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Abstract

Infinitely many Casoratian identities are derived for the Wilson and Askey-Wilson
polynomials in parallel to the Wronskian identities for the Hermite, Laguerre and Ja-
cobi polynomials, which were reported recently by the present authors. These identi-
ties form the basis of the equivalence between eigenstate adding and deleting Darboux
transformations for solvable (discrete) quantum mechanical systems. Similar identities
hold for various reduced form polynomials of the Wilson and Askey-Wilson polyno-
mials, e.g. the continuous q-Jacobi, continuous (dual) (q-)Hahn, Meixner-Pollaczek,
Al-Salam-Chihara, continuous (big) q-Hermite, etc.

1 Introduction

In a previous paper [1] we reported infinitely many Wronskian identities for the Hermite,

Laguerre and Jacobi polynomials. They relate the Wronskians of polynomials of twisted pa-

rameters to the Wronskians of polynomials of shifted parameters. Here we will present similar

identities for the Wilson and Askey-Wilson polynomials and their reduced form polynomials

[2, 3, 4]. The Wronskians are now replaced by their difference analogues, the Casoratians.

The basic logic of deriving these identities is the same for the Jacobi polynomials etc

and for the Askey-Wilson polynomials etc; the equivalence between the multiple Darboux-

Crum transformations [5]–[9] in terms of pseudo virtual state wave functions and those in
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terms of eigenfunctions with shifted parameters . In other words, the duality between eigen-

states adding and deleting transformations. The virtual and pseudo virtual state wave func-

tions have been reported in detail for the differential and difference Schrödinger equations

[1, 10, 11, 12, 13]. The virtual state wave functions are the essential ingredient for construct-

ing multi-indexed orthogonal polynomials. The pseudo virtual state wave functions play the

main role in the above mentioned duality. These Casoratian (Wronskian) identities could

be understood as the consequences of the forward and backward shift relations and the dis-

crete symmetries of the governing Schrödinger equations. The forward and backward shift

relations are the characteristic properties of the classical orthogonal polynomials , satisfying

second order differential and difference equations. These polynomials depend on a set of

parameters, to be denoted symbolically by λ. The forward shift operator F(λ) connects

P̌n(x;λ) to P̌n−1(x;λ + δ), with δ being the shift of the parameters. For the definition of

P̌n(x;λ), see (2.3) and the paragraph below it. The backward shift operator B(λ) connects

them in the opposite direction, see (2.18). In the context of quantum mechanical reformu-

lation of the classical orthogonal polynomials [14], the principle underlying the forward and

backward shift relations is called shape invariance [15].

These identities imply the equality of the deformed potential functions with the twisted

and shifted parameters in the difference Schrödinger equations. This in turn guarantees

the equivalence of all the other eigenstate wave functions for proper parameter ranges if the

self-adjointness of the deformed Hamiltonian and other requirements of quantum mechanical

formulation are satisfied. In contrast, the Casoratian identities (3.61)–(3.62), (3.63)–(3.64)

are purely algebraic relations and they are valid at generic values of the parameters.

The present work is most closely related in its contents with [12], which formulates

deformations of the Wilson and Askey-Wilson polynomials through Casoratians of virtual

state wave functions. The relationship of the present work with [12] is the same as that of

[1] with [10, 11]; derivation of Wronskian-Casoratian identities which reflect the solvability

of classical orthogonal polynomials revealed through deformations.

This paper is organised as follows. The formulation of the Wilson and Askey-Wilson poly-

nomials through the difference Schrödinger equations is recapitulated in section two. The

basic formulas of these polynomials necessary for the present purposes are summarised in

§ 2.1. The pseudo virtual states for the Wilson and Askey-Wilson polynomials are introduced

and discussed in § 2.2. Starting with the general properties the Casoratian determinants in
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§ 3.1, the eigenstates adding Darboux transformations are recapitulated in § 3.2. The eigen-

states deleting Darboux transformations are summarised in § 3.3. The Casoratian identities

for the Wilson and Askey-Wilson polynomials are presented in § 3.4. This is the main part

of the paper. In section four the Casoratian identities are discussed for the other classical or-

thogonal polynomials which are obtained by reductions from the Wilson and Askey-Wilson

polynomials. The basic formulas of the reduced polynomials are summarised in sections

§ 4.1 and § 4.2. The pseudo virtual state wave functions for the reduced cases are introduced

in § 4.1.1, § 4.2.2 and § 4.2.4. The Casoratian identities for the reduced polynomials are

discussed in § 4.3. The final section is for a summary and comments.

2 Pseudo Virtual States in Discrete Quantum Mechan-

ics

Various properties of the classical orthogonal polynomials can be understood in a unified

fashion by considering them as the main part of the eigenfunctions of a certain self-adjoint

operator (called the Hamiltonian or the Schrödinger operator) acting on a Hilbert space. This

scheme works for those classical orthogonal polynomials satisfying second order difference

equations (with real or pure imaginary shifts, e.g. the Askey-Wilson [16] and q-Racah

polynomials [17]) as well as for those obeying second order differential equations, e.g. the

Jacobi polynomials. We refer to [14] for the general introduction of the quantum mechanical

reformulation of the classical orthogonal polynomials.

Here we first summarise the basic structure of discrete quantum mechanics with pure

imaginary shifts in one dimension. Next in § 2.2 we introduce the pseudo virtual state

wave functions, the key ingredient of the eigenstates adding transformations. The general

definitions and formulas are followed by explicit ones for the Wilson and Askey-Wilson poly-

nomials, which are two most generic members of Askey scheme of hypergeometric orthogonal

polynomials with pure imaginary shifts.

2.1 Basic formulation

Here we summarise the basic definitions and formulas of discrete quantum mechanics, with

the Wilson and Askey-Wilson polynomials as explicit examples. We start from the following
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factorised positive semi-definite Hamiltonian
(
(e±γpf)(x) = f(x∓ iγ)

)
:

H(λ)
def
=

√
V (x;λ) eγp

√
V ∗(x;λ) +

√
V ∗(x;λ) e−γp

√
V (x;λ)− V (x;λ)− V ∗(x;λ) (2.1)

= A(λ)†A(λ),

A(λ)
def
= i

(
e

γ

2
p
√
V ∗(x;λ)− e−

γ

2
p
√
V (x;λ)

)
,

A(λ)†
def
= −i

(√
V (x;λ) e

γ
2
p −

√
V ∗(x;λ) e−

γ
2
p
)
, (2.2)

which is an analytic difference operator acting on holomorphic functions of x on a strip,

x1 < Rex < x2, (x1, x2 ∈ R). Here p = −i∂x is the momentum operator and γ is a real

number. The ∗-operation on an analytic function f(x) =
∑

n anx
n (an ∈ C) is defined

by f ∗(x) = f(x∗)∗ =
∑

n a
∗
nx

n, in which a∗n is the complex conjugation of an. Obviously

f ∗∗(x) = f(x). If a function satisfies f ∗ = f , then it takes real values on the real line. For

the concrete forms of V (x), see (2.7). The branch of
√
V (x) is determined by the requirement

of the self-adjointness of the Hamiltonian [14, 16].

The following type of factorisation of the eigenfunctions is characteristic to all the systems

related with the classical orthogonal polynomials [14], e.g. Jacobi [10], Askey-Wilson [12]

and q-Racah [17]:

H(λ)φn(x;λ) = En(λ)φn(x;λ), φn(x;λ) = φ0(x;λ)P̌n(x;λ) (n = 0, 1, 2, . . .), (2.3)

in which φ0(x;λ) is the ground state eigenfunction and P̌n(x;λ) = Pn

(
η(x);λ

)
is a polyno-

mial of degree n in a certain function η(x), called the sinusoidal coordinate (2.8) [18]. We

adopt the convention of ‘real’ eigenfunctions, φ∗
0(x;λ) = φ0(x;λ) and P̌

∗
n(x;λ) = P̌n(x;λ).

