
ar
X

iv
:1

60
6.

02
83

6v
1 

 [
m

at
h-

ph
] 

 9
 J

un
 2

01
6

DPSU-16-2

Recurrence Relations of

the Multi-Indexed Orthogonal Polynomials IV :

closure relations and creation/annihilation operators

Satoru Odake

Faculty of Science, Shinshu University,

Matsumoto 390-8621, Japan

Abstract

We consider the exactly solvable quantum mechanical systems whose eigenfunctions

are described by the multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson

and Askey-Wilson types. Corresponding to the recurrence relations with constant

coefficients for the M -indexed orthogonal polynomials, it is expected that the systems

satisfy the generalized closure relations. In fact we can verify this statement for small

M examples. The generalized closure relation gives the exact Heisenberg operator

solution of a certain operator, from which the creation and annihilation operators of

the system are obtained.

1 Introduction

The exactly solvable quantum mechanical systems described by the classical orthogonal poly-

nomials in the Askey scheme have two properties, shape invariance and closure relation [1, 2].

These two properties are sufficient conditions for the exact solvability. The former leads to

exact solvability in the Schrödinger picture and the latter to that in the Heisenberg picture.

The closure relation gives the exact Heisenberg operator solution of the sinusoidal coordinate

and its negative/positive frequency parts provide the creation/annihilation operators [2].

After the pioneer works [3, 4], new type of orthogonal polynomials, exceptional/multi-

indexed orthogonal polynomials, have been studied intensively [5]–[29] (and references therein).

The exceptional orthogonal polynomials (in the wide sense) {Pn(η)|n ∈ Z≥0} satisfy sec-

ond order differential or difference equations and form a complete set, but there are miss-

ing degrees, by which the constraints of Bochner’s theorem and its generalizations [30,

http://arxiv.org/abs/1606.02836v1


31] are avoided. We distinguish the following two cases; the set of missing degrees I =

Z≥0\{degPn|n ∈ Z≥0} is case (1): I = {0, 1, . . . , ℓ − 1}, or case (2) I 6= {0, 1, . . . , ℓ − 1},
where ℓ is a positive integer. The situation of case (1) is called stable in [9]. By using the

multi-step Darboux transformations with appropriate seed solutions [32, 33], many exactly

solvable deformed quantum mechanical systems and various exceptional orthogonal polyno-

mials with multi-indices can be obtained. When the virtual state wavefunctions are used

as seed solutions, we obtain case (1) and call them multi-indexed orthogonal polynomials

[11, 19, 18]. When the eigenstate or pseudo virtual state wavefunctions are used as seed

solutions, we obtain case (2) [13, 20].

The shape invariance of the original system is inherited by the deformed systems for

case (1), but lost for case (2) (some remnant remains [12, 13]). On the other hand, the

closure relation does not hold in the deformed systems. This is because the closure relation

is intimately related to the three term recurrence relations. Roughly speaking, three terms

in the r.h.s of the closure relation (2.3) correspond to three term recurrence relations. The

three term recurrence relations characterize the ordinary orthogonal polynomial (Favard’s

theorem [31]). Since the exceptional orthogonal polynomials are not ordinary orthogonal

polynomials, they do not satisfy the three term recurrence relations. They satisfy recurrence

relations with more terms [8][23]–[29]. For example, the simplest exceptional orthogonal

polynomials in [3] satisfy five term recurrence relations [8]. In our previous papers [27,

29] we discussed the recurrence relations with constant coefficients for the multi-indexed

orthogonal polynomials of Laguerre, Jacobi, Wilson and Askey-Wilson types. Corresponding

to these recurrence relations with constant coefficients, we expect that the deformed systems

satisfy the generalized closure relations (3.2), which have more than three terms in the r.h.s.

The generalized closure relation gives the exact Heisenberg operator solution of a certain

polynomial in the sinusoidal coordinate, whose negative/positive frequency parts provide the

creation/annihilation operators. The purpose of this paper is to expound these interesting

subjects.

This paper is organized as follows. In section 2 we recapitulate the closure relation.

The closure relation is a commutator relation between the Hamiltonian and the sinusoidal

coordinate η. It gives the exact Heisenberg operator solution of η and its negative/positive

frequency parts provide the creation/annihilation operators. In section 3 we generalize the

closure relation. If some function X satisfies the generalized closure relation, we can calcu-
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late the exact Heisenberg operator solution of X and its negative/positive frequency parts

provide the creation/annihilation operators. The discussion in this section is valid for gen-

eral quantum mechanical systems but the existence of the operator X is assumed. In section

4 we discuss that such operators X exist in the deformed systems described by the multi-

indexed orthogonal polynomials of Laguerre, Jacobi, Wilson and Askey-Wilson types. The

operator X is a polynomial in η giving the recurrence relations with constant coefficients for

the multi-indexed orthogonal polynomials. The exact Heisenberg operator solution of X and

the creation/annihilation operators are obtained. Explicit examples are given in section 5.

