
ar
X

iv
:1

00
4.

02
89

v2
  [

m
at

h-
ph

] 
 3

 J
un

 2
01

0

Yukawa InstituteKyoto DPSU-10-1

YITP-10-15

Modification of Crum’s Theorem for ‘Discrete’

Quantum Mechanics
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Abstract

Crum’s theorem in one-dimensional quantum mechanics asserts the existence of

an associated Hamiltonian system for any given Hamiltonian with the complete set of

eigenvalues and eigenfunctions. The associated system is iso-spectral to the original one

except for the lowest energy state, which is deleted. A modification due to Krein-Adler

provides algebraic construction of a new complete Hamiltonian system by deleting a

finite number of energy levels. Here we present a discrete version of the modification

based on the Crum’s theorem for the ‘discrete’ quantum mechanics developed by two

of the present authors.

1 Introduction

Crum’s seminal paper of 1955 [1] has played an essential role in elucidating the structure of

one-dimensional quantum mechanical systems in general and exactly solvable ones, in partic-

ular. Throughout this paper, we mean ‘exact solvability’ in the Schrödinger picture, namely

a quantum system is exactly solved when the complete set of eigenvalues and eigenfunctions

are known. Many exactly solvable quantum mechanical Hamiltonians were constructed and

investigated by combining shape invariance [2] and Crum’s theorem [1, 3], or the factorisa-

tion method [4] or the method of the so-called supersymmetric quantum mechanics [5]. It is

interesting to note that most of these shape invariant systems are also solvable in the Heisen-

berg picture [6]. Exactly solvable quantum mechanical systems of one and many degrees of
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freedom are not only important in their own right but also have fundamental applications

in various disciplines of physics/mathematics, e.g. the Fokker-Planck equations [7] and their

discretised version, birth and death processes [8], to name a few.

Shape invariance is a sufficient condition for exactly solvable quantum mechanical sys-

tems. The number of shape invariant systems, however, was quite limited; only about a

dozen until the recent discovery [9, 10, 11] of the several types of infinitely many shape

invariant Hamiltonians [12, 13, 14, 15, 16] which led to the infinitely many exceptional La-

guerre, Jacobi, Wilson and Askey-Wilson polynomials. Many methods were proposed to

derive exactly solvable but non-shape invariant quantum mechanical systems from known

shape invariant ones [17, 18, 19, 20, 21]. (We apologise to those whose work we have missed.)

Among them Krein-Adler’s modification [18] of Crum’s theorem is the most comprehensive

way to generate infinitely many variants of exactly solvable Hamiltonians and their eigen-

functions, starting from an exactly solvable one. The derived system is iso-spectral with

the original one except that a finite number of energy levels are deleted. If the original

system has polynomial eigenfunctions, as is usually the case, the derived systems have also

polynomial eigenfunctions. By construction, these polynomials constitute a complete set of

orthogonal functions. But they do not qualify to be called exceptional orthogonal polynomials

[12, 13, 14, 15, 16] since some members of certain degrees are missing due to the deletion.

The discrete quantum mechanics is a deformation of the ordinary quantum mechanics

in the sense that the Schrödinger equation is a second order difference equation instead of

differential. In the formulation of Odake and Sasaki [22, 23, 24, 25], the algebraic and ana-

lytical structure of quantum mechanics as well as shape invariance and exact solvability are

retained in the discrete version. The eigenfunctions of the exactly solvable one-dimensional

discrete quantum mechanics are the Askey-scheme of hypergeometric orthogonal polyno-

mials and their q-versions [26, 27, 28, 29], e.g. the continuous Hahn, the Wilson and the

Askey-Wilson polynomials. These examples are all shape invariant and they are also solvable

in the Heisenberg picture [22, 6]. The dynamical symmetry algebra of these algebras are the

Askey-Wilson algebras [30, 31] and degenerations, which contain the q-oscillator algebra [32].

The discrete version of Crum’s theorem was also established recently [33, 34].

In this paper we present the discrete quantum mechanics version of Adler’s modification

[18] of Crum’s theorem. It allows to generate an infinite variety of exactly solvable discrete

quantum Hamiltonian systems. The insight obtained from Crum’s theorems and their mod-
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ification, in the ordinary and the discrete quantum mechanics, is essential for the recent

derivation of the infinite numbers of shape invariant systems and the new exceptional or-

thogonal polynomials [12, 13, 15]. We will discuss the main results, the specialisation to the

cases of polynomial eigenfunctions and simplest example for various exactly solvable cases;

first for the ordinary quantum mechanics and then for the discrete versions. The reason is

two-fold; firstly to introduce appropriate notion and notation in the familiar cases of the

ordinary quantum mechanics. Secondly we choose to reveal the underlying logical processes

which are not easy to fathom in Adler’s paper [18] or in Crum’s original article [1]. As seen

in the subsequent sections, the logical structures of the associated Hamiltonian systems and

their modification by deletion of energy levels are shared by the ordinary and the discrete

quantum mechanics.

This paper is organised as follows. In section two, Adler’s modification of Crum’s theorem

is recapitulated in appropriate notation for our purposes. The specialisation to the cases of

polynomial eigenfunctions is discussed in some detail. Section three provides the discrete

quantum mechanics version of the modification of Crum’s theorem. Again the specialisation

to the cases of polynomial eigenfunctions is mentioned. Appendix gives the simplest examples

of the modified Hamiltonian systems obtained by deleting the lowest lying ℓ excited states

for various exactly solvable Hamiltonians. Appendix A provides three examples from the

ordinary quantum mechanics, the harmonic oscillator, the radial oscillator, the Darboux-

Pöschl-Teller potential. Appendix B is for the four examples from the discrete quantum

mechanics, the Hamiltonians of the Meixner-Pollaczek, the continuous Hahn, the Wilson

and the Askey-Wilson polynomials [22, 25], which are known to reduce to the Hermite, the

Laguerre and the Jacobi polynomials in certain limits, respectively.

2 Ordinary Quantum Mechanics

2.1 Adler’s modification of Crum’s theorem

Let us start with a generic one-dimensional quantum mechanical (QM) system having dis-

crete semi-infinite energy levels only:

0 = E0 < E1 < E2 < · · · . (2.1)
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Here we have chosen the constant part of the Hamiltonian so that the groundstate energy is

zero. Then the Hamiltonian is positive semi-definite and can be factorised,

H = p2 + U(x) = p2 +
(dW(x)

dx

)2

+
d2W(x)

dx2
, p = −i d

dx
, (2.2)

= A†A, A def
=

d

dx
− dW(x)

dx
, A† = − d

dx
− dW(x)

dx
. (2.3)

Here a real and smooth function W(x) ∈ C∞ is called a prepotential and it parametrises the

groundstate wavefunction φ0(x), which has no node and can be chosen real and positive:

φ0(x) = eW(x). (2.4)

It is trivial to verify

Aφ0(x) = 0 ⇒ Hφ0(x) = 0. (2.5)

In one dimension all the energy levels are non-degenerate. By construction all the eigenfunc-

tions are square-integrable and orthogonal with each other and form a complete basis of the

Hilbert space:

Hφn(x) = Enφn(x), n ∈ Z+, (2.6)
∫ x2

x1

φn(x)
∗φm(x)dx = hnδnm, 0 < hn <∞, n,m ∈ Z+, (2.7)

where Z+ is the set of non-negative integers {0, 1, 2, . . .}. It is well-known that the n-th

excited wavefunction φn(x) has n nodes in the interior. For simplicity we choose all the

eigenfunctions to be real. A few exactly solvable examples are given in Appendix.

Let us choose a set of ℓ distinct non-negative integers D def
= {d1, d2, . . . , dℓ} ⊂ Z+, satis-

fying the condition
ℓ∏

j=1

(m− dj) ≥ 0, ∀m ∈ Z+. (2.8)

This condition means that the set D consists of several clusters, each containing an even

number of contiguous integers

dk1, dk1 + 1, · · · , dk2 ; dk3, dk3 + 1, · · · , dk4 ; dk5, dk5 + 1, · · · , dk6, ; · · · , (2.9)

where dk2+1 < dk3, dk4+1 < dk5, · · · . If dk1 = 0 for the lowest lying cluster, it could contain

an even or odd number of contiguous integers. The set D specifies the energy levels to be
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deleted. This simply reflects the fact that no singularity arises when two neighbouring levels

are deleted. In the ordinary QM, the zeros of the two neighbouring eigenfunctions φj and

φj+1 interlace with each other. This fact is essential for the non-singularity of the potential

after deletion. See Adler’s paper [18] for a proof. The situation is essentially the same in

the discrete QM. However, in the dQM to be discussed in the subsequent section, due to the

lack of general theorem, the interlacing of the zeros of the two neighbouring eigenfunctions

φj and φj+1 must be verified for each specific Hamiltonian. Deleting an arbitrary number of

contiguous energy levels starting from the groundstate (dk1 = 0) is achieved by the original

Crum’s theorem [1].

Next we will construct Hamiltonian systems corresponding to the successive deletions

Hd1... (and Ad1..., A†
d1...

