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Abstract

By factorization of the Hamiltonian describing the quantum mechanics of the

continuous q-Hermite polynomial, the creation and annihilation operators of the q-

oscillator are obtained. They satisfy a q-oscillator algebra as a consequence of the

shape-invariance of the Hamiltonian. A second set of q-oscillator is derived from the

exact Heisenberg operator solution. Now the q-oscillator stands on the equal footing

to the ordinary harmonic oscillator.

PACS : 03.65.-w, 03.65.Ca, 03.65.Fd, 02.30.Ik, 02.30.Gp, 02.20.Uw

1 Introduction

In this Letter, the explicit forms of the generators of a q-oscillator algebra are derived from

the quantum mechanical Hamiltonian [1, 2] of the q-Hermite polynomial [3], the q-analogue

of the Hermite polynomial constituting the eigenfunctions of the harmonic oscillator. This

is in sharp contrast to the common approach to q-oscillators [4], which assumes certain

forms of the algebras without any dynamical/analytical contents behind them. On the

other hand, the ordinary harmonic oscillator algebra generated by the annihilation/creation

operators has rich analytical structure of differential operators related with the classical

analysis of the Hermite polynomial together with the coherent and squeezed states, etc.
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Since the annihilation/creation operators of the harmonic oscillator and their algebra are

the cornerstone of modern quantum physics, their good deformation is bound to play an

important role, as evidenced by the representation theory of the quantum groups in terms

of the q-oscillators. Thus our new results are expected to enrich the subject by stimulating

the interplay between (quantum) algebra and analysis through new coherent/squeezed states

etc, which would find applications in quantum optics and quantum information theory. Here

we discuss only Rogers’ q-Hermite polynomial [3], or the so-called continuous q-Hermite

polynomial [5, 6] for the parameter range 0 < q < 1. Like the Hermite polynomial, the

q-Hermite polynomial has no parameter other than q.

This Letter is organized as follows. The factorized Hamiltonian for the q-Hermite poly-

nomial is presented and the q-oscillator commutation relation is shown to be a simple conse-

quence of their structure. After brief exploration of the eigenfunctions, the exact Heisenberg

operator solution [7] is presented. A second set of q-oscillator algebra is derived from the

explicit forms of the annihilation/creation operators which are the positive/negative energy

parts of the exact Heisenberg operator solution. These q-oscillators reduce to the ordinary

harmonic oscillator in the q → 1 limit. Relationship to various forms of q-oscillator algebras

is explained. The Letter concludes with some historical comments and a summary.

2 Hamiltonian for the q-Hermite polynomial

The Hamiltonian of the ‘discrete’ quantum mechanics for one degree of freedom has the

general structure [2, 1]

H def
=

√
V (x) eγp

√
V (x)∗ +

√
V (x)∗ e−γp

√
V (x) − V (x) − V (x)∗ (1)

=
√
V (x) qD

√
V (x)∗ +

√
V (x)∗ q−D

√
V (x) − V (x) − V (x)∗, (2)

in which x ∈ R is the coordinate and p = −i∂x is the conjugate momentum. The constant

γ in the present case is γ
def
= log q, 0 < q < 1 and the potential function for the dynamics of

the q-Hermite polynomial is given by

V (x)
def
=

1

(1 − z2)(1 − qz2)
, z

def
= eix, (3)
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with D = p = −i∂x = z d
dz

. It is a special case of the Askey-Wilson polynomial [1, 5]. The

Hamiltonian is factorized as

H = A†A, (4)

A† def
= −i

(√
V (x) qD/2 −

√
V (x)∗ q−D/2

)
, (5)

A def
= i

(
qD/2

√
V (x)∗ − q−D/2

√
V (x)

)
. (6)

With the explicit form of the potential function V , (3), it is straightforward to derive the

q-oscillator commutation relation

AA† − q−1A†A = q−1 − 1. (7)

Sometimes it is written as [A,A†]q−1 = q−1 − 1 with the standard notation [A,B]c
def
= AB −

cBA. We also have

[H,A]q = (q − 1)A, [H,A†]q−1 = (q−1 − 1)A†. (8)

The q-oscillator commutation relation (7) is also a consequence of the shape invariance with-

out shifting parameter [8] among the general Askey-Wilson potentials [1, 5]. One could also

say that the commutation relation of the harmonic oscillator aa†−a†a = 1 is a manifestation

of the shape-invariance.

