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Abstract

The exceptional Racah and q-Racah polynomials are constructed. Together with

the exceptional Laguerre, Jacobi, Wilson and Askey-Wilson polynomials discovered by

the present authors in 2009, they exhaust the generic exceptional orthogonal polyno-

mials of a single variable.

1 Introduction

The exceptional (Xℓ) (q)-Racah polynomials and related exceptional orthogonal polynomials

are constructed as the main part of the eigenfunctions of the shape invariant and exactly

solvable discrete quantum mechanics with real shifts [1], which are deformations of those

governing the corresponding orthogonal polynomials, i.e. the (q)-Racah polynomials, etc.

[2, 3, 4, 5]. The method of deformations is essentially the same as that for the (Xℓ) Wilson and

Askey-Wilson polynomials derived by the present authors in 2009 [6]. Namely, the potential

functions of the original Hamiltonians are multiplicatively deformed in terms of a degree ℓ

eigenpolynomial with twisted parameters. The exceptional (q)-Racah polynomials and the

exceptional Wilson and Askey-Wilson polynomials share many properties. One pronounced

difference is that there are only finitely many exceptional (q)-Racah polynomials in contrast

with the infinitely many types of the exceptional Wilson and Askey-Wilson polynomials.

For example, starting from the (q)-Racah polynomials of the highest degree N , there exist

N −1 different types of the exceptional (q)-Racah polynomials, for which the highest degree

http://arxiv.org/abs/1102.0812v1


is always N . On the other hand, there are infinitely many different types of the exceptional

little q-Jacobi polynomials, since the degrees of the original little q-Jacobi polynomials are

not bounded. These exceptional (Xℓ) polynomials are exceptional in the sense that they

form a complete set of orthogonal polynomials in spite of the fact that the lowest member

of the polynomials has degree ℓ (≥ 1) instead of a constant. Thus they do not satisfy the

three term recurrence relations.

Historically the X1 Laguerre and Jacobi polynomials were discovered by Gómez-Ullate et

al [7] in 2008 within the framework of the Sturm-Liouville theory. Soon they were rederived

as the main part of the eigenfunctions of shape invariant quantum mechanical Hamiltonians

by Quesne and collaborators [8]. In 2009 the present authors derived the infinitely many

Xℓ Laguerre and Jacobi polynomials by deforming the Hamiltonian systems of the radial

oscillator and the Pöschl-Teller potential in terms of the eigenpolynomials of degree ℓ [9,

10, 11]. The examples of Gómez-Ullate et al and Quesne et al are the first members of

the infinitely many exceptional polynomials. For the recent developments of the exceptional

orthogonal polynomials, see [12, 13, 14, 15, 16]. It is worth remarking that the general

knowledge of the solution spaces of exactly solvable (discrete) quantum mechanical systems

governed by Crum’s theorem [17] and its modifications [18, 19, 20, 21] has been very helpful

for the discovery of various exceptional orthogonal polynomials.

The orthogonal polynomials of a discrete variable [2] have played important roles in

many disciplines of physics and mathematics [2, 3, 4]. See [22] for recent applications. Let

us comment on the birth and death processes, the typical examples of Markov chains, which

could be considered as a discrete version of the Fokker-Planck equations [23]. As shown in

[24], the explicit examples of 18 orthogonal polynomials in [1], the (q)-Racah, (q)-(dual)-

Hahn etc, provide exactly solvable birth and death processes [4, 25]. That is, for the given

birth and death rates {B(x), D(x)} which define the Hamiltonian (2.1), the corresponding

transition probabilities are given explicitly, not in a general spectral representation form of

Karlin-McGregor [26]. The exceptional versions presented here also provides ample examples

of exactly solvable birth and death processes.

The present paper is organised as follows. In section two, the basic principles of the

discrete quantum mechanics with real shifts are briefly reviewed with an emphasis on the

shape invariance. The details of the Racah and q-Racah polynomials are recapitulated in

section three. The exceptional Racah and q-Racah polynomials are introduced in section
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four. The intertwining relations connecting the original (q)-Racah and the exceptional (q)-

Racah polynomials are explored in section five. These two sections are the main part of this

paper. Several exceptional orthogonal polynomials, the dual (q)-Hahn and the little q-Jacobi

polynomials are derived from the exceptional (q)-Racah polynomials in section six through

certain limiting processes. The final section is for a summary and comments.

2 General Setting: shape invariance

Let us recapitulate the essence of the discrete quantum mechanics with real shifts developed

in [1]. The Hamiltonian H = (Hx,y) is a tridiagonal real symmetric (Jacobi) matrix and its

rows and columns are indexed by non-negative integers x and y, x, y = 0, 1, . . . , xmax, either

finite (xmax = N) or infinite (xmax = ∞). The Hamiltonian H has a form

H def
= −

√
B(x) e∂

√
D(x)−

√
D(x) e−∂

√
B(x) +B(x) +D(x), (2.1)

Hx,y = −
√
B(x)D(x+ 1) δx+1,y −

√
B(x− 1)D(x) δx−1,y +

(
B(x) +D(x)

)
δx,y, (2.2)

in which the two functions B(x) and D(x) are real and positive but vanish at the boundary:

B(x) > 0, D(x) > 0, D(0) = 0 ; B(xmax) = 0 for finite case. (2.3)

The Schrödinger equation is the eigenvalue problem for a hermitian matrix H (nmax = N or

∞),

Hφn(x) = Enφn(x) (n = 0, 1, . . . , nmax), 0 = E0 < E1 < E2 < · · · . (2.4)

The Hamiltonian (2.1) can be expressed in a factorised form:

H = A†A, A = (Ax,y), A† = ((A†)x,y) = (Ay,x), (x, y = 0, 1, . . . , xmax), (2.5)

A def
=

√
B(x)− e∂

√
D(x), A† =

√
B(x)−

√
D(x) e−∂, (2.6)

Ax,y =
√
B(x) δx,y −

√
D(x+ 1) δx+1,y, (A†)x,y =

√
B(x) δx,y −

√
D(x) δx−1,y. (2.7)

The zero mode Aφ0(x) = 0 (φ0(x) > 0) is easily obtained: φ0(x)
2 =

∏x−1
y=0

B(y)
D(y+1)

, with

the normalization φ0(0) = 1 (convention:
∏n−1

k=n ∗ = 1). We adopt the standard euclidean

inner product ( , ) of two real functions on the grid as
(
f, g

) def
=

∑xmax

x=0 f(x)g(x). Then the

orthogonality relation reads

(
φn, φm

)
=

1

d2n
δnm (n,m = 0, 1, . . . , nmax). (2.8)
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Here 1/d2n is the normalization constant to be specified later.

Shape invariance, a sufficient condition for the exact solvability [1, 27, 28, 29], is realised

by specific dependence of the potential functions on a set of parameters λ = (λ1, λ2, . . .),

to be denoted by B(x;λ), D(x;λ), A(λ), H(λ), En(λ), φn(x;λ) etc. The shape invariance

condition is

A(λ)A(λ)† = κA(λ+ δ)†A(λ+ δ) + E1(λ), (2.9)

where δ is a certain shift of parameters and κ is a positive constant. It should be stressed

that the above definition is much stronger than the original definition by Gendenshtein [30].