The eigenfunctions form an orthogonal basis

(φn, φm)
def
=

∫ x2

x1

dx φ∗
n(x;λ)φm(x;λ) =

∫ x2

x1

dx φ0(x;λ)
2P̌n(x;λ)P̌m(x;λ)

= hn(λ)δnm (n,m = 0, 1, 2, . . .), 0 < hn(λ) <∞. (2.4)

The defining domain and the parameters for the Wilson (W) and Askey-Wilson (AW) poly-

nomials are:

W : x1 = 0, x2 = ∞, γ = 1, λ = (a1, a2, a3, a4), δ = (1
2
, 1
2
, 1
2
, 1
2
), κ = 1,

AW : x1 = 0, x2 = π, γ = log q, qλ = (a1, a2, a3, a4), δ = (1
2
, 1
2
, 1
2
, 1
2
), κ = q−1, (2.5)

where qλ stands for q(λ1,λ2,...) = (qλ1, qλ2 , . . .) and 0 < q < 1. Here δ is the shift of the

parameters, which appears in various relations, for example, (2.16)–(2.18) and (2.20)–(2.23)
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and κ is a multiplicative constant of the potential function V and others which appears

in various formulas, e.g. (2.20), (3.38), (3.45)-(3.46), (3.53)-(3.54). The parameters are

restricted by

{a∗1, a
∗
2, a

∗
3, a

∗
4} = {a1, a2, a3, a4} (as a set); W : Re ai > 0, AW : |ai| < 1. (2.6)

Here are the fundamental data:

V (x;λ) =

{ (
2ix(2ix+ 1)

)−1∏4
j=1(aj + ix) : W

(
(1− e2ix)(1− qe2ix)

)−1∏4
j=1(1− aje

ix) : AW
, (2.7)

η(x) =

{
x2 : W
cosx : AW

, ϕ(x) =

{
2x : W
2 sin x : AW

, (2.8)

En(λ) =

{
n(n+ b1 − 1), b1

def
= a1 + a2 + a3 + a4 : W

(q−n − 1)(1− b4q
n−1), b4

def
= a1a2a3a4 : AW

, (2.9)

φn(x;λ) = φ0(x;λ)P̌n(x;λ), (2.10)

P̌n(x;λ) = Pn

(
η(x);λ

)
=

{
Wn

(
η(x); a1, a2, a3, a4

)
: W

pn
(
η(x); a1, a2, a3, a4|q

)
: AW

=





(a1 + a2, a1 + a3, a1 + a4)n

×4F3

(−n, n+ b1 − 1, a1 + ix, a1 − ix

a1 + a2, a1 + a3, a1 + a4

∣∣∣ 1
)

: W

a−n
1 (a1a2, a1a3, a1a4 ; q)n

×4φ3

(q−n, b4q
n−1, a1e

ix, a1e
−ix

a1a2, a1a3, a1a4

∣∣∣q ; q
)

: AW

, (2.11)

φ0(x;λ) =





√(
Γ(2ix)Γ(−2ix)

)−1∏4
j=1 Γ(aj + ix)Γ(aj − ix) : W

√
(e2ix, e−2ix ; q)∞

∏4
j=1(aje

ix, aje−ix ; q)−1
∞ : AW

. (2.12)

Here Wn and pn in (2.11) are the Wilson and the Askey-Wilson polynomials defined in [4]

and the symbols (a)n and (a; q)n are (q-)shifted factorials. The auxiliary function ϕ(x) (2.8)

connects V (x;λ+ δ) with V (x− iγ
2
;λ) (2.20) and φ0(x;λ+ δ) with φ0(x+ iγ

2
;λ) (2.21) and

others.

The most basic ingredient of this formulation is the ground state eigenfunction φ0(x;λ),

which is the zero mode of the operator A(λ):

A(λ)φ0(x;λ) = 0 ⇒
√
V ∗(x− iγ

2
;λ)φ0(x− iγ

2
;λ) =

√
V (x+ iγ

2
;λ)φ0(x+ iγ

2
;λ). (2.13)

The essential property of the ground state wave function φ0(x;λ) (2.13) is that it has no zeros

in the domain x1 < x < x2, and its square gives the weight function of the classical orthogonal
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polynomials (2.4). In other words, the quantum mechanical reformulation provides the

weight functions of the classical orthogonal polynomials based only on the data (V (x)) of

the difference equation of the polynomials (2.14), (2.15). The situation is the same for the

(q-)Racah polynomials, etc [17]. This reformulation, in turn, opens various possibilities for

deformations. By similarity transforming the difference Schrödinger equation (2.3) in terms

of the ground state eigenfunction, we obtain the second order difference operator H̃(λ) acting

on the polynomial eigenfunctions

H̃(λ)
def
= φ0(x;λ)

−1 ◦ H(λ) ◦ φ0(x;λ)

= V (x;λ)(eγp − 1) + V ∗(x;λ)(e−γp − 1), (2.14)

H̃(λ)P̌n(x;λ) = En(λ)P̌n(x;λ), (2.15)

and H̃(λ) = B(λ)F(λ) is square root free. This is the conventional difference equation for

the Wilson and Askey-Wilson polynomials and their reduced form polynomials. The forward

and backward shift operators F(λ) and B(λ), which express the shape invariance relations,

are defined by

F(λ)
def
= φ0(x;λ+ δ)−1 ◦ A(λ) ◦ φ0(x;λ) = iϕ(x)−1(e

γ

2
p − e−

γ

2
p), (2.16)

B(λ)
def
= φ0(x;λ)

−1 ◦ A(λ)† ◦ φ0(x;λ+ δ) = −i
(
V (x;λ)e

γ

2
p − V ∗(x;λ)e−

γ

2
p
)
ϕ(x), (2.17)

and their action on the polynomials is

F(λ)P̌n(x;λ) = fn(λ)P̌n−1(x;λ+ δ), B(λ)P̌n−1(x;λ+ δ) = bn−1(λ)P̌n(x;λ). (2.18)

These are universal relations valid for all the polynomials in the Askey scheme. In the above

equations, the factors of the energy eigenvalue, fn(λ) and bn−1(λ), En(λ) = fn(λ)bn−1(λ),

for the Wilson and Askey-Wilson polynomials are given by

fn(λ) =

{
−n(n + b1 − 1) : W
q

n
2 (q−n − 1)(1− b4q

n−1) : AW
, bn−1(λ) =

{
−1 : W
q−

n
2 : AW

, (2.19)

and the auxiliary function ϕ(x) is defined in (2.8). Here bn−1(λ) given above should not be

confused with b1 and b4 as given in (2.9).

At the basis of these relations are the shape covariant properties of the potential and the

ground state eigenfunctions [12]:

V (x;λ+ δ) = κ−1ϕ(x− iγ)

ϕ(x)
V (x− iγ

2
;λ), (2.20)
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φ0(x;λ+ δ) = ϕ(x)
√
V (x+ iγ

2
;λ)φ0(x+ iγ

2
;λ), (2.21)

(
⇒ φ0(x;λ) = ϕ(x)

√
V (x+ iγ

2
;λ− δ)φ0(x+ iγ

2
;λ− δ) (2.22)

= ϕ(x)
√
V ∗(x− iγ

2
;λ− δ)φ0(x− iγ

2
;λ− δ)

)
. (2.23)

For the purpose of rational extensions of these classical orthogonal polynomials, deforma-

tions of difference Schrödinger equations (2.1)–(2.3) have proved fruitful, rather than those of

the above difference equations (2.14)–(2.15). The analogue of multiple Darboux transforma-

tions for the difference Schrödinger equations (2.1)–(2.3) had been formulated by the present

authors some years ago [8, 9]. By choosing special types of non-eigen seed solutions , called

the virtual state wave functions [14], the multi-indexed Wilson and Askey-Wilson polynomi-

als had been constructed [12]. In those cases, the deformed systems are exactly iso-spectral

to the original system.

In the present paper, we consider non-isospectral deformations by using the pseudo virtual

state wave functions [1, 11] as in the parallel situations for the Jacobi polynomials etc. [1].

2.2 Pseudo virtual state wave functions

The pseudo virtual state wave functions are defined from the eigenfunctions by twisting the

parameters, λ → t(λ), t2 = Id, based on the discrete symmetry of the original Hamiltonian

system (2.1).

For a certain choice of the twist operator t, the twisted potential function V ′(x;λ)

V ′(x;λ)
def
= V

(
x; t(λ)

)
, (2.24)

satisfies the relations

V (x;λ)V ∗(x− iγ;λ) = α(λ)2V ′(x;λ)V ′∗(x− iγ;λ), (2.25)

V (x;λ) + V ∗(x;λ) = α(λ)
(
V ′(x;λ) + V ′∗(x;λ)

)
− α′(λ), (2.26)

with real constants α(λ) and α′(λ). The second condition (2.26) determines the sign of

α(λ). These mean a linear relation between the two Hamiltonians:

H(λ) = α(λ)H′(λ) + α′(λ), (2.27)

H′(λ)
def
=

√
V ′(x;λ) eγp

√
V ′∗(x;λ) +

√
V ′∗(x;λ) e−γp

√
V ′(x;λ)

− V ′(x;λ)− V ′∗(x;λ). (2.28)
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This in turn implies that the twisted eigenfunction φ̃v(x;λ)

φ̃v(x;λ)
def
= φv

(
x; t(λ)

)
(v ∈ Z≥0), (2.29)

satisfies the original Schrödinger equation with Ẽv(λ):

H′(λ)φ̃v(x;λ) = E ′
v(λ)φ̃v(x;λ), E ′

v(λ)
def
= Ev

(
t(λ)

)
(2.30)

⇓

H(λ)φ̃v(x;λ) = Ẽv(λ)φ̃v(x;λ), Ẽv(λ)
def
= α(λ)Ev

(
t(λ)

)
+ α′(λ). (2.31)

If the following condition

Ẽv(λ) = E−v−1(λ) (2.32)

is satisfied, the twisted eigenfunction φ̃v(x;λ) is called a pseudo virtual state wave function.