, etc.) step by step, algebraically. It should be noted that some

quantities in the intermediate steps could be singular. For given d1 the first Hamiltonian H
can be expressed in two different ways:

H = A†A = A†
d1
Ad1 + Ed1, Ad1φd1 = 0, (2.10)

Ad1

def
=

d

dx
− dWd1(x)

dx
, A†

d1

def
= − d

dx
− dWd1(x)

dx
, Wd1(x)

def
= logφd1(x), (2.11)

U(x) =
(dW(x)

dx

)2

+
d2W(x)

dx2
=

(dWd1(x)

dx

)2

+
d2Wd1(x)

dx2
+ Ed1 . (2.12)

Unless d1 = 0, Wd1(x) is singular due to the zeros of φd1(x). It is very important to note

that A†
d1

in (2.11) is a ‘formal adjoint’ of Ad1 . We stick to this notation, since the algebraic

structure of various expressions appearing in the deletion processes, from (2.10) to (2.34),

are best described by using the ‘formal adjoint’. These define a new Hamiltonian system

Hd1

def
= Ad1A†

d1
+ Ed1 = p2 + Ud1(x), (2.13)

Ud1(x)
def
=

(dWd1(x)

dx

)2

− d2Wd1(x)

dx2
+ Ed1 , (2.14)

with the ‘eigenfunctions’

Hd1φd1 n(x) = Enφd1 n(x), φd1 n(x)
def
= Ad1φn(x), n ∈ Z+\{d1}. (2.15)

Note that the energy level d1 is now deleted, φd1 d1(x) ≡ 0, from the set of ‘eigenfunctions’

{φd1 n(x)} of the new Hamiltonian Hd1 .

Suppose we have determined Hd1 ... ds and φd1 ... ds n(x) with s deletions. They have the

following properties

Hd1 ... ds

def
= Ad1 ... dsA†

d1 ... ds
+ Eds

def
= p2 + Ud1 ... ds(x), (2.16)
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Wd1 ... ds(x)
def
= log φd1 ... ds(x), (2.17)

Ad1 ... ds

def
=

d

dx
− dWd1 ... ds(x)

dx
, A†

d1 ... ds

def
= − d

dx
− dWd1 ... ds(x)

dx
, (2.18)

Ud1 ... ds(x)
def
=

(dWd1 ... ds(x)

dx

)2

− d2Wd1 ... ds(x)

dx2
+ Eds , (2.19)

φd1 ... ds n(x)
def
= Ad1 ... dsφd1 ... ds−1 n(x) (n ∈ Z+\{d1, . . . , ds}), (2.20)

Hd1 ... dsφd1 ... ds n(x) = Enφd1 ... ds n(x) (n ∈ Z+\{d1, . . . , ds}). (2.21)

We have also

φd1 ... ds−1 n(x) =
A†

d1 ... ds

En − Eds
φd1 ... ds n(x) (n ∈ Z+\{d1, . . . , ds}). (2.22)

Next we will define a new Hamiltonian system with one more deletion of the level ds+1. We

can show

Hd1 ... ds = A†
d1 ... ds ds+1

Ad1 ... ds ds+1
+ Eds+1

, Ad1 ... ds ds+1
φd1 ... ds ds+1

= 0, (2.23)

Ad1 ... ds ds+1

def
=

d

dx
− dWd1 ... ds ds+1

(x)

dx
, A†

d1 ... ds ds+1

def
= − d

dx
− dWd1 ... ds ds+1

(x)

dx
, (2.24)

Wd1 ... ds ds+1
(x)

def
= log φd1 ... ds ds+1

(x), (2.25)

Ud1 ... ds(x) =
(dWd1 ... ds ds+1

(x)

dx

)2

+
d2Wd1 ... ds ds+1

(x)

dx2
+ Eds+1

. (2.26)

These determine a new Hamiltonian system with s+ 1 deletions:

Hd1 ... ds+1

def
= Ad1 ... ds+1

A†
d1 ... ds+1

+ Eds+1

def
= p2 + Ud1 ... ds+1

(x), (2.27)

Ud1 ... ds+1
(x)

def
=

(dWd1 ... ds+1
(x)

dx

)2

− d2Wd1 ... ds+1
(x)

dx2
+ Eds+1

, (2.28)

φd1 ... ds+1 n(x)
def
= Ad1 ... ds+1

φd1 ... ds n(x) (n ∈ Z+\{d1, . . . , ds+1}), (2.29)

Hd1 ... ds+1
φd1 ... ds+1 n(x) = Enφd1 ... ds+1 n(x) (n ∈ Z+\{d1, . . . , ds+1}). (2.30)

After deleting all the D = {d1, · · · , dℓ} energy levels, the resulting Hamiltonian system

HD ≡ Hd1 ... dℓ , AD ≡ Ad1 ... dℓ , etc has the following form:

HD
def
= ADA†

D + Edℓ
def
= p2 + UD(x), (2.31)

UD(x)
def
=

(dWD(x)

dx

)2

− d2WD(x)

dx2
+ Edℓ , WD(x)

def
= logφd1 ···dℓ(x), (2.32)

φD n(x)
def
= ADφd1 ··· dℓ−1 n(x) (n ∈ Z+\D), (2.33)

HDφD n(x) = EnφD n(x) (n ∈ Z+\D). (2.34)
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Now that HD has the lowest energy level µ:

µ
def
= min{n |n ∈ Z+\D}, (2.35)

with the groundstate wavefunction φ̄µ(x)

φ̄µ(x)
def
= φD µ(x) ≡ φd1 ··· dℓ µ(x). (2.36)

As usual the Hamiltonian system can be expressed simply in terms of the groundstate wave-

function φ̄µ(x), which we will denote by new symbols H̄, Ā, etc:

H̄ ≡ HD
def
= Ā†Ā+ Eµ def

= p2 + Ū(x), (2.37)

Ā ≡ AD µ
def
=

d

dx
− dW̄(x)

dx
, Ā† ≡ A†

D µ

def
= − d

dx
− dW̄(x)

dx
, (2.38)

Ū(x) ≡ UD µ(x)
def
=

(dW̄(x)

dx

)2

+
d2W̄(x)

dx2
+ Eµ, W̄(x) ≡ WD µ(x)

def
= log φ̄µ(x), (2.39)

H̄φ̄n(x) = Enφ̄n(x), φ̄n(x) ≡ φD n(x) (n ∈ Z+\D). (2.40)

As shown by Krein-Adler [18], the results can be expressed succinctly:

φ̄n(x) =
W[φd1 , φd2, . . . , φdℓ , φn](x)

W[φd1 , φd2, . . . , φdℓ ](x)
(n ∈ Z+\D), (2.41)

Ū(x) ≡ Ud1,...,dℓ(x) = U(x)− 2
d2

dx2

(
logW [φd1 , φd2 , . . . , φdℓ ](x)

)
(ℓ ≥ 0), (2.42)

in which the Wronskian determinant is defined by

W [f1, . . . , fn](x)
def
= det

(dj−1fk(x)

dxj−1

)
1≤j,k≤n

. (2.43)

For n = 0, we set W [·](x) = 1. In deriving the determinant formulas (2.41) and (2.42) use

is made of the properties of the Wronskian

W[gf1, gf2, . . . , gfn](x) = g(x)nW[f1, f2, . . . , fn](x), (2.44)

W
[
W[f1, f2, . . . , fn, g],W[f1, f2, . . . , fn, h]

]
(x)

= W[f1, f2, . . . , fn](x)W[f1, f2, . . . , fn, g, h](x) (n ≥ 0). (2.45)

Let us note that Ud1 ... dℓ(x) and φd1,... dℓ n(x) are symmetric with respect to d1, . . . , dℓ, and

thus H̄ ≡ Hd1 ... dℓ is independent of the order of {dj}.
Let us state Adler’s theorem again; If the set of deleted energy levels d1, . . . , dℓ satisfy

the condition (2.8), the Hamiltonian H̄ ≡ Hd1 ... dℓ = p2 + Ū(x) with (2.42) is well-defined

and hermitian, and its complete set of eigenfunctions (2.40) are given by (2.41). Crum’s

theorem corresponds to the choice {d1, . . . , dℓ} = {0, 1, . . . , ℓ − 1}, and the resulting lowest

energy level is µ = ℓ and there is no deleted energy levels above the new groundstate.
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2.2 Polynomial eigenfunctions

In this subsection we consider the typical case of shape invariant systems in which the

eigenfunctions consist of the orthogonal polynomials {Pn}:

φn(x) = φ0(x)Pn(η(x)), φ0(x) = eW(x), (2.46)

in which η(x) is called the sinusoidal coordinate. As shown in detail in the examples in

Appendix A, η(x) = x for the harmonic oscillator (the Hermite polynomials), η(x) = x2 for

the radial oscillator (the Laguerre polynomials) and η(x) = cos 2x for the Darboux-Pöschl-

Teller potential (the Jacobi polynomials). The groundstate wavefunction φ0(x) provides the

orthogonality weight function

∫ x2

x1

φ0(x)
2 Pn(η(x))Pm(η(x))dx = hnδnm, n, m ∈ Z+. (2.47)

In this case, the modification of Crum’s theorem produces the eigenfunctions {φ̄n(x)}
which again consist of polynomials in η(x). By using (2.44) and

f̌j(x)
def
= fj(η(x)), W[f̌1, f̌2, . . . , f̌n](x) =

(
dη(x)
dx

) 1

2
n(n−1)

W[f1, f2, . . . , fn](η(x)), (2.48)

we obtain a simple expression of the eigenfunctions

φ̄n(x) = φ0(x)
(
dη(x)
dx

)ℓW[Pd1 , Pd2 , . . . , Pdℓ , Pn](η(x))