The shape invariance condition (2.9) combined with the Crum’s theorem [17, 19, 20, 21]

implies that the entire energy spectrum and the excited states eigenfunctions are expressed

in terms of E1(λ) and φ0(x;λ) as follows:

En(λ) =
n−1∑

s=0

κsE1(λ+ sδ), (2.10)

φn(x;λ) ∝ A(λ)†A(λ+ δ)†A(λ+ 2δ)† · · ·A(λ+ (n− 1)δ)†φ0(x;λ+ nδ). (2.11)

We have also

A(λ)φn(x;λ) =
1√

B(0;λ)
fn(λ)φn−1

(
x;λ+ δ

)
, (2.12)

A(λ)†φn−1

(
x;λ+ δ

)
=

√
B(0;λ) bn−1(λ)φn(x;λ), (2.13)

where fn(λ) and bn−1(λ) are the factors of the energy eigenvalue, En(λ) = fn(λ)bn−1(λ).

For the (q)-Racah and the other polynomials to be discussed in the present paper, the

eigenfunction has the following factorised form,

φn(x;λ) = φ0(x;λ)P̌n(x;λ), P̌n(x;λ)
def
= Pn(η(x;λ);λ), (2.14)

where Pn(η(x;λ);λ) is a polynomial of degree n in the sinusoidal coordinate η(x;λ). The

sinusoidal coordinate considered here is a monotone increasing function of x satisfying the

boundary condition η(0;λ) = 0 [1, 29]. We choose the normalization

Pn(0;λ) = 1, (2.15)

and set P̌−1(x;λ) = 0. For later convenience, let us remark on the relation

Pn(η(1;λ);λ) = P̌n(1;λ) = 1− En(λ)
B(0;λ)

. (2.16)
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The orthogonality relation (2.8) becomes

xmax∑

x=0

φ0(x;λ)
2P̌n(x;λ)P̌m(x;λ) =

1

dn(λ)2
δnm (n,m = 0, 1, . . . , nmax). (2.17)

The forward shift operator F(λ) = (Fx,y(λ)), the backward shift operator B(λ) = (Bx,y(λ))

and the similarity transformed Hamiltonian H̃(λ) = (H̃x,y(λ)) (x, y = 0, 1, . . . , xmax) are

defined by

F(λ)
def
=

√
B(0;λ)φ0(x;λ+ δ)−1 ◦ A(λ) ◦ φ0(x;λ)

= B(0;λ)ϕ(x;λ)−1(1− e∂), (2.18)

B(λ) def
=

1√
B(0;λ)

φ0(x;λ)
−1 ◦ A(λ)† ◦ φ0(x;λ+ δ)

=
1

B(0;λ)

(
B(x;λ)−D(x;λ)e−∂

)
ϕ(x;λ), (2.19)

H̃(λ)
def
= φ0(x;λ)

−1 ◦ H(λ) ◦ φ0(x;λ) = B(λ)F(λ)

= B(x;λ)(1− e∂) +D(x;λ)(1− e−∂), (2.20)

where the auxiliary functions ϕ(x) is defined by [1]

ϕ(x;λ)
def
=

√
B(0;λ)

B(x;λ)

φ0(x;λ+ δ)

φ0(x;λ)
=
η(x+ 1;λ)− η(x;λ)

η(1;λ)
, ϕ(0;λ) = 1. (2.21)

Their action on the polynomials is (n = 0, 1, . . . , nmax)

F(λ)P̌n(x;λ) = fn(λ)P̌n−1(x;λ+ δ), (2.22)

B(λ)P̌n−1(x;λ+ δ) = bn−1(λ)P̌n(x;λ), (2.23)

H̃(λ)P̌n(x;λ) = En(λ)P̌n(x;λ). (2.24)

The above difference equation (2.24) for the polynomial Pn reads explicitly as

B(x)
(
Pn(η(x))− Pn(η(x+ 1))

)
+D(x)

(
Pn(η(x))− Pn(η(x− 1))

)
= EnPn(η(x)), (2.25)

in which the parameter dependence is suppressed for simplicity.

3 Original Systems: (q)-Racah polynomials

Here we present various properties of the Racah (R) and the q-Racah (qR) polynomials as

explored in [1]. In general there are four cases of possible parameter choices indexed by
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(ǫ, ǫ′) = (±1,±1). Here we restrict ourselves to the (ǫ, ǫ′) = (1, 1) case for simplicity of

presentation.

The set of parameters λ, which is different from the standard one (α, β, γ, δ) [5], its shift

δ and κ are

R : λ = (a, b, c, d), δ = (1, 1, 1, 1), κ = 1, (3.1)

qR : qλ = (a, b, c, d), δ = (1, 1, 1, 1), κ = q−1, 0 < q < 1, (3.2)

where qλ stands for q(λ1,λ2,...) = (qλ1 , qλ2, . . .). We introduce a new parameter d̃ defined by

d̃
def
=

{
a + b+ c− d− 1 : R
abcd−1q−1 : qR

. (3.3)

The Hamiltonian is a finite dimensional matrix and the maximal values of x and n are

xmax = nmax = N and we could choose

R : a = −N or b = −N or c = −N,

qR : a = q−N or b = q−N or c = q−N , (3.4)

to ensures the boundary condition for B, B(xmax) = 0. The potential functions B(x;λ) and

D(x;λ) are

B(x;λ) =





−(x+ a)(x+ b)(x+ c)(x+ d)

(2x+ d)(2x+ 1 + d)
: R

−(1− aqx)(1− bqx)(1− cqx)(1− dqx)

(1− dq2x)(1− dq2x+1)
: qR

, (3.5)

D(x;λ) =






−(x+ d− a)(x+ d− b)(x+ d− c)x

(2x− 1 + d)(2x+ d)
: R

−d̃ (1− a−1dqx)(1− b−1dqx)(1− c−1dqx)(1− qx)

(1− dq2x−1)(1− dq2x)
: qR

. (3.6)

The parameter ranges are restricted by the positivity of B(x;λ) and D(x;λ). When we need

to specify them, we adopt the following choice of the parameter ranges:

R : a = −N, a+ b > d > 0, 0 < c < 1 + d,

qR : a = q−N , 0 < ab < d < 1, qd < c < 1. (3.7)

The energy eigenvalue and the sinusoidal coordinate are

En(λ) =
{
n(n + d̃) : R

(q−n − 1)(1− d̃qn) : qR
, η(x;λ) =

{
x(x+ d) : R
(q−x − 1)(1− dqx) : qR

. (3.8)
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The eigenfunctions have the factorised form (2.14) and the orthogonal polynomials are the

Racah and the q-Racah polynomials:

P̌n(x;λ) = Pn(η(x;λ);λ) =





4F3

(−n, n+ d̃, −x, x+ d

a, b, c

∣∣∣ 1
)

: R

4φ3

(q−n, d̃qn, q−x, dqx

a, b, c

∣∣∣ q ; q
)

: qR

(3.9)

=

{
Rn(η(x;λ); a− 1, d̃− a, c− 1, d− c) : R

Rn(1 + d+ η(x;λ); aq−1, d̃a−1, cq−1, dc−1|q) : qR
. (3.10)

Here Rn(· · · ) are the standard notation in [5]. The auxiliary function ϕ(x;λ) (2.21) reads

ϕ(x;λ) =





2x+ d+ 1

d+ 1
: R

q−x − dqx+1

1− dq
: qR

. (3.11)

