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Abstract

An alternative derivation is presented of the infinitely many exceptional Wilson

and Askey-Wilson polynomials, which were introduced by the present authors in 2009.

Darboux-Crum transformations intertwining the discrete quantum mechanical systems

of the original and the exceptional polynomials play an important role. Infinitely many

continuous Hahn polynomials are derived in the same manner. The present method

provides a simple proof of the shape invariance of these systems as in the corresponding

cases of the exceptional Laguerre and Jacobi polynomials.

1 Introduction

In a previous paper [1], we have derived infinitely many exceptional orthogonal polynomials

related to the Wilson and Askey-Wilson polynomials [2, 3, 4] as the solutions of infinitely

many shape invariant [5] thus exactly solvable discrete quantum mechanics in one dimension

[6, 7, 8, 9, 10]. The corresponding Hamiltonians are the deformations of those for the Wilson

and Askey-Wilson polynomials [6, 8, 9] in terms of a degree ℓ (ℓ = 1, 2, . . .) eigenpolynomial

with twisted parameters [1]. In discrete quantum mechanics, the Schrödinger equation is a

second order difference equation, which reduces, in known cases of exactly solvable exam-

ples, to the difference equation satisfied by the polynomials belonging to the Askey scheme

of hypergeometric orthogonal polynomials and their q-analogues. As stressed in our previous

http://arxiv.org/abs/1004.0544v2


publications, various concepts and formulas of these Askey scheme polynomials can be un-

derstood and formulated in a unified fashion through the framework of quantum mechanics;

that is the eigenvalue problem of a hermitian (self-adjoint) linear operator (the Hamiltonian)

in a certain Hilbert space. The Hamiltonian corresponding to a particular polynomial, say

the Wilson or the Askey-Wilson polynomial, is specified by a choice of the potential function

(2.9) as in the ordinary quantum mechanics.

In this paper we present an alternative derivation of the infinitely many exceptional

Wilson and Askey-Wilson polynomials in terms of Darboux-Crum transformations [11, 12]

intertwining the Hamiltonians of the original Wilson/Askey-Wilson polynomials with that of

the corresponding exceptional polynomials. The same method is applied to the continuous

Hahn polynomials [4] to construct the new infinitely many exceptional continuous Hahn

polynomials indexed by a positive even integer ℓ. This is a discrete quantum mechanics

version of the recent work [13] which derives the four families of infinitely many exceptional

Laguerre/Jacobi polynomials [14, 15] in terms of Darboux-Crum translations intertwining

the Hamiltonians of the exceptional polynomials with those of the well known exactly solvable

Hamiltonians of the radial oscillator and the Darboux-Pöschl-Teller potentials [16, 17, 18].

The concept of exceptional (Xℓ) polynomials was introduced by Gomez-Ullate et al [19] in

2008 as a new type of orthogonal polynomials satisfying second order differential equations.

The Xℓ polynomials start with degree ℓ (ℓ = 1, 2, . . .) instead of the degree zero constant

term, thus avoiding the constraints by Bochner’s theorem [20]. They constructed the X1

Laguerre and Jacobi polynomials [19], which are the first members of the infinitely many

exceptional Laguerre and Jacobi polynomials introduced by the present authors [14, 15] in

2009. Quesne gave a quantum mechanical formulation based on shape invariance [21] and

later she introduced another set of X2 polynomials [22].

This paper is organised as follows. In section two we review the discrete quantum mechan-

ical systems of the continuous Hahn, Wilson and Askey-Wilson polynomials in § 2.1 together

with those of the corresponding exceptional polynomials in § 2.2. The properties of the de-

forming polynomial ξℓ are discussed in some detail in § 2.3. They are important for deriving

various results in the subsequent section. The main part of the paper, the Darboux-Crum

transformations intertwining the original and the deformed systems are discussed in section

three. The final section is for a summary and comments including the annihilation/creation

operators and Rodrigues type formulas for the exceptional polynomials.
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2 The original and deformed systems

Here we first recapitulate the shape invariant, therefore solvable, systems whose eigenfunc-

tions are described by the orthogonal polynomials; the continuous Hahn, Wilson and Askey-

Wilson polynomials [4], to be abbreviated as cH, W and AW, respectively. See [6] and [9] for

the discrete quantum mechanical treatment of these polynomials. It is based on the factori-

sation method and generalisation of the Darboux-Crum transformations [11, 12]. See also

the related papers [23]. The factorisation of the Askey-Wilson polynomial was also discussed

in [24]. Then the deformed systems corresponding to the exceptional Askey type polynomial

are summarised in § 2.2.

2.1 The original systems

Here we summarise various properties of the original Hamiltonian systems to be compared

with the deformed systems which will be presented in § 2.2. Let us start with the Hamilto-

nians, Schrödinger equations and eigenfunctions (x1 < x < x2, p = −i d
dx
):

A(λ)
def
= i

(
e

γ
2
p
√
V ∗(x;λ)− e−

γ
2
p
√
V (x;λ)

)
,

A(λ)†
def
= −i

(√
V (x;λ) e

γ
2
p −

√
V ∗(x;λ) e−

γ
2
p
)
, (2.1)

H(λ)
def
= A(λ)†A(λ), (2.2)

H(λ)φn(x;λ) = En(λ)φn(x;λ) (n = 0, 1, 2, . . .), (2.3)

φn(x;λ) = φ0(x;λ)Pn(η(x);λ). (2.4)

The set of parameters λ = (λ1, λ2, . . .) are

cH : λ
def
= (a1, a2), Re ai > 0 (i = 1, 2), (2.5)

W : λ
def
= (a1, a2, a3, a4), Re ai > 0 (i = 1, . . . , 4),

{a∗1, a∗2, a∗3, a∗4} = {a1, a2, a3, a4} (as a set), (2.6)

AW : qλ
def
= (a1, a2, a3, a4), |ai| < 1, (i = 1, . . . , 4), 0 < q < 1,

{a∗1, a∗2, a∗3, a∗4} = {a1, a2, a3, a4} (as a set), (2.7)

where q(λ1,λ2,...) def
= (qλ1, qλ2 , . . .). The the sinusoidal coordinate η(x) is,

η(x)
def
=





x, x1 = −∞, x2 = ∞, γ = 1 : cH
x2, x1 = 0, x2 = ∞, γ = 1 : W
cosx, x1 = 0, x2 = π, γ = log q : AW

. (2.8)
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The potential function V (x;λ) and energy eigenvalue En(λ) are

V (x;λ)
def
=





(a1 + ix)(a2 + ix) : cH
(
2ix(2ix+ 1)

)−1∏4
j=1(aj + ix) : W

(
(1− e2ix)(1− qe2ix)

)−1∏4
j=1(1− aje

ix) : AW

, (2.9)

En(λ) def
=






n(n+ b1 − 1), b1
def
= a1 + a2 + a∗1 + a∗2 : cH

n(n+ b1 − 1), b1
def
= a1 + a2 + a3 + a4 : W

(q−n − 1)(1− b4q
n−1), b4

def
= a1a2a3a4 : AW

. (2.10)

Throughout this paper we consider the potential functions, eigenfunctions, etc as analytic

functions of x in the complex region containing x1 < Re x < x2. We use the ∗-operation
on an analytic function ∗ : f 7→ f ∗ in the following sense. If f(x) =

∑
n

anx
n, an ∈ C, then

f ∗(x)
def
=

∑
n

a∗nx
n, in which a∗n is the complex conjugation of an. Obviously f ∗∗(x) = f(x)

and f(x)∗ = f ∗(x∗). If a function satisfies f ∗ = f , we call it a ‘real’ function, for it takes

real values on the real line.