W[Pd1 , Pd2, . . . , Pdℓ ](η(x))
. (2.49)

This simply means that the resulting eigenfunctions are again polynomials in η(x):

φ̄n(x) = ψ̄(x)Pn(η(x)), (2.50)

ψ̄(x)
def
=

φ0(x)
(
dη(x)
dx

)ℓ

W[Pd1 , Pd2, . . . , Pdℓ ](η(x))
, Pn(η)

def
= W[Pd1 , Pd2 , . . . , Pdℓ , Pn](η), (2.51)

satisfying the orthogonality relation

∫ x2

x1

ψ̄(x)2Pn(η(x))Pm(η(x))dx = h̄nδnm, n, m ∈ Z+\D. (2.52)

Let us emphasise that n is not the degree in η and by construction, ℓ members are missing:

Pd1 = Pd2 = · · · = Pdℓ ≡ 0. Therefore these polynomials cannot be called exceptional

orthogonal polynomials [9, 12, 15].
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3 ‘Discrete’ Quantum Mechanics

Let us begin with a few general remarks on the one-dimensional discrete QM with pure

imaginary shifts. See [25] for the general introduction to the discrete quantum mechanics

with pure imaginary shifts and [34] for the Crum’s theorem in the discrete QM. In the discrete

QM, the dynamical variables are, as in the ordinary QM, the coordinate x, which takes value

in an infinite or a semi-infinite or a finite range of the real axis and the canonical momentum p,

which is realised as a differential operator p = −i∂x. Since the momentum operator appears

in exponentiated forms e±γp, γ ∈ R, in a Hamiltonian, it causes finite pure imaginary shifts

in the wavefunction e±γpψ(x) = ψ(x ∓ iγ). This requires the wavefunction as well as other

functions appearing in the Hamiltonian to be analytic in x within a certain complex domain

including the physical region of the coordinate. Let us introduce the ∗-operation on an

analytic function, ∗ : f 7→ f ∗. If f(x) =
∑
n

anx
n, an ∈ C, then f ∗(x)

def
=

∑
n

a∗nx
n, in which a∗n

is the complex conjugation of an. Obviously f ∗∗(x) = f(x) and f(x)∗ = f ∗(x∗). If a function

satisfies f ∗ = f , we call it a ‘real’ function, for it takes real values on the real line.

The starting point is again a generic one dimensional discrete quantum mechanical Hamil-

tonian with discrete semi-infinite energy levels only (2.1). Again we assume that the ground-

state energy is chosen to be zero E0 = 0, so that the Hamiltonian is positive semi-definite.

The generic factorised Hamiltonian reads [22, 25]

H = A†A =
√
V (x) eγp

√
V ∗(x) +

√
V ∗(x) e−γp

√
V (x)− V (x)− V ∗(x), (3.1)

A def
= i

(
e

γ
2
p
√
V ∗(x)− e−

γ
2
p
√
V (x)

)
, A† def

= −i
(√

V (x) e
γ
2
p −

√
V ∗(x) e−

γ
2
p
)
. (3.2)

Since the ∗-operation for Af , A†f and Hf satisfies

(Af)∗(x) = Af ∗(x), (A†f)∗(x) = A†f ∗(x), (Hf)∗(x) = Hf ∗(x), (3.3)

they map a ‘real’ function to a ‘real’ function

f ∗ = f ⇒ (Af)∗ = Af, (A†f)∗ = A†f, (Hf)∗ = Hf. (3.4)

By specifying the function V (x), various explicit examples are obtained [22, 25, 6]. A few

exactly solvable examples are given in Appendix. The corresponding Schrödinger equation

Hψ(x) = Eψ(x) is a difference equation

√
V (x)V ∗(x− iγ)ψ(x− iγ) +

√
V ∗(x)V (x+ iγ)ψ(x+ iγ)
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−
(
V (x) + V ∗(x)

)
ψ(x) = Eψ(x), (3.5)

instead of differential in the ordinary QM. Although this equation looks rather compli-

cated, the equation for the polynomial eigenfunctions (3.47) has a familiar form of difference

equations. Again the groundstate wavefunction φ0(x) is determined as a zero mode of A,

Aφ0(x) = 0 (⇒ Hφ0(x) = 0), namely,

√
V ∗(x− iγ

2
)φ0(x− iγ

2
)−

√
V (x+ iγ

2
)φ0(x+ iγ

2
) = 0. (3.6)

This dictates how the ‘phase’ of the potential function V is related to that of the groundstate

wavefunction φ0. Here we also assume that the groundstate wavefunction φ0(x) has no node

and chosen to be real and positive for real x.

Due to the lack of generic theorems in the theory of difference equations, let us assume

that all the energy levels are non-degenerate and that all the eigenfunctions are square-

integrable and orthogonal with each other and form a complete basis of the Hilbert space:

Hφn(x) = Enφn(x), n ∈ Z+, (3.7)∫ x2

x1

φn(x)
∗φm(x)dx = hnδnm, 0 < hn <∞, n,m ∈ Z+. (3.8)

In most explicit examples these statements can be verified straightforwardly. For simplicity

we choose all the eigenfunctions to be real on the real axis φ∗
n = φn, which is made possible

by (3.4).

3.1 Modification of Crum’s theorem

The formulation of the modified Crum’s theorem in the discrete quantum mechanics goes

almost parallel to that in the ordinary quantum mechanics. Again the presentation is purely

algebraic. Let us note that various quantities in intermediate steps might have singularities

and Hamiltonians might not be hermitian. We choose a set of distinct non-negative integers

D def
= {d1, d2, . . . , dℓ} ⊂ Z+, satisfying the condition (2.8) as before. First let us note that

the Hamiltonian H can be rewritten by incorporating the level d1 as:

H = A†
d1
Ad1 + Ed1 , Ad1φd1 = 0, (3.9)

Ad1

def
= i

(
e

γ
2
p
√
V ∗
d1
(x)− e−

γ
2
p
√
Vd1(x)

)
, A†

d1

def
= −i

(√
Vd1(x) e

γ
2
p −

√
V ∗
d1
(x) e−

γ
2
p
)
, (3.10)

Vd1(x)
def
=

√
V (x)V ∗(x− iγ)

φd1(x− iγ)

φd1(x)
. (3.11)
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These define a new Hamiltonian system

Hd1

def
= Ad1A†

d1
+ Ed1, (3.12)

Hd1φd1 n(x) = Enφd1 n(x), φd1 n(x)
def
= Ad1φn(x), n ∈ Z+\{d1}. (3.13)

Note that the energy level d1 is now deleted, φd1 d1(x) ≡ 0, from the set of ‘eigenfunctions’

{φd1 n(x)} of the new Hamiltonian Hd1 .

Suppose we have determined Hd1 ... ds and φd1 ... ds n(x) with s deletions. They have the

following properties

Hd1 ... ds

def
= Ad1 ... dsA†

d1 ... ds
+ Eds, (3.14)

Ad1 ... ds

def
= i

(
e

γ
2
p
√
V ∗
d1 ... ds

(x)− e−
γ
2
p
√
Vd1 ... ds(x)

)
,

A†
d1 ... ds

def
= −i

(√
Vd1 ... ds(x) e

γ
2
p −

√
V ∗
d1 ... ds

(x) e−
γ
2
p
)
, (3.15)

Vd1 ... ds(x)
def
=





√
Vd1 ... ds−1

(x− iγ
2
)V ∗

d1 ... ds−1
(x− iγ

2
)
φd1 ... ds(x− iγ)

φd1 ... ds(x)
(s ≥ 2),

√
V (x)V ∗(x− iγ)

φd1(x− iγ)

φd1(x)
(s = 1),

(3.16)

φd1 ... ds n(x)
def
= Ad1 ... dsφd1 ... ds−1 n(x), φd1 ... ds n(x) = φ∗

d1 ... ds n
(x), (3.17)

Hd1 ... dsφd1 ... ds n(x) = Enφd1 ... ds n(x), (3.18)

where n ∈ Z+\{d1, . . . , ds}. We have also

φd1 ... ds−1 n(x) =
A†

d1 ... ds

En − Eds
φd1 ... ds n(x) (n ∈ Z+\{d1, . . . , ds}). (3.19)

Next we will define a new Hamiltonian system with one more deletion of the level ds+1. We

can show the following:

Hd1 ... ds = A†
d1 ... ds ds+1

Ad1 ... ds ds+1
+ Eds+1

, Ad1 ... ds ds+1
φd1 ... ds ds+1

(x) = 0, (3.20)

Ad1 ... ds ds+1

def
= i

(
e

γ
2
p
√
V ∗
d1 ... ds ds+1

(x)− e−
γ
2
p
√
Vd1 ... ds ds+1

(x)
)
,

A†
d1 ... ds ds+1

def
= −i

(√
Vd1 ... ds ds+1

(x) e
γ
2
p −

√
V ∗
d1 ... ds ds+1

(x) e−
γ
2
p
)
, (3.21)

Vd1 ... ds,ds+1
(x)

def
=

√
Vd1 ... ds(x− iγ

2
)V ∗

d1 ... ds
(x− iγ

2
)
φd1 ... ds ds+1

(x− iγ)

φd1 ... ds ds+1
(x)

. (3.22)

These determine a new Hamiltonian system with s+ 1 deletions:

Hd1 ... ds+1

def
= Ad1 ... ds+1

A†
d1 ... ds+1

+ Eds+1
, (3.23)
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φd1 ... ds+1 n(x)
def
= Ad1 ... ds+1

φd1 ... ds n(x), φd1 ... ds+1 n(x) = φ∗
d1 ... ds+1 n

(x), (3.24)

Hd1 ... ds+1
φd1 ... ds+1 n(x) = Enφd1 ... ds+1 n(x), (3.25)

where n ∈ Z+\{d1, . . . , ds+1}.

