for exactly solvable multi-particle dynamics. For the Calogero systems [2] based on the A and $B(C, B C$ and $D)$ root systems, the equilibrium positions correspond to the
zeros of the Hermite and Laguerre polynomials [3, 4, [5, 6]. For the Sutherland systems [7] based on the A and $B(C, B C$ and $D)$ root systems, the equilibrium positions correspond to the zeros of the Chebyshev and Jacobi polynomials [6]. Polynomials describing the equilibria of the Calogero and Sutherland systems based on the exceptional root systems are also determined [8]. In all these cases the frequencies of small oscillations at the equilibrium are "quantised" [6, 9]. For another family of multi-particle dynamics based on root systems, the Ruijsenaars-Schneider systems [10, which are deformation of the Calogero and Sutherland systems, the corresponding polynomials are determined [11, 12]. They turn out to be deformation of the Hermite, Laguerre and Jacobi polynomials which inherit the orthogonality [12]. The frequencies of small oscillations at the equilibrium are also "quantised" [11]. Another interesting feature is that the equations determining the equilibrium look like Bethe ansatz equations.

One is naturally led to a similar investigation for partially solvable or quasi-exactly solvable [13] multi-particle dynamics. From a not-so-long list of known quasi-exactly solvable multi-particle dynamical systems [14], we pick up the so-called affine Toda-Sutherland systems [15] and determine polynomials describing the equilibrium positions. These polynomials, as well as all the polynomials mentioned above, are characterised as having integer coefficients only.

2 affine Toda-Sutherland systems

The affine Toda-Sutherland systems are quasi-exactly solvable [13] multi-particle dynamics based on any crystallographic root system. Roughly speaking, they are obtained by 'crossing' two well-known integrable dynamics, the affine-Toda molecule and the Sutherland system. Given a set of affine simple roots $\Pi_{0}=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{r}\right\}, \alpha_{j} \in \mathbb{R}^{r}$, let us introduce a prepotential W [16]

$$
\begin{equation*}
W(q)=g \sum_{j=0}^{r} n_{j} \log \left|\sin \left(\alpha_{j} \cdot q\right)\right|, \quad q={ }^{t}\left(q_{1}, \ldots, q_{r}\right) \in \mathbb{R}^{r}, \tag{1}
\end{equation*}
$$

in which g is a positive coupling constant and $\left\{n_{j}\right\}$ are the Dynkin-Kac labels for Π_{0}. That is, they are the integer coefficients of the affine simple root $\alpha_{0} ;-\alpha_{0}=\sum_{j=1}^{r} n_{j} \alpha_{j}, n_{0} \equiv 1$. For simply-laced and un-twisted non-simply laced affine root systems α_{0} is the lowest long root, whereas for twisted non-simply laced affine root systems, α_{0} is the lowest short root.

In either case $h \stackrel{\text { def }}{=} \sum_{j=0}^{r} n_{j}$ is the Coxeter number. This leads to the classical Hamiltonian

$$
\begin{equation*}
H_{C}=\frac{1}{2} \sum_{j=1}^{r} p_{j}^{2}+\frac{1}{2} \sum_{j=1}^{r}\left(\frac{\partial W(q)}{\partial q_{j}}\right)^{2} \tag{2}
\end{equation*}
$$

It is shown [15] that the equilibrium position \bar{q} is given by a universal formula in terms of the dual Weyl vector ϱ^{\vee} :

$$
\begin{equation*}
\frac{\partial W(\bar{q})}{\partial q_{j}}=0 \quad \Leftrightarrow \quad \bar{q}=\frac{\pi}{h} \varrho^{\vee}, \quad \varrho^{\vee} \stackrel{\text { def }}{=} \sum_{j=1}^{r} \lambda_{j}^{\vee} \tag{3}
\end{equation*}
$$