The eigenfunctions are chosen real, φ∗
n = φn and φ∗

0 = φ0 and P ∗
n = Pn. The main part

consists of an orthogonal polynomial Pn(η;λ), a polynomial of degree n in η:

Pn(η;λ)
def
=





pn(η; a1, a2, a
∗
1, a

∗
2) : cH

Wn(η; a1, a2, a3, a4) : W

pn(η; a1, a2, a3, a4|q) : AW

. (2.11)

They are expressed in terms of the (basic) hypergeometric functions [4]:

cH: pn(η(x); a1, a2, a
∗
1, a

∗
2)

def
= in

(a1 + a∗1)n(a1 + a∗2)n
n!

3F2

(−n, n+ a1 + a2 + a∗1 + a∗2 − 1, a1 + ix

a1 + a∗1, a1 + a∗2

∣∣∣1
)
, (2.12)

W: Wn(η(x); a1, a2, a3, a4)

def
= (a1 + a2)n(a1 + a3)n(a1 + a4)n

× 4F3

(−n, n +
∑4

j=1 aj − 1, a1 + ix, a1 − ix

a1 + a2, a1 + a3, a1 + a4

∣∣∣ 1
)
, (2.13)

AW: pn(η(x); a1, a2, a3, a4|q)
def
= a−n

1 (a1a2, a1a3, a1a4 ; q)n × 4φ3

(q−n, a1a2a3a4q
n−1, a1e

ix, a1e
−ix

a1a2, a1a3, a1a4

∣∣∣q ; q
)
, (2.14)

in which (a)n and (a; q)n are the Pochhammer symbol and its q-analogue. They are sym-

metric in (a1, a2) for cH and in (a1, a2, a3, a4) for W and AW.
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These Hamiltonian systems are exactly solvable in the Schrödinger picture. Shape in-

variance [5] is a sufficient condition for the exact solvability. Its relations involve one more

positive constant κ:

A(λ)A(λ)† = κA(λ + δ)†A(λ+ δ) + E1(λ), (2.15)

δ
def
=

{
(1
2
, 1
2
) : cH

(1
2
, 1
2
, 1
2
, 1
2
) : W,AW

, κ
def
=

{
1 : cH,W
q−1 : AW

, (2.16)

or equivalently,

V (x− iγ
2
;λ)V ∗(x− iγ

2
;λ) = κ2 V (x;λ+ δ)V ∗(x− iγ;λ+ δ), (2.17)

V (x+ iγ
2
;λ) + V ∗(x− iγ

2
;λ) = κ

(
V (x;λ+ δ) + V ∗(x;λ+ δ)

)
− E1(λ). (2.18)

It is straightforward to verify these relations for the above potential functions for the cH, W

and AW cases (2.9). The groundstate wavefunction φ0(x;λ) is determined as a zero mode

of the operator A(λ), A(λ)φ0(x;λ) = 0, namely,

√
V ∗(x− iγ

2
;λ)φ0(x− iγ

2
;λ) =

√
V (x+ iγ

2
;λ)φ0(x+ iγ

2
;λ), (2.19)

and its explicit forms are:

φ0(x;λ)
def
=





√
Γ(a1 + ix)Γ(a2 + ix)Γ(a∗1 − ix)Γ(a∗2 − ix) : cH√
(Γ(2ix)Γ(−2ix))−1

∏4
j=1 Γ(aj + ix)Γ(aj − ix) : W√

(e2ix ; q)∞(e−2ix ; q)∞
∏4

j=1(aje
ix ; q)−1

∞ (aje−ix ; q)−1
∞ : AW

. (2.20)

We introduce an auxiliary function ϕ(x)

ϕ(x)
def
=





1 : cH
2x : W
2 sinx : AW

, (2.21)

which possesses the properties:

φ0(x;λ + δ) = ϕ(x)
√
V (x+ iγ

2
;λ)φ0(x+ iγ

2
;λ), (2.22)

V (x;λ+ δ) = κ−1ϕ(x− iγ)

ϕ(x)
V (x− iγ

2
;λ). (2.23)

The action of the operators A(λ) and A(λ)† on the eigenfunctions is

A(λ)φn(x;λ) = fn(λ)φn−1

(
x;λ+ δ

)
, (2.24)
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A(λ)†φn−1

(
x;λ+ δ

)
= bn−1(λ)φn(x;λ). (2.25)

The factors of the energy eigenvalue, fn(λ) and bn−1(λ), En(λ) = fn(λ)bn−1(λ), are given

by

fn(λ)
def
=






n + b1 − 1 : cH
−n(n + b1 − 1) : W
q

n
2 (q−n − 1)(1− b4q

n−1) : AW
, bn−1(λ)

def
=






n : cH
−1 : W
q−

n
2 : AW

. (2.26)

The forward and backward shift operators F(λ) and B(λ) are defined by

F(λ)
def
= φ0(x;λ+ δ)−1 ◦ A(λ) ◦ φ0(x;λ) = iϕ(x)−1(e

γ
2
p − e−

γ
2
p), (2.27)

B(λ) def
= φ0(x;λ)

−1 ◦ A(λ)† ◦ φ0(x;λ+ δ) = −i
(
V (x;λ)e

γ
2
p − V ∗(x;λ)e−

γ
2
p
)
ϕ(x), (2.28)

and their action on the polynomials is

F(λ)Pn(η(x);λ) = fn(λ)Pn−1(η(x);λ+ δ), (2.29)

B(λ)Pn−1(η(x);λ+ δ) = bn−1(λ)Pn(η(x);λ). (2.30)

The second order difference operator H̃(λ) acting on the polynomial eigenfunctions is defined

by

H̃(λ)
def
= B(λ)F(λ) = φ0(x;λ)

−1 ◦ H(λ) ◦ φ0(x;λ)

= V (x;λ)(eγp − 1) + V ∗(x;λ)(e−γp − 1), (2.31)

H̃(λ)Pn(η(x);λ) = En(λ)Pn(η(x);λ). (2.32)

In conventional terms, this is the difference equation determining the polynomials:

V (x;λ)
(
Pn(η(x− iγ);λ)− Pn(η(x);λ)

)
+ V ∗(x;λ)

(
Pn(η(x+ iγ);λ)− Pn(η(x);λ)

)

= En(λ)Pn(η(x);λ). (2.33)