The final section is for a summary and comments. In AppendixA we present some formulas

for the diagonalization of a certain matrix. In AppendixB we present more examples.

2 Closure Relation

In this section we recapitulate the closure relation and creation/annihilation operators.

In many exactly solvable quantum mechanical models such as harmonic oscillator, radial

oscillator, Darboux-Pöschl-Teller potential and their discrete quantum mechanical counter-

parts, the eigenfunction φn(x) has the following factorized form

Hφn(x) = Enφn(x), 0 = E0 < E1 < E2 < · · · , (2.1)

φn(x) = φ0(x)P̌n(x) (n = 0, 1, 2, . . .), P̌n(x)
def
= Pn

(
η(x)

)
, (2.2)

where the function η = η(x) is called the sinusoidal coordinate and Pn(η)’s are classical

orthogonal polynomials in η : Hermite, Laguerre, Jacobi, Wilson, Askey-Wilson, (q-)Racah,

etc. For these systems, the Hamiltonian H and the sinusoidal coordinate η satisfy the

relation,
[
H, [H, η]

]
= ηR0(H) + [H, η]R1(H) +R−1(H), (2.3)

where Ri(z)’s are polynomials in z,

R0(z) = r
(2)
0 z2 + r

(1)
0 z + r

(0)
0 , R1(z) = r

(1)
1 z + r

(0)
1 , R−1(z) = r

(2)
−1z

2 + r
(1)
−1z + r

(0)
−1, (2.4)

and r
(j)
i ’s are real constants (r

(2)
0 = r

(1)
1 = r

(2)
−1 = 0 for the ordinary QM, H = p2+U(x)). This

relation (2.3) is called the closure relation; The double commutator (adH)2η = [H, [H, η]] is
expressed as a linear combination of (adH)0 η = η, (adH)η = [H, η] and 1 withH-dependent

coefficients Ri(H), which are multiplied from the right. The closure relation implies that
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multiple commutators (adH)nη = [H, [H, · · · , [H, η] · · · ]] (n times) are also expressed as a

linear combination of η, [H, η] and 1 with H-dependent coefficients,

(adH)nη = ηR0(H)
α+(H)n−1 − α−(H)n−1

α+(H)− α−(H)
+ [H, η]α+(H)n − α−(H)n

α+(H)− α−(H)

+R−1(H)
α+(H)n−1 − α−(H)n−1

α+(H)− α−(H)
− R−1(H)R0(H)−1δn0, (2.5)

where α±(z) are defined by

α±(z)
def
= 1

2

(
R1(z)±

√
R1(z)2 + 4R0(z)

)
, (2.6)

R1(z) = α+(z) + α−(z), R0(z) = −α+(z)α−(z). (2.7)

From this, the Heisenberg operator solution of the sinusoidal coordinate η = η(x) can be

obtained explicitly

eiHtηe−iHt =
∞∑

n=0

(it)n

n!
(adH)nη

= a(+)eiα+(H)t + a(−)eiα−(H)t − R−1(H)R0(H)−1, (2.8)

where a(±) = a(±)(H, η) are

a(±) def
= ±

(
[H, η]−

(
η +R−1(H)R0(H)−1

)
α∓(H)

)(
α+(H)− α−(H)

)−1
. (2.9)

Although the operators a(±) contain H in square roots, they do not cause any problem when

acting on the eigenfunction φn(x) of H, because the operator H is replaced by the eigenvalue

En. For each model, we can check R0(En) > 0, namely

α+(En) > 0 > α−(En). (2.10)

So eiα+(H)t and eiα−(H)t in (2.8) are interpreted as the negative and positive frequency parts

respectively. As for the harmonic oscillator, the coefficients of the negative and positive

frequency parts, a(+) and a(−), provide the creation and annihilation operators respectively.

Since Pn(η) are orthogonal polynomials, they satisfy the three term recurrence relations

(we set Pn(η) = 0 for n < 0),

ηPn(η) = AnPn+1(η) +BnPn(η) + CnPn−1(η) (n ≥ 0). (2.11)

This and (2.2) imply

ηφn(x) = Anφn+1(x) +Bnφn(x) + Cnφn−1(x) (n ≥ 0). (2.12)
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Action of (2.8) on φn(x) is

eiHtηe−iHtφn(x) = eiα+(En)ta(+)φn(x) + eiα−(En)ta(−)φn(x)− R−1(En)R0(En)−1φn(x).