After deleting all the D = {d1, · · · , dℓ} energy levels, the resulting Hamiltonian system

HD ≡ Hd1 ... dℓ , AD ≡ Ad1 ... dℓ , etc has the following form:

HD
def
= ADA†

D + Edℓ , (3.26)

AD
def
= i

(
e

γ
2
p

√
V ∗
D(x)− e−

γ
2
p
√
VD(x)

)
, A†

D

def
= −i

(√
VD(x) e

γ
2
p −

√
V ∗
D(x) e

− γ
2
p
)
, (3.27)

VD(x)
def
=

√
Vd1 ... dℓ−1

(x− iγ
2
)V ∗

d1 ... dℓ−1
(x− iγ

2
)
φD(x− iγ)

φD(x)
, (3.28)

φD n(x)
def
= ADφd1 ... dℓ−1 n(x), φD n(x) = φ∗

D n(x), (n ∈ Z+\D), (3.29)

HDφD n(x) = EnφD n(x) (n ∈ Z+\D). (3.30)

Now that HD has the lowest energy level µ:

µ
def
= min{n |n ∈ Z+\D}, (3.31)

with the groundstate wavefunction φ̄µ(x)

φ̄µ(x)
def
= φD µ(x) ≡ φd1 ··· dℓ µ(x). (3.32)

Then the Hamiltonian system can be expressed simply in terms of the groundstate wave-

function φ̄µ(x), which we will denote by new symbols H̄, Ā, etc:

H̄ ≡ HD
def
= Ā†Ā+ Eµ, Āφ̄µ(x) = 0, (3.33)

Ā ≡ AD µ
def
= i

(
e

γ
2
p

√
V̄ ∗(x)− e−

γ
2
p

√
V̄ (x)

)
,

Ā† ≡ A†
D µ

def
= −i

(√
V̄ (x) e

γ
2
p −

√
V̄ ∗(x) e−

γ
2
p
)
, (3.34)

V̄ (x) ≡ VD µ(x)
def
=

√
VD(x− iγ

2
)V ∗

D(x− iγ
2
)
φ̄µ(x− iγ)

φ̄µ(x)
, (3.35)

H̄φ̄n(x) = Enφ̄n(x), φ̄n(x) ≡ φD n(x) (n ∈ Z+\D). (3.36)

The discrete counterpart of the determinant formulas (2.41)–(2.42) requires a deformation

of the Wronskian, the Casorati determinant, which has a good limiting property:

Wγ[f1, . . . , fn](x)
def
= i

1

2
n(n−1) det

(
fk(x+ in+1−2j

2
γ)
)
1≤j,k≤n

, (3.37)
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lim
γ→0

γ−
1

2
n(n−1)Wγ [f1, f2, . . . , fn](x) = W[f1, f2, . . . , fn](x), (3.38)

(for n = 0, we set Wγ [·](x) = 1.). It satisfies

Wγ[f1, . . . , fn]
∗(x) = Wγ[f

∗
1 , . . . , f

∗
n](x), (3.39)

Wγ[gf1, gf2, . . . , gfn] =
n∏

j=1

g(x+ in+1−2j
2

γ) ·Wγ [f1, f2, . . . , fn](x), (3.40)

Wγ

[
Wγ[f1, f2, . . . , fn, g],Wγ[f1, f2, . . . , fn, h]

]
(x)

= Wγ[f1, f2, . . . , fn](x)Wγ[f1, f2, . . . , fn, g, h](x) (n ≥ 0). (3.41)

By using the Casorati determinant we obtain (ℓ ≥ 0)

φ̄n(x) ≡ φd1 ... dℓ n(x) =

√√√√
ℓ∏

j=1

Vd1 ... dj (x+ i ℓ+1−j

2
γ)

Wγ [φd1, . . . , φdℓ , φn](x)

Wγ [φd1 , . . . , φdℓ ](x− iγ
2
)
, (3.42)

V̄ (x) ≡ Vd1 ... dℓ µ(x) =
√
V (x− i ℓ

2
γ)V ∗(x− i ℓ+2

2
γ)

× Wγ [φd1 , . . . , φdℓ ](x+ iγ
2
)

Wγ [φd1 , . . . , φdℓ](x− iγ
2
)

Wγ [φd1 , . . . , φdℓ, φµ](x− iγ)

Wγ [φd1 , . . . , φdℓ , φµ](x)
. (3.43)

We also have (ℓ ≥ 0)

ℓ∏

j=1

Vd1 ... dj (x+ i ℓ+1−j

2
γ) =

√√√√
ℓ−1∏

j=0

V (x+ i ℓ−2j
2
γ)V ∗(x− i ℓ−2j

2
γ)

Wγ [φd1 , . . . , φdℓ ](x− iγ
2
)

Wγ [φd1 , . . . , φdℓ](x+ iγ
2
)
.

(3.44)

Therefore Vd1 ... dℓ(x) and φd1,... dℓ n(x) are symmetric with respect to d1, . . . , dℓ, and Hd1 ... dℓ

is independent of the order of {dj}.
Let us state the discrete QM analogue of Adler’s theorem; If the set of deleted energy

levels D = {d1, . . . , dℓ} satisfy the condition (2.8), the modified Hamiltonian is given by

H̄ = Hd1 ... dℓ = Ā†Ā + Eµ with the potential function given by (3.43) and its eigenfunctions

are given by (3.42). The discrete QM version of Crum’s theorem [34] corresponds to the

choice {d1, . . . , dℓ} = {0, 1, . . . , ℓ − 1} and the new groundstate is at the level µ = ℓ and

there is no vacant energy level above that. Due to the lack of generic theorems in the

theory of difference equations, the hermiticity of the resulting Hamiltonian H̄ and the non-

singularity of the eigenfunctions φ̄n(x) cannot be proved categorically for the discrete QM,

even when the condition (2.8) is satisfied by the deleted levels. See Appendix A of [25] for a

detailed discussion of the self-adjointness of the Hamiltonians in discrete QM. It should be
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stressed that in most practical cases, in particular, in the cases of polynomial eigenfunctions,

the hermiticity of the Hamiltonian H̄ and non-singularity of the eigenfunctions {φ̄n(x)} are

satisfied.

3.2 Polynomial eigenfunctions

In this subsection we consider the typical case of shape invariant systems in which the

eigenfunctions consist of the orthogonal polynomials {Pn}:

φn(x) = φ0(x)Pn(η(x)), Aφ0(x) = 0, (3.45)

in which η(x) is called the sinusoidal coordinate, see (B.9). The groundstate wavefunction

φ0(x) provides the orthogonality weight function
∫ x2

x1

φ0(x)
2 Pn(η(x))Pm(η(x))dx = hnδnm, n, m ∈ Z+. (3.46)

The difference equation for {Pn} looks much simpler than the Schrödinger equation (3.5):

V (x)
(
Pn(η(x− iγ))− Pn(η(x))

)
+ V ∗(x)

(
Pn(η(x+ iγ))− Pn(η(x))

)
= EnPn(η(x)). (3.47)

For the explicit forms of V (x), see for example (B.10), these are the equations that determine

the hypergeometric orthogonal polynomials, e.g. the Meixner-Pollaczek (MP), the continu-

ous Hahn (cH), the Wilson (W) and the Askey-Wilson (AW) polynomials. In fact, the above

form of the difference equation (3.47) is independent of the fact that Pn is a polynomial or

not. It is obtained simply by the similarity transformation of the Hamiltonian (3.1) in terms

of the groundstate wavefunction φ0(x):

H̃ def
= φ0(x)

−1 ◦ H ◦ φ0(x) = V (x) eγp + V (x)∗ e−γp − V (x)− V (x)∗. (3.48)

In the case of polynomial eigenfunctions, the modification of Crum’s theorem produces

the eigenfunctions {φ̄n(x)} which again consist of polynomials in η(x). By using the property

(3.40) we have

Wγ[φ1, . . . , φℓ](x) =

ℓ∏

j=1

φ0

(
x+ i ℓ+1−2j

2
γ
)
·Wγ[P̌1, . . . , P̌ℓ](x), (3.49)

Wγ[φ1, . . . , φℓ, φn](x) =

ℓ+1∏

j=1

φ0

(
x+ i ℓ+2−2j

2
γ
)
·Wγ[P̌1, . . . , P̌ℓ, P̌n](x), (3.50)
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where P̌n(x)
def
= Pn(η(x)). Corresponding to the formula (2.48) in the ordinary QM, we have

f̌j(x)
def
= fj(η(x)), fj(η): polynomial in η,

Wγ[f̌1, f̌2, . . . , f̌n](x) = ϕn(x)×
(
polynomial in η(x)

)
, (3.51)

in which ϕn(x) is defined in (B.39) (and ϕ(x) is defined in (B.20)).

