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Abstract

Exact Heisenberg operator solutions for independent ‘sinusoidal coordinates’ as

many as the degree of freedom are derived for typical exactly solvable multi-particle

quantum mechanical systems, the Calogero systems based on any root system. These

Heisenberg operator solutions also present the explicit forms of the annihilation-creation

operators for various quanta in the interacting multi-particle systems. At the same time

they can be interpreted as multi-variable generalisation of the three term recursion re-

lations for multi-variable orthogonal polynomials constituting the eigenfunctions.

1 Introduction

Modern quantum physics is virtually unthinkable without annihilation-creation operators,

which are defined as the positive/negative energy parts of the Heisenberg field operator

solutions of a free field theory, an infinite collection of independent harmonic oscillators.

These annihilation-creation operators map an eigenstate of a free Hamiltonian into another,

but not connecting those of a full theory. Our knowledge of the Heisenberg operator solutions

of a full interacting theory, on the other hand, is quite limited in spite of the central role

played by the Heisenberg operator solutions in field theory in general. In the so-called exactly
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solvable quantum field theories, factorised S-matrices and some of the correlation (Green’s)

functions are the highest achieved points up to now.

Following our embryonic work [1] on the construction of exact Heisenberg operator solu-

tions for various degree one quantum mechanics, we present in this paper a modest first step

in the quest of deriving exact Heisenberg operator solutions for a family of interacting multi-

particle dynamics. These are the Calogero systems [2], which are integrable multi-particle

dynamics based on root systems. For the theories based on the classical root systems, the

A, B, C and D series, the number of particles can be as large as wanted, but not infinite

as in field theories. A complete set of exact Heisenberg solutions for ‘sinusoidal coordinates’

[1, 3], as many as the degree of freedom, is derived elementarily in terms of the universal

Lax pair [4, 5, 6], which is a well-established solution mechanism for classical and quantum

Calogero-Sutherland-Moser systems [2, 7, 8] based on any root system [9]. Explicit forms

of various annihilation-creation operators are obtained as the positive/negative energy parts

of the Heisenberg operator solutions. They map an eigenvector of the full Hamiltonian into

another. These sinusoidal coordinates and the corresponding annihilation-creation operators

provide multi-variable generalisation of the three term recursion relations [1] of orthogonal

polynomials constituting the eigenfunctions of the Calogero Hamiltonian.

This paper is organised as follows. In section two, the rudimentary facts and notation

of Calogero systems based on any root system are recapitulated together with the universal

Lax pair matrices. In section three the complete set of exact Heisenberg operator solutions

is derived quite elementarily based on generating functions constructed from the universal

Lax matrices. Remarks on the special features of the D-type theories are given at the end

of the section. The final section is for a summary and comments for further research. The

Appendix gives the list of the preferred sets of weight vectors for explicit representations of

Lax matrices based on the exceptional and the non-crystallographic root systems.

2 Calogero Systems

In this paper we will derive exact Heisenberg operator solutions for the Calogero systems .

They are one-dimensional multi-particle dynamics with inverse (distance)2 potential inside a

harmonic confining potential. They have a remarkable property that they are exactly solvable

at the classical [10] and quantum [2, 6] levels. The exact quantum solvability has been shown

in the Schrödinger picture, as the entire energy spectrum is known and the corresponding
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eigenfunctions can be constructed explicitly by a finite number of algebraic processes (the

lower triangularity of the Hamiltonian in certain basis) [6]. The exact quantum solvability

in the Heisenberg picture of the Calogero systems will be demonstrated in the next section

by constructing the explicit Heisenberg operator solutions for the independent ‘sinusoidal

coordinates’ as many as the degree of freedom. Let us briefly recapitulate the essence of the

quantum Calogero systems [2, 6] together with appropriate notation necessary in this paper.