The orthogonality relation is

∫ x2

x1

φ0(x;λ)
2 Pn(η(x);λ)Pm(η(x);λ)dx = hn(λ)δnm, (2.34)

hn(λ)
def
=






2π
∏2

i,j=1 Γ(n+ ai + a∗j) ·
(
n!(2n+ b1 − 1)Γ(n+ b1 − 1)

)−1
: cH

2πn! (n+ b1 − 1)n
∏

1≤i<j≤4 Γ(n+ ai + aj) · Γ(2n+ b1)
−1 : W

2π(b4q
n−1; q)n(b4q

2n; q)∞(qn+1; q)−1
∞

∏
1≤i<j≤4(aiajq

n; q)−1
∞ : AW

. (2.35)
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As shown in detail in [8] these Hamiltonian systems are exactly solvable in the Heisenberg

picture, too. The positive/negative frequency parts of the exact Heisenberg operator solution

of the sinusoidal coordinate η(x) provide the annihilation/creation operators a(±)(λ) which

map the eigenfunctions to the neighbouring levels

a(±)(λ)φn(x;λ) ∝ φn±1(x;λ). (2.36)

This is a disguise of the three term recurrence relations of these orthogonal polynomials. The

above relations are to be contrasted with the actions of the operators A(λ) and A(λ − δ)†

(2.24)–(2.25), which maps φn(x;λ) to the neighbouring levels of shifted parameters λ± δ.

2.2 The deformed systems

Here we recapitulate the Hamiltonian systems of the exceptional Wilson and Askey-Wilson

polynomials, which were derived by the present authors [1] in 2009. The exceptional contin-

uous Hahn polynomials are new. For each ℓ = 1, 2, . . ., we can construct a shape invariant

system by deforming the original system (ℓ = 0) in terms of a degree ℓ eigenpolynomial ξℓ(η)

of twisted parameters. We restrict the original parameter ranges (2.5)–(2.7) as follows:

cH : a1 > 0, ℓ : even, (2.37)

W : a1, a2 ∈ R, {a∗3, a∗4} = {a3, a4} (as a set),

0 < aj < Re ak (j = 1, 2; k = 3, 4), (2.38)

AW : a1, a2 ∈ R, {a∗3, a∗4} = {a3, a4} (as a set),

1 > aj > |ak| (j = 1, 2; k = 3, 4). (2.39)

In terms of the twist operation t acting on the set of parameters,

t(λ)
def
=

{
(−λ1, λ2) : cH
(−λ1,−λ2, λ3, λ4) : W,AW

, (2.40)

the deforming polynomial ξℓ(η) is defined from the eigenpolynomial Pℓ(η):

ξℓ(η;λ)
def
= Pℓ

(
η; t

(
λ+ (ℓ− 1)δ

))
. (2.41)

We may need to restrict parameters further in order that ξℓ(η(x);λ) has no zero in the

rectangular domain x1 ≤ Re x ≤ x2, |Im x| ≤ 1
2
|γ|, which is necessary for the hermiticity of
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the Hamiltonian. The potential function, the Hamiltonian and the Schrödinger equation of

the deformed system are:

Vℓ(x;λ)
def
= V (x;λ+ ℓδ)

ξℓ(η(x+ iγ
2
);λ)

ξℓ(η(x− iγ
2
);λ)

ξℓ(η(x− iγ);λ+ δ)

ξℓ(η(x);λ+ δ)
, (2.42)

V ∗
ℓ (x;λ) = V ∗(x;λ+ ℓδ)

ξℓ(η(x− iγ
2
);λ)

ξℓ(η(x+ iγ
2
);λ)

ξℓ(η(x+ iγ);λ+ δ)

ξℓ(η(x);λ+ δ)
, (2.43)

Aℓ(λ)
def
= i

(
e

γ
2
p

√
V ∗
ℓ (x;λ)− e−

γ
2
p
√
Vℓ(x;λ)

)
,

Aℓ(λ)
† def
= −i

(√
Vℓ(x;λ) e

γ
2
p −

√
V ∗
ℓ (x;λ) e

−
γ
2
p
)
, (2.44)

Hℓ(λ)
def
= Aℓ(λ)

†Aℓ(λ), (2.45)

Hℓ(λ)φℓ,n(x;λ) = Eℓ,n(λ)φℓ,n(x;λ) (n = 0, 1, 2, . . .), Eℓ,n(λ) = En(λ+ ℓδ). (2.46)

The continuous Hahn polynomials are real polynomials defined on the entire real line. There-

fore the odd degree members have at least one real zero, whichever coefficients we may choose.

This is the reason why ℓ is restricted to even integers in the cH case (2.37).

This system is shape invariant:

Aℓ(λ)Aℓ(λ)
† = κAℓ(λ + δ)†Aℓ(λ+ δ) + Eℓ,1(λ), (2.47)

or equivalently,

Vℓ(x− iγ
2
;λ)V ∗

ℓ (x− iγ
2
;λ) = κ2 Vℓ(x;λ+ δ)V ∗

ℓ (x− iγ;λ+ δ), (2.48)

Vℓ(x+ iγ
2
;λ) + V ∗

ℓ (x− iγ
2
;λ) = κ

(
Vℓ(x;λ+ δ) + V ∗

ℓ (x;λ+ δ)
)
− Eℓ,1(λ). (2.49)

Proof is straightforward by direct calculation. In order to derive eq. (2.49), use is made of

the two properties of the deforming polynomial ξℓ (2.68)–(2.69) and the factorisation of the

potential (2.70). For another simple proof of shape invariance, see the discussion in the final

section. The eigenfunctions are

ψℓ(x;λ)
def
=

φ0(x;λ+ ℓδ)√
ξℓ(η(x+ iγ

2
);λ)ξℓ(η(x− iγ

2
);λ)

, (2.50)

φℓ,n(x;λ) = ψℓ(x;λ)Pℓ,n

(
η(x);λ

)
(n = 0, 1, 2, . . .). (2.51)

Here Pℓ,n(η;λ) is a degree ℓ + n polynomial in η but Pℓ,n(η(x);λ) has only n zeros in the

domain x1 < x < x2. The explicit forms of Pℓ,n(η) were given by eqs. (42)–(44) in [1], with

eqs. (66)-(68) for W and eqs. (80)–(82) for AW. Here we present much simpler looking forms
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of them, which encompasses the new cH case, too:

Pℓ,n(η(x);λ) =
−i

f̂ℓ,n(λ)ϕ(x)

(
v1(x;λ+ ℓδ)ξℓ(η(x+ iγ

2
);λ)Pn(η(x− iγ

2
);λ+ ℓδ + δ̃)

− v∗1(x;λ+ ℓδ)ξℓ(η(x− iγ
2
);λ)Pn(η(x+ iγ

2
);λ+ ℓδ + δ̃)

)
, (2.52)

where v1(x;λ), f̂ℓ,n(λ) and δ̃ will be defined in (2.71), (2.72) and (3.12). This is one of the

main results of the present paper which is derived in § 3. Its lowest degree member is the

degree ℓ deforming polynomial itself of the shifted parameters

Pℓ,0(η(x);λ) = ξℓ(η(x);λ+ δ), (2.53)

which is obtained by (2.68). It is straightforward to verify that the groundstate eigenfunction

φℓ,0(x;λ) =
φ0(x;λ+ ℓδ) ξℓ(η(x);λ+ δ)√
ξℓ(η(x+ iγ

2
);λ)ξℓ(η(x− iγ

2
);λ)

(2.54)

is the zero mode of the operator Aℓ(λ), Aℓ(λ)φℓ,0(x;λ) = 0.