The dual fundamental weight λ_{j}^{\vee} is defined in terms of the fundamental weight λ_{j} by $\lambda_{j}^{\vee} \stackrel{\text { def }}{=}$ $\left(2 / \alpha_{j}^{2}\right) \lambda_{j}$, which satisfies $\alpha_{j} \cdot \lambda_{k}^{\vee}=\delta_{j k}$. At the equilibrium, the classical multi-particle dynamical system (2) is reduced to a set of harmonic oscillators. The frequencies (not frequencies squared) of small oscillations at the equilibrium of the affine Toda-Sutherland model are given up to the coupling constant g by [15]

$$
\frac{1}{\sin ^{2} \frac{\pi}{h}}\left\{m_{1}^{2}, m_{2}^{2}, \ldots, m_{r}^{2}\right\}
$$

in which m_{j}^{2} are the so-called affine Toda masses [17. Namely, they are the eigenvalues of a symmetric $r \times r$ matrix $M, M_{k l}=\sum_{j=0}^{r} n_{j}\left(\alpha_{j}\right)_{k}\left(\alpha_{j}\right)_{l}$, or $M=\sum_{j=0}^{r} n_{j} \alpha_{j} \otimes \alpha_{j}$, which encode the integrability of affine Toda field theory. In [17] it is shown for the non-twisted cases that the vector $\mathbf{m}={ }^{t}\left(m_{1}, \ldots, m_{r}\right)$, if ordered properly, is the Perron-Frobenius eigenvector of the incidence matrix (the Cartan matrix) of the corresponding root system.

The corresponding quantum Hamiltonian [1, 16] is

$$
\begin{equation*}
H_{Q}=\frac{1}{2} \sum_{j=1}^{r} p_{j}^{2}+\frac{1}{2} \sum_{j=1}^{r}\left[\left(\frac{\partial W(q)}{\partial q_{j}}\right)^{2}+\frac{\partial^{2} W(q)}{\partial q_{j}^{2}}\right] \tag{4}
\end{equation*}
$$

which is partially solvable or quasi-exactly solvable for some affine simple root systems. Namely for $A_{r-1}^{(1)}, D_{3}^{(1)}, D_{r+1}^{(2)}, C_{r}^{(1)}$ and $A_{2 r}^{(2)}$, the above Hamiltonian (44) is known to have a few exact eigenvalues and corresponding exact eigenfunctions [15].

The polynomials related to the equilibrium position \bar{q} are easy to define for the classical root systems, A, B, C and D. As in the Sutherland cases, we introduce a polynomial having zeros at $\left\{\sin \bar{q}_{j}\right\}$ or $\left\{\cos 2 \bar{q}_{j}\right\}$:

$$
\begin{equation*}
P_{r}(q) \propto \prod_{j=1}^{r}\left(x-\sin \bar{q}_{j}\right), \quad \prod_{j=1}^{r}\left(x-\cos 2 \bar{q}_{j}\right) \tag{5}
\end{equation*}
$$

For the exceptional root systems, let us choose a set of D vectors \mathcal{R}

$$
\mathcal{R}=\left\{\mu^{(1)}, \ldots, \mu^{(D)} \mid \mu^{(a)} \in \mathbb{R}^{r}\right\}
$$

which form a single orbit of the corresponding Weyl group. For example, they are the set of roots Δ itself for simply laced root systems, the set of long (short, middle) roots Δ_{L} $\left(\Delta_{S}, \Delta_{M}\right)$ for non-simply laced root systems and the so-called sets of minimal weights. The latter is better specified by the corresponding fundamental representations, which are all the fundamental representations of A_{r}, the vector (\mathbf{V}), spinor (\mathbf{S}) and conjugate spinor ($\overline{\mathbf{S}}$) representations of D_{r} and $\mathbf{2 7}(\overline{\mathbf{2 7}})$ of E_{6} and $\mathbf{5 6}$ of E_{7}. By generalising the above examples (5), we define polynomials

$$
\begin{equation*}
P_{\Delta}^{\mathcal{R}}(x) \propto \prod_{\mu \in \mathcal{R}}(x-\sin (\mu \cdot \bar{q})), \quad \prod_{\mu \in \mathcal{R}}(x-\cos (2 \mu \cdot \bar{q})) . \tag{6}
\end{equation*}
$$

For more general treatment we refer to our previous article [8].