2.1 Quantum Hamiltonian

A Calogero system is a Hamiltonian dynamics associated with a root system [4, 9] ∆ of rank

r, which is a set of vectors in Rr with its standard inner product. Its dynamical variables are

the coordinates {qj} and their canonically conjugate momenta {pj}, satisfying the canonical

commutation relations1:

[qj , pk] = iδjk, [qj , qk] = [pj , pk] = 0, j, k = 1, . . . , r. (2.1)

These will be denoted by vectors in Rr,

q
def
= (q1, . . . , qr), p

def
= (p1, . . . , pr), p · q

def
=

r
∑

j=1

pjqj, p2 def
=

r
∑

j=1

p2
j , q2 def

=

r
∑

j=1

q2
j . (2.2)

The momentum operator pj acts as a differential operator

pj = −i
∂

∂qj
, j = 1, . . . , r.

The ‘factorised’ Hamiltonian is

H(p, q)
def
=

1

2

r
∑

j=1

(

pj − i
∂W

∂qj

)(

pj + i
∂W

∂qj

)

, (2.3)

=
1

2
p2 +

ω2

2
q2 +

1

2

∑

ρ∈∆+

g|ρ|(g|ρ| − 1)|ρ|2

(ρ · q)2
− E0, (2.4)

W (q)
def
= −

ω

2
q2 +

∑

ρ∈∆+

g|ρ| log |ρ · q|, g|ρ| > 0, ω > 0. (2.5)

The summation is over the set of positive roots ∆+, with ∆ = ∆+ ∪ (−∆+). The real

positive coupling constants g|ρ| are defined on orbits of the corresponding Coxeter group, i.e.

1 For the A-type theory, it is customary to consider Ar−1 and to embed all the roots in Rr. This is

accompanied by the introduction of one more degree of freedom, qr and pr. The genuine Ar−1 theory

corresponds to the relative coordinates and their momenta, and the extra degree of freedom is the center of

mass coordinate and its momentum.
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they are identical for roots of the same length. The Hamiltonian is invariant under the finite

reflection group (Coxeter group, or Weyl group) generated by the set of roots ∆:

H(sα(p), sα(q)) = H(p, q), ∀α ∈ ∆, (2.6)

with the reflection sα defined by

sα(x)
def
= x − (α∨ · x)α, ∀x ∈ R

r, α∨ def
= 2α/|α|2. (2.7)

Obviously the Heisenberg equations of motion for the coordinates {qj} are trivial

i[H, qj ] =
d

dt
qj = pj , j = 1, . . . , r, (2.8)

whereas those for the canonical momenta {pj} have the same form as the Newton equations:

d2

dt2
qj =

d

dt
pj = i[H, pj ] = −ω2qj +

∑

ρ∈∆+

g|ρ|(g|ρ| − 1)|ρ|2ρj

(ρ · q)3
, j = 1, . . . , r. (2.9)

The hard repulsive potential ∼ 1/(ρ · q)2 near the reflection hyperplane Hρ
def
= {q ∈ R

r| ρ·q =

0} is insurmountable at the quantum level as well as the classical. Thus the motion is always

confined within one Weyl chamber. This feature allows us to constrain the configuration

space to the principal Weyl chamber (Π: set of simple roots)

PW
def
= {q ∈ R

r| α · q > 0, α ∈ Π}, (2.10)

without loss of generality.

The positive semi-definite form of the factorised Hamiltonian (2.3) simply allows the

determination of the ground state wavefunction:

Hφ0(q) = 0, φ0(q)
def
= eW (q) =

∏

ρ∈∆+

|ρ · q|g|ρ| · e−
ω
2

q2

, (2.11)

which is real and obviously square integrable

∫

PW

φ2
0(q) drq < ∞. (2.12)

The constant part E0 of the Hamiltonian (2.3) is usually called the ground state energy

E0
def
= ω

(r

2
+

∑

ρ∈∆+

g|ρ|

)

. (2.13)
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The excited energy spectrum is integer spaced and is independent of the coupling constants