The action of Aℓ(λ) and Aℓ(λ)
† on the eigenfunctions is

Aℓ(λ)φℓ,n(x;λ) = fℓ,n(λ)φℓ,n−1

(
x;λ+ δ

)
, (2.55)

Aℓ(λ)
†φℓ,n−1

(
x;λ+ δ

)
= bℓ,n−1(λ)φℓ,n(x;λ), (2.56)

fℓ,n(λ) = fn(λ+ ℓδ), bℓ,n−1(λ) = bn−1(λ+ ℓδ). (2.57)

Like the corresponding formulas of the original systems (2.24)–(2.25), these are simple con-

sequences of the shape invariance and the normalisation of the eigenfunctions. In the next

section, we will derive these formulas through the intertwining relations and without assum-

ing shape invariance.

The forward shift operator Fℓ(λ) and the backward shift operator Bℓ(λ) are defined in

a similar way as before

Fℓ(λ)
def
= ψℓ(x;λ+ δ)−1 ◦ Aℓ(λ) ◦ ψℓ(x;λ)

=
i

ϕ(x)ξℓ(η(x);λ)

(
ξℓ
(
η(x+ iγ

2
);λ+ δ

)
e

γ
2
p − ξℓ

(
η(x− iγ

2
);λ+ δ

)
e−

γ
2
p
)
, (2.58)

Bℓ(λ)
def
= ψℓ(x;λ)

−1 ◦ Aℓ(λ)
† ◦ ψℓ(x;λ+ δ)

=
−i

ξℓ(η(x);λ+ δ)

(
V (x;λ+ ℓδ)ξℓ

(
η(x+ iγ

2
);λ

)
e

γ
2
p

− V ∗(x;λ+ ℓδ)ξℓ
(
η(x− iγ

2
);λ

)
e−

γ
2
p
)
ϕ(x), (2.59)

9



and their action on the polynomial Pℓ,n(η;λ) is

Fℓ(λ)Pℓ,n

(
η(x);λ

)
= fℓ,n(λ)Pℓ,n−1

(
η(x);λ+ δ

)
, (2.60)

Bℓ(λ)Pℓ,n−1

(
η(x);λ+ δ

)
= bℓ,n−1(λ)Pℓ,n

(
η(x);λ

)
. (2.61)

The second order difference operator H̃ℓ(λ) acting on the polynomial eigenfunctions is de-

fined by

H̃ℓ(λ)
def
= Bℓ(λ)Fℓ(λ) = ψℓ(x;λ)

−1 ◦ Hℓ(λ) ◦ ψℓ(x;λ)

= V (x;λ+ ℓδ)
ξℓ
(
η(x+ iγ

2
);λ

)

ξℓ
(
η(x− iγ

2
);λ

)
(
eγp − ξℓ

(
η(x− iγ);λ+ δ

)

ξℓ
(
η(x);λ+ δ

)
)

+ V ∗(x;λ+ ℓδ)
ξℓ
(
η(x− iγ

2
);λ

)

ξℓ
(
η(x+ iγ

2
);λ

)
(
e−γp − ξℓ

(
η(x+ iγ);λ+ δ

)

ξℓ
(
η(x);λ+ δ

)
)
, (2.62)

H̃ℓ(λ)Pℓ,n(η(x);λ) = Eℓ,n(λ)Pℓ,n(η(x);λ). (2.63)

Again it is trivial to verify that the lowest degree polynomial Pℓ,0(η(x);λ) = ξℓ
(
η(x);λ+ δ

)

is the zero mode of H̃ℓ(λ):

H̃ℓ(λ)ξℓ
(
η(x);λ+ δ

)
= 0. (2.64)

The orthogonality relation is

∫ x2

x1

ψℓ(x;λ)
2 Pℓ,n(η(x);λ)Pℓ,m(η(x);λ)dx = hℓ,n(λ)δnm, (2.65)

hℓ,n(λ)
def
= hn(λ+ ℓδ)×






(2a1 + n + ℓ)(a2 + a∗2 + n + 2ℓ− 1)

(2a1 + n)(a2 + a∗2 + n+ ℓ− 1)
: cH

(a1 + a2 + n + ℓ)(a3 + a4 + n + 2ℓ− 1)

(a1 + a2 + n)(a3 + a4 + n+ ℓ− 1)
: W

q−ℓ (1− a1a2q
n+ℓ)(1− a3a4q

n+2ℓ−1)

(1− a1a2qn)(1− a3a4qn+ℓ−1)
: AW

. (2.66)

2.3 Properties of the deforming polynomial ξℓ

Here we present three formulas of the deforming polynomial ξℓ(η;λ) (2.67)–(2.69), which

will play important roles in the derivation of various results in section three, in particular,

the fundamental results of this paper (3.10) and (3.11):

(
V
(
x; t(λ+ (ℓ− 1)δ)

)
(eγp − 1) + V ∗

(
x; t(λ+ (ℓ− 1)δ)

)
(e−γp − 1)

)
ξℓ(η(x);λ)

= Eℓ(t(λ))ξℓ(η(x);λ), (2.67)
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i
ϕ(x)

(
v∗1(x;λ+ ℓδ)e

γ
2
p − v1(x;λ+ ℓδ)e−

γ
2
p
)
ξℓ(η(x);λ) = f̂ℓ,0(λ)ξℓ(η(x);λ+ δ), (2.68)

−i
ϕ(x)

(
v2(x;λ+ (ℓ− 1)δ)e

γ
2
p − v∗2(x;λ+ (ℓ− 1)δ)e−

γ
2
p
)
ξℓ(η(x);λ+ δ)

= b̂ℓ,0(λ)ξℓ(η(x);λ), (2.69)

where v1(x;λ), v2(x;λ) are the factors of the potential function V (x;λ):

V (x;λ) = −
√
κ
v1(x;λ)v2(x;λ)

ϕ(x)ϕ(x− iγ
2
)
, (2.70)

v1(x;λ)
def
=





i(a1 + ix) : cH∏2
j=1(aj + ix) : W

e−ix
∏2

j=1(1− aje
ix) : AW

, v2(x;λ)
def
=





i(a2 + ix) : cH∏4
j=3(aj + ix) : W

e−ix
∏4

j=3(1− aje
ix) : AW

. (2.71)

The constants f̂ℓ,n(λ) and b̂ℓ,n(λ) are given by

f̂ℓ,n(λ)
def
=






2a1 + n : cH
a1 + a2 + n : W

−q−n−ℓ
2 (1− a1a2q

n) : AW

, b̂ℓ,n(λ)
def
=






a2 + a∗2 + n+ 2ℓ− 1 : cH
a3 + a4 + n+ 2ℓ− 1 : W

−q−n+ℓ
2 (1− a3a4q

n+2ℓ−1) : AW

.(2.72)

The first equation (2.67) is the difference equation for the deforming polynomial, which

corresponds to (2.33). The eqs. (2.68)–(2.69) are identities relating ξℓ(η;λ) and ξℓ(η;λ+ δ).