For the Wilson and the Askey-Wilson polynomials, the appropriate twisting is:

t(λ)
def
= (1− λ1, 1− λ2, 1− λ3, 1− λ4),
(
or

{
aj → 1− aj : W
aj → qa−1

j : AW
(j = 1, . . . , 4)

)
, (2.33)

with

α(λ) =

{
1 : W
b4q

−2 : AW
, α′(λ) = E−1(λ) =

{
−(b1 − 2) : W

−(1− q)(1− b4q
−2) : AW

, (2.34)

Ẽv(λ) = E−v−1(λ) =

{
−(v + 1)(b1 − v− 2) : W

−(1 − qv+1)(1− b4q
−v−2) : AW

. (2.35)

The pseudo virtual state wave function φ̃v reads

φ̃v(x;λ) = φ̃0(x;λ)ξ̌v(x;λ), (2.36)

φ̃0(x;λ)
def
= φ0

(
x; t(λ)

)
, ξ̌v(x;λ)

def
= ξv

(
η(x);λ

) def
= P̌v

(
x; t(λ)

)
= Pv

(
η(x); t(λ)

)
. (2.37)

The twisted potential is linearly related to the original potential by

V ′(x;λ) = α(λ)−1ϕ(x− iγ)

ϕ(x)
V ∗(x− iγ;λ), (2.38)

in which the auxiliary function ϕ(x) is defined in (2.8).
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3 Casoratian Identities for the Equivalence between

Eigenstates Adding and Deleting Transformations

The main tool for deriving these identities is multiple Darboux (Darboux-Crum) transforma-

tions, in terms of which various deformations of solvable quantum mechanics are obtained.

In discrete quantum mechanics [8, 9], as demonstrated for the multi-indexed Wilson and

Askey-Wilson polynomial cases [12], the deformed potential functions and the deformed

eigenfunctions etc can be expressed neatly by the Casoratians, which are the discrete ana-

logues of the Wronskians.

3.1 Casoratian formulas

First let us summarise the definitions and various properties of Casoratians. The Casorati

determinant of a set of n functions {fj(x)} is defined by

Wγ[f1, . . . , fn](x)
def
= i

1

2
n(n−1) det

(
fk
(
x
(n)
j

))
1≤j,k≤n

, x
(n)
j

def
= x+ i(n+1

2
− j)γ, (3.1)

(for n = 0, we set Wγ[·](x) = 1), which satisfies identities

Wγ[f1, . . . , fn]
∗(x) = Wγ[f

∗
1 , . . . , f

∗
n](x), (3.2)

Wγ[gf1, gf2, . . . , gfn] =
n∏

j=1

g
(
x
(n)
j

)
·Wγ[f1, f2, . . . , fn](x), (3.3)

Wγ

[
Wγ[f1, f2, . . . , fn, g],Wγ[f1, f2, . . . , fn, h]

]
(x)

= Wγ[f1, f2, . . . , fn](x)Wγ[f1, f2, . . . , fn, g, h](x) (n ≥ 0). (3.4)

3.2 Eigenstates adding Darboux transformations

Now let us consider the deformation of the original system (2.1)–(2.4) by multiple Darboux

transformations in terms of M pseudo virtual state wave functions indexed by the degrees

of their polynomial part wave functions. Let D
def
= {d1, d2, . . . , dM} (dj ∈ Z≥0) be a set of

distinct non-negative integers and we use the pseudo virtual state wave functions {φ̃dj(x;λ)},

j = 1, . . . ,M in this order. In the formulas below (3.5)–(3.12), (3.14)–(3.15), the parameter

(λ) dependence is suppressed for simplicity of presentation. The algebraic structure of the

multiple Darboux transformations is the same when the virtual or pseudo virtual state wave

functions or the actual eigenfunctions are used as seed solutions . The system obtained after
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s steps of Darboux transformations in terms of pseudo virtual state wave functions labeled

by {d1, . . . , ds} (s ≥ 1), is

Hd1...ds

def
= Âd1...dsÂ

†
d1...ds

+ Ẽds, (3.5)

Âd1...ds

def
= i

(
e

γ

2
p

√
V̂ ∗
d1...ds

(x)− e−
γ

2
p

√
V̂d1...ds(x)

)
,

Â†
d1...ds

def
= −i

(√
V̂d1...ds(x) e

γ
2
p −

√
V̂ ∗
d1...ds

(x) e−
γ
2
p
)
, (3.6)

V̂d1...ds(x)
def
=

√
V (x− is−1

2
γ)V ∗(x− is+1

2
γ)

×
Wγ[φ̃d1 , . . . , φ̃ds−1

](x+ iγ
2
)

Wγ[φ̃d1 , . . . , φ̃ds−1
](x− iγ

2
)

Wγ[φ̃d1 , . . . , φ̃ds](x− iγ)

Wγ [φ̃d1 , . . . , φ̃ds ](x)
, (3.7)

φd1...ds n(x)
def
= Âd1...dsφd1...ds−1 n(x) (n = 0, 1, 2, . . .),

φ̃d1...ds v(x)
def
= Âd1...dsφ̃d1...ds−1 v(x) (v ∈ D\{d1, . . . , ds}), (3.8)

Hd1...dsφd1...ds n(x) = Enφd1...ds n(x) (n = 0, 1, 2, . . .),

Hd1...ds φ̃d1...ds v(x) = Ẽvφ̃d1...ds v(x) (v ∈ D\{d1, . . . , ds}). (3.9)

The eigenfunctions and the pseudo virtual state wave functions in all steps are ‘real’ by

construction, φ∗
d1...ds n

(x) = φd1...ds n(x), φ̃
∗
d1...ds v

(x) = φ̃d1...ds v(x) and they have Casoratian

expressions:

φd1...ds n(x) = A(x)Wγ[φ̃d1 , . . . , φ̃ds, φn](x),

φ̃d1...ds v(x) = A(x)Wγ [φ̃d1, . . . , φ̃ds, φ̃v](x), (3.10)

A(x) =




√∏s−1
j=0 V (x+ i( s

2
− j)γ)V ∗(x− i( s

2
− j)γ)

Wγ [φ̃d1 , . . . , φ̃ds ](x− iγ
2
)Wγ[φ̃d1 , . . . , φ̃ds](x+ iγ

2
)




1

2

.

These are essentially the same as those obtained for the multi-indexed polynomials as given

in (2.18)–(2.24) of [12], which have been derived in terms of the virtual state wave functions.

One marked difference from the multi-indexed polynomials case, in which virtual state

wave functions are used, is the appearance of new eigenstates below the original ground state

(Ẽdj < 0) as many as those used pseudo virtual state wave functions:

Φ̆d1...ds;dj(x)
def
= Cs(x)×

(s−1∏

k=0

V
(
x+ i( s

2
− k)γ

)
V ∗

(
x− i( s

2
− k)γ

))− 1

4

×
Wγ[φ̃d1 , . . . ,

˘̃
φdj , . . . , φ̃ds](x)√

Wγ [φ̃d1, . . . , φ̃ds](x− iγ
2
)Wγ [φ̃d1 , . . . , φ̃ds ](x+ iγ

2
)
, (3.11)

10



Hd1...dsΦ̆d1...ds;dj (x) = ẼdjΦ̆d1...ds;dj(x) (j = 1, 2, . . . , s), (3.12)

in which Cs(x) is given by

Cs(x) =
φ0(x;λ− sδ)φ0(x; t(λ− sδ))

ϕ(x)
, (3.13)

satisfying the pseudo constant condition Cs(x − iγ) = Cs(x). In the numerator of (3.11),

Wγ [φ̃d1 , . . . ,
˘̃
φdj , . . . , φ̃ds](x) means that φ̃dj is excluded from the Casoratian. Since the

Hamiltonian Hd1...ds can be rewritten as

Hd1...ds = Âd1...d̆j ...dsdj
Â†

d1...d̆j ...dsdj
+ Ẽdj , (3.14)

the new eigenstates are the zero modes of the operator Â†

d1...d̆j ...dsdj
:

Â†

d1...d̆j ...dsdj
Φ̆d1...ds;dj (x) = 0 (j = 1, 2, . . . , s). (3.15)

For the elementary Darboux transformation, s = 1, the above zero mode (3.11) reads

simply

Φ̆d1;d1(x) ∝
φ0(x;λ− δ)√

ξ̌d1(x− iγ
2
;λ)ξ̌d1(x+ iγ

2
;λ)

, (3.16)

for which the discrete symmetry relation (2.25), the zero mode equation (2.13) and the shape

covariant relation of φ0 (2.21) are used. It is straightforward to verify Â†
d1
Φ̆d1;d1(x) = 0. This

wave function indeed describes an eigenstate of Hd1 , so long as the polynomial ξ̌d1(x;λ) does

not have zeros in a certain domain (see § 3.4 of [12], Appendix A of [16]) and the parameter

ranges are narrowed than the original theory. For example, for the Wilson and Askey-Wilson,

they are

d1 : even; W : Re aj >
1
2
, AW : |aj| < q

1

2 (j = 1, . . . , 4), (3.17)

in contrast with the original parameter range given in (2.6).