The constants fn(λ) and bn(λ) appearing in (2.12)–(2.13) are

fn(λ) = En(λ), bn(λ) = 1. (3.12)

The orthogonality measure φ0(x;λ)
2 and the normalisation constants dn(λ)

2 are

φ0(x;λ)
2 =






(a, b, c, d)x
(1 + d− a, 1 + d− b, 1 + d− c, 1)x

2x+ d

d
: R

(a, b, c, d ; q)x

(a−1dq, b−1dq, c−1dq, q ; q)x d̃x
1− dq2x

1− d
: qR

, (3.13)

dn(λ)
2 =





(a, b, c, d̃)n

(1 + d̃− a, 1 + d̃− b, 1 + d̃− c, 1)n

2n + d̃

d̃

×(−1)N (1 + d− a, 1 + d− b, 1 + d− c)N

(d̃+ 1)N(d+ 1)2N
: R

(a, b, c, d̃ ; q)n

(a−1d̃q, b−1d̃q, c−1d̃q, q ; q)n dn
1− d̃q2n

1− d̃

×(−1)N (a−1dq, b−1dq, c−1dq ; q)N d̃
Nq

1

2
N(N+1)

(d̃q ; q)N(dq ; q)2N
: qR

. (3.14)

4 Deformed Systems: Xℓ (q)-Racah polynomials

For each positive integer ℓ = 1, 2, . . . , N − 1, we can construct a shape invariant system by

deforming the original system (ℓ = 0) in terms of a degree ℓ eigenpolynomial ξℓ of twisted

parameters.
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We set

xℓmax
def
= N − ℓ, nℓ

max
def
= N − ℓ, (4.1)

and take

R : a = −N or b = −N,

qR : a = q−N or b = q−N . (4.2)

The deforming polynomial ξℓ, which is a polynomial of degree ℓ in η(x;λ+ (ℓ− 1)δ), is

defined from the eigenpolynomial P̌ℓ(x;λ):

ξ̌ℓ(x;λ)
def
= ξℓ(η(x;λ+ (ℓ− 1)δ);λ)

def
= P̌ℓ

(
x; t

(
λ+ (ℓ− 1)δ

))
: R, qR

=





4F3

(−ℓ, ℓ− a− b+ c+ d− 1, −x, x+ d+ ℓ− 1

d− a, d− b, c+ ℓ− 1

∣∣∣ 1
)

: R

4φ3

(q−ℓ, a−1b−1cdqℓ−1, q−x, dqx+ℓ−1

a−1d, b−1d, cqℓ−1

∣∣∣ q ; q
)

: qR
, (4.3)

which satisfies the normalization

ξℓ(0;λ) = 1. (4.4)

Here the twist operator t acting on the set of parameters λ = (λ1, λ2, λ3, λ4) is

t(λ)
def
= (λ4 − λ1, λ4 − λ2, λ3, λ4) : R, qR. (4.5)

This is the most important ingredient of the deformation. For the appropriate parameter

ranges, for example as given in (3.7), the deforming polynomial ξ̌ℓ(x;λ) is positive at integer

points x = 0, 1, . . . , xℓmax + 1, because the polynomial ξℓ(y;λ) has no zeros in the interval

0 ≤ y ≤ η(xℓmax + 1;λ + (ℓ − 1)δ). It satisfies the following two formulas, which will play

important roles in the derivation of various results:

1

ϕ(x;λ+ ℓδ + δ̃)

(
vB1 (x;λ+ ℓδ)− vD1 (x;λ+ ℓδ)e∂

)
ξ̌ℓ(x;λ) = f̂ℓ,0(λ)ξ̌ℓ(x;λ+ δ), (4.6)

1

ϕ(x;λ+ (ℓ− 1)δ + δ̃)

(
vB2 (x;λ+ (ℓ− 1)δ)− vD2 (x;λ+ (ℓ− 1)δ)e−∂

)
ξ̌ℓ(x;λ+ δ)

= b̂ℓ,0(λ)ξ̌ℓ(x;λ). (4.7)

Here vB1 (x;λ), v
B
2 (x;λ), v

D
1 (x;λ), v

D
2 (x;λ) are the factors of the potential functions B(x;λ)

and D(x;λ):

vB1 (x;λ)
def
=





d−1(x+ a)(x+ b) : R
q−x

1− d
(1− aqx)(1− bqx) : qR

, (4.8)
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vB2 (x;λ)
def
=





d−1(x+ c)(x+ d) : R
q−x

1− d
(1− cqx)(1− dqx) : qR

, (4.9)

vD1 (x;λ)
def
=





d−1(x+ d− a)(x+ d− b) : R
q−x

1− d
abd−1(1− a−1dqx)(1− b−1dqx) : qR

, (4.10)

vD2 (x;λ)
def
=





d−1(x+ d− c)x : R
q−x

1− d
c(1− c−1dqx)(1− qx) : qR

, (4.11)

B(x;λ) = −
√
κ

vB1 (x;λ)v
B
2 (x;λ)

ϕ(x;λ+ δ̃)ϕ(x+ 1
2
;λ+ δ̃)

, (4.12)

D(x;λ) = −
√
κ

vD1 (x;λ)v
D
2 (x;λ)

ϕ(x;λ+ δ̃)ϕ(x− 1
2
;λ+ δ̃)

, (4.13)

where δ̃ is

δ̃
def
= (0, 0,−1,−1) : R, qR. (4.14)

The constants f̂ℓ,n(λ) and b̂ℓ,n(λ) are given by

f̂ℓ,n(λ)
def
=





(a + b− d+ n)
c+ 2ℓ+ n− 1

c+ ℓ− 1
: R

q−n(1− abd−1qn)
1− cq2ℓ+n−1

1− cqℓ−1
: qR

, b̂ℓ,n(λ)
def
=

{
c+ ℓ− 1 : R
1− cqℓ−1 : qR

. (4.15)

The eqs. (4.6)–(4.7) are identities relating ξ̌ℓ(x;λ) and ξ̌ℓ(x;λ+ δ). They are reduced to the

identities satisfied by the (basic) hypergeometric functions, (2.74)–(2.75) in [15]. Note that

these two equations (4.6)–(4.7) imply the difference equation for the deforming polynomial,

(
B
(
x; t(λ+ (ℓ− 1)δ)

)
(1− e∂) +D

(
x; t(λ+ (ℓ− 1)δ)

)
(1− e−∂)

)
ξ̌ℓ(x;λ) = Eℓ(t(λ))ξ̌ℓ(x;λ),

(4.16)

which corresponds to (2.24).

