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In one-dimensional quantum mechanics, or the Sturm-Liouville theory, Crum’s theo-
rem describes the relationship between the original and the associated Hamiltonian systems,
which are iso-spectral except for the lowest energy state. Its counterpart in ‘discrete’ quan-
tum mechanics is formulated algebraically, elucidating the basic structure of the discrete
quantum mechanics, whose Schrödinger equation is a difference equation.

§1. Introduction

In the seminal paper of 1955, Crum showed,1) if rephrased in the language of
quantum mechanics, the existence of an associated Hamiltonian system for any given
one-dimensional quantum mechanical Hamiltonian system under mild assumptions.
The method or the technique is quite universal and is known under many different
names; the Darboux transformation,2) the factorisation method3) or the supersym-
metric quantum mechanics.4) Crum himself presented his results in the traditional
language of Sturm-Liouville systems. Since Crum’s theorem elucidates the generic
structure, many exactly and quasi-exactly solvable quantum mechanical examples
were constructed by employing Crum’s theorem and its modifications combined with
shape invariance.5) In particular, Adler’ modification of Crum’s theorem6) is quite
general and useful. It allows to construct an infinitely many exactly solvable poten-
tial from any exactly solvable one.

Recently ‘discrete’ quantum mechanics was introduced by the present authors.7)–9)

It is a generalisation of quantum mechanics, in which the Schrödinger equation is
a difference equation instead of differential in the ordinary quantum mechanics. In
other words, the differential operator in the Hamiltonian is replaced by finite dif-
ference operators, either in the pure imaginary or the real direction. This is why
they are called discrete quantum mechanics. Many explicit examples of exactly10), 11)

and quasi-exactly solvable12), 13) systems have been constructed. These exactly solv-
able systems have salient features; they are solvable both in the Schrödinger and
the Heisenberg pictures. The main part of the exact eigenfunctions are the known
hypergeometric orthogonal polynomials of the Askey scheme.14)–16) On the other
hand, the exact Heisenberg operator solutions define the creation and annihilation
operators10), 11) which, together with the Hamiltonian, form the dynamical symmetry
algebra of the exactly solvable systems. The so-called q-oscillator algebra17) is the
most typical dynamical symmetry algebra realised in this way.18) In discrete quan-
tum mechanics, as will be shown shortly, the counterpart of Crum’s theorem holds
and it also elucidates the generic structure of one dimensional systems. As in the
ordinary quantum mechanics, Crum’s theorem and its modifications are useful for
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constructing various exactly and quasi-exactly solvable discrete quantum mechanical
examples. In particular, its modification a lá Adler19) will also provide an infinite
number of exactly solvable ones based on any exactly solvable one. When applied to
discrete quantum mechanics with real shifts, the modified Crum’s theorem generates
an infinite or finite series of exactly solvable birth and death processes based on
any known exactly solvable one.20) The insight obtained Crum’s theorems and their
modification, in the ordinary and discrete quantum mechanics, is essential for the
recent derivation of infinite numbers of shape invariant systems and new exceptional
orthogonal polynomials.21), 22)

In this paper, we present the discrete quantum mechanics version of Crum’s
theorem. Under mild assumptions, we construct algebraically an associated Hamil-
tonian system for any given one-dimensional discrete quantum Hamiltonian system.
That is, if a Hamiltonian together with the full discrete energy spectra and the cor-
responding eigenfunctions are given, then the associated Hamiltonian together with
the full discrete energy spectra and the corresponding eigenfunctions are constructed
as in the original Crum’s paper.1) This process goes on indefinitely, since the first
associated Hamiltonian system generates the second associated Hamiltonian system
and so on. Due to the essential distinction between the differential and difference
equations, several technical assumptions are necessary for the discrete Crum’s the-
orem. For example, in one-dimensional ordinary quantum mechanics, the energy
spectra are non-degenerate and the oscillation theorem holds. That is, the n-th
excited state wavefunction has n zeros. These two properties are not necessarily
shared by the generic discrete QM. The hermiticity is almost trivial in ordinary QM,
but it can only be proven after the explicit form of the groundstate wavefunction
is obtained in discrete QM.9), 12) Another distinctive feature is the wavefunction. In
ordinary QM, the wavefunction is a complex valued real function, defined on the real
line, or half line or on a line segment. In one dimension, the wavefunction can be
chosen real. In discrete QM with pure imaginary shifts, the wavefunction undergoes
shift operations ψ(x) → ψ(x ± iγ), γ ∈ R. Thus we require the analyticity of the
wavefunction with its domain including the real axis or a part of it in which the
dynamical variable x is defined. In spite of these differences, the generation of the
associated Hamiltonian system goes almost parallel in the ordinary and discrete QM,
since the main part is algebraic.