It is illuminating to compare the above zero mode (3.16) with the corresponding ones in

the ordinary quantum mechanics. For example, for the Pöschl-Teller potential
(
λ = (g, h),

δ = (1, 1)
)
,

U(x;λ) =
g(g − 1)

sin2 x
+
h(h− 1)

cos2 x
− (g + h)2,

the pseudo virtual state wave function and the corresponding zero mode, which is simply a

reciprocal, are
(
t(λ) = (1− g, 1− h)

)
[1]:

φ̃v(x;λ) = (sin x)1−g(cosx)1−hP
( 1
2
−g, 1

2
−h)

v (cos 2x),

11



φ̃v(x;λ)
−1 =

(sin x)g−1(cosx)h−1

P
( 1
2
−g, 1

2
−h)

v (cos 2x)
=

φ0(x;λ− δ)

P
( 1
2
−g, 1

2
−h)

v (cos 2x)
.

It should be stressed that for the virtual state wave functions [12], the function Cs(x)

(3.13) is not a pseudo constant Cs(x) 6= Cs(x−iγ). That is, in the Darboux transformations in

terms of virtual states, the wave function (3.11) with (3.13) does not satisfy the Schrödinger

equation (3.12). The function Cs(x) (3.13) plays an important role to guarantee for the newly

added eigenstates (3.11) to belong to the proper Hilbert space of the deformed Hamiltonian

Hd1...ds (3.5).

Let us introduce appropriate notation for the quantities after the full deformation using

the M pseudo virtual state wave functions specified by D
def
= {d1, d2, . . . , dM} (dj ∈ Z≥0).

We use simplified notation Hd1...dM = HD, Âd1...dM = ÂD, V̂d1...dM (x) = V̂D(x), φd1...dM n(x) =

φD n(x), Φ̆d1...dM ;dj(x) = Φ̆D;dj(x) etc,

HD = ÂDÂ
†
D + ẼdM . (3.18)

The Casoratians of eigenfunctions, the pseudo virtual state wave functions and mixed ones

are factorised into a polynomial in η(x) (the sinusoidal coordinate) and a kinematical factor.

For eigenfunctions only we have

Wγ [φd1 , φd2, . . . , φdM ](x;λ) = ĀD(x;λ)Ξ̄D

(
η(x);λ

)
, (3.19)

ĀD(x;λ)
def
=

M∏

j=1

φ0(x
(M)
j ;λ) · ϕM(x), (3.20)

Ξ̄D

(
η(x);λ

) def
= ϕM(x)−1Wγ[P̌d1 , P̌d2 , . . . , P̌dM ](x;λ). (3.21)

Here we use the symbol x
(n)
j = x+i(n+1

2
−j) as introduced in (3.1) and the auxiliary function

ϕM(x) [9] is defined by:

ϕM(x)
def
= ϕ(x)[

M
2
]

M−2∏

k=1

(
ϕ(x− ik

2
γ)ϕ(x+ ik

2
γ)
)[M−k

2
]

=
∏

1≤j<k≤M

η(x
(M)
j )− η(x

(M)
k )

ϕ(i j
2
γ)

×

{
1 : W

(−2)
1

2
M(M−1) : AW

, (3.22)

and ϕ0(x) = ϕ1(x) = 1. Here [x] denotes the greatest integer not exceeding x.

The Casoratian containing the M pseudo virtual state wave functions only reads:

Wγ[φ̃d1 , φ̃d2 , . . . , φ̃dM ](x;λ) = AD(x;λ)ΞD

(
η(x);λ

)
, (3.23)
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AD(x;λ)
def
=

M∏

j=1

φ̃0

(
x
(M)
j ;λ

)
· ϕM(x), (3.24)

ΞD

(
η(x);λ

) def
= ϕM(x)−1Wγ [ξ̌d1, ξ̌d2 , . . . , ξ̌dM ](x;λ). (3.25)

The Casoratian containing the M pseudo virtual state wave functions and one eigenfunction

reads:

Wγ [φ̃d1, φ̃d2 , . . . , φ̃dM , φn](x;λ) = AD,n(x;λ)PD,n

(
η(x);λ

)
, (3.26)

AD,n(x;λ)
def
=

M+1∏

j=1

φ̃0

(
x
(M+1)
j ;λ

)
· ν(x;λ−Mδ)ϕM+1(x), (3.27)

PD,n

(
η(x);λ

) def
= ϕM+1(x)

−1i
1

2
M(M+1)

∣∣∣ ~X
(M+1)
d1

· · · ~X
(M+1)
dM

~Z
(M+1)
n

∣∣∣ , (3.28)

where

(
~X(M+1)
v

)
j

def
= ξ̌v

(
x
(M+1)
j ;λ

)
(1 ≤ j ≤ M + 1), (3.29)

(
~Z(M+1)
n

)
j

def
= rj(x

(M+1)
j ;λ,M + 1)P̌n(x

(M+1)
j ;λ) (1 ≤ j ≤M + 1), (3.30)

ν(x;λ)
def
=
φ0(x;λ)

φ̃0(x;λ)
, (3.31)

rj(x
(M+1)
j ;λ,M + 1)

def
=

ν(x
(M+1)
j ;λ)

ν(x;λ −Mδ)
(1 ≤ j ≤M + 1),

∝

{ ∏4
k=1(ak −

M
2
+ ix)j−1(ak −

M
2
− ix)M+1−j : W

e2ix(M+2−2j)
∏4

k=1(akq
−M

2 eix; q)j−1(akq
−M

2 e−ix; q)M+1−j : AW
. (3.32)

In these expressions Ξ̄D(η;λ), ΞD(η;λ), PD,n(η;λ) are polynomials in η and their degrees

are generically ℓD, ℓD, ℓD +M + n, respectively. Here ℓD is defined by

ℓD
def
=

M∑

j=1

dj −
1

2
M(M − 1). (3.33)

The kinematical factors ĀD, AD, AD,n depend onM but they are independent of the explicit

choices of the degrees {dj}. There are obvious relations

AD(x;λ) = ĀD

(
x; t(λ)

)
, ΞD(η;λ) = Ξ̄D

(
η; t(λ)

)
, (3.34)

reflecting the fact that the pseudo virtual state wave functions are defined by twisting (2.37).

The deformed eigenfunctions φD n, the newly added eigenfunctions Φ̆D;dj and the deformed

potential function V̂D are expressed neatly in terms of the above quantities with D′ defined

13



by D′ def
= {d1, . . . , dM−1}:

φD n(x;λ) ∝ ψD(x;λ)P̌D,n(x;λ) (n = 0, 1, . . .), (3.35)

ψD(x;λ)
def
=

φ0(x;λ−Mδ)√
Ξ̌D(x− iγ

2
;λ)Ξ̌D(x+ iγ

2
;λ)

, (3.36)

Φ̆D;dj(x;λ) ∝ ψD(x;λ) Ξ̌d1...d̆j ...dM
(x;λ) (j = 1, . . . ,M), (3.37)

V̂D(x;λ) = κ−MV ∗(x− iγ
2
;λ−Mδ)

Ξ̌D′(x+ iγ
2
;λ)

Ξ̌D′(x− iγ
2
;λ)

Ξ̌D(x− iγ;λ)

Ξ̌D(x;λ)
. (3.38)

Here, as before, we have used the notation Ξ̌D(x;λ) = ΞD(η(x);λ), etc.

The shape invariance of the original theory implies relations

Ξ̄{d1,...,dM ,0}(η;λ) ∝ Ξ̄{d1−1,...,dM−1}(η;λ+ δ), (3.39)

which are the difference analogues of the relations (4.33) of [1]. They are derived based on

the forward shift relation (2.18), the property of the Casoratian

Wγ[1, f1, . . . , fn](x) = Wγ[F1, . . . , Fn](x), Fj(x)
def
= −i

(
fj(x+ iγ

2
)− fj(x− iγ

2
)
)
, (3.40)

and the property of ϕM(x),

ϕM+1(x) = ϕM(x)

M∏

j=1

ϕ(x
(M)
j ) (M ≥ 0). (3.41)

By repeating (3.39), one arrives at

Ξ̄{0,1,...,n}(η;λ) ∝ Ξ̄{0,1,...,n−1}(η;λ+ δ) ∝ · · · ∝ Ξ̄{0}(η;λ+ nδ) = constant. (3.42)

3.3 Eigenstates deleting Darboux transformations

In a previous publication [1] we have shown for various solvable potentials in ordinary quan-

tum mechanics that the eigenstates adding Darboux transformations are dual to eigenstates

deleting Krein-Adler transformations with shifted parameters. The situation is the same for

various solvable theories in discrete quantum mechanics. The correspondence among the

added eigenstates specified by D and the deleted eigenstates D̄ with shifted parameter λ̄

(3.44) is depicted in Fig. 1.

Let us introduce an integer N and fix it to be not less than the maximum of D:

N ≥ max(D). (3.43)
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This determines a set of distinct non-negative integers D̄ = {0, 1, . . . , N}\{d̄1, d̄2, . . . , d̄M}

together with the shifted parameters λ̄:

D̄
def
= {0, 1, . . . , ˘̄d1, . . . ,

˘̄d2, . . . ,
˘̄dM , . . . , N} = {e1, e2, . . . , eN+1−M},

d̄j
def
= N − dj, λ̄

def
= λ− (N + 1)δ. (3.44)

The eigenvalue En as a function of the parameters λ in general satisfies the relations:

En(λ)− E−N−1(λ) = κ−N−1EN+1+n

(
λ̄
)
, (3.45)

E−v−1(λ)− E−N−1(λ) = κ−N−1EN−v

(
λ̄
)
. (3.46)

The first relation (3.45) says that n-th eigen level of the original system corresponds to

(N + 1 + n)-th level of the parameter shifted system. The second formula (3.46) means

that the state created by a pseudo virtual state wave function φ̃v is related to v̄-th level of

the parameter shifted system. These relations are the base of the duality depicted in Fig. 1.