The resulting polynomials for various affine root systems Π_{0} are (we follow the affine Lie algebra notation used in [15, 17]):
$A_{r-1}^{(1)}: \quad$ In this case the equilibrium position is exactly the same as that of the A_{r-1} Sutherland [7] and A_{r-1} Ruijsenaars-Sutherland system [12], $\bar{q}=(\pi / 2 h)^{t}(r-1, r-3, \ldots,-(r-1))$ with $h=r$. Thus the polynomial is also the same, the Chebyshev polynomial of the first kind: $2^{r-1} \prod_{j=1}^{r}\left(x-\sin \bar{q}_{j}\right)=T_{r}(x)=\cos r \varphi, x=\cos \varphi$.
$B_{r}^{(1)} \& D_{r+1}^{(2)} \& A_{2 r}^{(2)}$: The Coxeter number is $h=2 r$ for $B_{r}^{(1)}, h=r+1$ for $D_{r+1}^{(2)}$ and $h=2 r+1$ for $A_{2 r}^{(2)}$. The equilibrium position is equally spaced $\bar{q}=(\pi / h)^{t}(r, r-1, \ldots, 1)$. We obtain the Chebyshev polynomial of the second kind, $U_{n}(x)=\sin (n+1) \varphi / \sin \varphi, x=\cos \varphi$, for $B_{r}^{(1)}$ and a product of them for $D_{r+1}^{(2)}$ and a sum of them for $A_{2 r}^{(2)}$,

$$
2^{r-1} \prod_{j=1}^{r}\left(x-\cos 2 \bar{q}_{j}\right)= \begin{cases}(x+1) U_{r-1}(x), & B_{r}^{(1)}, \tag{7}\\ (x+1) U_{r / 2}(x) U_{(r-2) / 2}(x)+1 / 2, & D_{r+1}^{(2)}, \\ (x+1) U_{(r-1) / 2}(x)^{2}, & D_{r+1}^{(2)}, \\ \left(U_{r}(x)+U_{r-1}(x)\right) / 2, & A_{2 r}^{(2)}\end{cases}
$$

$C_{r}^{(1)} \& A_{2 r-1}^{(2)}$: The Coxeter number is $h=2 r$ for $C_{r}^{(1)}$ and $h=2 r-1$ for $A_{2 r-1}^{(2)}$. The equilibrium position is equally spaced $\bar{q}=(\pi / 2 h)^{t}(2 r-1,2 r-3, \ldots, 3,1)$. We obtain the Chebyshev polynomial of the first kind $T_{r}(x)$ for $C_{r}^{(1)}$ and a sum of them for $A_{2 r-1}^{(2)}$,

$$
2^{r-1} \prod_{j=1}^{r}\left(x-\cos 2 \bar{q}_{j}\right)= \begin{cases}T_{r}(x), & C_{r}^{(1)} \tag{8}\\ T_{r}(x)+T_{r-1}(x), & A_{2 r-1}^{(2)} .\end{cases}
$$

$D_{r}^{(1)}$: The Coxeter number is $h=2(r-1)$ and the equilibrium position is equally spaced $\bar{q}=(\pi / h)^{t}(r-1, r-2, \ldots, 1,0)$. We obtain the Chebyshev polynomial of the second kind

$$
\begin{equation*}
2^{r-2} \prod_{j=1}^{r}\left(x-\cos 2 \bar{q}_{j}\right)=\left(x^{2}-1\right) U_{r-2}(x) \tag{9}
\end{equation*}
$$