On the other hand the l.h.s. turns out to be

eiHtηe−iHtφn(x) = eiHtηe−iEntφn(x)

= e−iEnteiHt
(
Anφn+1(x) +Bnφn(x) + Cnφn−1(x)

)

= ei(En+1−En)tAnφn+1(x) +Bnφn(x) + ei(En−1−En)tCnφn−1(x).

Comparing these t-dependence (see (2.10)), we obtain

α±(En) = En±1 − En, (2.13)

a(+)φn(x) = Anφn+1(x), a(−)φn(x) = Cnφn−1(x), (2.14)

− R−1(En)R0(En)−1 = Bn. (2.15)

Therefore a(+) and a(−) are creation and annihilation operators, respectively. (The normal-

izability of a(+)φn(x) depends on the model and n.)

The creation and annihilation operators for eigenpolynomials are obtained by the simi-

larity transformation in terms of the groundstate wavefunction φ0(x). The similarity trans-

formed Hamiltonian is

H̃ def
= φ0(x)

−1 ◦ H ◦ φ0(x), H̃P̌n(x) = EnP̌n(x). (2.16)

Corresponding to (2.3), this also satisfies the closure relation

[
H̃, [H̃, η]

]
= ηR0(H̃) + [H̃, η]R1(H̃) +R−1(H̃). (2.17)

From the creation and annihilation operators a(±) = a(±)(H, η), we obtain the creation and

annihilation operators for eigenpolynomials,

ã(±) def
= φ0(x)

−1 ◦ a(±)(H, η) ◦ φ0(x) = a(±)(H̃, η), (2.18)

ã(+)P̌n(x) = AnP̌n+1(x), ã(−)P̌n(x) = CnP̌n−1(x). (2.19)

The normalization constants of the orthogonality relations, hn,

(φn, φm) = hnδnm, (f, g)
def
=

∫ x2

x1

dx f ∗(x)g(x)dx, (2.20)
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are related to the coefficients of the three term recurrence relations. By calculating (φn, ηφm) =

(ηφn, φm) as

hn(Amδn,m+1 +Bmδn,m + Cmδn,m−1) = hm(Anδn+1,m +Bnδn,m + Cnδn−1,m),

we obtain

Anhn+1 = Cn+1hn (n ≥ 0). (2.21)

3 Generalization

In this section we generalize the closure relation. We consider general quantum mechanical

systems with the Hamiltonian H and the coordinate x.

Let us consider an operator X , which is a function of η = η(x),

X = X(η) = X
(
η(x)

) def
= X̌(x). (3.1)

We assume that the K-times commutator of H and X has the following form:

(adH)KX =

K−1∑

i=0

(adH)iX · Ri(H) +R−1(H). (3.2)

Here Ri(z) = RX
i (z) is a polynomial in z and their coefficients are real numbers depending on

the choice of X . We call this the closure relation of order K. The closure relation reviewed

in § 2 corresponds to K = 2.

The closure relation of order K (3.2) implies that the multiple commutation relation of

H and X , (adH)nX , can be expressed as a linear combination of (adH)iX (0 ≤ i ≤ K − 1)

and 1 with H-dependent coefficients, which are multiplied from the right,

(adH)nX =

K−1∑

i=0

(adH)iX · R[n]
i (H) +R

[n]
−1(H) (n ≥ 0). (3.3)

The initial conditions of R
[n]
i (z) are

R
[n]
i (z) =

{
δni (0 ≤ n ≤ K − 1 ;−1 ≤ i ≤ K − 1)

Ri(z) (n = K ;−1 ≤ i ≤ K − 1)
. (3.4)

By applying adH to (3.3),

(adH)n+1X = (adH)(adH)nX
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= (adH)
(
(adH)K−1X ·R[n]

K−1(H) +
K−2∑

i=0

(adH)iX · R[n]
i (H) +R

[n]
−1(H)

)

=
(K−1∑

i=0

(adH)iX · Ri(H) +R−1(H)
)
·R[n]

K−1(H) +
K−1∑

i=1

(adH)iX · R[n]
i−1(H),

the recurrence relations for R
[n]
i (z) are obtained:

R
[n+1]
i (z) = Ri(z)R

[n]
K−1(z) + θ(1 ≤ i ≤ K − 1)R

[n]
i−1(z) (n ≥ 0 ;−1 ≤ i ≤ K − 1), (3.5)

where θ(Prop) is a step function for a proposition, θ(True) = 1 and θ(False) = 0. By

introducing a matrix A and a vector ~R[n]

A
def
=




0 R0

1 0 O R1

1 0 R2

. . .
. . .

...

O 1 0 RK−2

1 RK−1




, ~R[n] def
=




R
[n]
0

R
[n]
1

R
[n]
2
...