This paper is organised as follows. In section two, Crum’s theorem is recapitu-
lated in some detail in the language and notation of ordinary quantum mechanics.
This explains the underlying logical structure of the associated Hamiltonian system,
which is also shared by the discrete quantum mechanics version. The discrete version
of Crum’s theorem is stated and proved in section three. The final section is for a
summary and comments.
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§2. Ordinary Quantum Mechanics

Let us start with a generic one-dimensional quantum mechanical system having
discrete semi-infinite energy levels only:

0 = E0 < E1 < E2 < · · · . (2.1)

Here we have chosen the constant part of the Hamiltonian so that the groundstate
energy is zero. Then the Hamiltonian is positive semi-definite and in one dimension
all the energy levels are non-degenerate. It is well known in linear algebra that any
positive semi-definite hermitian matrix can be factorised as a product of a certain
matrix, say A, and its hermitian conjugate A†. Similar factorisation applies to the
present quantum mechanical Hamiltonian H, which takes a very simple form:

H = p2 + U(x) = p2 +
(dW(x)

dx

)2
+
d2W(x)

dx2
, p = −i d

dx
, (2.2)

= A†A, A def
=

d

dx
− dW(x)

dx
, A† = − d

dx
− dW(x)

dx
. (2.3)

Here a real function W(x) ∈ C
∞ is called a pre-potential and it parametrises the

groundstate wavefunction φ0(x), which has no node and can be chosen real and
positive:

φ0(x) = eW(x). (2.4)

It is trivial to verify

Aφ0(x) = 0 ⇒ Hφ0(x) = 0. (2.5)

All the eigenfunctions are square-integrable and orthogonal with each other and form
a complete basis of the Hilbert space:

Hφn(x) = Enφn(x), n = 0, 1, 2, . . . , (2.6)
∫

φn(x)∗φm(x)dx = hnδnm, 0 < hn <∞, n,m = 0, 1, 2, . . . . (2.7)

It is well-known that the n-th excited wavefunction φn(x) has n zeros in the interior.
For simplicity we choose all the eigenfunctions to be real. Here are a few examples:

W(x) = −1
2x

2, U(x) = x2 − 1, −∞ < x <∞, (2.8)

W(x) = −1
2x

2 + g log x, U(x) = x2 +
g(g − 1)

x2
− 1 − 2g, g > 1, 0 < x <∞, (2.9)

W(x) = g log sinx, U(x) =
g(g − 1)

sin2 x
− g2, g > 1, 0 < x < π. (2.10)

They all lead to well-known exactly solvable quantum mechanics whose eigenfunc-
tions consist of the classical orthogonal polynomials, the Hermite, Laguerre and Ja-
cobi polynomials, respectively. In each case, the squared groundstate wavefunction
φ0(x)

2 gives the orthogonality weight function for the polynomials.
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Next let us define an associated Hamiltonian H[1] by simply changing the order
of A and A†:

H[1] def
= AA†. (2.11)

For later convenience, let us attach the superscript [0] to all the quantities in the

original Hamiltonian system, H[0] def
= H, φ

[0]
n (x)

def
= φn(x), A[0] def

= A, U [0](x)
def
= U(x),

W [0](x)
def
= W(x). By construction A and A† intertwine H[0] and H[1]:

A[0]H[0] = H[1]A[0], A[0]†H[1] = H[0]A[0]†. (2.12)

We will show that the associated Hamiltonian system H[1] is iso-spectral to the
original Hamiltonian system H[0] and the eigenfunctions are in one to one correspon-
dence, except for the groundstate. Thanks to the first of the above relation (2.12), it
is trivial to verify that the eigenfunctions of the associated Hamiltonian system H[1]

are generated algebraically by multiplying A[0] to the eigenfunction of the original
system:

φ[1]
n (x)

def
=A[0]φ[0]

n (x),

∫

φ[1]
n (x)∗φ[1]

m (x)dx = Enhnδnm, n,m = 1, 2, . . . , (2.13)