Among the newly created eigenfunctions the lowest energy level µ is given by

µ = min
(
Z≥0\D̄

)
= min{d̄1, . . . , d̄M}. (3.47)

The choice of the integer N is not unique and the systems with different N are related by

shape invariance.

Let us denote the above eigenstate deleted system by HKA
D̄

, AKA
D̄

, V KA
D̄

(x), etc. The

general formulas of the Krein-Adler transformations [8, 9] provide:

HKA
D̄ = AKA †

D̄
AKA

D̄ + Eµ(λ̄), AKA
D̄ = i

(
e

γ

2
p
√
V KA ∗
D̄

(x)− e−
γ

2
p
√
V KA
D̄

(x)
)
,

AKA †

D̄
= −i

(√
V KA
D̄

(x) e
γ

2
p −

√
V KA ∗
D̄

(x) e−
γ

2
p
)
, (3.48)

V KA
D̄ (x) =

√
V (x− iN+1−M

2
γ; λ̄)V ∗(x− iN+3−M

2
γ; λ̄)

×
Wγ[φe1, . . . , φeN+1−M

](x+ iγ
2
; λ̄)

Wγ[φe1 , . . . , φeN+1−M
](x− iγ

2
; λ̄)

Wγ[φe1, . . . , φeN+1−M
, φµ](x− iγ; λ̄)

Wγ [φe1, . . . , φeN+1−M
, φµ](x; λ̄)

, (3.49)

ΦKA
D̄ n(x) = AKA

D̄ (x)Wγ [φ0, φ1, . . . , φ̆d̄1, . . . , φ̆d̄M
, . . . , φN , φN+1+n](x; λ̄) (n = 0, 1, . . .), (3.50)

Φ̆KA
D̄;dj

(x) = AKA
D̄ (x)Wγ [φ0, φ1, . . . , φ̆d̄1, . . . , φd̄j

, . . . , φ̆d̄M
, . . . , φN ](x; λ̄) (j = 1, . . . ,M),(3.51)

AKA
D̄ (x) =




√∏N−M

j=0 V (x+ i( s
2
− j)γ; λ̄)V ∗(x− i( s

2
− j)γ; λ̄)

Wγ [φe1, . . . , φeN+1−M
](x− iγ

2
; λ̄)Wγ [φe1, . . . , φeN+1−M

](x+ iγ
2
; λ̄)




1

2

. (3.52)
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En(λ̄)

n

En(λ)

n

0

0

N − dj N + 1

−dj − 1−N − 1

En(λ̄)

n

En(λ)

n

0

0

N − dj N + 1

−dj − 1−N − 1

Figure 1: The left represents the Darboux-Crum transformations in terms of pseudo virtual
states. The right corresponds to the Krein-Adler transformations in terms of eigenstates
with shifted parameters. The black circles denote eigenstates. The white circles in the right
graphic denote deleted eigenstates. The white triangles in the left graphic denote the pseudo
virtual states used in the Darboux-Crum transformations in § 3.2. The black triangles denote
the unused pseudo virtual states.

In terms of the polynomial Ξ̄D̄ the eigenfunctions are expressed in a similar way as (3.35)–

(3.37):

ΦKA
D̄ n(x) = κ

1

4
M(M−1) φ0(x;λ−Mδ)√

ˇ̄ΞD̄(x− iγ
2
; λ̄)ˇ̄ΞD̄(x+ iγ

2
; λ̄)

ˇ̄ΞD̄N+1+n(x; λ̄), (3.53)

Φ̆KA
D̄;dj

(x) = κ
1

4
M(M−1) φ0(x;λ−Mδ)√

ˇ̄ΞD̄(x− iγ
2
; λ̄)ˇ̄ΞD̄(x+ iγ

2
; λ̄)

ˇ̄Ξ
01... ˘̄d1...d̄j ...

˘̄dM ...N
(x; λ̄), (3.54)

in which ˇ̄Ξ
01... ˘̄d1...d̄j ...

˘̄dM ...N
(x; λ̄) = ± ˇ̄ΞD̄ d̄j

(x; λ̄). Let us take, without loss of generality,

d1 < · · · < dM . This means that µ = d̄M . The potential function is also expressed by the

polynomials as in (3.38):

V KA
D̄ (x) = κN+1−MV (x;λ−Mδ)

ˇ̄ΞD̄′(x− iγ; λ̄)
ˇ̄ΞD̄′(x; λ̄)

ˇ̄ΞD̄(x+ iγ
2
; λ̄)

ˇ̄ΞD̄(x− iγ
2
; λ̄)

. (3.55)

The duality between the eigenstates adding and deleting transformations is stated as the

following:

Proposition 1 For proper parameter ranges in which both Hamiltonians are non-singular

and self-adjoint, the two systems with HD and HKA
D̄

are equivalent. To be more specific, the
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equality of the Hamiltonians and the eigenfunctions read :

HD − E−N−1(λ) = κ−N−1HKA
D̄ , (3.56)

ΦD n(x) ∝ ΦKA
D̄ n(x) (n = 0, 1, . . .), (3.57)

Φ̆D;dj (x) ∝ Φ̆KA
D̄;dj

(x) (j = 1, 2, . . . ,M). (3.58)

The singularity free conditions of the potential are [7, 9]

N+1−M∏

j=1

(n− ej) ≥ 0 ( ∀n ∈ Z≥0). (3.59)

The parameters of the shifted Hamiltonian HKA
D̄

are constrained by the self-adjointness. For

the Wilson and Askey-Wilson cases, they are

W : Re aj >
1
2
(N + 1), AW : |aj| < q

1

2
(N+1) (j = 1, . . . , 4), (3.60)

generalising (3.17). The two relations (3.57) and (3.58) imply the relationships among poly-

nomials:

PD,n(η;λ) ∝ Ξ̄D̄N+1+n(η; λ̄) (n = 0, 1, . . .), (3.61)

Ξd1...d̆j ...dM
(η;λ) ∝ Ξ̄D̄ d̄j

(η; λ̄) (j = 1, 2, . . . ,M). (3.62)

3.4 Derivation of the Casoratian identities

The above duality, i.e. Proposition 1, is the simple consequence of the following

Proposition 2 The Casoratian Identities read

ΞD(η;λ) ∝ Ξ̄D̄(η; λ̄), (3.63)

namely,

ϕM(x)−1 Wγ[ξ̌d1 , ξ̌d2, . . . , ξ̌dM ](x;λ)

∝ ϕN+1−M(x)−1Wγ [P̌0, P̌1, . . . ,
˘̌Pd̄1, . . . ,

˘̌Pd̄M
, . . . , P̌N ](x; λ̄). (3.64)

Recall that ξ̌v(x;λ) = P̌v

(
x; t(λ)

)
. This proposition shows the relation between Casoratians

of polynomials of twisted and shifted parameters. It is straightforward to show the equality

of the Hamiltonians (3.56) based on the expressions of the potential functions (3.38), (3.55)
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and ΞD ∝ Ξ̄D̄ (3.63). The proportionalities of the eigenfunctions (3.57) and (3.58) follow

from the equality of the Hamiltonians, so long as the Hamiltonians are non-singular and

self-adjoint. The inductive proof of Proposition 2 in M consists of two steps, as is the case

for the proof of the Wronskian identities in [1].

first step : As a first step we prove (3.63) for M = 1, N ≥ d1 ≡ v, that is D = {v},

D̄ = {0, 1, . . . , ˘̄v, . . . , N} (see Fig. 2):

ξv(η;λ) ∝ Ξ̄D̄(η; λ̄). (3.65)

En(λ̄)

n

En(λ)

n

0

0

N − v N + 1

−v− 1−N − 1

En(λ̄)

n

En(λ)

n

0

0

N − v N + 1

−v− 1−N − 1

Figure 2: The symbols are the same as those in Fig. 1. By shape invariance, deleting the
ground state v̄ = N − v from HKA

D̄
leads to the undeformed system H(λ).

Let us consider a Hamiltonian system H̄ obtained from HKA
D̄

by deleting its ground state

v̄ = N − v:

H̄ = AKA
D̄ AKA †

D̄
+ Ev̄(λ̄),

H̄Φ′
n(x) = En(λ̄)Φ

′
n(x) (n ≥ N + 1).