We remark that these two equations (2.68)–(2.69) imply (2.67). In similar problems in

ordinary quantum mechanics, the exceptional Laguerre and Jacobi polynomials, analogous

identities play important roles in proving shape invariance and other relations [27, 28, 13].

As shown in (2.12)–(2.14), the continuous Hahn, Wilson and Askey-Wilson polynomials are

expressed in terms of the (basic) hypergeometric functions 3F2, 4F3 and 4φ3, respectively [4].

The identities (2.68)–(2.69) are reduced to the following identities satisfied by the (basic)

hypergeometric functions: (α, α′, α1, . . . , α4 : generic parameters)

(α1 + ix) 3F2

(−α, α′, α1 + 1 + ix

α3, α1 + α2 + 1

∣∣∣ 1
)
+ (α2 − ix) 3F2

(−α, α′, α1 + ix

α3, α1 + α2 + 1

∣∣∣ 1
)

= (α1 + α2) 3F2

(−α, α′, α1 + ix

α3, α1 + α2

∣∣∣ 1
)
, (2.73)

−i
2x

(
(α1 + ix)(α2 + ix) 4F3

( −α, α′, α1 + 1 + ix, α1 − ix

α1 + α2 + 1, α1 + α3, α1 + α4

∣∣∣ 1
)

− (α1 − ix)(α2 − ix) 4F3

( −α, α′, α1 + ix, α1 + 1− ix

α1 + α2 + 1, α1 + α3, α1 + α4

∣∣∣ 1
))

= (α1 + α2) 4F3

( −α, α′, α1 + ix, α1 − ix

α1 + α2, α1 + α3, α1 + α4

∣∣∣ 1
)
, (2.74)

−i
2 sin x

(
e−ix(1− α1e

ix)(1− α2e
ix) 4φ3

(α−1, α′, α1qe
ix, α1e

−ix

α1α2q, α1α3, α1α4

∣∣∣ q; q
)
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− eix(1− α1e
−ix)(1− α2e

−ix) 4φ3

(α−1, α′, α1e
ix, α1qe

−ix

α1α2q, α1α3, α1α4

∣∣∣ q; q
))

= −(1− α1α2) 4φ3

(α−1, α′, α1e
ix, α1e

−ix

α1α2, α1α3, α1α4

∣∣∣ q; q
)
. (2.75)

These identities can be easily verified by the series definition of the (basic) hypergeometric

functions.

3 Intertwining relations

Here we demonstrate that the Hamiltonian system of the original polynomials reviewed in

§ 2.1 and the deformation summarised in § 2.2 are intertwined by a discrete version of the

Darboux-Crum transformation. This provides simple expressions of the eigenfunctions of the

deformed systems (2.52) in terms of those of the original system, which is exactly solvable.

It also delivers a simple proof of the shape invariance of the deformed system.

3.1 General setting

For well-defined operators Âℓ(λ) and Âℓ(λ)
†, let us define a pair of Hamiltonians Ĥ(±)

ℓ (λ)

Ĥ(+)
ℓ (λ)

def
= Âℓ(λ)

†Âℓ(λ), Ĥ(−)
ℓ (λ)

def
= Âℓ(λ)Âℓ(λ)

†, (3.1)

and consider their the Schrödinger equations, that is, the eigenvalue problems:

Ĥ(±)
ℓ (λ)φ̂

(±)
ℓ,n (x;λ) = Ê (±)

ℓ,n (λ)φ̂
(±)
ℓ,n (x;λ) (n = 0, 1, 2, . . .). (3.2)

By definition, all the eigenfunctions must be square integrable. Obviously the pair of Hamil-

tonians are intertwined:

Ĥ(+)
ℓ (λ)Âℓ(λ)

† = Âℓ(λ)
†Âℓ(λ)Âℓ(λ)

† = Âℓ(λ)
†Ĥ(−)

ℓ (λ), (3.3)

Âℓ(λ)Ĥ(+)
ℓ (λ) = Âℓ(λ)Âℓ(λ)

†Âℓ(λ) = Ĥ(−)
ℓ (λ)Âℓ(λ). (3.4)

If Âℓ(λ)φ̂
(+)
ℓ,n (x;λ) 6= 0 and Âℓ(λ)

†φ̂
(−)
ℓ,n (x;λ) 6= 0, then the two systems are exactly iso-

spectral and there is one-to-one correspondence between the eigenfunctions:

Ê (+)
ℓ,n (λ) = Ê (−)

ℓ,n (λ), (3.5)

φ̂
(−)
ℓ,n (x;λ) ∝ Âℓ(λ)φ̂

(+)
ℓ,n (x;λ), φ̂

(+)
ℓ,n (x;λ) ∝ Âℓ(λ)

†φ̂
(−)
ℓ,n (x;λ). (3.6)
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It should be stressed in the ordinary setting of Crum’s theorem, the zero mode of Âℓ(λ) is

the groundstate of Ĥ(+)
ℓ (λ). In that case, Ĥ(+)

ℓ (λ) and Ĥ(−)
ℓ (λ) are iso-spectral except for

the groundstate (essentially iso-spectral) of Ĥ(+)
ℓ (λ), since it is annihilated by Âℓ(λ) [25].

In the following we will present the explicit forms of the operators Âℓ(λ) and Âℓ(λ)
†,

which intertwine the original systems in § 2.1 and the deformed systems in § 2.2.

3.2 Intertwining the original and the deformed systems of the

polynomials

The potential function V̂ℓ is the original potential function V with twisted parameters and

multiplicatively deformed by the deforming polynomial ξℓ:

V̂ℓ(x;λ)
def
= V

(
x; t(λ + (ℓ− 1)δ)

)ξℓ(η(x− iγ);λ)

ξℓ(η(x);λ)
, (3.7)

V̂ ∗
ℓ (x;λ) = V ∗

(
x; t(λ+ (ℓ− 1)δ)

)ξℓ(η(x+ iγ);λ)

ξℓ(η(x);λ)
, (3.8)

Âℓ(λ)
def
= i

(
e

γ
2
p

√
V̂ ∗
ℓ (x;λ)− e−

γ
2
p

√
V̂ℓ(x;λ)

)
,

Âℓ(λ)
† def
= −i

(√
V̂ℓ(x;λ) e

γ
2
p −

√
V̂ ∗
ℓ (x;λ) e

−
γ
2
p
)
. (3.9)

It is illuminating to compare these potential functions (3.7)–(3.8) with those of the original

(2.9) and deformed (2.42)–(2.43) systems. Again it is obvious that the overall normalisation

of the deforming polynomial ξℓ is immaterial for the deformation. For this choice of Âℓ(λ)

and Âℓ(λ)
†, one of the pair of Hamiltonians Ĥ(+)