H[1]φ[1]
n (x) = Enφ

[1]
n (x), n = 1, 2, . . . . (2.14)

Suppose the associated Hamiltonian H[1] has an eigenfunction φ′(x) with the eigen-
value E ′ other than those listed above:

H[1]φ′(x) = E ′φ′(x). (2.15)

Again, thanks to the second of the relation (2.12), it is trivial to verify

H[0]A[0]†φ′(x) = E ′A[0]†φ′(x). (2.16)

Due to the completeness of the spectrum of the original Hamiltonian H[0], the pro-
visional eigenvalue E ′ must belong to the above spectrum (2.14) for n = 1, 2. . . .. In
other words, E ′ cannot be vanishing, E ′ 6= 0. Suppose that is the case (E ′ = 0), then
φ′ is annihilated by A[0]†. Surely there exists a solution of a first order differential

equation A[0]†φ′(x) = 0, φ′(x) = 1/φ
[0]
0 (x) = e−W(x). But it is obviously non square-

integrable and it does not belong to the Hilbert space of the associated Hamiltonian

system. After Crum,1) we can show in the following way that φ
[1]
n (x) has exactly

n− 1 zeros. Since φ
[0]
n has exactly n zeros, the relation

φ
[1]
n (x)

φ
[0]
0 (x)

=
d

dx

(φ
[0]
n (x)

φ
[0]
0 (x)

)

tells through Rolle’s theorem that φ
[1]
n has at least n− 1 zeros. From the relation

d

dx

(

φ
[0]
0 (x)φ[1]

n (x)
)

= −Enφ
[0]
0 (x)φ[0]

n (x),

we find that φ
[1]
n has at most n−1 zeros. Thus we have established that the associated

Hamiltonian system H[1] is iso-spectral to the original Hamiltonian system H[0] and
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the eigenfunctions are in one to one correspondence, except for the groundstate

with the wavefunction φ
[0]
0 (x). If the groundstate energy E1 is subtracted from the

associated Hamiltonian H[1], it is again positive semi-definite and can be factorised
as above:

H[1] = A[1]†A[1] + E1 = p2 + U [1](x) + E1, (2.17)

A[1] def
=

d

dx
− dW [1](x)

dx
, A[1]† = − d

dx
− dW [1](x)

dx
, (2.18)

eW
[1](x) def

=
∣

∣φ
[1]
1 (x)

∣

∣, U [1](x)
def
=

(dW [1](x)

dx

)2
+
d2W [1](x)

dx2
, (2.19)

A[1]φ
[1]
1 (x) = 0. (2.20)

As shown above, the groundstate wavefunction φ
[1]
1 (x) has no node. Note that (2.11),

(2.17) and (2.19) imply the Riccati equation for dW [1](x)/dx:

(dW [1](x)

dx

)2
+
d2W [1](x)

dx2
=

(dW(x)

dx

)2
− d2W(x)

dx2
− E1. (2.21)

Then by reversing the order of A[1]† and A[1] the second associated Hamiltonian
system H[2] can be defined. This process can go indefinitely.

Here we list the definition of the s-th quantities step by step for s ≥ 1,

H[s] def
= A[s−1]A[s−1] † + Es−1, (2.22)

φ[s]
n (x)

def
= A[s−1]φ[s−1]

n (x), (n ≥ s), (2.23)

eW
[s](x) def

=
∣

∣φ[s]
s (x)

∣

∣, (2.24)

A[s] def
=

d

dx
− dW [s](x)

dx
, A[s] † = − d

dx
− dW [s](x)

dx
, (2.25)

U [s](x)
def
=

(dW [s](x)

dx

)2
+
d2W [s](x)

dx2
. (2.26)

Then we can show the following for n ≥ s ≥ 0,

H[s]φ[s]
n (x) = Enφ

[s]
n (x), (2.27)

φ[s]
n (x) : real function, (2.28)

A[s]φ[s]
s (x) = 0, (2.29)

H[s] = A[s] †A[s] + Es = p2 + U [s](x) + Es. (2.30)

We have also

φ[s−1]
n (x) =

A[s−1] †

En − Es−1
φ[s]

n (x), (n ≥ s ≥ 1). (2.31)

In terms of the determinant (Wronskian)