Let us introduce new potential functions Bℓ(x;λ) and Dℓ(x;λ) by multiplicatively de-

forming the original ones in terms of the polynomial ξ̌ℓ(x;λ):

Bℓ(x;λ)
def
= B(x;λ+ ℓδ)

ξ̌ℓ(x;λ)

ξ̌ℓ(x+ 1;λ)

ξ̌ℓ(x+ 1;λ+ δ)

ξ̌ℓ(x;λ+ δ)
, (4.17)

Dℓ(x;λ)
def
= D(x;λ+ ℓδ)

ξ̌ℓ(x+ 1;λ)

ξ̌ℓ(x;λ)

ξ̌ℓ(x− 1;λ+ δ)

ξ̌ℓ(x;λ+ δ)
. (4.18)

See the corresponding expressions for the exceptional Wilson and Askey-Wilson polynomials

(30)–(31) of [6] and (2.42)–(2.43) of [15]. They define a deformed Hamiltonian Hℓ(λ) =

9



(Hℓ;x,y(λ)) and other operatorsAℓ(λ) = (Aℓ;x,y(λ)) andAℓ(λ)
† = ((Aℓ(λ)

†)x,y) = (Aℓ;y,x(λ))

(x, y = 0, 1, . . . , xℓmax) by

Hℓ(λ)
def
= Aℓ(λ)

†Aℓ(λ), (4.19)

Aℓ(λ)
def
=

√
Bℓ(x;λ)− e∂

√
Dℓ(x;λ), Aℓ(λ)

† =
√
Bℓ(x;λ)−

√
Dℓ(x;λ) e

−∂ . (4.20)

We have Dℓ(0;λ) = 0 and Bℓ(x
ℓ
max;λ) = 0. The parameter ranges are restricted by the

positivity of Bℓ(x;λ) andDℓ(x;λ). When we need to specify them, we consider the parameter

ranges (3.7).

The deformed system is shape invariant, too:

Aℓ(λ)Aℓ(λ)
† = κAℓ(λ+ δ)†Aℓ(λ+ δ) + Eℓ,1(λ), (4.21)

or equivalently,

√
Bℓ(x+ 1;λ)Dℓ(x+ 1;λ) = κ

√
Bℓ(x;λ+ δ)Dℓ(x+ 1;λ+ δ), (4.22)

Bℓ(x;λ) +Dℓ(x+ 1;λ) = κ
(
Bℓ(x;λ+ δ) +Dℓ(x;λ+ δ)

)
+ Eℓ,1(λ). (4.23)

The proof is straightforward by direct calculation. In order to verify (4.23), use is made of

the two properties of the deforming polynomial ξ̌ℓ(x;λ) (4.6)–(4.7).

The Schrödinger equation of the modified system is (n = 0, 1, . . . , nℓ
max)

Hℓ(λ)φℓ,n(x;λ) = Eℓ,n(λ)φℓ,n(x;λ), Eℓ,n(λ) def
= En(λ+ ℓδ). (4.24)

The ground state φℓ,0(x;λ), which is annihilated by Aℓ(λ), is

φℓ,0(x;λ) =

√√√√
x−1∏

y=0

Bℓ(y;λ)

Dℓ(y + 1;λ)
= ψℓ(x;λ)ξ̌ℓ(x;λ+ δ), (4.25)

ψℓ(x;λ)
def
= φ0(x;λ+ ℓδ)

√
ξ̌ℓ(1;λ)

ξ̌ℓ(x;λ)ξ̌ℓ(x+ 1;λ)
, (4.26)

with the normalisation φℓ,0(0;λ) = 1 and ψℓ(0;λ) = 1. The excited states wavefunctions

have the factorised form as (2.14):

φℓ,n(x;λ) = ψℓ(x;λ)P̌ℓ,n(x;λ). (4.27)

The exceptional (Xℓ) (q)-Racah polynomial P̌ℓ,n(x;λ) is bilinear in the deforming polynomial

ξ̌ℓ and the original polynomial P̌n:

P̌ℓ,n(x;λ)
def
= Pℓ,n(η(x;λ+ ℓδ);λ)
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def
=

1

f̂ℓ,n(λ)

1

ϕ(x;λ+ ℓδ + δ̃)

(
vB1 (x;λ+ ℓδ)ξ̌ℓ(x;λ)P̌n(x+ 1;λ+ ℓδ + δ̃)

− vD1 (x;λ+ ℓδ)ξ̌ℓ(x+ 1;λ)P̌n(x;λ+ ℓδ + δ̃)
)
. (4.28)

This is one of the main results of the present paper to be compared with the similar expres-

sions for the exceptional Laguerre & Jacobi polynomials (2.1)–(2.4) in [12], (2.31),(2.33) &

(3.37),(3.40) of [14], for the exceptional Wilson & Askey-Wilson polynomials (2.52) in [15].

The overall multiplicative factor is so chosen and as to realise the normalisation condition

Pℓ,n(0;λ) = 1, (4.29)

which can be shown by using (2.16). This is a polynomial of degree ℓ + n in η(x;λ + ℓδ).

Note that P̌ℓ,0(x;λ) = ξ̌ℓ(x;λ + δ) due to (4.6), which is obviously a polynomial of degree

ℓ in η(x;λ + ℓδ). The exceptional orthogonal polynomial Pℓ,n(y;λ) has n real zeros in the

interval 0 ≤ y ≤ η(xℓmax;λ+ℓδ) for the appropriate parameter ranges, for example the range

(3.7). It has ℓ extra zeros which are usually complex and lie outside the above interval.

The action of the operators Aℓ(λ) and Aℓ(λ)
† on the eigenfunctions is

Aℓ(λ)φℓ,n(x;λ) =
1√

Bℓ(0;λ)
fℓ,n(λ)φℓ,n−1

(
x;λ + δ

)
, (4.30)

Aℓ(λ)
†φℓ,n−1

(
x;λ+ δ

)
=

√
Bℓ(0;λ) bℓ,n−1(λ)φℓ,n(x;λ), (4.31)

fℓ,n(λ) = fn(λ+ ℓδ), bℓ,n−1(λ) = bn−1(λ+ ℓδ). (4.32)

Like the corresponding formulas of the original systems (2.12)–(2.13), these are simple con-

sequences of the shape invariance and the normalisation of the eigenfunctions. In the next

section, we will derive these formulas through the intertwining relations and without re-

course to the shape invariance of the deformed system (4.21). The forward shift operator

Fℓ(λ) = (Fℓ;x,y(λ)), the backward shift operator Bℓ(λ) = (Bℓ;x,y(λ)) and the similarity

transformed Hamiltonian H̃ℓ(λ) = (H̃ℓ;x,y(λ)) (x, y = 0, 1, . . . , xℓmax) are defined by

Fℓ(λ)
def
=

√
Bℓ(0;λ)ψℓ(x;λ+ δ)−1 ◦ Aℓ(λ) ◦ ψℓ(x;λ)

=
B(0,λ+ ℓδ)

ϕ(x;λ+ ℓδ)ξ̌ℓ(x+ 1;λ)

(
ξ̌ℓ(x+ 1;λ+ δ)− ξ̌ℓ(x;λ+ δ)e∂

)
, (4.33)

Bℓ(λ)
def
=

1√
Bℓ(0;λ)

ψℓ(x;λ)
−1 ◦ Aℓ(λ)

† ◦ ψℓ

(
x;λ+ δ

)

=
1

B(0;λ+ ℓδ)

1

ξ̌ℓ(x;λ+ δ)

11



×
(
B(x;λ + ℓδ)ξ̌ℓ(x;λ)−D(x;λ+ ℓδ)ξ̌ℓ(x+ 1;λ)e−∂

)
ϕ(x;λ+ ℓδ), (4.34)

H̃ℓ(λ)
def
= ψℓ(x;λ)

−1 ◦ Hℓ(λ) ◦ ψℓ(x;λ) = Bℓ(λ)Fℓ(λ)

= B(x;λ+ ℓδ)
ξ̌ℓ(x;λ)

ξ̌ℓ(x+ 1;λ)

( ξ̌ℓ(x+ 1;λ+ δ)

ξ̌ℓ(x;λ + δ)
− e∂

)