{g|ρ|} [6]:

Hφ
n
(q) = E

n
φ

n
(q), n

def
= (n1, . . . , nr), nj ∈ N

def
= Z≥0, (2.14)

E
n

def
= ωN

n
, N

n

def
=

r
∑

j=1

nj fj . (2.15)

Here {fj} are the integers related to the exponents {ej} of ∆:

fj
def
= 1 + ej . (2.16)

They indicate the degrees where independent Coxeter invariant polynomials exist. The set

of integers

F∆
def
= {f1, f2, . . . , fr} (2.17)

is shown in Table I for each root system ∆.

∆ F∆ ∆ F∆

Ar−1 {2, 3, . . . , r, 1} E8 {2, 8, 12, 14, 18, 20, 24, 30}
Br {2, 4, 6, . . . , 2r} F4 {2, 6, 8, 12}
Cr {2, 4, 6, . . . , 2r} G2 {2, 6}
Dr {2, 4, . . . , 2r − 2, r} I2(m) {2, m}
E6 {2, 5, 6, 8, 9, 12} H3 {2, 6, 10}
E7 {2, 6, 8, 10, 12, 14, 18} H4 {2, 12, 20, 30}

Table I: The set of integers F∆ = {f1, f2, . . . , fr} for which independent

Coxeter invariant polynomials exist.2

Excited states eigenfunctions have the following general structure:

φ
n
(q) = φ0(q)Pn

(q), (2.18)

in which P
n
(q) is a Coxeter invariant polynomial in {qj} of degree N

n
.

2 For Ar−1 root system, fr = 1 corresponds to the degree of freedom for the center of mass coordinate.

The Br and Cr Calogero systems are equivalent.
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2.2 Quantum Lax Pair

The derivation of the Heisenberg operator solutions depends heavily on the universal Lax

pair which applies to any root system. The universal Lax pair operators [5, 6] are

L(p, q)
def
= p · Ĥ + X(q), X(q)

def
= i

∑

ρ∈∆+

g|ρ|
(ρ · Ĥ)

ρ · q
ŝρ, (2.19)

M(q)
def
= −

i

2

∑

ρ∈∆+

g|ρ|
|ρ|2

(ρ · q)2
ŝρ +

i

2

∑

ρ∈∆+

g|ρ|
|ρ|2

(ρ · q)2
× I, (2.20)

in which I is the identity operator and {ŝα : α ∈ ∆} are the reflection operators of the root

system. They act on a set of Rr vectors R
def
= {µ(k) ∈ Rr| k = 1, . . . , d }, permuting them

under the action of the reflection group. The vectors in R form a basis for the representation

space V of dimension d. The operator M satisfies the relation [5, 6]

∑

µ∈R

Mµν =
∑

ν∈R

Mµν = 0, (2.21)

which is essential for deriving quantum conserved quantities and annihilation-creation op-

erators. The matrix elements of the operators {ŝα : α ∈ ∆} and {Ĥj : j = 1, . . . , r} are

defined as follows:

(ŝρ)µν
def
= δµ,sρ(ν) = δν,sρ(µ), (Ĥj)µν

def
= µjδµν , ρ ∈ ∆, µ, ν ∈ R. (2.22)

The Lax equation

i[H, L] =
d

dt
L = [L, M ] (2.23)

is equivalent to the Heisenberg equation of motion for {qj} and {pj} for the Hamiltonian