W [f1, . . . , fn](x)
def
= det

(dj−1fk(x)

dxj−1

)

1≤j,k≤n
, (2.32)
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(for n = 0, we set W [·](x) = 1.), we have

W [φ0, φ1, . . . , φs−1, φn](x) = φ0(x)φ
[1]
1 (x) · · · φ[s−1]

s−1 (x)φ[s]
n (x), (n ≥ s ≥ 0). (2.33)

Therefore we arrive at the concise formulas due to Crum:1)

W [φ0, φ1, . . . , φs−1](x) = φ0(x)φ
[1]
1 (x) · · · φ[s−1]

s−1 (x) = ±eW(x)+W [1](x)+···+W [s−1](x),

(2.34)

U [s](x) = U(x) − 2
d2

dx2

(

log W [φ0, φ1, . . . , φs−1](x)
)

, (2.35)

φ[s]
n (x) =

W [φ0, φ1, . . . , φs−1, φn](x)

W [φ0, φ1, . . . , φs−1](x)
, (n ≥ s ≥ 0). (2.36)

§3. ‘Discrete’ Quantum Mechanics (pure imaginary shifts)

In discrete quantum mechanics, the dynamical variables are, as in ordinary QM,
the coordinate x, which takes value in an infinite or a semi-infinite or a finite range
of the real axis and the canonical momentum p, which is realised as a differential
operator p = −i∂x. Since the momentum operator appears in exponentiated forms
e±γp, γ ∈ R, in a Hamiltonian, it causes finite pure imaginary shifts in the wavefunc-
tion e±γpψ(x) = ψ(x∓ iγ). This requires the wavefunction as well as other functions
appearing in the Hamiltonian to be analytic in x within a certain domain including
the physical region of the coordinate. Let us introduce the ∗-operation on an analytic

function, ∗ : f 7→ f∗. If f(x) =
∑

n

anx
n, an ∈ C, then f∗(x)

def
=

∑

n

a∗nx
n, in which a∗n

is the complex conjugation of an. Obviously f∗∗(x) = f(x) and f(x)∗ = f∗(x∗). If a
function satisfies f∗ = f , then it takes real values on the real line.

The starting point is again a generic one dimensional discrete quantum mechan-
ics Hamiltonian with discrete semi-infinite energy levels only (2.1). Again we assume
that the groundstate energy is chosen to be zero E0 = 0, so that the Hamiltonian is
positive semi-definite. The generic factorised Hamiltonian reads

H = A†A =
√

V (x) eγp
√

V ∗(x) +
√

V ∗(x) e−γp
√

V (x) − V (x) − V ∗(x), (3.1)

A def
= i

(

e
γ

2
p
√

V ∗(x) − e−
γ

2
p
√

V (x)
)

, A† def
= −i

(
√

V (x) e
γ

2
p −

√

V ∗(x) e−
γ

2
p
)

. (3.2)

By specifying the function V (x), various explicit examples are obtained.7), 9), 11) For
instance,

V (x) =

∏4
j=1(1 − aje

ix)

(1 − e2ix)(1 − q e2ix)
, 0 < x < π, 0 < q < 1,

|aj | < 1, {a∗1, a∗2, a∗3, a∗4} = {a1, a2, a3, a4} (as a set), (3.3)

gives an exactly solvable dynamics whose eigenfunctions consist of the Askey-Wilson
polynomials14)–16) times the groundstate wavefunction φ0(x) (3.5), which gives the
orthogonality measure φ0(x)

2.
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Let us emphasise that the corresponding Schrödinger equation Hψ(x) = Eψ(x)
is a difference equation

√

V (x)V ∗(x− iγ)ψ(x− iγ) +
√

V ∗(x)V (x+ iγ)ψ(x+ iγ)

−
(

V (x) + V ∗(x)
)

ψ(x) = Eψ(x), (3.4)

instead of differential in ordinary QM. Again the groundstate wavefunction φ0(x) is
determined as a zero mode of A:

Aφ0(x) = 0 ⇒ Hφ0(x) = 0. (3.5)

The above equation for φ0 reads
√

V ∗(x− iγ2 )φ0(x− iγ2 ) −
√

V (x+ iγ2 )φ0(x+ iγ2 ) = 0. (3.6)

This dictates how the ‘phase’ of the potential function V is related to that of the
groundstate wavefunction φ0. Here we also assume that the groundstate wavefunc-
tion φ0(x) has no node and chosen to be real and positive for real x.