ℓ (λ) (3.1) becomes proportional to the

original Hamiltonian H(λ) (2.2) with λ → λ+ ℓδ+ δ̃ and the partner Hamiltonian Ĥ(−)
ℓ (λ)

is proportional to the deformed Hamiltonian Hℓ(λ) (2.45):

Ĥ(+)
ℓ (λ) = κ̂ℓ(λ)

(
H(λ+ ℓδ + δ̃) + f̂ℓ,0(λ)b̂ℓ,0(λ)

)
, (3.10)

Ĥ(−)
ℓ (λ) = κ̂ℓ(λ)

(
Hℓ(λ) + f̂ℓ,0(λ)b̂ℓ,0(λ)

)
, (3.11)

where κ̂ℓ(λ) and δ̃ are given by

κ̂ℓ(λ)
def
=

{
1 : cH,W
(a1a2q

ℓ)−1 : AW
, δ̃

def
=

{
(1
2
,−1

2
) : cH

(1
2
, 1
2
,−1

2
,−1

2
) : W,AW

. (3.12)

The multiplicative and additive constants are common to the pair of Hamiltonians (3.10)–

(3.11). These are the main results of this paper. Like the corresponding formulas in ordinary

quantum mechanics [13], these fundamental results can be obtained by explicit calculation.
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The three formulas in § 2.3 are essential. That is, the difference equation satisfied by the

deforming polynomial ξℓ(η(x);λ), (2.67) and the two identities relating the deforming poly-

nomial ξℓ(η(x);λ) to its shifted one ξℓ(η(x);λ+ δ), (2.68) and (2.69).

It is instructive to verify that the zero modes of Âℓ(λ) and Âℓ(λ)
† do not belong to the

Hilbert space of the eigenfunctions. In fact, the zero mode Âℓ(λ) is

Âℓ(λ)χ = 0, χ = ξℓ(η(x);λ)φ0(x; t(λ + (ℓ− 1)δ). (3.13)

It has at least one pole in the rectangular domain x1 ≤ Re x ≤ x2, |Im x| ≤ 1
2
|γ|, therefore

it cannot belong to the Hilbert space. The zero mode of Âℓ(λ)
† is

Âℓ(λ)
†ρ = 0, ρ =

φ0(x; t(λ+ (ℓ− 1)δ)−1

√
ξℓ(η(x− iγ

2
);λ)ξℓ(η(x+ iγ

2
);λ)V ∗(x− iγ

2
; t(λ+ (ℓ− 1)δ)

, (3.14)

which is obviously non-square integrable. This situation is the discrete analogue of the

‘broken susy’ case in ordinary quantum mechanics in the terminology of supersymmetric

quantum mechanics [17, 25].

Based on the results (3.10)–(3.11), we have

φ̂
(+)
ℓ,n (x;λ) = φn(x;λ+ ℓδ + δ̃), φ̂

(−)
ℓ,n (x;λ) = φℓ,n(x;λ), (3.15)

Ê (±)
ℓ,n (λ) = κ̂ℓ(λ)

(
En(λ+ ℓδ + δ̃) + f̂ℓ,0(λ)b̂ℓ,0(λ)

)
= κ̂ℓ(λ)

(
Eℓ,n(λ) + f̂ℓ,0(λ)b̂ℓ,0(λ)

)
. (3.16)

Then it is trivial to verify Âℓ(λ)φ̂
(+)
ℓ,n (x;λ) 6= 0 and Âℓ(λ)

†φ̂
(−)
ℓ,n (x;λ) 6= 0. For, if one of the

eigenfunction is annihilated by Âℓ(λ) (Âℓ(λ)
†), the left hand side of (3.10)((3.11)) vanishes,

whereas the right hand side is κ̂ℓ(λ)
(
En(λ+ ℓδ+ δ̃)+ f̂ℓ,0(λ)b̂ℓ,0(λ)

)
times the eigenfunction,

which is obviously non-vanishing. Note that En(λ+ ℓδ + δ̃) = En(λ+ ℓδ).

The correspondence of the pair of eigenfunctions φ̂
(±)
ℓ,n (x) is expressed as

φ̂
(−)
ℓ,n (x;λ) =

Âℓ(λ)φ̂
(+)
ℓ,n (x;λ)√

κ̂ℓ(λ) f̂ℓ,n(λ)
, φ̂

(+)
ℓ,n (x;λ) =

Âℓ(λ)
†φ̂

(−)
ℓ,n (x;λ)√

κ̂ℓ(λ) b̂ℓ,n(λ)
. (3.17)

We introduce operators F̂ℓ(λ) and B̂ℓ(λ) defined by

F̂ℓ(λ)
def
= ψℓ(x;λ)

−1 ◦ Âℓ(λ)√
κ̂ℓ(λ)

◦ φ0(x;λ+ ℓδ + δ̃), (3.18)

B̂ℓ(λ)
def
= φ0(x;λ+ ℓδ + δ̃)−1 ◦ Âℓ(λ)

†

√
κ̂ℓ(λ)

◦ ψℓ(x;λ). (3.19)
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The operators F̂ℓ(λ) and B̂ℓ(λ) are expressed explicitly by using the concrete forms of

V (x;λ), ψℓ(x;λ) and φ0(x;λ):

F̂ℓ(λ) =
−i
ϕ(x)

(
v1(x;λ+ ℓδ)ξℓ(η(x+ iγ

2
);λ)e

γ
2
p − v∗1(x;λ+ ℓδ)ξℓ(η(x− iγ

2
);λ)e−

γ
2
p
)
,(3.20)

B̂ℓ(λ) =
1

ξℓ(η(x);λ)

−i
ϕ(x)

(
v2(x;λ+ (ℓ− 1)δ)e

γ
2
p − v∗2(x;λ+ (ℓ− 1)δ)e−

γ
2
p
)
. (3.21)

Here is a technical remark on (3.20). In deriving the explicit form of the operator F̂ℓ(λ)

in (3.20), one extracts the factorised potential function v1(x) and v∗1(x) from the corre-

sponding expression of the square root of the twisted potential
√
V (x; t(λ + (ℓ− 1)δ)) and

√
V ∗(x; t(λ+ (ℓ− 1)δ)). Thus the choice of the argument is a subtle problem, in particular,

for the cH case, in which only one factor undergoes the sign change. In other (W and AW)

cases, sign change occur in two factors and thus the effect cancels out. Let us consider the

twisted potential of cH case

V
(
x; t(λ+ ℓδ)

)
= (−a1 − ℓ

2
+ ix)(a2 +

ℓ
2
+ ix).

For positive x close to the origin (|x| ≪ 1), we choose −a1 − ℓ
2
+ ix to have an argument

close to +π. Then its ∗-operation −a1 − ℓ
2
− ix = −(a1 +

ℓ
2
+ ix) has an argument close to

−π. This would mean
√
−(a1 +

ℓ
2
+ ix)2 = −i(a1 + ℓ

2
+ ix) = −v1(x;λ+ ℓδ), instead of the

naively obtained i(a1 +
ℓ
2
+ ix) = v1(x;λ+ ℓδ).