+D(x;λ+ ℓδ)
ξ̌ℓ(x+ 1;λ)

ξ̌ℓ(x;λ)

( ξ̌ℓ(x− 1;λ+ δ)

ξ̌ℓ(x;λ+ δ)
− e−∂

)
. (4.35)

Compare with the similar expressions for the Xℓ Laguerre & Jacobi polynomials (3.2)–(3.5)

in [12], and for the Xℓ Wilson & Askey-Wilson polynomials (2.58)–(2.63) in [15]. Their

action on the polynomials is (n = 0, 1, . . . , nℓ
max)

Fℓ(λ)P̌ℓ,n(x;λ) = fℓ,n(λ)P̌ℓ,n−1(x;λ+ δ), (4.36)

Bℓ(λ)P̌ℓ,n−1(x;λ+ δ) = bℓ,n−1(λ)P̌ℓ,n(x;λ), (4.37)

H̃ℓ(λ)P̌ℓ,n(x;λ) = Eℓ,n(λ)P̌ℓ,n(x;λ), Eℓ,n(λ) = En(λ+ ℓδ). (4.38)

The orthogonality relation is

xℓ
max∑

x=0

ψℓ(x;λ)
2

ξ̌ℓ(1;λ)
P̌ℓ,n(x;λ)P̌ℓ,m(x;λ) =

δnm
dℓ,n(λ)2

(n,m = 0, 1, . . . , nℓ
max). (4.39)

The normalisation constants dℓ,n(λ)
2 are

dℓ,n(λ)
2 = dn(λ+ℓδ+δ̃)2

f̂ℓ,n(λ)

b̂ℓ,n(λ)

1

sℓ(λ)
= dn(λ+ℓδ)

2 f̂ℓ,n(λ)

b̂ℓ,n(λ)

b̂0,n(λ+ ℓδ)

f̂0,n(λ+ ℓδ)

s0(λ+ ℓδ)

sℓ(λ)
, (4.40)

where sℓ(λ) is defined by

sℓ(λ)
def
=





− (d− a)(d− b)

(c+ ℓ− 1)(d+ ℓ)
: R

−abd−1qℓ
(1− a−1d)(1− b−1d)

(1− cqℓ−1)(1− dqℓ)
: qR

. (4.41)

This will be proved in the next section. In the second equality of (4.40) use is made of the

explicit forms of dn(λ)
2 (3.14). Note the positivity of the quantities, f̂ℓ,n(λ), b̂ℓ,n(λ), sℓ(λ) >

0.

5 Intertwining Relations

Here we demonstrate that the Hamiltonian systems of the original polynomials reviewed

in § 3 and the deformation summarised in § 4 are intertwined by a discrete version of the
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Darboux-Crum transformation. This provides simple expressions of the eigenfunctions of the

deformed systems (4.28) in terms of those of the original system, which is exactly solvable.

It also delivers a simple proof of the shape invariance of the deformed system. The line of

arguments goes parallel with those for the other exceptional orthogonal polynomials [14, 15].

First let us discuss the general scheme. For an adjoint pair of well-defined operators

Âℓ(λ) and Âℓ(λ)
†, let us define a pair of Hamiltonians Ĥ(±)

ℓ (λ)

Ĥ(+)
ℓ (λ)

def
= Âℓ(λ)

†Âℓ(λ), Ĥ(−)
ℓ (λ)

def
= Âℓ(λ)Âℓ(λ)

†, (5.1)

and consider their Schrödinger equations, that is, the eigenvalue problems:

Ĥ(±)
ℓ (λ)φ̂

(±)
ℓ,n (x;λ) = Ê (±)

ℓ,n (λ)φ̂
(±)
ℓ,n (x;λ) (n = 0, 1, 2, . . .). (5.2)

Obviously the pair of Hamiltonians are intertwined:

Ĥ(+)
ℓ (λ)Âℓ(λ)

† = Âℓ(λ)
†Âℓ(λ)Âℓ(λ)

† = Âℓ(λ)
†Ĥ(−)

ℓ (λ), (5.3)

Âℓ(λ)Ĥ(+)
ℓ (λ) = Âℓ(λ)Âℓ(λ)

†Âℓ(λ) = Ĥ(−)
ℓ (λ)Âℓ(λ). (5.4)

If Âℓ(λ)φ̂
(+)
ℓ,n (x;λ) 6= 0 and Âℓ(λ)

†φ̂
(−)
ℓ,n (x;λ) 6= 0, then the two systems are exactly iso-

spectral and there is one-to-one correspondence between the eigenfunctions:

Ê (+)
ℓ,n (λ) = Ê (−)

ℓ,n (λ), (5.5)

φ̂
(−)
ℓ,n (x;λ) ∝ Âℓ(λ)φ̂

(+)
ℓ,n (x;λ), φ̂

(+)
ℓ,n (x;λ) ∝ Âℓ(λ)

†φ̂
(−)
ℓ,n (x;λ). (5.6)

In the following we will present the explicit forms of the operators Âℓ(λ) and Âℓ(λ)
†,

which intertwine the original systems in § 3 and the deformed systems in § 4. The operators

Âℓ(λ) = (Âℓ;x,y(λ)) and Âℓ(λ)
† = ((Âℓ(λ)

†)x,y) = (Âℓ;y,x(λ)) (x, y = 0, 1, . . . , xℓmax) are

defined by

Âℓ(λ)
def
=

√
B̂ℓ(x;λ)− e∂

√
D̂ℓ(x;λ), Âℓ(λ)

† =

√
B̂ℓ(x;λ)−

√
D̂ℓ(x;λ) e

−∂, (5.7)

where B̂ℓ(x;λ) and D̂ℓ(x;λ) are given by

B̂ℓ(x;λ)
def
= B

(
x; t(λ+ (ℓ− 1)δ)

) ξ̌ℓ(x+ 1;λ)

ξ̌ℓ(x;λ)
, (5.8)

D̂ℓ(x;λ)
def
= D

(
x; t(λ+ (ℓ− 1)δ)

) ξ̌ℓ(x− 1;λ)

ξ̌ℓ(x;λ)
. (5.9)
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Compare with the similar expressions for theXℓ Laguerre & Jacobi polynomials (2.10)–(2.15)

& (3.13)–(3.18) in [14], and for the Xℓ Wilson & Askey-Wilson polynomials (3.7)–(3.9) in

[15].