$E_{6}^{(1)}$: The Coxeter number is $h=12$ and the equilibrium position is not equally spaced $\bar{q}=(\pi / h)^{t}(4 \sqrt{3}, 4,3,2,1,0)$. We consider the set of minimal weights 27 and the set of positive roots Δ_{+}, which consists of 36 roots. The polynomials are

$$
\begin{align*}
2^{20} \prod_{\mu \in \mathbf{2 7}}(x-\sin (\mu \cdot \bar{q}))= & (-1+x) x^{3}(1+x)(-1+2 x)^{2}(1+2 x)^{2}\left(-1+2 x^{2}\right)^{2} \\
& \times\left(-3+4 x^{2}\right)^{3}\left(1-16 x^{2}+16 x^{4}\right)^{2}, \tag{10}\\
2^{27} \prod_{\mu \in \Delta_{+}}(x-\cos (2 \mu \cdot \bar{q}))= & x^{6}(1+x)^{3}(-1+2 x)^{6}(1+2 x)^{7}\left(-3+4 x^{2}\right)^{7} . \tag{11}
\end{align*}
$$

$E_{7}^{(1)}$: The Coxeter number is $h=18$ and the equilibrium position is not equally spaced $\bar{q}=(\pi / 2 h)^{t}(17 \sqrt{2}, 10,8,6,4,2,0)$. We consider the set of minimal weights 56 and the set of positive roots Δ_{+}, which consists of 63 roots. The 56 is even, ie if $\mu \in 56$ then $-\mu \in 56$. The positive part of $\mathbf{5 6}$ is denoted as $\mathbf{5 6}$. The polynomials are

$$
\begin{align*}
2^{24} \prod_{\mu \in \mathbf{5} \mathbf{6}_{+}}(x-\cos (2 \mu \cdot \bar{q}))= & x^{4}\left(-3+4 x^{2}\right)^{3}\left(-3+36 x^{2}-96 x^{4}+64 x^{6}\right)^{3}, \tag{12}\\
2^{59} \prod_{\mu \in \Delta_{+}}(x-\cos (2 \mu \cdot \bar{q}))= & (1+x)^{4}(-1+2 x)^{7}(1+2 x)^{7} \\
& \times\left(-1+6 x+8 x^{3}\right)^{8}\left(1-6 x+8 x^{3}\right)^{7} . \tag{13}
\end{align*}
$$

$E_{8}^{(1)}$: The Coxeter number is $h=30$ and the equilibrium position is not equally spaced $\bar{q}=(\pi / h)^{t}(23,6,5,4,3,2,1,0)$. We consider the set of positive roots Δ_{+}, which consists of

120 roots. The polynomial is

$$
\begin{align*}
2^{116} \prod_{\mu \in \Delta_{+}} & (x-\cos (2 \mu \cdot \bar{q}))= \\
& (1+x)^{4}(-1+2 x)^{8}(1+2 x)^{8}\left(-1-2 x+4 x^{2}\right)^{8}\left(-1+2 x+4 x^{2}\right)^{8} \\
& \times\left(1+8 x-16 x^{2}-8 x^{3}+16 x^{4}\right)^{8}\left(1-8 x-16 x^{2}+8 x^{3}+16 x^{4}\right)^{9} \tag{14}
\end{align*}
$$

$F_{4}^{(1)} \& E_{6}^{(2)}$: The Coxeter number is $h=12$ for $F_{4}^{(1)}$ and $h=9$ for $E_{6}^{(2)}$ and the equilibrium position is not equally spaced $\bar{q}=(\pi / h)^{t}(8,3,2,1)$. We consider the set of long positive roots Δ_{L+} and short positive roots Δ_{S+}, both of which consist of 12 roots reflecting the self-duality of F_{4} Dynkin diagram. The polynomials for $F_{4}^{(1)}$ are

$$
\begin{align*}
& 2^{9} \prod_{\mu \in \Delta_{S+}}(x-\cos (2 \mu \cdot \bar{q}))=x^{2}(1+x)(-1+2 x)^{2}(1+2 x)^{3}\left(-3+4 x^{2}\right)^{2} \tag{15}\\
& 2^{9} \prod_{\mu \in \Delta_{L+}}(x-\cos (2 \mu \cdot \bar{q}))=x^{2}(1+x)(-1+2 x)^{2}(1+2 x)\left(-3+4 x^{2}\right)^{3} \tag{16}
\end{align*}
$$