By shape invariance, the ground state (n = N+1) of H̄ coincides with that of the undeformed

system H(λ), i.e. φ0(x;λ):

H̄φ0(x;λ) = EN+1(λ̄)φ0(x;λ).
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In this case D̄′ = {0, 1, . . . , N} and ˇ̄Ξ{0,1,...,N}(x; λ̄) = constant (3.42), we obtain from (3.55)

V KA
D̄ (x) = κNV (x;λ− δ)

ˇ̄ΞD̄(x+ iγ
2
; λ̄)

ˇ̄ΞD̄(x− iγ
2
; λ̄)

,

and

H̄ = κN
(√

V (x− iγ
2
;λ− δ)V ∗(x− iγ

2
;λ− δ) eγp

+
√
V (x+ iγ

2
;λ− δ)V ∗(x+ iγ

2
;λ− δ) e−γp

− V (x+ iγ
2
;λ− δ)

ˇ̄ΞD̄(x+ iγ; λ̄)
ˇ̄ΞD̄(x; λ̄)

− V ∗(x− iγ
2
;λ− δ)

ˇ̄ΞD̄(x− iγ; λ̄)
ˇ̄ΞD̄(x; λ̄)

)
+ Ev̄(λ̄).

By using the zero mode equation (2.13), the shape covariance relations of φ0 (2.22)–(2.23)

and of V (2.20) and the general twisting relation (2.38), we obtain

0 =
(
H̄ − EN+1(λ̄)

)
φ0(x;λ)

= κN+1
(
V (x;λ) + V ∗(x;λ)

− α(λ)V ∗
(
x; t(λ)

) ˇ̄ΞD̄(x+ iγ; λ̄)
ˇ̄ΞD̄(x; λ̄)

− α(λ)V
(
x; t(λ)

) ˇ̄ΞD̄(x− iγ; λ̄)
ˇ̄ΞD̄(x; λ̄)

)
φ0(x;λ)

+
(
Ev̄(λ̄)− EN+1(λ̄)

)
φ0(x;λ). (3.66)

With the second basic twist relation (2.26), the properties of En (3.45)–(3.46) and α′(λ) =

E−1(λ), we obtain a difference equation for ˇ̄ΞD̄(x; λ̄):

V
(
x; t(λ)

)( ˇ̄ΞD̄(x− iγ; λ̄)− ˇ̄ΞD̄(x; λ̄)
)
+ V ∗

(
x; t(λ)

)( ˇ̄ΞD̄(x+ iγ; λ̄)− ˇ̄ΞD̄(x; λ̄)
)

= Ev
(
t(λ)

) ˇ̄ΞD̄(x; λ̄). (3.67)

This is indeed the difference equation for Pv

(
η(x); t(λ)

)
and we arrive at the relation

Pv

(
η; t(λ)

)
∝ Ξ̄D̄(η; λ̄) (3.65).

second step : Assume that (3.64) holds till M (M ≥ 1), we will show that it also holds for

M + 1.

By using the Casoratian identity (3.4), we obtain

Wγ[ξ̌d1 , . . . , ξ̌dM−1
](x;λ) ·Wγ [ξ̌d1 , . . . , ξ̌dM−1

, ξ̌dM , ξ̌dM+1
](x;λ)

= Wγ

[
Wγ[ξ̌d1 , . . . , ξ̌dM−1

, ξ̌dM ],Wγ [ξ̌d1 , . . . , ξ̌dM−1
, ξ̌dM+1

]
]
(x;λ)
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∝ Wγ

[ ϕM(x)

ϕN+1−M(x)
Wγ[P̌0, . . . ,

˘̌Pd̄1
, . . . , ˘̌Pd̄M−1

, . . . , ˘̌Pd̄M
, . . . , P̌N ],

ϕM(x)

ϕN+1−M(x)
Wγ[P̌0, . . . ,

˘̌Pd̄1, . . . ,
˘̌Pd̄M−1

, . . . , ˘̌Pd̄M+1
, . . . , P̌N ]

]
(x; λ̄)

=
ϕM(x+ iγ

2
)

ϕN+1−M(x+ iγ
2
)

ϕM(x− iγ
2
)

ϕN+1−M(x− iγ
2
)

×Wγ

[
Wγ [P̌0, . . . ,

˘̌Pd̄1
, . . . , ˘̌Pd̄M−1

, . . . , ˘̌Pd̄M
, . . . , P̌N ],

Wγ[P̌0, . . . ,
˘̌Pd̄1
, . . . , ˘̌Pd̄M−1

, . . . , ˘̌Pd̄M+1
, . . . , P̌N ]

]
(x; λ̄)

= ±
ϕM(x+ iγ

2
)

ϕN+1−M (x+ iγ
2
)

ϕM(x− iγ
2
)

ϕN+1−M(x− iγ
2
)

×Wγ [P̌0, . . . ,
˘̌Pd̄1, . . . ,

˘̌Pd̄M−1
, . . . , ˘̌Pd̄M

, . . . , ˘̌Pd̄M+1
, . . . , P̌N ](x; λ̄)

×Wγ [P̌0, . . . ,
˘̌Pd̄1, . . . ,

˘̌Pd̄M−1
, . . . , P̌N ](x; λ̄)

∝
ϕM(x+ iγ

2
)

ϕN+1−M(x+ iγ
2
)

ϕM(x− iγ
2
)

ϕN+1−M(x− iγ
2
)

ϕN+2−M(x)

ϕM−1(x)

×Wγ [P̌0, . . . ,
˘̌Pd̄1, . . . ,

˘̌Pd̄M+1
, . . . , P̌N ](x; λ̄) ·Wγ [ξ̌d1 , . . . , ξ̌dM−1

](x;λ).

This leads to

ϕM+1(x)
−1 Wγ[ξ̌d1 , . . . , ξ̌dM+1

](x;λ)

∝ ϕN−M(x)−1 Wγ[P̌0, . . . ,
˘̌Pd̄1 , . . . ,

˘̌Pd̄M+1
, . . . , P̌N ](x; λ̄)

×
ϕM(x+ iγ

2
)

ϕN+1−M (x+ iγ
2
)

ϕM(x− iγ
2
)

ϕN+1−M(x− iγ
2
)

ϕN+2−M(x)

ϕM−1(x)

ϕN−M(x)

ϕM+1(x)

∝ ϕN−M(x)−1 Wγ[P̌0, . . . ,
˘̌Pd̄1 , . . . ,

˘̌Pd̄M+1
, . . . , P̌N ](x; λ̄),

namely M + 1 case is shown. Here we have used

ϕM(x+ iγ
2
)ϕM(x− iγ

2
) =

ϕM−1(x)ϕM+1(x)

ϕ(x)
(M ≥ 1), (3.68)

which is easily verified. This concludes the induction proof of (3.64).

4 Reduced Case Polynomials

It is well known that the other members of the Askey scheme polynomials can be obtained

by reductions from the Wilson and the Askey-Wilson polynomials. Here we list the discrete

symmetry transformations and the pseudo virtual state wave functions for all the reduced

case polynomials. In contrast to the virtual state wave functions, the pseudo virtual state
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wave functions are universal and they exist for all the solvable potentials with shape invari-

ance. For example, for the systems of the harmonic oscillator and the q-harmonic oscillator

with the (q-)Hermite polynomials as the main part of the eigenfunctions [19], virtual state

wave functions do not exist. However, the pseudo virtual state wave functions for the har-

monic oscillator was reported in [1] and those for the q-harmonic oscillator will be introduced

in § 4.2. The Casoratian identities hold for these reduced case polynomials, too.

4.1 Reductions from the Wilson polynomial

Three polynomials belong to this group; the continuous dual Hahn (cdH), the continuous

Hahn (cH) and the Meixner-Pollaczek (MP) polynomials. They are obtained from the Wilson

polynomial by some limiting procedures [4]. The discrete symmetries are also obtained by

the same limiting procedures from that of the Wilson polynomial. It should be noted that the

Wilson polynomial is also obtained from the Askey-Wilson polynomial by a certain limiting

procedure [4].

The defining domain and the parameters of these reduced case polynomials are:

cdH : x1 = 0, x2 = ∞, γ = 1, λ = (a1, a2, a3), δ = (1
2
, 1
2
, 1
2
), κ = 1,

cH : x1 = −∞, x2 = ∞, γ = 1, λ = (a1, a2), δ = (1
2
, 1
2
), κ = 1,

MP : x1 = −∞, x2 = ∞, γ = 1, λ = (a, φ), δ = (1
2
, 0), κ = 1, (4.1)

in which the parameters are restricted by

cdH : {a∗1, a
∗
2, a

∗
3} = {a1, a2, a3} (as a set); Re ai > 0,

cH : Re ai > 0; (a3, a4)
def
= (a∗1, a

∗
2),

MP : a > 0, 0 < φ < π. (4.2)

Here are the fundamental data:

V (x;λ) =





(
2ix(2ix+ 1)

)−1∏3
j=1(aj + ix) : cdH

∏2
j=1(aj + ix) : cH

ei(
π
2
−φ)(a+ ix) : MP

, (4.3)

η(x) =

{
x2 : cdH
x : cH,MP

, ϕ(x) =

{
2x : cdH
1 : cH,MP

, (4.4)

En(λ) =





n : cdH

n(n + b1 − 1), b1
def
= a1 + a2 + a3 + a4, : cH

2n sinφ : MP

, (4.5)
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φn(x;λ) = φ0(x;λ)P̌n(x;λ), (4.6)