(2.4) without the harmonic confining potential, i.e, ω = 0. It should be emphasised that the

l.h.s. of (2.23) is a quantum commutator, whereas the r.h.s. is a matrix commutator as well

as quantum. The full Heisenberg equations of motion with the harmonic confining potential

read

i[H, L±] =
d

dt
L± = [L±, M ] ± iωL±, (2.24)

in which M is the same as before (2.20), and L± and Q are defined by

L± def
= L ± iωQ, Q

def
= q · Ĥ, (L+)† = L−, (2.25)
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with L, Ĥ as earlier (2.19), (2.22). One direct consequence of the Lax pair equation (2.24)

is the existence of a wide variety of quantum conserved quantities:

d

dt
Ts(Lǫ1Lǫ2 · · ·Lǫk) = 0, ǫj ∈ {+,−}, ∀k ∈ 2N,

k
∑

j=1

ǫj = 0, (2.26)

in which Ts(A) denotes the total sum of a matrix A [5, 6] with suffices µ, ν ∈ R:

Ts(A)
def
=

∑

µ,ν∈R

Aµ ν . (2.27)

This is a simple outcome of the property (2.21) of the matrix M [5, 6, 11, 12]. The quantum

conserved quantities are the simplest example of more general results:

i[H, Ts(Lǫ1Lǫ2 · · ·Lǫk)] =
d

dt
Ts(Lǫ1Lǫ2 · · ·Lǫk), ∀k ∈ N,

= iωm Ts(Lǫ1Lǫ2 · · ·Lǫk),

k
∑

j=1

ǫj = m. (2.28)

In other words, Ts(Lǫ1Lǫ2 · · ·Lǫk) shifts the eigenvalue of H by m unit (or, ωm) when it acts

on any eigenstate of H. Namely such operators are all candidates of annihilation-creation

operators for H:

eiHt Ts(Lǫ1Lǫ2 · · ·Lǫk)e−iHt = Ts(Lǫ1Lǫ2 · · ·Lǫk) eiωmt,
k

∑

j=1

ǫj = m. (2.29)

Note that the order of L+ and L− is immaterial.

The results and statements in this subsection are universal , i.e. they are valid for any

root system ∆ and for any choice of the Lax pair matrices, i.e. the choice of R. For deriving

the explicit forms of the Heisenberg operator solutions, however, it is convenient to choose

as R the set of the least dimensions for each ∆. For the classical root systems, A, B and D,

they are the set of vector weights3:

Ar−1 : R
def
= {e1, e2, . . . , er}, d

def
= #R = r, (2.30)

Br, Dr : R
def
= {±e1,±e2, . . . ,±er}, d

def
= #R = 2r, (2.31)

in which {ej} are the orthonormal basis of Rr, ej · ek = δj k. We list in the Appendix the

preferred choice of R for the exceptional and the non-crystallographic root systems.

3 To be more precise, for Br they should be called the set of short roots.
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3 Exact Heisenberg Solutions

Now let us proceed to derive the explicit Heisenberg operator solutions for various ‘sinusoidal

coordinates’ [1, 3] as many as the degree of freedom. For simplicity of presentation, let us

fix the angular frequency of the harmonic confining potential as unity, ω = 1 hereafter. We

have already known one exact Heisenberg operator solution. In [1] it was shown that the

quadratic invariant

η(1) ∝ q2 =
r

∑

j=1

q2
j (3.1)

is the simplest sinusoidal coordinate:

[H, [H, η(1)]] = 4(η(1) − c1H− c2), c1, c2 : const, (3.2)

where c1 is given by η(1) = c1q
2 and c2 = c1E0. As shown in [1] the exact Heisenberg solution

eiHt η(1) e−iHt (3.3)

is easily evaluated. It should be noted that any root system has a degree 2 Coxeter invariant

2 ∈ F∆ (Table I), which is proportional to η(1). In fact, η(1) is a sinusoidal coordinate [1] for

a Hamiltonian Hge more general than the Calogero system; a general homogeneous potential

of degree −2 within a confining harmonic potential [13]:

Hge =
1

2

r
∑

j=1

(p2
j + q2

j ) + V (q),

r
∑

j=1

qj
∂

∂qj
V (q) = −2 V (q), (3.4)

which satisfies [Hge, [Hge, q
2]] = 4(q2 −Hge).