Due to the lack of generic theorems in the theory of difference equations, let us
assume that all the energy levels are non-degenerate and all the eigenfunctions are
square-integrable and orthogonal with each other and form a complete basis of the
Hilbert space:

Hφn(x) = Enφn(x), n = 0, 1, 2, . . . , (3.7)
∫

φn(x)∗φm(x)dx = hnδnm, 0 < hn <∞, n,m = 0, 1, 2, . . . . (3.8)

In most explicit examples these statements can be verified straightforwardly. For
simplicity we choose all the eigenfunctions to be real on the real axis φ∗n = φn. This
is possible since H maps a ‘real’ function to a ‘real’ function f∗ = f ⇒ (Hf)∗ = Hf .

Now the procedure to generate the associated Hamiltonian system goes almost
parallel with the one shown in the preceding section. We define an associated Hamil-

tonian H[1] by simply changing the order of A and A†, H[1] def
= AA†, as in (2.11).

Then as in (2.12), we have A[0]H[0] = H[1]A[0] and A[0]†H[1] = H[0]A[0]†. Here again
we have indexed the quantities of the original Hamiltonian system by the superscript
[0], as before. The eigenfunctions and the eigenvalues of the associated Hamiltonian
H[1] are given by

φ[1]
n (x)

def
=A[0]φ[0]

n (x),

∫

φ[1]
n (x)∗φ[1]

m (x)dx = Enhnδnm, n,m = 1, 2, . . . , (3.9)

H[1]φ[1]
n (x) = Enφ

[1]
n (x), n = 1, 2, . . . . (3.10)

The same argument as before establishes the iso-spectrality and the one to one
correspondence of the eigenfunctions of H[0] and H[1] except for the groundstate. In
explicit examples given in,9) one can show that φ′(x) = φ′(x ;λ) = ϕ(x)/φ0(x ;λ+δ)
is annihilated by A†, A†φ′(x) = 0 as in the Darboux transformation. Such functions,
as before, do not belong to the Hilbert space of the associated Hamiltonian H[1]. Here
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λ and δ are parameters and their shift. For example, ϕ ≡ 1 for the Meixner-Pollaczek
case, ϕ(x) = x for the Wilson case and ϕ(x) = sinx for the Askey-Wilson case (3.3).
We have used the convention to specify the discrete quantum mechanics by the name
of the polynomials constituting the main part of the eigenfunctions.

Thus φ
[1]
1 (x) is the groundstate wavefunction of H[1] with the eigenvalue E1. By

subtracting it from H[1], we can again factorise the positive semi-definite Hamilto-
nian:

H[1] = A[1]†A[1] + E1, (3.11)

A[1] def
= i

(

e
γ

2
p

√

V [1]∗(x) − e−
γ

2
p

√

V [1](x)
)

,

A[1]† def
= −i

(

√

V [1](x) e
γ

2
p −

√

V [1]∗(x) e−
γ

2
p
)

, (3.12)

with the new potential function V [1] to be determined now. This imposes quadratic
relations between the function V [0] and the unknown V [1]:

V [0](x− iγ2 )V [0]∗(x− iγ2 ) = V [1](x)V [1]∗(x− iγ), (3.13)

V [0](x+ iγ2 ) + V [0]∗(x− iγ2 ) = V [1](x) + V [1]∗(x) − E1, (3.14)

which are discrete counterparts of the Riccati equation (2.21) for the pre-potential W.
One essential problem is that the connection between the groundstate wavefunction
φ0(x) and the function V (x) in the Hamiltonian is indirect, in contrast to the one
φ0(x) = eW(x), (2.4) in ordinary QM. In discrete QM, the potential function V
is complex (analytic). The information on the ‘absolute value’ of V [1](x) can be

extracted from (3.13). The ‘phase’ part of of V [1](x) is given by that of φ
[1]
1 (x)

through the zero mode equation of A[1] (3.16), just as the ‘phase’ of φ0 is related to
that of V [0] through the the zero mode equation of A[0], (3.6). Thus the following
formula determining the function V [1](x) in terms of the previous function V [0](x)

and φ
[1]
1 (x) is the main result of the present paper:

V [1](x)
def
=

√

V [0](x− iγ2 )V [0]∗(x− iγ2 )
φ

[1]
1 (x− iγ)