Since det Âℓ(λ) =
∏xℓ

max

x=0

√
B̂ℓ(x;λ) 6= 0 for the parameter range under consideration,

the operators Âℓ(λ) and Âℓ(λ)
† have no zero modes. By using the two formulas (4.6)–(4.7),

we can show that

Ĥ(+)
ℓ (λ) = κ̂ℓ(λ)

(
H(λ+ ℓδ + δ̃) + f̂ℓ,0(λ)b̂ℓ,0(λ)

)
, (5.10)

Ĥ(−)
ℓ (λ) = κ̂ℓ(λ)

(
Hℓ(λ) + f̂ℓ,0(λ)b̂ℓ,0(λ)

)
, (5.11)

where κ̂ℓ(λ) is

κ̂ℓ(λ)
def
=

{
1 : R
(abd−1qℓ)−1 : qR

. (5.12)

Therefore the original system with the shifted parameters (H(λ+ ℓδ+ δ̃)) and the deformed

system (Hℓ(λ)) are exactly isospectral. Note that the maximal value of x for H(λ+ ℓδ+ δ̃)

is N − ℓ (= xℓmax). Based on the results (5.10)–(5.11), we have

φ̂
(+)
ℓ,n (x;λ) = φn(x;λ+ ℓδ + δ̃), φ̂

(−)
ℓ,n (x;λ) = φℓ,n(x;λ), (5.13)

Ê (±)
ℓ,n (λ) = κ̂ℓ(λ)

(
En(λ+ ℓδ + δ̃) + f̂ℓ,0(λ)b̂ℓ,0(λ)

)
= κ̂ℓ(λ)

(
Eℓ,n(λ) + f̂ℓ,0(λ)b̂ℓ,0(λ)

)
. (5.14)

The correspondence of the pair of eigenfunctions φ̂
(±)
ℓ,n (x) with their own normalisation spec-

ified in the preceding sections are related by

φ̂
(−)
ℓ,n (x;λ) =

√
ξ̌ℓ(1;λ)sℓ(λ)

Âℓ(λ)φ̂
(+)
ℓ,n (x;λ)√

κ̂ℓ(λ) f̂ℓ,n(λ)
, (5.15)

φ̂
(+)
ℓ,n (x;λ) =

1√
ξ̌ℓ(1;λ)sℓ(λ)

Âℓ(λ)
†φ̂

(−)
ℓ,n (x;λ)√

κ̂ℓ(λ) b̂ℓ,n(λ)
. (5.16)

Let us introduce the operators F̂ℓ(λ) = (F̂ℓ;x,y(λ)) and B̂ℓ(λ) = (B̂ℓ;x,y(λ)) (x, y = 0, 1, . . . ,

xℓmax) defined by

F̂ℓ(λ)
def
=

√
ξ̌ℓ(1;λ)sℓ(λ)ψℓ(x;λ)

−1 ◦ Âℓ(λ)√
κ̂ℓ(λ)

◦ φ0(x;λ + ℓδ + δ̃), (5.17)

B̂ℓ(λ)
def
=

1√
ξ̌ℓ(1;λ)sℓ(λ)

φ0(x;λ+ ℓδ + δ̃)−1 ◦ Âℓ(λ)
†

√
κ̂ℓ(λ)

◦ ψℓ(x;λ). (5.18)
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Their explicit forms are:

F̂ℓ(λ) =
1

ϕ(x;λ+ ℓδ + δ̃)

(
vB1 (x;λ+ ℓδ)ξ̌ℓ(x;λ)e

∂ − vD1 (x;λ+ ℓδ)ξ̌ℓ(x+ 1;λ)
)
, (5.19)

B̂ℓ(λ) =
1

ξ̌ℓ(x;λ)

1

ϕ(x;λ+ (ℓ− 1)λ+ δ̃)

(
vB2 (x;λ+ (ℓ− 1)δ)− vD2 (x;λ+ (ℓ− 1)δ)e−∂

)
.

(5.20)

Compare with the similar expressions for the Xℓ Wilson & Askey-Wilson polynomials (3.20)–

(3.21) in [15]. The operators F̂ℓ(λ) and B̂ℓ(λ) act as the forward and backward shift operators

connecting the original polynomials Pn and the exceptional polynomials Pℓ,n:

F̂ℓ(λ)P̌n(x;λ+ ℓδ + δ̃) = f̂ℓ,n(λ)P̌ℓ,n(x;λ), (5.21)

B̂ℓ(λ)P̌ℓ,n(x;λ) = b̂ℓ,n(λ)P̌n(x;λ+ ℓδ + δ̃). (5.22)

The former relation (5.21) with the explicit form of F̂ℓ(λ) (5.19) provides the explicit ex-

pression (4.28) of the exceptional orthogonal polynomials. In terms of F̂ℓ(λ) and B̂ℓ(λ), the

relations (5.10)–(5.11) become

B̂ℓ(λ)F̂ℓ(λ) = H̃(λ+ ℓδ + δ̃) + f̂ℓ,0(λ)b̂ℓ,0(λ), (5.23)

F̂ℓ(λ)B̂ℓ(λ) = H̃ℓ(λ) + f̂ℓ,0(λ)b̂ℓ,0(λ). (5.24)

The other simple consequences of these relations are

Ê (±)
ℓ,n (λ) = κ̂ℓ(λ)f̂ℓ,n(λ)b̂ℓ,n(λ), En(λ+ ℓδ) = f̂ℓ,n(λ)b̂ℓ,n(λ)− f̂ℓ,0(λ)b̂ℓ,0(λ). (5.25)

The ℓ2 inner product for φℓ,n and φℓ,m can be calculated in the following way:

(
φℓ,n( · ;λ), φℓ,m( · ;λ)

)

=
1

f̂ℓ,m(λ)

√
ξ̌ℓ(1;λ)sℓ(λ)

κ̂ℓ(λ)

(
φℓ,n( · ;λ), Âℓ(λ)φm( · ;λ+ ℓδ + δ̃)

)

=
1

f̂ℓ,m(λ)

√
ξ̌ℓ(1;λ)sℓ(λ)

κ̂ℓ(λ)

(
Âℓ(λ)

†φℓ,n( · ;λ), φm( · ;λ+ ℓδ + δ̃)
)

=
b̂ℓ,n(λ)

f̂ℓ,m(λ)
ξ̌ℓ(1;λ)sℓ(λ)

(
φn( · ;λ+ ℓδ + δ̃), φm( · ;λ+ ℓδ + δ̃)

)

= ξ̌ℓ(1;λ)
δnm

dn(λ+ ℓδ + δ̃)2
b̂ℓ,n(λ)

f̂ℓ,n(λ)
sℓ(λ), (5.26)

where we have used (5.13), (5.16) and (2.8). This gives a proof of (4.40).
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It is interesting to note that the operator Âℓ(λ) intertwines those of the original and

deformed systems A(λ) and Aℓ(λ):

Âℓ(λ+ δ)A(λ+ ℓδ + δ̃) = Aℓ(λ)Âℓ(λ), (5.27)

Âℓ(λ)A(λ+ ℓδ + δ̃)† = Aℓ(λ)
†Âℓ(λ+ δ). (5.28)

In terms of the definitions of the forward shift operators F(λ) (2.18), Fℓ(λ) (4.33), F̂ℓ(λ)

(5.17), and B(λ) (2.19), Bℓ(λ) (4.34), the above relations are rewritten as:

ŝℓ(λ+ δ)F̂ℓ(λ+ δ)F(λ+ ℓδ + δ̃) = ŝℓ(λ)Fℓ(λ)F̂ℓ(λ), (5.29)

ŝℓ(λ)F̂ℓ(λ)B(λ+ ℓδ + δ̃) = ŝℓ(λ+ δ)Bℓ(λ)F̂ℓ(λ+ δ), (5.30)

where ŝℓ(λ) is

ŝℓ(λ)
def
= κ̂ℓ(λ)×

{
c+ ℓ− 1 : R
1− cqℓ−1 : qR

. (5.31)

These relations can be proven by explicit calculation with the help of the two formulas of

the deforming polynomial ξ̌ℓ(x;λ) (4.6)–(4.7).