P̌n(x;λ) = Pn

(
η(x);λ

)
=





Sn

(
η(x); a1, a2, a3

)
: cdH

pn
(
η(x); a1, a2, a3, a4

)
: cH

P
(a)
n

(
η(x);φ

)
: MP

=






(a1 + a2, a1 + a3)n 3F2

(−n, a1 + ix, a1 − ix

a1 + a2, a1 + a3

∣∣∣ 1
)

: cdH

in
(a1 + a3, a1 + a4)n

n!
3F2

(−n, n+ b1 − 1, a1 + ix

a1 + a3, a1 + a4

∣∣∣1
)

: cH

(2a)n
n!

einφ2F1

(−n, a+ ix

2a

∣∣∣ 1− e−2iφ
)

: MP

, (4.7)

φ0(x;λ) =






√
(Γ(2ix)Γ(−2ix))−1

∏3
j=1 Γ(aj + ix)Γ(aj − ix) : cdH

√
Γ(a1 + ix)Γ(a2 + ix)Γ(a3 − ix)Γ(a4 − ix) : cH

e(φ−
π
2
)x
√
Γ(a + ix)Γ(a− ix) : MP

, (4.8)

fn(λ) =





−n : cdH
n+ b1 − 1 : cH
2 sinφ : MP

, bn−1(λ) =





−1 : cdH
n : cH
n : MP

. (4.9)

The relations (2.20)–(2.21) are satisfied.

4.1.1 pseudo virtual state wave functions

The twisting of the polynomials in this group is straightforward. We define the twisted

potential V ′(x;λ) (2.24) by

t(λ) =





(1− a1, 1− a2, 1− a3) : cdH
(1− a∗1, 1− a∗2) : cH
(1− a, π − φ) : MP

, t
2 = Id. (4.10)

The relations (2.25)–(2.26), (2.32) and (2.38) are satisfied with

α(λ) =

{
−1 : cdH,MP
1 : cH

, α′(λ) = E−1(λ) =






−1 : cdH
2− b1 : cH
−2 sinφ : MP

, (4.11)

and the pseudo virtual state wave function is obtained by simple twisting of the parameters

φ̃v(x;λ) = φ̃0(x;λ)ξ̌v(x;λ) as in (2.36)–(2.37).

4.2 Reductions from the Askey-Wilson polynomial

There are two groups, to be called (A) and (B), of polynomials obtained by two different types

of reductions from the Askey-Wilson polynomial. Group (A), consisting of one polynomial,
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is obtained by specifying the four parameters (a1, a2, a3, a4) of the Askey-Wilson polynomial,

as simple functions of two (α and β) parameters. Group (B), consisting of five polynomials,

is obtained by setting some of the parameters {aj} to zero. For all member polynomials in

this subsection, we have

x1 = 0, x2 = π, γ = log q, κ = q−1, η(x) = cosx, ϕ(x) = 2 sin x.

4.2.1 Group (A) reductions from the Askey-Wilson polynomial

The continuous q-Jacobi (cqJ) polynomial belongs to this group. It is obtained by restricting

the four parameters (a1, a2, a3, a4) of the Askey-Wilson polynomial as

(a1, a2, a3, a4) =
(
q

1

2
(α+ 1

2
), q

1

2
(α+ 3

2
),−q

1

2
(β+ 1

2
),−q

1

2
(β+ 3

2
)
)
, (4.12)

λ = (α, β), δ = (1, 1), α, β ≥ −1
2
, (4.13)

V (x ;λ) =
(1− q

1

2
(α+ 1

2
)eix)(1− q

1

2
(α+ 3

2
)eix)(1 + q

1

2
(β+ 1

2
)eix)(1 + q

1

2
(β+ 3

2
)eix)

(1− e2ix)(1− qe2ix)
. (4.14)

The eigenvalues and the corresponding eigenfunctions are:

En(λ) = (q−n − 1)(1− qn+α+β+1), (4.15)

P̌n(x;λ) = Pn

(
η(x);λ

)
= P (α,β)

n

(
η(x)|q

)

=
(qα+1 ; q)n
(q ; q)n

4φ3

(q−n, qn+α+β+1, q
1

2
(α+ 1

2
)eix, q

1

2
(α+ 1

2
)e−ix

qα+1, −q
1

2
(α+β+1), −q

1

2
(α+β+2)

∣∣∣ q ; q
)
, (4.16)

φ0(x ;λ) =

√
(e2ix, e−2ix ; q)∞

(q
1

2
(α+ 1

2
)eix,−q

1

2
(β+ 1

2
)eix, q

1

2
(α+ 1

2
)e−ix,−q

1

2
(β+ 1

2
)e−ix ; q

1

2 )∞
, (4.17)

fn(λ) =
q

1

2
(α+ 3

2
)q−n(1− qn+α+β+1)

(1 + q
1

2
(α+β+1))(1 + q

1

2
(α+β+2))

, (4.18)

bn−1(λ) = q−
1

2
(α+ 3

2
)qn(q−n − 1)(1 + q

1

2
(α+β+1))(1 + q

1

2
(α+β+2)). (4.19)

The relations (2.20)–(2.21) are satisfied.

4.2.2 pseudo virtual states for Group (A)

The twisting of the Askey-Wilson case (2.33) is consistent with the reduction to Group (A).

That is aj → q a−1
j (j = 1, . . . , 4) simply translates to the twisting of the two parameters α

and β:

t(α, β) = (−α,−β), t
2 = Id, (4.20)
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giving the potential V ′(x;λ) (2.24). The relations (2.25)–(2.26), (2.32) and (2.38) are satis-

fied with

α(λ) = qα+β, α′(λ) = E−1(λ) = (q − 1)(1− qα+β), (4.21)

and the pseudo virtual state wave function is obtained by simple twisting of the parameters

φ̃v(x;λ) = φ̃0(x;λ)ξ̌v(x;λ) as in (2.36)–(2.37).

4.2.3 Group (B) reductions from the Askey-Wilson polynomial

Five polynomials belong to Group (B); the continuous dual q-Hahn (cdqH), Al-Salam-

Chihara (ASC), continuous big q-Hermite (cbqH), continuous q-Hermite (cqH) and contin-

uous q-Laguerre (cqL) polynomials. The first four members are obtained by setting a4 = 0

for cdqH, a4 = a3 = 0 for ASC, a4 = a3 = a2 = 0 for cbqH and a4 = a3 = a2 = a1 = 0 for

cqH. The cqL is obtained by setting a4 = a3 = 0 of the continuous q-Jacobi case. In other

words, the cqL is obtained by taking the limit β → +∞ of the continuous q-Jacobi case.

The parameters of Group (B) are

cdqH : λ = (λ1, λ2, λ3), qλ = (a1, a2, a3), δ = (1
2
, 1
2
, 1
2
), |aj | < 1, (4.22)

ASC : λ = (λ1, λ2), qλ = (a1, a2), δ = (1
2
, 1
2
), |aj | < 1, (4.23)

cbqH : λ = λ1, qλ = a1 = a, δ = 1
2
, |a| < 1, (4.24)

cqH : λ : none, (4.25)

cqL : λ = α, δ = 1, α > −1
2
. (4.26)

The basic data are obtained from those of the Askey-Wilson and the continuous q-Jacobi

polynomials by simply putting the appropriate parameters to zero:

V (x;λ, q) =
1

(1− e2ix)(1− qe2ix)
×

{ ∏m

j=1(1− aje
ix) : m = 3, 2, 1, 0

(1− q
1

2
(α+ 1

2
)eix)(1− q

1

2
(α+ 3

2
)eix) : cqL

, (4.27)

En(λ) = q−n − 1, (4.28)

φ0(x;λ) =
√

(e2ix, e−2ix ; q)∞ ×





√∏m

j=1(aje
ix, aje−ix ; q)−1

∞ : m = 3, 2, 1, 0
√
(q

1

2
(α+ 1

2
)eix, q

1

2
(α+ 1

2
)e−ix ; q

1

2 )−1
∞ : cqL

, (4.29)

P̌n(x;λ) = Pn

(
η(x);λ

)
=






pn
(
η(x); a1, a2, a3|q

)
: cdqH

Qn

(
η(x); a1, a2|q

)
: ASC

Hn

(
η(x); a|q

)
: cbqH

Hn

(
η(x)|q

)
: cqH

P
(α)
n

(
η(x)|q

)
: cqL
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=






a−n
1 (a1a2, a1a3 ; q)n 3φ2

(q−n, a1e
ix, a1e

−ix

a1a2, a1a3

∣∣∣ q ; q
)

: cdqH

a−n
1 (a1a2 ; q)n 3φ2

(q−n, a1e
ix, a1e

−ix

a1a2, 0

∣∣∣ q ; q
)

: ASC

a−n
3φ2

(q−n, aeix, ae−ix

0, 0

∣∣∣ q ; q
)

: cbqH

einx 2φ0

(q−n, 0

−

∣∣∣ q ; qne−2ix
)

: cqH

(qα+1 ; q)n
(q ; q)n

3φ2

(q−n, q
1

2
(α+ 1

2
)eix, q

1

2
(α+ 1

2
)e−ix

qα+1, 0

∣∣∣ q ; q
)

: cqL

, (4.30)

fn(λ) =

{
q

n
2 (q−n − 1) : cdqH,ASC, cbqH, cqH

q
1

2
(α+ 3

2
)q−n : cqL

, (4.31)

bn−1(λ) =

{
q−

n
2 : cdqH,ASC, cbqH, cqH

q−
1

2
(α+ 3

2
)qn(q−n − 1) : cqL

, (4.32)

where m = 3, 2, 1, 0 correspond to cdqH, ASC, cbqH, cqH, respectively. The relations (2.20)–

(2.21) are satisfied.