The polynomials associated with the twisted affine root system $E_{6}^{(2)}$ are

$$
\begin{align*}
& 2^{12} \prod_{\mu \in \Delta_{S+}}(x-\cos (2 \mu \cdot \bar{q}))=(1+2 x)^{3}\left(1-6 x+8 x^{3}\right)^{3} \tag{17}\\
& 2^{12} \prod_{\mu \in \Delta_{L+}}(x-\cos (2 \mu \cdot \bar{q}))=2(-1+x)(1+2 x)^{2}\left(1-6 x+8 x^{3}\right)^{3} \tag{18}
\end{align*}
$$

$G_{2}^{(1)} \& D_{4}^{(3)}: \quad$ The Coxeter number is $h=6$ for $G_{2}^{(1)}$ and $h=4$ for $D_{4}^{(3)}$ and the equilibrium position is $\bar{q}=(\pi / 2 h)^{t}(3 \sqrt{6}, \sqrt{2})$. We consider the set of long positive roots Δ_{L+} and short positive roots Δ_{S+}, both of which consists of 3 roots reflecting the self-duality of G_{2} Dynkin diagram. The polynomials for the untwisted $G_{2}^{(1)}$ are

$$
\begin{align*}
& 2^{3} \prod_{\mu \in \Delta_{S+}}(x-\cos (2 \mu \cdot \bar{q}))=2(1+x)(-1+2 x)(1+2 x) \tag{19}\\
& 2^{3} \prod_{\mu \in \Delta_{L+}}(x-\cos (2 \mu \cdot \bar{q}))=(-1+2 x)^{2}(1+2 x) \tag{20}
\end{align*}
$$

The polynomials for the twisted $D_{4}^{(3)}$ are

$$
\begin{align*}
& \prod_{\mu \in \Delta_{S+}}(x-\cos (2 \mu \cdot \bar{q}))=x^{2}(1+x) \tag{21}\\
& \prod_{\mu \in \Delta_{L+}}(x-\cos (2 \mu \cdot \bar{q}))=x^{2}(-1+x) \tag{22}
\end{align*}
$$

Before closing this paper, let us briefly remark on the identities arising from foldings of root systems. Among them those relating two un-twisted root systems, ie with superscript (1) are quite simple.

Folding $A_{2 r-1}^{(1)} \rightarrow C_{r}^{(1)}$: The vector weights of $A_{2 r-1}\left(2 r \operatorname{dim}\right.$.) become those of $C_{r}(2 r$ dim.). This relates $T_{2 r}$ to T_{r} in (8) as

$$
\begin{equation*}
A_{2 r-1}: \quad T_{2 r}(x)=(-1)^{r} T_{r}\left(1-2 x^{2}\right), \quad C_{r}^{(1)} \tag{23}
\end{equation*}
$$

Folding $D_{r+1}^{(1)} \rightarrow B_{r}^{(1)}$: This gives a quite obvious relation as seen from (9) and (7).

Folding $E_{6}^{(1)} \rightarrow F_{4}^{(1)}$: In this folding the minimal weights 27 of E_{6} become $\Delta_{S}(24 \mathrm{dim}$.) of F_{4} plus three zero weights. Thus we obtain

$$
\begin{equation*}
E_{6}^{(1)}: \quad 2(10) / x^{3}=(15)_{x \rightarrow 1-2 x^{2}}, \quad F_{4}^{(1)} \tag{24}
\end{equation*}
$$

We also obtain

$$
\begin{equation*}
E_{6}^{(1)}: \quad(11)=(15)^{2} \times(16), \quad F_{4}^{(1)} \tag{25}
\end{equation*}
$$

since the 72 roots of E_{6} are decomposed into $2 \Delta_{S}+\Delta_{L}\left(24 \mathrm{dim}\right.$.) of F_{4}.