These simply mean that the resulting eigenfunctions {φ̄n(x)} (3.42) are again polynomials

in η(x):

φ̄n(x) = ψ̄(x)Pn(η(x)), (3.52)

ψ̄(x)
def
=

√√√√
ℓ∏

j=1

Vd1 ... dj (x+ i ℓ+1−j

2
γ)

ϕℓ+1(x)

ϕℓ(x− iγ
2
)

φ0(x+ i ℓ
2
γ)

Q(η(x− iγ
2
))

=

√√√√
ℓ−1∏

k=0

ϕ(x− ik
2
γ)
√
V (x+ i ℓ−2k

2
γ) · φ0(x− i ℓ

2
γ)

Q(η(x− iγ
2
))

×

√√√√
ℓ−1∏

k=0

ϕ(x+ ik
2
γ)
√
V ∗(x− i ℓ−2k

2
γ) · φ0(x+ i ℓ

2
γ)

Q(η(x+ iγ
2
))
, (3.53)

in which Pn(η(x)) and Q(η(x)) are certain polynomials in η(x) defined by

Wγ[P̌d1 , . . . , P̌dℓ , P̌n] = ϕℓ+1(x)×Pn(η(x)), Wγ[P̌d1 , . . . , P̌dℓ ] = ϕℓ(x)×Q(η(x)). (3.54)

The polynomials {Pn} form a complete basis of the Hilbert space and satisfy the orthogo-

nality relations

∫ x2

x1

ψ̄(x)2Pn(η(x))Pm(η(x))dx = h̄nδnm, n, m ∈ Z+\D. (3.55)

Let us emphasise that n is the level of the original eigenfunction and not the degree in η.

The degree of Pn(η) depends on the set D, and it can be calculated explicitly from (3.54).

By construction ℓ members are missing: Pd1 = Pd2 = · · · = Pdℓ ≡ 0. Therefore these

polynomials cannot be called exceptional orthogonal polynomials [9, 12, 15].

4 Summary and Comments

Theory of exactly solvable discrete QM is less developed than that of the ordinary QM.

Up to date, the known exactly solvable discrete quantum systems are all shape invariant
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[24, 25] and in one to one correspondence with the known (q)-hypergeometric orthogonal

polynomials [26]–[29]. Small progress was made in this direction [31] by introducing several

new sinusoidal coordinates for the construction of new types of exactly solvable Hamiltonians.

Roughly speaking, this approach attempts to create the discrete analogues of various Morse

type potentials and the soliton potentials. In this paper we pursue another direction; to

construct infinitely many exactly solvable quantum systems by deforming the known exactly

solvable one. In the ordinary QM, the modification of Crum’s theorem [1] due to Krein-Adler

[18] allows to produce an essentially iso-spectral Hamiltonian by deleting a finite number of

energy levels from the original system. The set of deleted level must satisfy certain condition

(2.8), but there are infinitely many possible deletions leading to infinitely many exactly

solvable systems starting from a known one. The discrete analogue of Adler’s modification

is presented in this paper in parallel with the original version, since the algebraic structure

is common. We also comment on the practical cases when the eigenfunctions consist of

orthogonal polynomials. The eigenfunctions of the resulting system also consist of orthogonal

polynomials. But certain members of these polynomials are missing due to the deletion.

Very special and simple examples, in which all the excited states from the first to the ℓ-th

are deleted (see Fig. 2), are presented explicitly in Appendix. As will be commented shortly,

these examples were instrumental for the discovery of the infinitely many shape invariant

systems and the corresponding infinitely many exceptional orthogonal polynomials [12, 13].

In the ordinary QM, the corresponding prepotential has a very simple form (A.18):

wℓ(x;λ) = W(x;λ+ ℓδ) + log
1

ξℓ(η(x);λ)
,

to be compared with the prepotential for the Hamiltonian of the ℓ-th exceptional orthogonal

polynomial (14) and (28) of [12]:

wℓ(x;λ) = W(x;λ+ ℓδ) + log
ξℓ(η(x);λ+ δ)

ξℓ(η(x);λ)
. (4.1)

In the discrete QM, the corresponding formula is (B.35)

Vℓ(x;λ) = κℓ
ξℓ(η(x+ iγ

2
);λ)

ξℓ(η(x− iγ
2
);λ)

V (x;λ+ ℓδ),

to be compared with the corresponding formula for the Hamiltonian of the ℓ-th exceptional

orthogonal polynomial (30) of [13]:

Vℓ(x;λ) =
ξℓ(η(x− iγ);λ+ δ)

ξℓ(η(x);λ+ δ)

ξℓ(η(x+ iγ
2
);λ)

ξℓ(η(x− iγ
2
);λ)

V (x;λ+ ℓδ). (4.2)
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The addition (multiplication) of the deforming polynomial with the shifted parameters

ξℓ(η(x);λ + δ) would achieve the shape invariance. Since the harmonic oscillator has no

shiftable parameter, we have ξℓ(η(x);λ) = ξℓ(η(x);λ+δ). This also ‘explains’ non-existence

of exceptional Hermite polynomials. In contrast to the Hermite polynomial, the continuous

Hahn polynomial has four real parameters. We can construct the corresponding exceptional

continuous Hahn polynomials with three real parameters, which will be reported elsewhere.

The actual function forms of the deforming polynomial ξℓ in Appendix are not the same

as those for the exceptional orthogonal polynomials. For the ordinary QM examples, see

(A.23) vs. (13) and (27) in [12] and for the discrete QM examples, see (B.41) vs. (64) and

(78) in [13]. But they share some interesting features.

Before closing this section, let us remark that the present modification of Crum’s theorem

is applicable to the Hamiltonian systems of various species of the infinite family of exceptional

orthogonal polynomials [12, 13, 15], as well as to those of the classical orthogonal polynomials

including the Wilson and the Askey-Wilson polynomials.
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Appendix

In Appendix we present very special and simple examples of an application of Adler’s theo-

rem, in which the eigenstates φ1, φ2, . . . , φℓ are deleted. In other words, D = {d1, d2, . . . , dℓ}=
{1, 2, . . . , ℓ}, that is, the modified groundstate level is the same as that of the original theory

µ = 0. The situation is illustrated in Fig. 2, which should be compared with Fig. 1, depicting

the generic case discussed in sections 2.1 and 3.1.
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†
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Figure 1: Generic case Figure 2: Special case

The black circles denote the energy levels, whereas the white circles denote deleted energy

levels. We write H̄ = H12 ... ℓ, φ̄n = φ12 ... ℓ n, Ā = A12 ... ℓ, V̄ = V12 ... ℓ etc. as Hℓ, φℓ,n, Aℓ, Vℓ

etc. This Hamiltonian Hℓ = A†
ℓAℓ is non-singular for even ℓ but may be singular for odd ℓ.

Since algebraic formulas such as the Wronskians and Casoratians are valid for even and odd

ℓ, we present various formulas without restricting to the even ℓ. The original systems are

shape invariant but the (φ1, . . . , φℓ)-deleted systems Hℓ are not. The rightmost vertical line

in Fig. 2 corresponds to the Hamiltonian system H′
ℓ = AℓA†

ℓ, which is shape invariant and it

is obtained from Hℓ by one more step of Crum’s method. This study helped us to find the

new shape invariant systems and exceptional orthogonal polynomials [12, 13].

A The ordinary QM

Here we apply Adler’s theorem to the harmonic oscillator, the radial oscillator and the

Darboux-Pöschl-Teller potential, whose eigenfunctions are described by the classical orthog-

onal polynomials. That is, the Hermite, Laguerre and Jacobi polynomials, to be abbreviated

as H, L and J, respectively. These original systems are shape invariant, meaning a very spe-

cial form of parameter dependence, (A.8), (A.9). Here we display the parameter dependence

explicitly by λ, which represents the set of the parameters.
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A.1 The original systems

Here we summarise various properties of the original Hamiltonian systems to be compared

with the specially modified systems to be presented in A.2. Let us start with the Hamilto-

nians, Schrödinger equations and eigenfunctions (x1 < x < x2):

H(λ)
def
= A(λ)†A(λ), A(λ)

def
=

d

dx
− dW(x;λ)

dx
, A(λ)† = − d

dx
− dW(x;λ)

dx
, (A.1)

H(λ)φn(x;λ) = En(λ)φn(x;λ) (n = 0, 1, 2, . . .), (A.2)

φn(x;λ) = φ0(x;λ)Pn(η(x);λ), φ0(x;λ) = eW(x;λ). (A.3)

Here η(x) is the sinusoidal coordinate, W(x;λ) is the prepotential and En(λ) is the n-th

energy eigenvalue:

η(x)
def
=





x, x1 = −∞, x2 = ∞, : H
x2, x1 = 0, x2 = ∞, : L
cos 2x, x1 = 0, x2 =

π
2
, : J

, λ
def
=





none : H
g, g > 0 : L
(g, h), g, h > 0 : J

, (A.4)

W(x;λ)
def
=






−1
2
x2 : H

−1
2
x2 + g log x : L

g log sin x+ h log cosx : J

, En(λ) def
=






2n : H
4n : L
4n(n + g + h) : J

. (A.5)

The eigenfunction consists of an orthogonal polynomial Pn(η;λ), a polynomial of degree n

in η, (Pn(η;λ) = 0 for n < 0):

Pn(η;λ)
def
= cn(λ)P

monic
n (η;λ), (A.6)

Pn(η;λ)
def
=






Hn(η) : H

L
(g− 1

2
)

n (η) : L

P
(g− 1

2
,h− 1

2
)

n (η) : J

, cn(λ)
def
=






2n : H
(−1)n

n!
: L

(n+g+h)n
2nn!