The groundstate wavefunction φ0 is annihilated by the operator A:

Aφ0 = 0 =⇒ φ0(x)
def
=

√
(e2ix; q)∞(e−2ix; q)∞, (9)

in which the standard notation of q-Pochhammer symbol (a ; q)n is used:

(a ; q)n
def
=

n∏

k=1

(1 − aqk−1) = (1 − a)(1 − aq) · · · (1 − aqn−1), (10)

including the limiting case n → ∞. With this choice of the groundstate wavefunction, we

can show that the Hamiltonian (1) is hermitian with respect to the inner product (f, g) =
∫ π

0
f(x)∗g(x)dx in the Hilbert space L2[0, π] [9]. By using the factorization (4) and the q-

oscillator relation (7), it is straightforward to demonstrate that (A†)nφ0 is an eigenstate of

the Hamiltonian with the geometric sequence spectrum:

H(A†)nφ0 = En(A†)nφ0, En
def
= q−n − 1. (11)
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3 The q-Hermite polynomial

The analytical approach to the Schrödinger equation

Hφn = Enφn, (12)

which is a difference equation instead of a second order differential equation, goes as follows.

By similarity transformation in terms of the groundstate wavefunction φ0, one introduces

H̃ def
= φ−1

0 ◦ H ◦ φ0 = V (x)(qD − 1) + V (x)∗(q−D − 1), (13)

which acts on the polynomial part of the eigenfunction Pn(η(x)):

φn(x) = φ0(x)Pn(η(x)). (14)

It is elementary to show

H̃ (z + 1/z)n = (q−n − 1)(z + 1/z)n + lower order terms in z + 1/z, (15)

since the residues at z = ±1, z = ±q±1/2, and z = ±q∓1/2 all vanish. Thus one can find

the eigenpolynomial in η(x) = cosx = (z+ 1/z)/2, which is called the continuous q-Hermite

polynomial introduced by Rogers [3, 5]

H̃Hn(cosx|q) = EnHn(cosx|q), (16)

Hn(cos x|q) def
=

n∑

k=0

(q ; q)n

(q ; q)k(q ; q)n−k
ei(n−2k)x,

H0 = 1, H1(cosx|q) = 2 cosx. (17)

It has a definite parity. Reflecting the orthogonality of the eigenfunctions of the Hamiltonian

H, (φn, φm)∝ δnm, it is orthogonal with respect to the weight function φ0(x)
2:

∫ π

0

φ0(x)
2Hn(cosx|q)Hm(cosx|q)dx = δn m

2π

(qn+1; q)∞
, (18)

satisfying the three term recurrence relation

2ηHn(η|q) = Hn+1(η|q) + (1 − qn)Hn−1(η|q). (19)
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The action of the creation A† and annihilation A operators on the polynomial Hn(cosx|q)
is

Ã† def
= φ−1

0 ◦ A† ◦ φ0, Ã def
= φ−1

0 ◦ A ◦ φ0, (20)

Ã† = q−
1

2

−1

z − z−1

(
z−2qD/2 − z2q−D/2

)
, (21)

Ã =
−1

z − z−1

(
qD/2 − q−D/2

)
, (22)

Ã†Hn(cos x|q) = q−(n+1)/2Hn+1(cosx|q), (23)

(Ã†)n1 = q−n(n+1)/4Hn(cos x|q), (24)

ÃHn(cosx|q) = (q−n/2 − qn/2)Hn−1(cosx|q). (25)

The similarity transformed Ã (22) is proportional to the divided difference operator.

4 Heisenberg operator solution

The harmonic oscillator is a typical example for which the Heisenberg operator solution is

known and the annihilation/creation operators can also be extracted as the positive/negative

frequency parts of the Heisenberg operator solution. The situation is parallel but slightly

different for the q-oscillator. The exact Heisenberg operator solution is derived and its

positive/negative frequency parts give another set of annihilation/creation operators a(±)

which are closely related to A and A†. (For the general theory of exact Heisenberg operator

solutions, see [7, 10] for systems of single degree of freedom and [11] for a class of multi-

particle dynamics.)