By applying Âℓ(λ+δ) and Âℓ(λ) to (2.12) and (2.13) (with replacement λ → λ+ℓδ+ δ̃)

respectively, together with the use of (5.27), (5.28) and (5.16), we obtain

Aℓ(λ)φℓ,n(x;λ) =

√
κ̂ℓ(λ+ δ)

κ̂ℓ(λ)

sℓ(λ)

sℓ(λ+ δ)

ξ̌ℓ(1;λ)

ξ̌ℓ(1;λ+ δ)

1

B(0;λ+ ℓδ + δ̃)

f̂ℓ,n−1(λ+ δ)

f̂ℓ,n(λ)

× fn(λ+ ℓδ + δ̃)φℓ,n−1(x;λ+ δ)

=
1√

Bℓ(0;λ)
fn(λ+ ℓδ)φℓ,n−1(x;λ+ δ), (5.32)

Aℓ(λ)
†φℓ,n−1(x;λ+ δ) =

√
κ̂ℓ(λ)

κ̂ℓ(λ+ δ)

sℓ(λ+ δ)

sℓ(λ)

ξ̌ℓ(1;λ+ δ)

ξ̌ℓ(1;λ)
B(0;λ+ ℓδ + δ̃)

f̂ℓ,n(λ)

f̂ℓ,n−1(λ+ δ)

× bn−1(λ+ ℓδ + δ̃)φℓ,n(x;λ)

=
√
Bℓ(0;λ) bn−1(λ+ ℓδ)φℓ,n(x;λ+ δ). (5.33)

In the calculation use is made of the explicit forms of κ̂ℓ(λ), sℓ(λ), Bℓ(x;λ), f̂ℓ,n(λ), fn(λ)

and bn(λ) in the second equalities. This provides a proof of (4.30)–(4.32) without recourse

to the shape invariance of the deformed system. Likewise the above intertwining relations of

the forward-backward shift operators (5.29)–(5.30) give a proof of (4.36)–(4.37), respectively,

again without recourse to the shape invariance.
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Since the q-Racah polynomial P̌ qR
n (x;λ) (3.10) is related to the Askey-Wilson polynomial

pn(cosx; a, b, c, d|q) as [5]

P̌ qR
n (x;λ) =

d
n
2

(a, b, c ; q)n
pn
(
1
2
(d

1

2 qx + d−
1

2 q−x); ad−
1

2 , bd−
1

2 , cd−
1

2 , d
1

2 | q
)
, (5.34)

many formulas for the q-Racah case in sections 4 and 5 are obtained essentially from those

for the Askey-Wilson case [15] by the following replacement:

eix
AW

= d
1

2 qx+
1

2
ℓ, qλ

AW

= (ad−
1

2 , bd−
1

2 , cd−
1

2 , d
1

2 ). (5.35)

6 Other Xℓ Polynomials: dual (q)-Hahn, little q-Jacobi

In § 3–§ 5 we have derived the exceptional Racah and q-Racah Hamiltonian systems by

deforming those of the Racah and q-Racah in parallel in terms of a degree ℓ polynomial

with twisted parameters. It is well known that the Racah polynomials can be obtained from

the q-Racah polynomials by taking the standard q → 1 limit with an appropriate overall

rescaling. The same limiting procedure could be applied to derive the exceptional Racah

polynomials from the exceptional q-Racah polynomials.

Likewise various orthogonal polynomials of a discrete variable can be obtained from the q-

Racah polynomials by many different limiting procedures with/without the q → 1 limit. Here

we present two such examples: the dual (q)-Hahn and the little q-Jacobi polynomials and the

corresponding exceptional polynomials. The former is a finite dimensional example and the

latter is infinite dimensional. It should be stressed, however, that there is no guarantee that

the limiting procedure among the undeformed polynomials could be lifted to produce the

corresponding exceptional polynomials. For example, the Hermite polynomials are known to

be obtained from the Jacobi or the Laguerre polynomials by a certain limit procedure. But

that does not produce exceptional Hermite polynomials from the known exceptional Jacobi

or Laguerre polynomials.

6.1 Dual (q)-Hahn

In this subsection we present the ordinary and the exceptional dual Hahn (dH) and the dual

q-Hahn (dqH) polynomials. Like as (q)-Racah cases, these are finite dimensional: xmax =

nmax = N and xℓmax = nℓ
max = N − ℓ. The dual q-Hahn case is obtained from the q-Racah
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case by the following limit:

qλ
qR

= (q−N , a, t, abq−1), qR
t→0−−→ dqH. (6.1)

The dual Hahn case is obtained from the dual q-Hahn case by taking q → 1 limit with an

appropriate overall rescaling.

6.1.1 Original systems

The Hamiltonian systems thus obtained belong to the ǫ = 1 case of [1] and they are listed

as follows:

{
λ = (a, b, N) : dH
qλ = (a, b, qN) : dqH

, δ = (1, 0,−1) : dH, dqH, κ =

{
1 : dH
q−1 : dqH

, (6.2)

{
a > 0, b > 0 : dH
0 < a < 1, 0 < b < 1, : dqH

, (6.3)

B(x;λ) =






(x+ a)(x+ a + b− 1)(N − x)

(2x− 1 + a + b)(2x+ a + b)
: dH

(qx−N − 1)(1− aqx)(1− abqx−1)

(1− abq2x−1)(1− abq2x)
: dqH

, (6.4)

D(x;λ) =





x(x+ b− 1)(x+ a+ b+N − 1)

(2x− 2 + a+ b)(2x− 1 + a + b)
: dH

aqx−N−1 (1− qx)(1− abqx+N−1)(1− bqx−1)

(1− abq2x−2)(1− abq2x−1)
: dqH

, (6.5)

En(λ) =
{
n : dH
q−n − 1 : dqH

, η(x;λ) =

{
x(x+ a+ b− 1) : dH
(q−x − 1)(1− abqx−1) : dqH

, (6.6)

P̌n(x;λ) = Pn(η(x;λ);λ) =






3F2

(−n, x+ a+ b− 1, −x
a, −N

∣∣∣ 1
)

: dH

3φ2

(q−n, abqx−1, q−x

a, q−N

∣∣∣ q ; q
)

: dqH

=

{
Rn(η(x;λ) ; a− 1, b− 1, N) : dH

Rn(1 + abq−1 + η(x;λ) ; aq−1, bq−1, N |q) : dqH
, (6.7)

φ0(x;λ)
2 =





N !

x! (N − x)!

(a)x (2x+ a+ b− 1)(a+ b)N
(b)x (x+ a+ b− 1)N+1

: dH

(q ; q)N
(q ; q)x (q ; q)N−x

(a, abq−1 ; q)x
(abqN , b ; q)x ax

1− abq2x−1

1− abq−1
: dqH

, (6.8)

dn(λ)
2 =





N !

n! (N − n)!