: J

, (A.7)

in which (a)n is the Pochhammer symbol. Shape invariance means

A(λ)A(λ)† = A(λ + δ)†A(λ+ δ) + E1(λ), δ
def
=





none : H
1 : L
(1, 1) : J

, (A.8)

or equivalently,

(dW(x;λ)

dx

)2

− d2W(x;λ)

dx2
=

(dW(x;λ + δ)

dx

)2

+
d2W(x;λ+ δ)

dx2
+ E1(λ). (A.9)

The action of A(λ) and A(λ)† on the eigenfunction is:

A(λ)φn(x;λ) = fn(λ)φn−1

(
x;λ+ δ

)
, A(λ)†φn−1

(
x;λ+ δ

)
= bn−1(λ)φn(x;λ). (A.10)
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Here the coefficients fn(λ) and bn−1(λ) are the factors of En(λ):

fn(λ)
def
=





2n : H
−2 : L
−2(n+ g + h) : J

, bn−1(λ)
def
=

{
1 : H
−2n : L, J

, En(λ) = fn(λ)bn−1(λ).

(A.11)

The forward and backward shift operators, F(λ) and B(λ), are defined by:

F(λ)
def
= φ0(x;λ+ δ)−1 ◦ A(λ) ◦ φ0(x;λ) =

φ0(x;λ)

φ0(x;λ+ δ)

d

dx
, (A.12)

B(λ) def
= φ0(x;λ)

−1 ◦ A(λ)† ◦ φ0(x;λ+ δ)

= −φ0(x;λ+ δ)

φ0(x;λ)

( d

dx
+ ∂x

(
W(x;λ) +W(x;λ+ δ)

))
, (A.13)

and their action on the polynomial is:

F(λ)Pn(η(x);λ) = fn(λ)Pn−1(η(x);λ+ δ), (A.14)

B(λ)Pn−1(η(x);λ+ δ) = bn−1(λ)Pn(η(x);λ). (A.15)

Note that F(λ) and B(λ) can also be expressed in terms of η only [16]. The orthogonality

reads

∫ x2

x1

φ0(x;λ)
2 Pn(η(x);λ)Pm(η(x);λ)dx = hn(λ)δnm, (A.16)

hn(λ)
def
=





2nn!
√
π : H

1
2n!

Γ(n + g + 1
2
) : L

Γ(n+g+ 1

2
)Γ(n+h+ 1

2
)

2n!(2n+g+h)Γ(n+g+h)
: J

. (A.17)

A.2 The (φ1, . . . , φℓ)-deleted systems

The prepotential of the modified system is obtained from (2.51) up to an additive constant:

wℓ(x;λ)
def
= logφℓ,0(x) = W(x;λ + ℓδ)− log ξℓ(η(x);λ). (A.18)

It is a polynomial (ξℓ(η(x);λ)) deformation of the shape invariant one W(x;λ + ℓδ). Note

that the normalization of ξℓ does not affect the Hamiltonian. The explicit forms of the

deforming polynomial ξℓ(η;λ) will be given in (A.23). For even ℓ, the polynomial ξℓ(η(x);λ)

has no zero in the range of x and the modified Hamiltonian system is hermitian, which reads:

Aℓ(λ)
def
=

d

dx
− dwℓ(x;λ)

dx
, Aℓ(λ)

† = − d

dx
− dwℓ(x;λ)

dx
, (A.19)
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Hℓ(λ)
def
= Aℓ(λ)

†Aℓ(λ), (A.20)

Hℓ(λ)φℓ,n(x;λ) = En(λ)φℓ,n(x;λ) (n = 0, ℓ+ 1, ℓ+ 2, . . .). (A.21)

This system is not shape invariant. As mentioned in section 4, the above form of the

deformed prepotential (A.18) is closely related to that of the exceptional Laguerre and Jacobi

polynomials.

A degree ℓ polynomial in η, ξℓ(η;λ) is defined by

W[P1, . . . , Pℓ](η;λ)
def
=

ℓ∏

k=1

k! ck(λ) · ξℓ(η;λ), (A.22)

and the explicit forms are:

ξℓ(η;λ) =





1
2ℓℓ! iℓ

Hℓ(iη) : H

L
(−g−ℓ− 1

2
)

ℓ (−η) : L
(−2)ℓ

(g+h+1)ℓ
P

(−g−ℓ− 1

2
,−h−ℓ− 1

2
)

ℓ (η) : J

. (A.23)

The eigenfunctions are

φℓ,0(x;λ)
def
= ewℓ(x;λ) =

φ0(x;λ+ ℓδ)

ξℓ
(
η(x);λ

) , φℓ,n(x;λ) = φℓ,0(x;λ)Pℓ,n

(
η(x);λ

)
, (A.24)

W[P1, . . . , Pℓ, Pn](η;λ)
def
=

ℓ∏

k=1

k! ck(λ) · (−1)ℓPℓ,n(η;λ)
(
⇒ Pℓ,0(η;λ) = 1

)
. (A.25)

Note that Pℓ,n(η;λ) is a polynomial of degree n in η and P0,n(η;λ) = Pn(η;λ) and Pℓ,n(η;λ)=

0 for 1 ≤ n ≤ ℓ. We set Pℓ,n(η;λ) = 0 for n < 0. For even ℓ, the eigenpolynomial Pℓ,n(η(x);λ)

(n ≥ ℓ + 1) has n− ℓ zeros in the range of x. The operators Aℓ(λ) and Aℓ(λ)
† connect the

modified system Hℓ(λ) = Aℓ(λ)
†Aℓ(λ) to the shape invariant system H′

ℓ(λ) = Aℓ(λ)Aℓ(λ)
†

with the parameters λ + (ℓ + 1)δ, which is denoted by the rightmost vertical line in Fig. 2.

The n-th level (n ≥ ℓ + 1) of the modified system Hℓ is iso-spectral with the n − ℓ − 1-th

level of the new shape invariant system H′
ℓ:

Aℓ(λ)φℓ,n(x;λ) = fℓ,n(λ)φn−ℓ−1

(
x;λ+ (ℓ+ 1)δ

)
, (A.26)

Aℓ(λ)
†φn−ℓ−1

(
x;λ+ (ℓ+ 1)δ

)
= bℓ,n−1(λ)φℓ,n(x;λ). (A.27)

Here fℓ,n(λ) and bℓ,n−1(λ) are defined by

fℓ,n(λ)
def
= fn(λ)× A,

bℓ,n−1(λ)
def
= bn−1(λ)×A−1,

A =





(−2)ℓ(n− ℓ)ℓ : H
1 : L
(−2)−ℓ(n + g + h+ 1)ℓ : J

, (A.28)
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and they factorise En(λ), En(λ) = fℓ,n(λ)bℓ,n−1(λ). The forward and backward shift opera-

tors Fℓ(λ) and Bℓ(λ), which act on the polynomial eigenfunctions, are defined by:

Fℓ(λ)
def
= φ0

(
x;λ + (ℓ+ 1)δ

)−1 ◦ Aℓ(λ) ◦ φℓ,0(x;λ)

=
φ0(x;λ+ ℓδ)

φ0(x;λ + (ℓ+ 1)δ)

1

ξℓ(η(x);λ)

d

dx
, (A.29)

Bℓ(λ)
def
= φℓ,0(x;λ)

−1 ◦ Aℓ(λ)
† ◦ φ0

(
x;λ+ (ℓ+ 1)δ

)

= −φ0(x;λ+ (ℓ+ 1)δ)

φ0(x;λ+ ℓδ)
ξℓ(η(x);λ)

×
( d

dx
+ ∂x

(
W(x;λ+ ℓδ) +W(x;λ + (ℓ+ 1)δ)

)
− ∂xξℓ(η(x);λ)

ξℓ(η(x);λ)

)
. (A.30)

Their action on the polynomials is (n ≥ ℓ+ 1):

Fℓ(λ)Pℓ,n(η(x);λ) = fℓ,n(λ)Pn−ℓ−1

(
η(x);λ+ (ℓ+ 1)δ

)
, (A.31)

Bℓ(λ)Pn−ℓ−1

(
η(x);λ+ (ℓ+ 1)δ

)
= bℓ,n−1(λ)Pℓ,n(η(x);λ). (A.32)

Note that Fℓ(λ) and Bℓ(λ) can be expressed in terms of η [16]. For n ≥ ℓ + 1, the above

relation (A.32) provides a simple formula of the modified eigenpolynomial Pℓ,n(η;λ) in terms

of ξℓ(η;λ) and the original eigenpolynomial Pn(η;λ):

bℓ,n−1(λ)fn−ℓ(λ+ ℓδ)Pℓ,n(η;λ)

= En−ℓ(λ+ ℓδ)ξℓ(η;λ)Pn−ℓ(η;λ+ ℓδ) + 4c2(η)∂ηξℓ(η;λ) ∂ηPn−ℓ(η;λ+ ℓδ), (A.33)

in which the coefficient c2(η) is given by

c2(η)
def
=





1
4

: H
η : L
1− η2 : J

. (A.34)

The orthogonality relation for even ℓ is:

∫ x2

x1

φℓ,0(x;λ)
2 Pℓ,n(η(x);λ)Pℓ,m(η(x);λ)dx = hℓ,n(λ)δnm, (A.35)

hℓ,n(λ)
def
= (n− ℓ)ℓ hn(λ)×






2ℓ : H
1 : L
4−ℓ(n+ g + h + 1)ℓ : J

, (n = 0, n ≥ ℓ+ 1). (A.36)

A few historical remarks are in order. Dubov et al [17] derived in 1992 an exactly solvable

Hamiltonian system of a deformed harmonic oscillator, which corresponds to the ℓ = 2 case
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of this Appendix. Their paper, written about two years before Adler’s, relied on rather

heuristic arguments. Recently Quesne [11] derived exactly solvable and non-shape invariant

systems of deformed radial oscillator and deformed DPT potential, both are called type

III. These results again correspond to the ℓ = 2 cases of the radial oscillator and the DPT

potential of this Appendix.