We start from the closure relation

[H, [H, cosx] ] = cosxR0(H) + [H, cosx]R1(H), (26)

R0(H)
def
= (q−

1

2 − q
1

2 )2(H + 1)2, (27)

R1(H)
def
= (q−

1

2 − q
1

2 )2(H + 1), (28)

which can be readily verified. This relation enables us to express any multiple commutator

[H, [H, · · · , [H, cosx]···]]

as a linear combination of the operators cosx and [H, cosx] with coefficients depending on

the Hamiltonian H only. Thus we arrive at the exact Heisenberg operator solution for the
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sinusoidal coordinate η(x)
def
= cos x [7]:

eitH cosx e−itH = cos x
q eiα+(H)t + eiα−(H)t

1 + q
+ [H, cosx]

eiα+(H)t − eiα−(H)t

(q−1 − q)(H + 1)
, (29)

α±(H) = (q∓1 − 1)(H + 1). (30)

This simply means that the coordinate cosx undergoes sinusoidal motions with frequencies

α±(H).

While factorization of Hamiltonian is known to provide the annihilation/creation op-

erators only for the harmonic oscillator and the q-oscillator, the authentic definition of

the annihilation/creation operators is through the positive/negative frequency parts of the

Heisenberg operator solution [7] (η = cosx):

eitH cosx e−itH = a(+) eiα+(H)t + a(−) eiα−(H)t, (31)

a(±) =
±1

q−1 − q

(
[H, η]q±1 + (1 − q±1)η

)
(H + 1)−1,

a(−)† = a(+). (32)

Their action on the full eigenfunction is (φn(x)
def
= φ0(x)Hn(cosx|q)):

a(−)φn = 1
2
(1 − qn)φn−1, a(+)φn = 1

2
φn+1, (33)

to be compared with

Aφn = q−
n

2 (1 − qn)φn−1, A†φn = q−
n+1

2 φn+1. (34)

From these and (18), it is easy to check the hermiticity

(φn−1, a
(−)φn) = (a(+)φn−1, φn), (35)

(φn−1,Aφn) = (A†φn−1, φn). (36)

They satisfy commutation relations

[a(−), a(+)] = 1
4
(1 − q)(H + 1)−1, (37)

[H, a(±)] = (q∓1 − 1)a(±)(H + 1). (38)

By removing the Hamiltonian from the r.h.s. they can be cast into another q-oscillator form

a(−)a(+) − qa(+)a(−) = 1
4
(1 − q), (39)

Ha(±) − q∓1a(±)H = (q∓1 − 1)a(±). (40)
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It should be noted that the q-oscillator relations (39)-(40) also hold for the continuous big

q-Hermite polynomial [5, 7]. We will report on this topic elsewhere.

The two types of creation-annihilation operators are closely related with each other [7]

a(+) = A†X, a(−) = X†A, (41)

with

X = − i

2
q
(
z
√
V (x) qD/2 − z−1

√
V (x)∗ q−D/2

)
(H + 1)−1, (42)

X† =
i

2
q(H + 1)−1

(
qD/2z−1

√
V (x)∗ − q−D/2z

√
V (x)

)
, (43)

and the operators X and X† map the eigenfunction φn to itself:

Xφn =
1

2
q(n+1)/2φn, X†φn =

1

2
q(n+1)/2φn. (44)

The structure of these operators is better understood by the similarity transformation in

terms of the groundstate wavefunction φ0

X̃
def
= φ−1

0 ◦X ◦ φ0, X̃† def
= φ−1

0 ◦X† ◦ φ0. (45)

In fact, their actions on polynomials {Hn(cosx|q)} are essentially identical:

X̃ =
1

2
q

1

2

−1

z − z−1
(z−1qD/2 − zq−D/2)(H̃ + 1)−1, (46)

X̃† =
1

2
q

1

2 (H̃ + 1)−1 −1

z − z−1
(z−1qD/2 − zq−D/2). (47)

The main part of X̃ and X̃†, defined by

Dq =
−1

z − z−1
(z−1qD/2 − z q−D/2), (48)

was also introduced by Atakishiyev-Klimyk [12] eq(9). It satisfies the relation

DqHn(cosx|q) = q−n/2Hn(cosx|q), (49)

and it factorizes H̃ and H̃ + 1:

(Dq − 1)(Dq + 1) = H̃, (Dq)2 = H̃ + 1. (50)

The coherent state of the harmonic oscillator is defined as the eigenvector of the anni-

hilation operator; aψ = αψ, which is the generating function of the Hermite polynomials.
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We encounter a parallel situation here. The eigenvector of the operator a(−), a(−)ψ(x;α) =