For the Calogero system based on any root system ∆, we will derive the explicit forms

of the Heisenberg operator solutions:

eiHt η(j) e−iHt, j = 1, . . . , r, (3.5)

for a complete set of sinusoidal coordinates defined by

{η(1), η(2), . . . , η(r)}, η(j) def
= Ts(Qfj) = Tr(Qfj ), fj ∈ F∆. (3.6)

In (3.6), the matrix Q (2.25) is diagonal therefore its total sum (Ts) is the same as the

trace (Tr). Let us note that any Coxeter invariant polynomial in {qj} can be expressed as
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a polynomial in {η(1), η(2), . . . , η(r)}. It is easy to verify η(1) ∝ q2 for an root system. The

higher sinusoidal coordinates for the classical root systems are:

Ar−1 : η(k) ∝

r
∑

j=1

qk+1
j , k = 1, . . . , r − 1; η(r) ∝

r
∑

j=1

qj , (3.7)

Br, Dr : η(k) ∝
r

∑

j=1

q2k
j , k = 1, . . . , r, (3.8)

except for η(r) for Dr which reads

η(r) ∝

r
∏

j=1

qj . (3.9)

See the remark at the end of the section. As shown in Table I, all the integers {fj} are even

for Br and Dr, except for fr = r for odd r of Dr. This is also related to the fact that

Tr(Q2l+1) =

r
∑

j=1

q2l+1
j +

r
∑

j=1

(−qj)
2l+1 = 0,

for the Lax operators based on the vector weights (2.31).

The sinusoidal coordinates take various different forms for the exceptional and non-

crystallographic root systems. Note that the overall normalisation of {η(k)} is immaterial.

The derivation of exact Heisenberg operator solutions is quite elementary. Let us in-

troduce a generating function of the total sum of the homogeneous polynomials in L+ and

L−:

G(j)(s)
def
= Ts

(

(L+ + s L−)fj
)

, s ∈ C, fj ∈ F∆, (3.10)

which is a polynomial in s of degree fj

G(j)(s) =

fj
∑

l=0

bfj ;fj−2l s
l, b†fj ;l

= bfj ;−l. (3.11)

The coefficient bfj ;fj−2l is the total sum of a completely symmetric product consisting of fj − l

times L+ and l times L− and it can be explicitly evaluated. As shown in (2.29), we obtain

eiHt bfj ;fj−2l e
−iHt = bfj ;fj−2l e

i(fj−2l)t. (3.12)

Namely bfj ;fj−2l is either an annihilation operator (l > fj/2) being the positive energy part

or a creation operator (l < fj/2) being the negative energy part or a conserved quantity

(l = fj/2), the constant part. The conserved quantities are in general not in involution

[bfj ; 0, bfk; 0] 6= 0, j 6= k. (3.13)
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On the other hand, for s = −1 we obtain

L+ − L− = 2iQ

and

G(j)(−1) = (2i)fjTs(Qfj ) = (2i)fjη(j) =

fj
∑

l=0

(−1)l bfj ;fj−2l,

η(j) = (2i)−fj

fj
∑

l=0

(−1)l bfj ;fj−2l. (3.14)

Thus we arrive at the main result of the paper; the complete set of exact Heisenberg operator

solutions for the ‘sinusoidal coordinates’ {η(j)}:

η(j)(t)
def
= eiHt η(j) e−iHt = (2i)−fj

fj
∑

l=0

(−1)l bfj ;fj−2l e
i(fj−2l)t, j = 1, 2, . . . , r. (3.15)

This clearly shows that η(j)(t) is a superposition of various sinusoidal motions. The trivial

fact that these ‘sinusoidal coordinates’ commute among themselves

η(j)η(k) = η(k)η(j), j 6= k = 1, . . . , r (3.16)

is translated into the commutation relations among the annihilation-creation operators

∑

l,m
l+m:fixed

[bfj ;fj−2l, bfk;fk−2m] = 0. (3.17)