4.2.4 pseudo virtual states for Group (B)

The twisting of the Askey-Wilson case (2.33) is not consistent with the reduction to Group

(B). As can be seen clearly the transformation aj → q a−1
j (j = 1, 2, 3) in cdqH potential

V (x;λ) simply fails to satisfy the two basic relations (2.25) and (2.26). For the cqH, having no

parameter other than q, such a transformation using the twisting of aj is simply meaningless.

As can be easily guessed, the desired twisting should include the twisting of the parameter

q as its part, if it should cover the cqH case. We write q-dependence explicitly, if necessary.

We propose the following twisting:

V ′(x;λ)
def
= V

(
−x; t(λ), q−1

)
= V ∗

(
x; t(λ), q−1

)
, (4.33)

t(λ) =





(1− λ1, 1− λ2, 1− λ3) : cdqH
(
or aj → ajq

−1 (j = 1, 2, 3)
)

(1− λ1, 1− λ2) : ASC
(
or aj → ajq

−1 (j = 1, 2)
)

1− λ1 : cbqH
(
or a → a q−1

)

none : cqH
−α : cqL

, (4.34)

which satisfies the relations (2.25)–(2.26), (2.32) and (2.38) with

Ẽv(λ)
def
= α(λ)Ev

(
t(λ), q−1

)
+ α′(λ) = E−v−1(λ),

α(λ) = q, α′(λ) = E−1(λ) = q − 1, (4.35)
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for every member polynomial in Group (B). Note that V ′′(x;λ) = V (x;λ).

The corresponding pseudo virtual state wave functions are given by

φ̃v(x;λ) = φ̃0(x;λ)ξ̌v(x;λ), (4.36)

φ̃0(x;λ)
def
=

ϕ(x)

φ0(x;λ)
, ξ̌v(x;λ)

def
= P̌v

(
x; t(λ), q−1

)
= Pv

(
η(x); t(λ), q−1

)
. (4.37)

It should be stressed that the above zero mode ofA′(λ), φ̃0(x;λ), is not obtained by replacing

q → q−1 and λ → t(λ) in the original zero mode φ0(x;λ), since infinite products like

(e2ix; q)∞ contained in φ0(x;λ) do not converge if q is replaced by q−1. The above form

(4.37) of the zero mode is obtained from the linear relation (2.38) between the twisted

potential and the original potential:

(2.38) ⇒ V ′(x+ iγ
2
;λ) = α(λ)−1ϕ(x− iγ

2
)

ϕ(x+ iγ
2
)
V ∗(x− iγ

2
;λ),

V ′ ∗(x− iγ
2
;λ) = α(λ)−1ϕ(x+ iγ

2
)

ϕ(x− iγ
2
)
V (x+ iγ

2
;λ).

Then the zero mode equation

√
V ′ ∗(x− iγ

2
;λ) φ̃0(x− iγ

2
;λ) =

√
V ′(x+ iγ

2
;λ) φ̃0(x+ iγ

2
;λ)

can be rewritten as

√
V ∗(x− iγ

2
;λ)ϕ(x− iγ

2
)φ̃0(x− iγ

2
;λ)−1 =

√
V
(
x+ iγ

2
;λ)ϕ(x+ iγ

2
)φ̃0(x+ iγ

2
;λ)−1,

which simply means (4.37), ϕ(x)φ̃0(x;λ)
−1 = φ0(x;λ).

For the Askey-Wilson polynomial pn(η) (2.11), it is possible to twist as a member of

Group (B). The two types of twisted polynomials are proportional to each other [4]

pn
(
η; qa−1

1 , qa−1
2 , qa−1

3 , qa−1
4 | q

)

= (−1)n
q

1

2
n(3n+5)

(a1a2a3a4)n
pn
(
η; a1q

−1, a2q
−1, a3q

−1, a4q
−1| q−1

)
, (4.38)

and they lead to the same deformation. Similar relation holds for the continuous q-Jacobi

polynomial.

4.3 Casoratian identities for the reduced polynomials

Casoratian identities also hold for the reduced case polynomials. The derivation in § 3.4

is valid for them (eqs.(3.66)–(3.67) should be slightly modified). The necessary formulas
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are (2.20)–(2.21), (2.25)–(2.26), (2.38) and the properties of En ((3.45)–(3.46), (2.32) and

α′(λ) = E−1(λ)). Definitions of the various quantities such as AD, ΞD, AD,n, PD,n, ν, rj etc.

are the same. The explicit forms of rj for the reduced polynomials in § 4.1 are

rj(x
(M+1)
j ;λ,M + 1)

∝





∏3
k=1(ak −

M
2
+ ix)j−1(ak −

M
2
− ix)M+1−j : cdH

∏2
k=1(ak −

M
2
+ ix)j−1(a

∗
k −

M
2
− ix)M+1−j : cH

e2i(φ−
π
2
)(M

2
+1−j)(a− M

2
+ ix)j−1(a−

M
2
− ix)M+1−j : MP

, (4.39)

and those in § 4.2 are

rj(x
(M+1)
j ;λ,M + 1) (4.40)

∝ e2ix(M+2−2j) ×





(q
1

2
(α+ 1

2
)q−

M
2 eix,−q

1

2
(β+ 1

2
)q−

M
2 eix; q

1

2 )2(j−1)

×(q
1

2
(α+ 1

2
)q−

M
2 e−ix,−q

1

2
(β+ 1

2
)q−

M
2 e−ix; q

1

2 )2(M+1−j) : cqJ
∏m

k=1(akq
−M

2 eix; q)j−1(akq
−M

2 e−ix; q)M+1−j : m = 3, 2, 1, 0

(q
1

2
(α+ 1

2
)q−

M
2 eix; q

1

2 )2(j−1)(q
1

2
(α+ 1

2
)q−

M
2 e−ix; q

1

2 )2(M+1−j) : cqL

.

For all these reduced cases, (3.35)–(3.38), Propositions 1,2 and (3.61)–(3.62) hold.

For example, (3.63) with D = {v} and N = v for the cases in § 4.2 gives

P̌v

(
x; t(λ), q−1

)
∝ ϕv(x)

−1Wγ[P̌1, P̌2, . . . , P̌v]
(
x;λ− (v + 1)δ

)
, (4.41)

which expresses a “q−1-polynomial” in terms of “q-polynomials” as in (4.38).

5 Summary and Comments

Within the framework of discrete quantum mechanics for the classical orthogonal polynomials

of Askey scheme with pure imaginary shifts, the duality between the eigenstates adding and

deleting Darboux transformations is demonstrated by proper choices of pseudo virtual state

wave functions. The duality is based on infinitely many identities connecting the Casoratians

of polynomials of twisted parameters with the Casoratians of the same polynomials of shifted

parameters. These identities are proven for the Wilson and the Askey-Wilson polynomials

and for every member of their reduced form polynomials, e.g. the continuous (dual) (q-)Hahn

and the continuous q-Hermite polynomials.

Since the logics and method of deriving these identities are almost parallel to those for

the Wronskian identities of the Hermite, Laguerre and Jacobi polynomials, we do strongly
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believe that similar identities could be derived for the classical orthogonal polynomials with

real shifts, e.g. the (q-)Racah polynomials and their reduced form polynomials. These

identities could be considered as manifestation of the characteristic properties of the classical

orthogonal polynomials, i.e. the forward and backward shift relations or shape invariance

and the discrete symmetries. To the best of our knowledge, the discrete symmetries for

Group (B) polynomials § 4.2.4, which involve q → q−1 have not been discussed before.

The above mentioned duality itself requires proper setting of discrete quantum mechan-

ics and thus valid only in a certain restricted domain of the parameters. The Casoratian

identities, (3.61)–(3.62), (3.63)–(3.64), in contrast, are purely algebraic relations and they

are valid without any restrictions on the parameters or the coordinates.

The multi-indexed Wilson and Askey-Wilson orthogonal polynomials are labeled by the

multi-index D, but different multi-index sets may give the same multi-indexed polynomials,

e.g. eq.(3.61) in [12]. The proposition 2 gives its generalisation. By applying the twist based

on the type II discrete symmetry to (3.63), the l.h.s becomes the denominator polynomial

with multiple type I virtual state deletion and the r.h.s. becomes that of type II.

Let us mention some recent works related to the solvable deformations of classical or-

thogonal polynomials [20]–[24]. After completing this work, two preprints discussing similar

subjects appeared [25].
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