φ
[1]
1 (x)

, (3.15)

A[1]φ
[1]
1 (x) = 0. (3.16)

There is no ambiguity in the phase of the square root in the above expression (3.15).
It is positive for x = α+ iγ2 , α ∈ R, for which the function inside the square root sign

is positive definite. Here we have to assume that the groundstate wavefunction φ
[1]
1 (x)

has no node, so that the function V [1](x) does not develop unwanted singularities
in the physical region. It is rather straightforward to verify that (3.13) is actually
satisfied by the V [1] in (3.15). In order to verify the linear relation (3.14), one has

to use the eigenvalue equation for φ
[0]
1 . By reversing the order of A[1]† and A[1], the

second associated Hamiltonian system H[2] can be defined. Again this process can
go indefinitely.
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Here we list the definition of the s-th quantities step by step for s ≥ 1,

H[s] def
= A[s−1]A[s−1] † + Es−1, (3.17)

φ[s]
n (x)

def
= A[s−1]φ[s−1]

n (x), (n ≥ s), (3.18)

V [s](x)
def
=

√

V [s−1](x− iγ2 )V [s−1]∗(x− iγ2 )
φ

[s]
s (x− iγ)

φ
[s]
s (x)

, (3.19)

A[s] def
= i

(

e
γ

2
p

√

V [s]∗(x) − e−
γ

2
p

√

V [s](x)
)

,

A[s] † def
= −i

(

√

V [s](x) e
γ

2
p −

√

V [s]∗(x) e−
γ

2
p
)

. (3.20)

Let us note that the phase of the square root in (3.19) has no ambiguity. Then we
can show the following for n ≥ s ≥ 0,

H[s]φ[s]
n (x) = Enφ

[s]
n (x), (3.21)

φ[s]∗
n = φ[s]

n : ‘real’ function, (3.22)

A[s]φ[s]
s (x) = 0, (3.23)

H[s] = A[s] †A[s] + Es. (3.24)

We have also

φ[s−1]
n (x) =

A[s−1] †

En − Es−1
φ[s]

n (x), (n ≥ s ≥ 1). (3.25)

The discrete counterpart of the determinant formulas of Crum (2.33)–(2.36)
requires a deformation of the Wronskian, the Casorati determinant, which has a
good limiting property:

Wγ [f1, . . . , fn](x)
def
= i

1
2
n(n−1) det

(

fk(x+ in+1−2j
2 γ)

)

1≤j,k≤n
, (3.26)

lim
γ→0

γ−
1
2
n(n−1)Wγ [f1, f2, . . . , fn](x) = W [f1, f2, . . . , fn](x), (3.27)

(for n = 0, we set Wγ [·](x) = 1.). Then we have, corresponding to (2.33),

Wγ [φ0, φ1, . . . , φs−1, φn](x) =
s−1
∏

k=0

φ̌
[k]
k (x+ ik−s

2 γ) · φ̌[s]
n (x), (3.28)

φ̌[s]
n (x)

def
=

φ
[s]
n (x)

∏s−1
l=0

√

V [l](x+ is−l
2 γ)

. (3.29)

Corresponding to (2.36), we obtain

φ[s]
n (x) =

s−1
∏

l=0

√

V [l](x+ is−l
2 γ) · Wγ [φ0, φ1, . . . , φs−1, φn](x)

Wγ [φ0, φ1, . . . , φs−1](x− iγ2 )
, (n ≥ s ≥ 0). (3.30)
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The proof of the above statements is elementary by induction and the necessary
nontrivial formulas are only

φ[s]
n (x) = i

√

V [s−1](x+ iγ2 )

φ
[s−1]
s−1 (x− iγ2 )

∣

∣

∣

∣

∣

φ
[s−1]
s−1 (x+ iγ2 ) φ

[s−1]
n (x+ iγ2 )

φ
[s−1]
s−1 (x− iγ2 ) φ

[s−1]
n (x− iγ2 )

∣

∣

∣

∣

∣

, (n ≥ s ≥ 1),

(3.31)

∣

∣

∣

∣

∣

Wγ [f0, f1, . . . , fs−1, fs](x+ iγ2 ) Wγ [f0, f1, . . . , fs−1, fn](x+ iγ2 )