Among the annihilation-creation operators belonging to η(j), the two extreme ones corre-

sponding to l = 0 and l = fj have a special meaning. They consist of L+ (L−) only

bfj ;fj
= Ts

(

(L+)fj
)

, bfj ;−fj
= Ts

(

(L−)fj
)

, b†fj ;fj
= bfj ;−fj

(3.18)

and commute among themselves

[bfj ;fj
, bfk;fk

] = 0, [bfj ;−fj
, bfk;−fk

] = 0, j, k = 1, . . . , r, (3.19)

as is clear from (3.17). These special annihilation-creation operators have been known for

some time [6, 9, 12, 14].
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Since the l-th term in (3.15) is annihilated by d/dt − i(fj − 2l), we obtain a linear

differential equation with constant coefficients satisfied by η(j)(t):

fj
∏

l=−fj
step 2

( d

dt
− il

)

· η(j)(t) = 0. (3.20)

Equivalently this can be rewritten as

fj
∏

l=−fj
step 2

(

ad(H) − l
)

· η(j) = 0. (3.21)

Here ad(H) denotes a commutator ad(H)X
def
= [H, X] for any operator X. For even fj case,

the factor d/dt − i(fj − 2l) for l = fj/2 could be omitted as it annihilates the conserved

quantity. Then we obtain a differential equation of order fj

fj
∏

l=−fj, 6=0

step 2

( d

dt
− il

)

·
(

η(j)(t) − 2−fjbfj ; 0

)

= 0, (3.22)

fj
∏

l=−fj, 6=0

step 2

(

ad(H) − l
)

·
(

η(j) − 2−fjbfj ; 0

)

= 0, (3.23)

instead of fj + 1 for odd fj case. In [1], for a wide class of solvable quantum systems with

one degree of freedom, we discussed the ‘closure relation’

[H, [H, η]] = ηR0(H) + [H, η]R1(H) + R−1(H) (3.24)

with Ri(H)† = Ri(H). By introducing α±(H) as R1(H) = α+(H) + α−(H) and R0(H) =

−α+(H)α−(H), this closure relation is rewritten as

(

ad(H) + α+(H)
)(

ad(H) + α−(H)
)(

η + R0(H)−1R−1(H)
)

= 0. (3.25)

Eqs. (3.21) and (3.23) are multi-particle generalisation of this relation.

When a sinusoidal coordinate η(j) is multiplied to an eigenvector φ
n

of H,

(2i)fjη(j)φ
n

=

fj
∑

l=0

(−1)lbfj ;fj−2l φn
, (3.26)

the l-th term belongs to the eigenspace of H with the eigenvalue E
n

+ fj − 2l. Thus these

fj + 1 terms are all orthogonal to each other. This is a multi-variable generalisation of the
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three-term recursion relation of the orthogonal polynomials of one variable [1]. Through

a similarity transformation in terms of the ground state wavefunction φ0(q) (2.11), let us

define

L̃
def
= φ−1

0 ◦ L ◦ φ0, L̃± def
= φ−1

0 ◦ L̃± ◦ φ0 = L̃ ± iQ, (3.27)

b̃fj ;fj−2l
def
= φ−1

0 ◦ bfj ;fj−2l ◦ φ0, j = 1, . . . , r, l = 0, 1, . . . , fj . (3.28)

Needless to say the identity

φ−1
0 ◦ Ts(An) ◦ φ0 = Ts

(

(φ−1
0 ◦ A ◦ φ0)

n
)

holds for any matrix A consisting of operators. Then one can present the corresponding

results for the multi-variable orthogonal polynomials {P
n
(q)} (2.18) constituting the eigen-

vectors:

(2i)fjη(j)P
n
(q) =

fj
∑

l=0

(−1)lb̃fj ;fj−2l Pn
(q). (3.29)

The operators L̃, L̃± and b̃fj ;fj−2l are closely related to the Dunkl operators [6, 15].