B The discrete QM

Here we apply Adler’s theorem to the shape invariant, therefore solvable, systems whose

eigenfunctions are described by the orthogonal polynomials; the Meixner-Pollaczek (we set

the parameter φ = π
2
), continuous Hahn, Wilson and Askey-Wilson polynomials [29], to be

abbreviated as MP, cH, W and AW, respectively. See [22] and [25] for the discrete QM

treatment of these polynomials.

B.1 The original systems

Here we summarise various properties of the original Hamiltonian systems to be compared

with the specially modified systems to be presented in B.2. Let us start with the Hamilto-

nians, Schrödinger equations and eigenfunctions (x1 < x < x2):

A(λ)
def
= i

(
e

γ
2
p
√
V ∗(x;λ)− e−

γ
2
p
√
V (x;λ)

)
,

A(λ)†
def
= −i

(√
V (x;λ) e

γ
2
p −

√
V ∗(x;λ) e−

γ
2
p
)
, (B.1)

H(λ)
def
= A(λ)†A(λ), (B.2)

H(λ)φn(x;λ) = En(λ)φn(x;λ) (n = 0, 1, 2, . . .), (B.3)

φn(x;λ) = φ0(x;λ)Pn(η(x);λ). (B.4)

The set of parameters λ are

MP : λ
def
= a, a > 0, (B.5)

cH : λ
def
= (a1, a2), Re ai > 0 (i = 1, 2), (B.6)

W : λ
def
= (a1, a2, a3, a4), Re ai > 0 (i = 1, . . . , 4),

{a∗1, a∗2, a∗3, a∗4} = {a1, a2, a3, a4} (as a set), (B.7)

AW : qλ
def
= (a1, a2, a3, a4), |ai| < 1, (i = 1, . . . , 4), 0 < q < 1,

{a∗1, a∗2, a∗3, a∗4} = {a1, a2, a3, a4} (as a set), (B.8)
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where q(λ1,λ2,...) def
= (qλ1, qλ2 , . . .). The the sinusoidal coordinate η(x) is,

η(x)
def
=





x, x1 = −∞, x2 = ∞, γ = 1 : MP, cH
x2, x1 = 0, x2 = ∞, γ = 1 : W
cos x, x1 = 0, x2 = π, γ = log q : AW

. (B.9)

The potential function V (x;λ) and energy eigenvalue En(λ) are

V (x;λ)
def
=





a+ ix : MP
(a1 + ix)(a2 + ix) : cH
(
2ix(2ix+ 1)

)−1∏4
j=1(aj + ix) : W

(
(1− e2ix)(1− qe2ix)

)−1∏4
j=1(1− aje

ix) : AW

, (B.10)

En(λ) def
=






2n : MP

n(n + b1 − 1), b1
def
= a1 + a2 + a∗1 + a∗2 : cH

n(n + b1 − 1), b1
def
= a1 + a2 + a3 + a4 : W

(q−n − 1)(1− b4q
n−1), b4

def
= a1a2a3a4 : AW

. (B.11)

The eigenfunction is described by the orthogonal polynomial Pn(η;λ), a polynomial of degree

n in η:

Pn(η;λ)
def
= cn(λ)P

monic
n (η;λ), (B.12)

Pn(η;λ)
def
=





P
(a)
n (η; π

2
) : MP

pn(η; a1, a2, a
∗
1, a

∗
2) : cH

Wn(η; a1, a2, a3, a4) : W

pn(η; a1, a2, a3, a4|q) : AW

, cn(λ)
def
=





1
n!
2n : MP

1
n!
(n+ b1 − 1)n : cH

(−1)n(n + b1 − 1)n : W

2n(b4q
n−1 ; q)n : AW

, (B.13)

in which (a; q)n is the q-Pochhammer symbol. We set Pn(η;λ) = 0 for n < 0. The shape

invariance relations involve one more parameter κ:

A(λ)A(λ)† = κA(λ + δ)†A(λ+ δ) + E1(λ), (B.14)

δ
def
=





1
2

: MP

(1
2
, 1
2
) : cH

(1
2
, 1
2
, 1
2
, 1
2
) : W,AW

, κ
def
=

{
1 : MP, cH,W
q−1 : AW

, (B.15)

or equivalently,

V (x− iγ
2
;λ)V ∗(x− iγ

2
;λ) = κ2 V (x;λ + δ)V ∗(x− iγ;λ+ δ), (B.16)

V (x+ iγ
2
;λ) + V ∗(x− iγ

2
;λ) = κ

(
V (x;λ+ δ) + V ∗(x;λ+ δ)

)
− E1(λ). (B.17)

The groundstate wavefunction φ0(x;λ) is determined by

√
V ∗(x− iγ

2
;λ)φ0(x− iγ

2
;λ) =

√
V (x+ iγ

2
;λ)φ0(x+ iγ

2
;λ), (B.18)

24



and its explicit forms are:

φ0(x;λ)
def
=






√
Γ(a + ix)Γ(a− ix) : MP√
Γ(a1 + ix)Γ(a2 + ix)Γ(a∗1 − ix)Γ(a∗2 − ix) : cH√
(Γ(2ix)Γ(−2ix))−1

∏4
j=1 Γ(aj + ix)Γ(aj − ix) : W√

(e2ix ; q)∞(e−2ix ; q)∞
∏4

j=1(aje
ix ; q)−1

∞ (aje−ix ; q)−1
∞ : AW

. (B.19)

We introduce an auxiliary function ϕ(x) with the properties:

ϕ(x)
def
=






1 : MP, cH
2x : W
2 sin x : AW

, (B.20)

φ0(x;λ + δ) = ϕ(x)
√
V (x+ iγ

2
;λ)φ0(x+ iγ

2
;λ), (B.21)

V (x;λ+ δ) = κ−1ϕ(x− iγ)

ϕ(x)
V (x− iγ

2
;λ). (B.22)

The sinusoidal coordinate η(x) has the following properties:

η(x− ikγ
2
)− η(x+ ikγ

2
) = −iϕ(x)×

{
k : MP, cH,W

sinh −kγ

2
: AW

, (B.23)

η(x− ikγ
2
) + η(x+ ikγ

2
) =






2η(x) : MP, cH
2η(x)− 1

2
k2 : W

2η(x) cosh kγ

2
: AW

, (B.24)

η(x− ikγ
2
)η(x+ ikγ

2
) =





η(x)2 + 1
4
k2 : MP, cH(

η(x) + 1
4
k2
)2

: W

η(x)2 + sinh2 kγ

2
: AW

. (B.25)

These mean that for a polynomial P (η) in η, iϕ(x)−1
(
P (η(x − ikγ

2
)) − P (η(x + ikγ

2
))
)
is

another polynomial in η(x). The action of A(λ) and A(λ)† on the eigenfunctions is

A(λ)φn(x;λ) = fn(λ)φn−1

(
x;λ+ δ

)
, A(λ)†φn−1

(
x;λ+ δ

)
= bn−1(λ)φn(x;λ). (B.26)

The factors of the energy eigenvalue, fn(λ) and bn−1(λ), En(λ) = fn(λ)bn−1(λ), are given

by

fn(λ)
def
=






2 : MP
n+ b1 − 1 : cH
−n(n + b1 − 1) : W
q

n
2 (q−n − 1)(1− b4q

n−1) : AW

, bn−1(λ)
def
=






n : MP, cH
−1 : W
q−

n
2 : AW

. (B.27)

The forward and backward shift operators F(λ) and B(λ) are defined by

F(λ)
def
= φ0(x;λ+ δ)−1 ◦ A(λ) ◦ φ0(x;λ) = iϕ(x)−1(e

γ
2
p − e−

γ
2
p), (B.28)
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B(λ) def
= φ0(x;λ)

−1 ◦ A(λ)† ◦ φ0(x;λ+ δ) = −i
(
V (x;λ)e

γ
2
p − V ∗(x;λ)e−

γ
2
p
)
ϕ(x), (B.29)

and their action on the polynomials is

F(λ)Pn(η(x);λ) = fn(λ)Pn−1(η(x);λ+ δ), (B.30)

B(λ)Pn−1(η(x);λ+ δ) = bn−1(λ)Pn(η(x);λ). (B.31)

The orthogonality relation is

∫ x2

x1

φ0(x;λ)
2 Pn(η(x);λ)Pm(η(x);λ)dx = hn(λ)δnm, (B.32)

hn(λ)
def
=





2π Γ(n+ 2a)
(
n! 22a

)−1
: MP

2π
∏2

i,j=1 Γ(n+ ai + a∗j ) ·
(
n!(2n+ b1 − 1)Γ(n+ b1 − 1)