Folding $D_{4}^{(1)} \rightarrow G_{2}^{(1)}$: The vector weights of D_{4} (8 dim .) decompose into Δ_{S} (6 dim .) plus two zero weights of G_{2} leading to the identity

$$
\begin{equation*}
D_{4}^{(1)}: \quad 2(19)_{r=4} /(x-1)=(19), \quad G_{2}^{(1)} . \tag{26}
\end{equation*}
$$

Acknowledgements

S. O. and R. S. are supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, No. 13135205 and No. 14540259 , respectively.

References

[1] I. Loris and R. Sasaki, "Quantum vs Classical Mechanics, role of elementary excitations," Phys. Lett. A327 (2004) 152-157.
[2] F. Calogero, "Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials", J. Math. Phys. 12 (1971) 419-436.
[3] T. Stieltjes, "Sur quelques théorèmes d'Algèbre", Compt. Rend. 100 (1885) 439-440; "Sur les polynômes de Jacobi", Compt. Rend. 100 (1885) 620-622.
[4] G. Szegö, "Orthogonal polynomials", Amer. Math. Soc. New York (1939).
[5] F. Calogero, "On the zeros of the classical polynomials", Lett. Nuovo Cim. 19 (1977) 505-507; "Equilibrium configuration of one-dimensional many-body problems with quadratic and inverse quadratic pair potentials", Lett. Nuovo Cim. 22 (1977) 251-253.
[6] E. Corrigan and R. Sasaki, "Quantum vs Classical Integrability in Calogero-Moser Systems", J. Phys. A35 (2002) 7017-7062.
[7] B. Sutherland, "Exact results for a quantum many-body problem in one-dimension. II", Phys. Rev. A5 (1972) 1372-1376.
[8] S. Odake and R. Sasaki, "Polynomials Associated with Equilibrium Positions in Calogero-Moser Systems," J. Phys. A35 (2002) 8283-8314.
[9] I. Loris and R. Sasaki, "Quantum \& Classical Eigenfunctions in Calogero \& Sutherland Systems," J. Phys. A37 (2004) 211-237.
[10] S. N. Ruijsenaars and H. Schneider, "A New Class Of Integrable Systems And Its Relation To Solitons," Annals Phys. 170 (1986) 370-405; S. N. Ruijsenaars, "Complete Integrability of Relativistic Calogero-Moser Systems And Elliptic Function Identities," Comm. Math. Phys. 110 (1987) 191-213.
[11] O. Ragnisco and R. Sasaki, "Quantum vs Classical Integrability in RuijsenaarsSchneider Systems," J. Phys. A37 (2004) 469-479.
[12] S. Odake and R. Sasaki, "Equilibria of 'Discrete' Integrable Systems and Deformations of Classical Polynomials", hep-th/0407155.
[13] See for example: A. V. Turbiner, "Quasi-exactly-soluble problems and sl(2,R) algebra", Comm. Math. Phys. 118 (1988) 467-474; A. G. Ushveridze, "Quasi-exactly solvable models in quantum mechanics", IoP Publishing, Bristol (1994).
[14] R. Sasaki and K. Takasaki, "Quantum Inozemtsev model, quasi-exact solvability and \mathcal{N}-fold supersymmetry", J. Phys. A34 (2001) 9533-9554.
[15] A. Khare, I. Loris and R. Sasaki, "Affine Toda-Sutherland systems," J. Phys. A37 (2004) 1665-1680.
[16] A. J. Bordner, N. S. Manton and R. Sasaki, "Calogero-Moser models V: Supersymmetry and Quantum Lax Pair", Prog. Theor. Phys. 103 (2000) 463-487; S. P. Khastgir, A. J. Pocklington and R. Sasaki, "Quantum Calogero-Moser Models: Integrability for all Root Systems", J. Phys. A33 (2000) 9033-9064.
[17] H. W. Braden, E. Corrigan, P. E. Dorey and R. Sasaki, "Affine Toda Field Theory and Exact S-Matrices," Nucl. Phys. B338 (1990) 689-746.