The annihilation-creation operators provide an algebraic solution method of the Calogero

systems. The entire Hilbert space is generated by the multiple application of creation oper-

ators on the ground state wavefunction φ0(q) = eW (q):

r
∏

j=1

∏

0<l≤fj
l≡fj (mod 2)

b
n(j,l)

fj ;l
· φ0, ∀n(j,l) ∈ N, (3.30)

whereas φ0 is destroyed by all the annihilation operators

bfj ;lφ0 = 0, −fj ≤ l < 0, l ≡ fj(mod 2). (3.31)

Obviously the above states (3.30) are over-complete and the orthogonality of various eigen-

vectors belonging to the same degenerate eigenspace is not guaranteed. For example, a

complete basis of the Hilbert space is given by using bfj ;fj
only [6]

r
∏

j=1

b
nj

fj ;fj
· φ0, ∀nj ∈ N. (3.32)
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Remark on D-type Theory As noticed above, the D-type theory requires separate treat-

ment due to the special fr = r. We need Lax pairs based on the spinor and anti-spinor

weights:

R
def
=

{

±
1

2
e1 ±

1

2
e2 ± · · · ±

1

2
er

}

, d
def
= #R = 2r−1. (3.33)

Here the the number of − signs is even (odd) for the spinor (anti-spinor) weights. They

both form 2r−1 dimensional representations of the Lie-algebra Dr, and these representations

are called minimal . The minimal weights for the A, D and E root systems have played an

important role in constructing simple Lax pair representations [4].

For Dodd we simply use the Lax matrix L±
(sp) (L±

(as)) based on either the spinor (sp) or

the anti-spinor (as) weights and proceed in the same way as above:

G
(r)
(sp)(s)

def
= Ts

(

(L+
(sp) + s L−

(sp))
r
)

, s ∈ C, fr = r,

=
r

∑

l=0

b(sp) r;r−2l s
l. (3.34)

Then we obtain the expansion of η(r) in terms of the annihilation-creation operators and the

corresponding exact Heisenberg operator solution

G
(r)
(sp)(−1) = (2i)rTs(Qr

(sp)) = (2i)rη(r) =

r
∑

l=0

(−1)l b(sp) r;r−2l, (3.35)

η(r) = (2i)−r
r

∑

l=0

(−1)l b(sp) r;r−2l ∝ q1q2 · · · qr, (3.36)

η(r)(t)
def
= eiHt η(r) e−iHt = (2i)−r

r
∑

l=0

(−1)l b(sp) r;r−2l e
i(r−2l)t. (3.37)

For Deven, the situation is slightly more complicated, partly because of the existence of

another sinusoidal coordinate η(r/2), which is a Coxeter invariant polynomial of {qj} of degree

r, too. Here we prepare the Lax matrices based on both the spinor L±
(sp) and the anti-spinor

weights L±
(as), since

η(r) ∝ Ts(Qr
(sp)) − Ts(Qr

(as)) ∝ q1q2 · · · qr. (3.38)

It is quite elementary to verify (3.36) and (3.38). Let us introduce two ‘generating functions’

G
(r)
(sp)(s)

def
= Ts

(

(L+
(sp) + s L−

(sp))
r
)

=

r
∑

l=0

b(sp) r;r−2l s
l, (3.39)

G
(r)
(as)(s)

def
= Ts

(

(L+
(as) + s L−

(as))
r
)

=

r
∑

l=0

b(as) r;r−2l s
l. (3.40)
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Next we introduce the sinusoidal coordinate η(r) as their difference at s = −1,

η(r) def
= (2i)−r

(

G
(r)
(sp)(−1) − G

(r)
(as)(−1)

)

= Ts(Qr
(sp)) − Ts(Qr

(as))

= (2i)−r

r
∑

l=0

(−1)l
(

b(sp) r;r−2l − b(as) r;r−2l

)

. (3.41)

We obtain the corresponding exact Heisenberg operator solution

η(r)(t)
def
= eiHt η(r) e−iHt = (2i)−r

r
∑

l=0

(−1)l
(

b(sp) r;r−2l − b(as) r;r−2l

)

ei(r−2l)t. (3.42)

This completes the derivation of the exact Heisenberg operator solutions for the D-type

Calogero systems.