)−1
: cH

2πn! (n+ b1 − 1)n
∏

1≤i<j≤4 Γ(n+ ai + aj) · Γ(2n+ b1)
−1 : W

2π(b4q
n−1; q)n(b4q

2n; q)∞(qn+1; q)−1
∞

∏
1≤i<j≤4(aiajq

n; q)−1
∞ : AW

. (B.33)

B.2 The (φ1, . . . , φℓ)-deleted systems

The potential function, the Hamiltonian and the Schrödinger equation of the modified system

are:

Vℓ(x;λ)
def
=
ϕ(x− i ℓ+1

2
γ)ϕ(x− i ℓ

2
γ)

ϕ(x)ϕ(x− iγ
2
)

ξℓ(η(x+ iγ
2
);λ)

ξℓ(η(x− iγ
2
);λ)

V (x− i ℓ
2
γ;λ) (B.34)

= κℓ
ξℓ(η(x+ iγ

2
);λ)

ξℓ(η(x− iγ
2
);λ)

V (x;λ+ ℓδ), (B.35)

Aℓ(λ)
def
= i

(
e

γ
2
p

√
V ∗
ℓ (x;λ)− e−

γ
2
p
√
Vℓ(x;λ)

)
,

Aℓ(λ)
† def
= −i

(√
Vℓ(x;λ) e

γ
2
p −

√
V ∗
ℓ (x;λ) e

−
γ
2
p
)
, (B.36)

Hℓ(λ)
def
= Aℓ(λ)

†Aℓ(λ), (B.37)

Hℓ(λ)φℓ,n(x;λ) = En(λ)φℓ,n(x;λ) (n = 0, ℓ+ 1, ℓ+ 2, . . .). (B.38)

The explicit forms of the deforming polynomial ξℓ(η;λ) will be given in (B.41). For even ℓ,

ξℓ(η(x);λ) has no zero in the rectangular domain in the complex x plane, x1 ≤ Rex ≤ x2,

|Im x| ≤ 1
2
|γ|. Note that the normalization of ξℓ does not affect Hℓ. This system is not shape

invariant. The second line of the expression for Vℓ(x;λ), (B.35), is obtained from the first

line (B.34) by repeated use of the formula (B.22) of the auxiliary function ϕ. As mentioned

in section 4, this form of the deformed potential function (B.35) is closely related to that of

the exceptional Wilson and Askey-Wilson polynomials.
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It is convenient to introduce an auxiliary function ϕℓ(x):

ϕℓ(x)
def
= ϕ(x)[

ℓ
2
]
ℓ−2∏

k=1

(
ϕ(x− ik

2
γ)ϕ(x+ ik

2
γ)
)[ ℓ−k

2
]
, (B.39)

where [x] denotes the greatest integer not exceeding x. Note that [ ℓ
2
]+2

∑ℓ−2
k=1[

ℓ−k
2
] = 1

2
ℓ(ℓ−1).

The deforming polynomial ξℓ(η;λ) is defined by

Wγ [P̌1, . . . , P̌ℓ](x;λ)
(
P̌n(x;λ)

def
= Pn(η(x);λ)

)

def
=

ℓ∏

k=1

ck(λ) · ϕℓ(x)ξℓ(η(x);λ)×
{ ∏ℓ

k=1 k! : MP, cH,W∏ℓ

k=1

∏k

j=1 sinh
−jγ

2
: AW

. (B.40)

As in the ordinary QM cases (A.23), it is expressed in terms of the polynomial Pℓ of the

original system with shifted parameters:

ξℓ(η;λ) =
Pℓ(η;−λ∗ − (ℓ− 1)δ)

cℓ(−λ∗ − (ℓ− 1)δ)
×

{
(ℓ!)−1 : MP, cH,W

(
∏ℓ

j=1 sinh
−jγ

2
)−1 : AW

. (B.41)

Note that Pn(η;λ
∗) = Pn(η;λ) and cn(λ

∗) = cn(λ) for the MP, W and AW cases. The

eigenfunctions are

φℓ,0(x;λ)
def
=

(−1)ℓκ
1

4
ℓ(ℓ−1)φ0(x;λ+ ℓδ)√

ξℓ(η(x− iγ
2
);λ)ξℓ(η(x+ iγ

2
);λ)

, φℓ,n(x;λ) = φℓ,0(x;λ)Pℓ,n

(
η(x);λ

)
, (B.42)

Wγ[P̌1, . . . , P̌ℓ, P̌n](x;λ)
def
=

ℓ∏

k=1

ck(λ) · ϕℓ+1(x)(−1)ℓPℓ,n(η(x);λ) (B.43)

×
{ ∏ℓ

k=1 k! : MP, cH,W∏ℓ

k=1

∏k

j=1 sinh
−jγ

2
: AW

(
⇒ Pℓ,0(η;λ) = 1

)
.

For even ℓ, Pℓ,n(η(x);λ) (n ≥ ℓ + 1) has n− ℓ zeros in the range of x. Note that Pℓ,n(η;λ)

is a polynomial of degree n in η and P0,n(η;λ) = Pn(η;λ) and Pℓ,n(η;λ) = 0 for 1 ≤ n ≤ ℓ.

We set Pℓ,n(η;λ) = 0 for n < 0. The operators Aℓ(λ) and Aℓ(λ)
† connect the modified

system Hℓ(λ) = Aℓ(λ)
†Aℓ(λ) to the shape invariant system H′

ℓ(λ) = Aℓ(λ)Aℓ(λ)
† with the

parameters λ+ (ℓ+ 1)δ, which is denoted by the rightmost vertical line in Fig. 2. The n-th

level (n ≥ ℓ+ 1) of the modified system Hℓ is iso-spectral with the n− ℓ− 1-th level of the

new shape invariant system H′
ℓ:

Aℓ(λ)φℓ,n(x;λ) = fℓ,n(λ)φn−ℓ−1

(
x;λ+ (ℓ+ 1)δ

)
, (B.44)

Aℓ(λ)
†φn−ℓ−1

(
x;λ+ (ℓ+ 1)δ

)
= bℓ,n−1(λ)φℓ,n(x;λ). (B.45)
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Here, fℓ,n(λ) and bℓ,n−1(λ) are the factors of the energy eigenvalue, En(λ) = fℓ,n(λ)bℓ,n−1(λ),

and are defined by

fℓ,n(λ)
def
= fn(λ)× A,

bℓ,n−1(λ)
def
= bn−1(λ)× A−1,

A =






2ℓ : MP
(b1 + n)ℓ : cH
(−1)ℓ(n− ℓ)ℓ(b1 + n)ℓ : W

q−
1

2
ℓn(qn−ℓ; q)ℓ(b4q

n; q)ℓ : AW

. (B.46)

The forward and backward shift operators Fℓ(λ) and Bℓ(λ) which act on the polynomial

eigenfunctions, are defined by:

Fℓ(λ)
def
= φ0

(
x;λ+ (ℓ+ 1)δ

)−1 ◦ Aℓ(λ) ◦ φℓ,0(x;λ) =
(−1)ℓκ

1

4
ℓ(ℓ+1)

ϕ(x)ξℓ(η(x);λ)
i
(
e

γ
2
p − e−

γ
2
p
)
, (B.47)

Bℓ(λ)
def
= φℓ,0(x;λ)

−1 ◦ Aℓ(λ)
† ◦ φ0

(
x;λ + (ℓ+ 1)δ

)

= (−1)ℓκ−
1

4
ℓ(ℓ−3)(−i)

(
V (x;λ+ ℓδ)ξℓ(η(x+ iγ

2
);λ)e

γ
2
p

− V ∗(x;λ+ ℓδ)ξℓ(η(x− iγ
2
);λ)e−

γ
2
p
)
ϕ(x), (B.48)

and their action on the polynomials is

Fℓ(λ)Pℓ,n(η(x);λ) = fℓ,n(λ)Pn−ℓ−1

(
η(x);λ+ (ℓ+ 1)δ

)
, (B.49)

Bℓ(λ)Pn−ℓ−1

(
η(x);λ+ (ℓ+ 1)δ

)
= bℓ,n−1(λ)Pℓ,n(η(x);λ). (B.50)

For n ≥ ℓ + 1, the above formula (B.50) provides a simple formula of the modified eigen-

polynomial Pℓ,n(η;λ) in terms of ξℓ(η;λ) and the original eigenpolynomial Pn(η;λ):

(−1)ℓκ
1

4
ℓ(ℓ−3)bℓ,n−1(λ)Pℓ,n(η;λ)

= −i
(
V (x;λ+ ℓδ)ξℓ(η(x+ iγ

2
);λ)ϕ(x− iγ

2
)Pn−ℓ−1(η(x− iγ

2
);λ+ (ℓ+ 1)δ)

− V ∗(x;λ+ ℓδ)ξℓ(η(x− iγ
2
);λ)ϕ(x+ iγ

2
)Pn−ℓ−1(η(x+ iγ

2
);λ+ (ℓ+ 1)δ)

)
. (B.51)

The orthogonality relation for even ℓ is:
∫ x2

x1

φℓ,0(x;λ)
2 Pℓ,n(η(x);λ)Pℓ,m(η(x);λ)dx = hℓ,n(λ)δnm, (B.52)

hℓ,n(λ)
def
= hn(λ)×





(n− ℓ)ℓ2
ℓ : MP

(n− ℓ)ℓ(b1 + n)ℓ : cH,W
q−ℓn(qn−ℓ; q)ℓ(b4q

n; q)ℓ : AW
, (n = 0, n ≥ ℓ+ 1). (B.53)
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