The operators F̂ℓ(λ) and B̂ℓ(λ) act as the forward and backward shift operators connect-

ing the original polynomials Pn(η) and the exceptional polynomials Pℓ,n(η):

F̂ℓ(λ)Pn(η(x);λ+ ℓδ + δ̃) = f̂ℓ,n(λ)Pℓ,n(η(x);λ), (3.22)

B̂ℓ(λ)Pℓ,n(η(x);λ) = b̂ℓ,n(λ)Pn(η(x);λ+ ℓδ + δ̃). (3.23)

The former relation (3.22) with the explicit form of F̂ℓ(λ) (3.20) provides the new explicit

expression (2.52) of the exceptional orthogonal polynomials, which is one of the main results

of this paper.

Other simple consequences of these relations are

Ê (±)
ℓ,n (λ) = κ̂ℓ(λ)f̂ℓ,n(λ)b̂ℓ,n(λ), En(λ+ ℓδ) = f̂ℓ,n(λ)b̂ℓ,n(λ)− f̂ℓ,0(λ)b̂ℓ,0(λ). (3.24)

The normalisation constant hℓ,n(λ) (2.66) of the exceptional polynomials is related to

that of the original polynomial hn(λ) (2.35):

hℓ,n(λ) =
b̂ℓ,n(λ)

f̂ℓ,n(λ)
hn(λ+ ℓδ + δ̃) =

b̂ℓ,n(λ)

f̂ℓ,n(λ)

f̂0,n(λ+ ℓδ)

b̂0,n(λ+ ℓδ)
hn(λ+ ℓδ). (3.25)
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In the second equality we have used the explicit forms of hn(λ) (2.35). Eq. (3.25) is shown

in the following way:

κ̂ℓ(λ)f̂ℓ,n(λ)f̂ℓ,m(λ)

∫ x2

x1

dx φℓ,n(x;λ)φℓ,m(x;λ)

(i)
=

∫ x2

x1

dx Âℓ(λ)φn(x;λ+ ℓδ + δ̃) · Âℓ(λ)φm(x;λ+ ℓδ + δ̃)

(ii)
=

∫ x2

x1

dx Âℓ(λ)
†Âℓ(λ)φn(x;λ+ ℓδ + δ̃) · φm(x;λ+ ℓδ + δ̃)

(iii)
= Ê (+)

ℓ,n (λ)

∫ x2

x1

dx φn(x;λ+ ℓδ + δ̃)φm(x;λ+ ℓδ + δ̃)

(iv)
= κ̂ℓ(λ)f̂ℓ,n(λ)b̂ℓ,n(λ)hn(λ+ ℓδ + δ̃)δnm. (3.26)

Here we have used (3.17) and (3.15) in (i), (3.2) and (3.15) in (iii), (3.24) and (2.34) in (iv).

In order to show (ii), we need to shift the integration contour to the imaginary direction. It

is allowed if V̂ℓ(x;λ)φ0(x;λ+ℓδ+ δ̃)2 has no pole in the rectangular domain x1 ≤ Re x ≤ x2,

0 ≤ Im x
γ

≤ 1
2
. This condition is fulfilled if the deforming polynomial ξℓ(η(x);λ) has no zero

in the rectangular domain x1 ≤ Re x ≤ x2, |Imx| ≤ 1
2
|γ|, which is indeed the case.

3.3 Other intertwining relations

It is interesting to note that the operator Âℓ(λ) intertwines those of the original and deformed

systems A(λ) and Aℓ(λ):

Âℓ(λ+ δ)A(λ+ ℓδ + δ̃) = Aℓ(λ)Âℓ(λ), (3.27)

Âℓ(λ)A(λ+ ℓδ + δ̃)† = Aℓ(λ)
†Âℓ(λ+ δ). (3.28)

In terms of the definitions of the forward shift operators F(λ) (2.27), Fℓ(λ) (2.58), F̂ℓ(λ)

(3.18), and B(λ) (2.28), Bℓ(λ) (2.59), the above relations are rewritten as:
√
κ̂ℓ(λ+ δ) F̂ℓ(λ+ δ)F(λ+ ℓδ + δ̃) =

√
κ̂ℓ(λ)Fℓ(λ)F̂ℓ(λ), (3.29)

√
κ̂ℓ(λ) F̂ℓ(λ)B(λ+ ℓδ + δ̃) =

√
κ̂ℓ(λ+ δ)Bℓ(λ)F̂ℓ(λ+ δ). (3.30)

These relations can be proven by explicit calculation with the help of the three formulas of

the deforming polynomial ξℓ(η;λ) (2.67)–(2.69) in § 2.3.
By applying Âℓ(λ + δ) to (2.24) and Âℓ(λ) to (2.25) together with the use of (3.27),

(3.28) and (3.17), we obtain

Aℓ(λ)φℓ,n(x;λ) =

√
κ̂ℓ(λ+ δ)

κ̂ℓ(λ)
fn(λ+ ℓδ + δ̃)

f̂ℓ,n−1(λ+ δ)

f̂ℓ,n(λ)
φℓ,n−1(x;λ+ δ)
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= fn(λ+ ℓδ)φℓ,n−1(x;λ+ δ), (3.31)

Aℓ(λ)
†φℓ,n−1(x;λ+ δ) =

√
κ̂ℓ(λ)

κ̂ℓ(λ+ δ)
bn−1(λ+ ℓδ + δ̃)

f̂ℓ,n(λ)

f̂ℓ,n−1(λ+ δ)
φℓ,n(x;λ)

= bn−1(λ+ ℓδ)φℓ,n(x;λ+ δ). (3.32)

In the calculation use is made of the explicit forms of κ̂ℓ(λ), f̂ℓ,n(λ), fn(λ) and bn(λ) in

the second equalities. This provides a proof of (2.55)–(2.57) without recourse to the shape

invariance. Likewise the above intertwining relations of the forward-backward shift operators

(3.29)–(3.30) give the simple proof of (2.60)–(2.61), respectively, again without recourse to

the shape invariance.

4 Summary and Comments

The Darboux-Crum transformations intertwining the Hamiltonians of the continuous Hahn,

Wilson and Askey-Wilson polynomials with those of the corresponding exceptional polyno-

mials are constructed in a unified fashion. This gives a much simpler expressions (2.52) of

the exceptional Wilson and Askey-Wilson polynomials than those given in a previous paper

[1]. The exceptional continuous Hahn polynomials are new. See the recent work of Gomez-

Ullate et al [26]. It provides the iso-spectral Darboux-Crum transformations intertwining

the Hamiltonians of the Xℓ Laguerre polynomials to that of the radial oscillator and shows

the shape invariance.