4 Summary and Comments

A complete set of exact Heisenberg operator solutions, as many as the degree of freedom, is

constructed for the Calogero systems based on any root system, including the exceptional and

non-crystallographic ones. Based on the complete set, one can write down the Heisenberg

operator solution eiHt A e−iHt for any operator A expressible as a polynomial in the sinusoidal

coordinates {η(j)}. This is the first demonstration of the exact solvability of multi-particle

quantum mechanics in the Heisenberg picture. At the same time, these Heisenberg operator

solutions provide the explicit forms of various annihilation-creation operators, as the positive

and negative energy parts. Their commutation relations are, in general, quite involved. As in

the simplest case of degree one quantum mechanics [1], these sinusoidal coordinates and their

expansion into the annihilation-creation operators provide the explicit forms of the multi-

variable generalisation of the three term recursion relations for the orthogonal polynomials

constituting the multi-variable eigenfunctions. The derivation of the Heisenberg operator

solutions is a simple consequence of the universal Lax pair, which manifests the quantum

integrability of Calogero systems based on any root system.

Let us conclude this paper with a few comments on possible future directions of the

present research. For better understanding of multi-particle quantum mechanics in general, it

is desirable to enlarge the list of exact Heisenberg operator solutions. The obvious candidates

are: the Sutherland systems [7] having trigonometric potentials, various super-symmetric

generalisations of the Calogero-Sutherland systems [5, 11], the Ruijsenaars-Schneider-van-
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Diejen systems [16] which are ‘discrete’ counterparts of the Calogero-Sutherland systems,

and the (affine) Toda molecules.

The newly found annihilation-creation operators suggest an interesting possibility of in-

troducing multi-particle coherent states as common eigenstates of certain annihilation oper-

ators. It is a good challenge to construct explicit examples of such multi-particle coherent

states having mathematically elegant structure and/or practical use.

A completely integrable system, including the Calogero-Sutherland-Moser systems, has

the so-called hierarchy structure. It is characterised by the existence of mutually involutive

conserved quantities

H1,H2, . . . ,Hr, [Hj ,Hk] = 0, j, k = 1, . . . , r, (4.1)

which could be adopted as independent Hamiltonians generating different but compatible

time-flows; t1, t2,. . . , tr, as many as the degree of freedom. It is a good challenge to construct

common Heisenberg operator solutions to all the flows of the hierarchy

ei
Pr

j=1 Hjtj η̃(k)e−i
Pr

j=1 Hjtj , k = 1, . . . , r. (4.2)
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Appendix: The Preferred Choice of R

Here we list, for the exceptional and the non-crystallographic root systems, the set R to be

used for the explicit evaluation of the Heisenberg operator solutions. They are of the lowest

dimensionality.

1. E6: The weights of 27 (or 27) dimensional representation of the Lie algebra. They are

minimal representations.

2. E7: The weights of 56 dimensional representation of the Lie algebra. This is a minimal

representation.

3. E8: The set consisting of all 240 roots.
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4. F4: Either of the set consisting of all 24 long roots or 24 short roots.

5. G2: Either of the set consisting of all 6 long roots or 6 short roots.

6. I2(m): The set consisting of the vertices Rm of the regular m-gon

Rm =
{

vj =
(

cos(2kπ/m + t0), sin(2kπ/m + t0)
)

∈ R
2

∣

∣ k = 1, . . . , m
}

, (A.1)

in which t0 = 0 (π/2m) for m even (odd).

7. H3: The set consisting of all 30 roots.

8. H4: The set consisting of all 120 roots.
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