Wγ [f0, f1, . . . , fs−1, fs](x− iγ2 ) Wγ [f0, f1, . . . , fs−1, fn](x− iγ2 )

∣

∣

∣

∣

∣

= − iWγ [f0, f1, . . . , fs−1](x)Wγ [f0, f1, . . . , fs−1, fs, fn](x), (n ≥ s ≥ 0). (3.32)

§4. Summary and Comments

Since Crum’s paper1) is crisp and elegant, the underlying logical structure is not
easy to fathom for non-experts or physicists. In section two we reproduce his results
by a simplest logic in the language of quantum mechanics and using the factorisation
method,3) or the so-called supersymmetric quantum mechanics,4) so that the simi-
larity and contrast with the corresponding results of the discrete QM would become
clear. Due to the lack of essential theorems in the theory of difference equations,
some important properties of the spectra and eigenfunctions of the generic discrete
QM must be assumed for the derivation of the associated Hamiltonian systems in
section three. For example, the hermiticity or the self-adjointness of a discrete QM
Hamiltonian can only be demonstrated after a proper groundstate wavefunction φ0

is chosen.9), 12) As mentioned repeatedly, these standard properties are well satisfied
in explicit examples of discrete QM in.7), 9), 11) However, to the best of our knowl-
edge, the general structure of the solutions of the main difference equation (3.4) as
well as that for the groundstate (3.5) for generic potential V (x) and V ∗(x), has not
yet been investigated in contradistinction to the ordinary QM. In this connection,
let us mention two interesting examples of quasi-exactly solvable discrete quantum
mechanics (example in §IIB1 of the first paper of12) and in §3 of13)) in which the
oscillation theorem does not hold.

Here are some comments on closely related topics; shape invariance, orthogonal
polynomials and limiting properties to the ordinary quantum mechanics, etc.

Shape invariance: The Hamiltonian may contain several parameters λ = (λ1, λ2,
. . .) and we write them explicitly H = H(λ), V (x) = V (x ;λ), A = A(λ), etc. Let
us consider the case that the potential function of the first associated Hamiltonian
V [1](x) = V [1](x ;λ) has the same form as the original function V with a different
set of parameters and up to a multiplicative positive constant κ ∈ R+ :

V [1](x ;λ) = κV (x ;λ′). (4.1)

Here the new set of parameters λ
′ is uniquely determined by λ (let us write λ

′ =
si(λ)). Then this system has the shape invariance,5), 7), 9)

A(λ)A(λ)† = κA(λ′)†A(λ′) + E1(λ). (4.2)



Crum’s Theorem for ‘Discrete’ Quantum Mechanics 11

The shape invariance is a sufficient condition for exact solvability. The entire energy
spectrum and the excited wavefunctions are expressed in terms of E1(λ) and φ0(x ;λ)
as follows:

En(λ) =
n−1
∑

s=0

κsE1(λ
[s]), (4.3)

φn(x ;λ) ∝ A(λ[0])†A(λ[1])†A(λ[2])† · · · A(λ[n−1])†φ0(x ;λ[n]), (4.4)

where λ
[n] is λ

[0] = λ, λ
[n] = si(λ[n−1]) (n = 1, 2, . . .).

Orthogonal polynomial: Here we consider a generic Hamiltonian (3.1) of the
discrete QM. That is the shape invariance is not assumed. Let us define a ‘real’
function η(x) (η∗ = η) as a ratio of φ1(x) and φ0(x),

φ1(x)

φ0(x)
= a+ b η(x), (4.5)

where a and b (b 6= 0) are real constants. Although η(x) is not well defined without
specifying a and b, this ambiguity (affine transformation of η(x)) does not affect the
following discussion. Then (3.15) implies

V [1](x+ iγ2 ) = V (x)
η(x− iγ) − η(x)

η(x) − η(x+ iγ)
. (4.6)

Let us assume further that the n-th eigenfunction φn/φ0 is a degree n polynomial in
this η(x) for all n ≥ 2:

φn(x) = φ0(x)Pn

(

η(x)
)

, Pn(y) =

n
∑

k=0

an,k y
k, an,k ∈ R, an,n 6= 0. (4.7)

Obviously a0,0 = 1, a = a1,0 and b = a1,1. The orthogonality of the eigenfunctions
{φn} implies that {Pn

(

η(x)
)

} are orthogonal polynomials in η(x) with respect to the
weight function φ0(x)