(a)n (b)N−n

(b)N
× (b)N

(a+ b)N
: dH

(q ; q)N
(q ; q)n (q ; q)N−n

(a ; q)n(b ; q)N−n

(b; q)N an
× (b ; q)N a

N

(ab; q)N
: dqH

, (6.9)
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ϕ(x;λ) =





2x+ a + b

a + b
: dH

q−x − abqx

1− ab
: dqH

, fn(λ) = En(λ), bn(λ) = 1 : dH, dqH. (6.10)

6.1.2 Deformed systems

We restrict the parameter range of (6.3) as follows:
{
a > 0, b > 1 : dH
0 < a < 1, 0 < b < q, : dqH

. (6.11)

The data for the Hamiltonian systems of the exceptional dual (q)-Hahn polynomials are as

follows:

ξ̌ℓ(x;λ) = ξℓ(η(x;λ+ (ℓ− 1)δ);λ)

= P̌ℓ

(
x; t

(
λ+ (ℓ− 1)δ

))
, t(λ)

def
= (λ1 + λ2 + λ3 − 1, 1− λ3, 1− λ2) : dHdqH

=





3F2

(−ℓ, a+ b+ x+ ℓ− 2, −x
a+ b+N − 1, b− 1

∣∣∣ 1
)

: dH

3φ2

(q−ℓ, abqx+ℓ−2, q−x

abqN−1, bq−1

∣∣∣ q ; q
)

: dqH

, (6.12)

vB1 (x;λ) =






(x−N)(x+ a)

a+ b− 1
: dH

q−x (1− qx−N)(1− aqx)

1− abq−1
: dqH

, (6.13)

vB2 (x;λ) =





x+ a+ b− 1

a+ b− 1
: dH

q−x1− abqx−1

1− abq−1
: dqH

, (6.14)

vD1 (x;λ) =





(x+ a + b+N − 1)(x+ b− 1)

a + b− 1
: dH

q−xb−1q1−N (1− abqx+N−1)(1− bqx−1)

1− abq−1
: dqH

, (6.15)

vD2 (x;λ) =






− x

a+ b− 1
: dH

−abq−1 1− qx

1− abq−1
: dqH

, (6.16)

δ̃ = (0,−1, 0) : dH, dqH, (6.17)

f̂ℓ,n(λ) =

{ −b −N + n+ 1 : dH

−b−1q1−N(1− bqN−n−1) : dqH
, b̂ℓ,n(λ) = 1 : dH, dqH, (6.18)

κ̂ℓ(λ) =

{
1 : dH
bqN−ℓ−1 : dqH

, sℓ(λ) =





(1− b)
a+ b+N − 1

a+ b+ ℓ− 1
: dH

qℓ−N(1− b−1q)
1− abqN−1

1− abqℓ−1
: dqH

, (6.19)
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ŝℓ(λ) = κ̂ℓ(λ) : dH, dqH. (6.20)

Note that f̂ℓ,n(λ), sℓ(λ) < 0 and b̂ℓ,n(λ) > 0. All the formulas in § 3–§ 5 are satisfied.

6.2 Little q-Jacobi

In this subsection we present the ordinary and the exceptional little q-Jacobi (lqJ) poly-

nomials. They are infinite dimensional: xmax = nmax = ∞ and xℓmax = nℓ
max = ∞. The

Hamiltonian system of the little q-Jacobi polynomials is obtained from that of the q-Racah

polynomials by the following limit:

qλ
qR

= (q−N , aqN+1t−1, bq, t−1), qR
t→0−−→ alqH

N→∞−−−→ lqJ, (6.21)

where alqH stands for the alternative q-Hahn system (with λ = (aq, bq, N)) in § 5.3.1 of [1].

6.2.1 Original system

The data of the shape invariant Hamiltonian system whose eigenfunctions are described by

the little q-Jacobi polynomials are as follows [1]:

qλ = (a, b), δ = (1, 1), κ = q−1, 0 < a < q−1, 0 < b < q−1, (6.22)

B(x;λ) = a(q−x − bq), D(x;λ) = q−x − 1, (6.23)

En(λ) = (q−n − 1)(1− abqn+1), η(x;λ) = 1− qx, (6.24)

P̌n(x;λ) = Pn(η(x;λ);λ) = 3φ1

(q−n, abqn+1, q−x

bq

∣∣∣ q ; a−1qx
)

= (−a)−nq−
1

2
n(n+1) (aq ; q)n

(bq ; q)n
2φ1

(q−n, abqn+1

aq

∣∣∣ q ; qx+1
)

= (−a)−nq−
1

2
n(n+1) (aq ; q)n

(bq ; q)n
pn(1− η(x;λ); a, b|q), (6.25)

φ0(x;λ)
2 =

(bq ; q)x
(q ; q)x

(aq)x, (6.26)

dn(λ)
2 =

(bq, abq ; q)n a
nqn

2

(q, aq ; q)n

1− abq2n+1

1− abq
× (aq ; q)∞

(abq2 ; q)∞
, (6.27)

ϕ(x;λ) = qx, fn(λ) = En(λ), bn(λ) = 1. (6.28)

6.2.2 Deformed system

The data for the exceptional little q-Jacobi polynomials are as follows:

ξ̌ℓ(x;λ) = ξℓ(η(x;λ+ (ℓ− 1)δ);λ)
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= P̌ℓ(x; t(λ+ (ℓ− 1)δ)), t(λ)
def
= (−λ1 − 2, λ2)

= 3φ1

(q−ℓ, a−1bqℓ−1, q−x

bqℓ

∣∣∣ q ; aqx+ℓ+1
)
, (6.29)

vB1 (x;λ) = −aqx+1, vB2 (x;λ) = 1− bqx+1, (6.30)

vD1 (x;λ) = −qx, vD2 (x;λ) = 1− qx, (6.31)

δ̃ = (1,−1), (6.32)

f̂ℓ,n(λ) = q−n(1− aqn+1)
1− bq2ℓ+n

1− bqℓ
, b̂ℓ,n(λ) = 1− bqℓ, (6.33)

κ̂ℓ(λ) = (aqℓ+1)−1, sℓ(λ) =
1

1− bqℓ
, (6.34)

ŝℓ(λ) = κ̂ℓ(λ)(1− bqℓ). (6.35)

Note that f̂ℓ,n(λ), b̂ℓ,n(λ), sℓ(λ) > 0. All the formulas in § 3–§ 5 are satisfied.

7 Summary and Comments

The Racah and the q-Racah polynomials are the most generic members of the orthogonal

polynomials of a discrete variable satisfying second order difference equations. By deforming

the discrete quantum mechanical systems governing these polynomials in terms of degree

ℓ eigenpolynomials, the exceptional Racah and q-Racah polynomials are obtained as the

main part of eigenfunctions of the deformed systems, which are shape invariant and exactly

solvable. By certain limiting procedures, the exceptional dual (q)-Hahn polynomials and the

exceptional little q-Jacobi polynomials are derived. The deformation process goes parallel

with that for the exceptional Wilson and Askey-Wilson polynomials. Some of the charac-

teristics of the quantum mechanics with real shifts are the cause of complications which led

to the delayed discovery. The method of deriving the exceptional polynomials is new to the

theory of orthogonal polynomials. As for the parameter ranges in which the orthogonality

weight functions are positive, we have made a quite conservative arguments. It is quite

possible that for a fixed ℓ the valid parameter range could be enlarged than those given in

the text. On the other hand, the difference equations for the original and the exceptional

orthogonal polynomials, (2.22)–(2.25), (4.36)–(4.38) and (5.21)–(5.22) are purely algebraic

and they hold for any parameter values.

With the understanding of all the generic exceptional orthogonal polynomials as solu-

tions of exactly solvable quantum mechanical systems, the next challenge would be the
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construction of the exceptionals of various reduced cases, for example, the Morse potential,

the Meixner-Pollaczek and the Krawtchouk cases, etc. Finding multivariable generalisation

is truly interesting but its feasibility is as yet unclear.
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