αψ(x;α), is given by

ψ(x ;α) = φ0(x)
∞∑

n=0

(2α)n

(q ; q)n

Hn(cosx|q) (51)

= φ0(x)
1

(2α eix; q)∞(2α e−ix; q)∞
. (52)

The second factor is the generating function of the q-Hermite polynomials [5, 6]. The coherent

state defined by the other annihilation operator A, Aψ′(x;α) = αψ′(x;α), has a similar

structure:

ψ′(x ;α) = φ0(x)
∞∑

n=0

αnq
1

4
n(n+1)

(q ; q)n

Hn(cosx|q). (53)

5 Limit to the ordinary harmonic oscillator

The q-oscillators reduce to the ordinary harmonic oscillator in the q → 1 limit. To show

this, let us introduce two parameters (L and c) and a new coordinate x′:

x =
π

2
− π

L
x′

(
⇒ −L

2
< x′ <

L

2

)
, q = e−

2π

cL . (54)

The momentum operator conjugate to x′ is p′ = −i d
dx′ = − π

L
p. Then the desired limit is

obtained by setting L = πc and taking c→ ∞ limit:

c2H → x′ 2 + p′ 2 − 1, c2En → 2n, (55)

cA†

cA

}
→ x′ ∓ ip′, ca(±) → 1

2
(x′ ∓ ip′),

X†

X

}
→ 1

2
, (56)

c cosx→ x′ (−∞ < x′ <∞), c4R0(H) → 4, c2R1(H) → 0, (57)

(q ; q)∞φ0(x)
2

2
√
π c

→ e−x′ 2

, (58)

cnHn(cosx|q) = cnHn

(
sin

x′

c

∣∣ e−
2

c2

)
→ Hn(x′). (59)

Here we have used the Jacobi’s triple product identity [6] and its modular transformation

property (the S-transformation) for deriving (58), and the three term recurrence relations

for (59).

6 Other forms of q-oscillators

Here we will discuss the relationship between our intrinsic q-oscillator algebra (7)-(8) and

those introduced purely algebraically for quantum group representations around 1989-90 [4].
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First let us introduce the number operator N through the energy spectrum formula (11),

(H + 1)∓1 = q±N , Nφn = nφn, n ∈ Z+, (60)

which counts the level from the groundstate. Several different forms of q-oscillator algebras

are introduced, among which we list two typical ones:

bb† − q−1b†b = qN , (61)

bb† − q b†b = q−N . (62)

If we define b and b† by

b =
A qN/4

(q−
1

2 − q
1

2 )
1

2

, b† =
qN/4A†

(q−
1

2 − q
1

2 )
1

2

, (63)

it is straightforward to verify

bb† − q−
1

2 b†b = qN/2, (64)

which becomes (61) by identification q → q2. Likewise, the q-oscillator algebra of a(±) (39)

is related to (62) by similar transformations.

7 Comments and summary

Some historical comments are in order. There were attempts to relate q-oscillator algebras to

the difference equation of the q-Hermite polynomial. None of them is based on a Hamiltonian,

thus hermiticity is not manifest and the logic for factorization is unclear. Here we list a few

such attempts. Atakishiyev and Suslov in 1990 [13] wrote down an algebra

bb+ − q−1b+b = 1, H = b+b, (65)

which is related to our q-oscillator algebra (7) by a similarity transformation

√
q−1 − 1

(
b

b+

)
=

1√
sin x

◦
(A
A†

)
◦
√

sin x. (66)

Floreanini, LeTourneux and Vinet presented in 1994 [14] a q-oscillator algebra (Ñ def
= φ−1

0 ◦
N ◦ φ0)

A−A+ − q−1A+A− = 1, KA± = q∓
1

2A±K, K = q−
eN/2, (67)

9



which is in our notation

A+ = −Ã†, A− =
−1

q−1 − 1
Ã, K = Dq. (68)

In 2003 Borzov and Damaskinsky [15] wrote down

a−q a
+
q − q a+

q a
−
q = 1, (69)

starting from the three term recurrence relation of the q-Hermite polynomial and defining

the annihilation/creation operators in their own way.

In summary: we have derived two q-oscillator algebras (7) and (39) from the Hamiltonian

of the q-Hermite polynomial (4)–(6) [1, 7, 10], which is a special case of the Askey-Wilson

polynomial [5, 6]. The generators are genuine annihilation/creation operators and the her-

miticity is manifest.
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