2. Then the ratio of the first excited state and the groundstate
of the s-th associated Hamiltonian system H[s] takes the same form as that of the
first associated Hamiltonian system H[1] (4.5),

φ
[s]
s+1(x)

φ
[s]
s (x)

=
as+1,s

as,s

+
as+1,s+1

as,s

η[s](x), η[s](x)
def
=

s
∑

k=0

η(x+ i2k−s
2 γ), (4.8)

and V [s] is related to V [s−1] as in (4.6) and this goes further down to V [0]:

V [s](x+ i s2γ) = V [s−1](x+ is−1
2 γ)

η[s−1](x+ is−3
2 γ) − η[s−1](x+ is−1

2 γ)

η[s−1](x+ is−1
2 γ) − η[s−1](x+ is+1

2 γ)

= V (x)

s−1
∏

k=0

η[k](x+ ik−2
2 γ) − η[k](x+ ik2γ)

η[k](x+ ik2γ) − η[k](x+ ik+2
2 γ)

= V (x)

s−1
∏

k=0

η(x− iγ) − η(x+ ikγ)

η(x) − η(x+ i(k + 1)γ)
. (4.9)
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In all the known examples of exactly solvable QM (ordinary and discrete), in which
the eigenfunctions have the polynomial form (4.7), the function η(x) plays a special
role to define together with the Hamiltonian H an algebraic sufficient condition for
exact solvability. In that case the function η(x) is called the sinusoidal coordinate

and the sufficient condition is named the closure relation.8), 9), 11) As shown above,
the shape invariance and the closure relation are very closely related.

Limit from dQM to QM: Here we show that the ordinary QM is obtained
from the discrete QM in a certain limit by rescaling parameters. Let us introduce a
positive parameter c and rescale γ as γ/c and the parameters in V (x) appropriately,

H = A†A =
√

V (x) e
γ

c
p
√

V ∗(x) +
√

V ∗(x) e−
γ

c
p
√

V (x) − V (x) − V ∗(x), (4.10)

A def
= i

(

e
γ

2c
p
√

V ∗(x) − e−
γ

2c
p
√

V (x)
)

, A† def
= −i

(
√

V (x) e
γ

2c
p −

√

V ∗(x) e−
γ

2c
p
)

.
(4.11)

Assume that V (x) has the following expansion for large c,

V (x) = a
(

1 +
iγ

c
w1(x) +O

( 1

c2
)

)

, (4.12)

where a is a positive constant. Then we have for large c:

c√
a γ

A =
d

dx
− dW(x)

dx
+O

(1

c

)

,
c√
a γ

A† = − d

dx
− dW(x)

dx
+O

(1

c

)

, (4.13)

c2

aγ2
H = p2 +

(dW(x)

dx

)2
+
d2W(x)

dx2
+O

(1

c

)

, (4.14)

where the derivative of the pre-potential W(x) is defined by dW(x)
dx

= −Rew1(x).
Therefore ordinary QM is obtained from discrete QM in the c→ ∞ limit.

Discrete QM with real shifts: Crum’s theorem for the discrete QM with real
shifts can also be formulated in a similar manner. In this case the Hamiltonian is a
real symmetric tri-diagonal (Jacobi) matrix, either of finite or infinite dimensions.8)

The factorisation of the positive semi-definite Hamiltonian H = A†A also holds
and A consists of the diagonal and super-diagonal elements only and A† being its
transpose, which consists of the diagonal and sub-diagonal elements only.

Connection with integrable systems: Since the Darboux transformation2) is
closely related to the inverse scattering method for soliton equations, it is natural to
ask if the present formulation of Crum’s theorem is related to (discrete) integrable
systems. At present, all the explicit examples considered in discrete QM7), 9), 11)

(pure imaginary shifts) have an infinite number of discrete eigenvalues only. In other
words, the corresponding potentials are confining, that is, they grow to infinity at
the boundaries or the spatial infinities. Thus the free incoming/outgoing waves at
infinity do not exist and the corresponding scattering problem cannot be formulated.
To sum up, we have nothing to report on possible applications of the present Crum’s
theorem to (discrete) integrable systems.
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After completing this work, we received a recent work by Gaillard and Matveev23)

which has some overlap with the present work. We thank Vladimir Matveev for send-
ing the new results and for many useful comments.
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