The present paper is a discrete version of the recent work [13] which provides the Darboux-

Crum transformations intertwining the Hamiltonians of the radial oscillator/Darboux-Pöshl-

Teller potential (the Laguerre and Jacobi polynomials) with those of the corresponding

exceptional polynomials [14, 15, 27]. This offers a simple proof of the shape invariance of

the ℓ-th exceptional polynomials through the established shape invariance of the original

polynomials as depicted in the following commutative diagram:
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Ĥ(+)
ℓ (λ+ δ)

∝ H(λ+ (ℓ+ 1)δ + δ̃) + c(λ+ δ)

Âℓ(x;λ+ δ)−−−−−−−−−−−→ Ĥ(−)
ℓ (λ+ δ)

∝ Hℓ(λ+ δ) + c(λ+ δ)

established
shape invariance

x
x shape
invariance

Ĥ(+)
ℓ (λ)

∝ H(λ+ ℓδ + δ̃) + c(λ)

Âℓ(x;λ)−−−−−−−−−−−−−→ Ĥ(−)
ℓ (λ)

∝ Hℓ(λ) + c(λ)

original polynomial exceptional polynomial

Two ways of proving shape invariance of the exceptional polynomials system.

The Darboux-Crum transformation also supplies the annihilation/creation operators for

the exceptional polynomial systems through those a(±)(λ) for the original system (2.36)

Âℓ(x;λ)a
(±)(λ+ ℓδ + δ̃)Âℓ(x;λ)

†, (4.1)

which map φℓ,n(x;λ) to φℓ,n±1(x;λ). The analogous formulas work for the exceptional La-

guerre and Jacobi polynomials [13]. As shown in [8, 9], the annihilation/creation operators

together with the Hamiltonian constitute dynamical symmetry algebra of an exactly solvable

system, for example, the q-oscillator algebra [29]. It would be an interesting challenge to

clarify the structure of the dynamical symmetry algebras associated with the exceptional

Askey type polynomials. Likewise the three term recurrence relations for the original poly-

nomials are mapped to those of the exceptional polynomials [28]. However, their significance

and utility are as yet unclear.

In [27], the shape invariance of the infinitely many potentials for the exceptional La-

guerre and Jacobi polynomials are attributed to as many cubic identities among the original

polynomials. The corresponding identities for the cH, W and AW polynomials are given by

(2.49). These identities are quartic in ξℓ and can be proven by using (2.68) and (2.69).

Rodrigues type formulas for the exceptional polynomials Pℓ,n are obtained by multiple

applications of the backward shift operators for the exceptional polynomials Bℓ(λ) (2.61)

or multiple applications of the backward shift operators for the original polynomials B(λ)
(2.30) followed by the intertwining forward shift operator F̂ℓ(λ) (3.22)

Pℓ,n(η(x);λ) =

n−1∏

k=0

Bℓ(λ+ kδ)

bn−1−k(λ+ (ℓ+ k)δ)
· ξℓ(η(x);λ+ (n + 1)δ) (4.2)
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=
F̂ℓ(λ)

f̂ℓ,n(λ)

n−1∏

k=0

B(λ+ (ℓ+ k)δ + δ̃)

bn−1−k(λ+ (ℓ+ k)δ)
· 1, (4.3)

where
∏n−1

k=0 ak = a0a1 · · · an−1 is the ordered product notation of operators. In this con-

nection, it is interesting to compare the forward-backward shift operators for the original

polynomials (2.27)–(2.28), the exceptional polynomials (2.58)–(2.59) and the intertwining

ones (3.20)–(3.21). For the original polynomials, the forward shift operator F(λ) (2.27) is

trivial, whereas the potential dependence is contained in the backward shift operator B(λ)
(2.28). For the exceptional polynomials, the forward shift operator Fℓ(λ) (2.58) is solely de-

termined by the deforming polynomial ξℓ and the potential function enters in the backward

shift operator Bℓ(λ) (2.59). The intertwining ones are really twisted. The twisted part v1(x)

of the potential function enters in F̂ℓ(λ) (3.20), whereas the untwisted part v2(x) remains in

B̂ℓ(λ) (3.21).

Certain generating functions of the exceptional polynomials are easily constructed from

those of the original polynomials through the main result (2.52). Suppose a generating

function of the original orthogonal polynomials Pn is given by

G(t, x;λ) =

∞∑

n=0

αn(λ)Pn(η(x);λ)t
n, (4.4)

in which αn(λ) is a constant. For explicit forms, see [4], eqs. (1.4.11)–(1.4.13) for cH, (1.1.12)–

(1.1.15) for W and (3.1.13)–(3.1.15) for AW. Then eq. (2.52) gives the corresponding gener-

ating function of the exceptional orthogonal polynomials Pℓ,n,

∞∑

n=0

αn(λ+ ℓδ + δ̃)f̂ℓ,n(λ)Pℓ,n(η(x);λ)t
n

=
−i
ϕ(x)

(
v1(x;λ+ ℓδ)ξℓ(η(x+ iγ

2
);λ)G(t, x− iγ

2
;λ+ ℓδ + δ̃)

− v∗1(x;λ+ ℓδ)ξℓ(η(x− iγ
2
);λ)G(t, x+ iγ

2
;λ+ ℓδ + δ̃)

)
. (4.5)

It is well known that the Laguerre polynomials are obtained from the Jacobi polynomials

in a certain limit. Likewise the Wilson polynomials are produced by a certain limit from

the Askey-Wilson polynomials. The corresponding limiting relations for the exceptional La-

guerre and Wilson polynomials are discussed in [15] and [28], respectively. Here we comment

on the limiting relations among the exceptional continuous Hahn polynomials and the excep-

tional Wilson polynomials. The continuous Hahn polynomials are obtained from the Wilson
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polynomials in the following limit:

lim
L→∞

(−2L)−nWn

(
(x+L)2;α1− iL, α3+ iL, α2− iL, α4+ iL

)
= n! pn(x;α1, α2, α3, α4). (4.6)

By taking xW = xcH + L and λW = (acH1 − iL, acH1 + iL, acH2 − iL, acH ∗
2 + iL), and after

appropriate overall rescaling, various quantities of the exceptional Wilson systems reduce to

those of the exceptional continuous Hahn system in this L→ ∞ limit.

The idea of the infinitely many exceptional Laguerre and Jacobi polynomials [14] was ob-

tained while studying various possibility of generating exactly solvable quantum mechanical

systems from the known shape invariant ones, e.g. the radial oscillator and DPT potentials.

Adler’s modification [30, 31] of Crum’s theorem is the most comprehensive way to generate

infinite variety of exactly solvable systems from a known ones [32, 25]. After the formulation

of the discrete quantum mechanics version of Crum’s theorem [33, 34, 35], its modification à

la Adler is now published [36]. Its Appendix has many formulas reminiscent of those given

in this paper.

There are two types of discrete quantum mechanics. In one of them, as discussed in

this paper, difference operators cause shifts in the pure imaginary direction [9]. The for-

mulation of the other type of discrete quantum mechanics, in which difference operators

cause real shifts, is provided in [10]. The corresponding eigenfunctions of the known solvable

systems consist of the orthogonal polynomials of a discrete variable, for example, the (q-)

Racah polynomials, [4, 37]. It is a good challenge to construct the exceptional polynomials

corresponding to these orthogonal polynomials of a discrete variable.
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