R
[n]
K−1



, (3.6)

this recurrence relations (3.5) with the initial conditions (3.4) can be rewritten as

~R[n+1] = A~R[n] (n ≥ 0), ~R[0] = t(1 0 0 · · · 0), (3.7)

R
[n+1]
−1 = R−1R

[n]
K−1 (n ≥ 0), R

[0]
−1 = 0. (3.8)

These are easily solved as

~R[n] = An ~R[0] (n ≥ 0), (3.9)

R
[n]
−1 = θ(n ≥ 1)R−1R

[n−1]
K−1 = θ(n ≥ 1)R−1 ·

(
An−1 ~R[0]

)
K

(n ≥ 0). (3.10)

By using the properties of the matrix A given in Appendix A, let us calculate An. Al-

though the matrix elements of A depend on H, we can use the formulas in Appendix A,

because the operator appearing in this calculation is H only. We assume that the matrix A

has K distinct real non-vanishing eigenvalues αi = αi(H) and they are indexed in decreasing

order

αi(z) 6= 0, α1(z) > α2(z) > · · · > αK(z) (z ≥ 0). (3.11)

We note that Ri (0 ≤ i ≤ K − 1) is expressed by αj,

Ri = (−1)K−i−1
∑

1≤j1<j2<···<jK−i≤K

αj1αj2 · · ·αjK−i
(0 ≤ i ≤ K − 1). (3.12)
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The eigenvector ~pj = (pij)1≤i≤K (pij = pij(H)) corresponding to the eigenvalue αj has a

simple expression

pij
def
= αK−i

j −
K−i∑

k=1

RK−k α
K−i−k
j . (3.13)

Note that pKj = 1. Since the matrix A is diagonalized by the matrix P = (pij)1≤i,j≤K =
(
~p1 ~p2 · · · ~pK

)
, P−1AP = diag(α1, α2, . . . , αK), we obtain

An = P diag(αn
1 , α

n
2 , . . . , α

n
K)P

−1. (3.14)

The matrix element (P−1)ji and the sum
∑K

j=1 α
−1
j (P−1)j1 are

(P−1)ji = αi−1
j

K∏

k=1

k 6=j

(αj − αk)
−1,

K∑

j=1

α−1
j (P−1)j1 = R−1

0 . (3.15)

Next let us calculate the Heisenberg operator eitHXe−itH. By defining ~X ,

~X
def
=




X

(adH)X
(adH)2X

...
(adH)K−1X



, (3.16)

eq. (3.3) gives

(adH)nX = t~X ~R[n] +R
[n]
−1 =

t~XAn ~R[0] + θ(n ≥ 1)R−1 ·
(
An−1 ~R[0]

)
K

(n ≥ 0). (3.17)

Then we have

eitHXe−itH =
∞∑

n=0

(it)n

n!
(adH)nX

=
∞∑

n=0

(it)n

n!

(
t~XAn ~R[0] + θ(n ≥ 1)R−1 ·

(
An−1 ~R[0]

)
K

)

= t~XeitA ~R[0] + iR−1

∫ t

0

ds
(
eisA ~R[0]

)
K

= t~XP · diag(eiα1t · · · eiαK t) · P−1 ~R[0] + iR−1

∫ t

0

ds
(
P · diag(eiα1s · · · eiαKs) · P−1 ~R[0]

)
K

=

K∑

j=1

t~X~pje
iαjt(P−1)j1 + iR−1

∫ t

0

ds

K∑

j=1

pKje
iαjs(P−1)j1

=

K∑

j=1

t~X~pje
iαjt(P−1)j1 +R−1

K∑

j=1

[
α−1
j eiαjs(P−1)j1

]t
0
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=
K∑

j=1

(
t~X~pj +R−1α

−1
j

)
(P−1)j1e

iαjt − R−1

K∑

j=1

α−1
j (P−1)j1

=
K∑

j=1

a(j)eiαjt −R−1R
−1
0 . (3.18)

In the last line we have defined a(j) = a(j)(H, X) (1 ≤ j ≤ K) as

a(j)
def
=

(
t~X~pj +R−1α

−1
j

)
(P−1)j1. (3.19)

Remark Since the operation adH is a derivation, the closure relation of order K (3.2)

is interpreted as a differential equation. More explicitly, it is stated as follows. Since a

Heisenberg operator FH(t) satisfies the Heisenberg equation i d
dt
FH(t) = [FH(t), H ], the op-

eration adH for Heisenberg operators is a derivative −i d
dt
. Then the closure relation of

order K (3.2) means a differential equation for the Heisenberg operator XH(t) = eitHXe−itH,

(−i)K dKXH(t)
dtK

−
K−1∑
l=0

(−i)l dlXH(t)
dtl

Rl(H) = R−1(H), which is a K-th order linear differential

equation with ‘constant’ coefficients Rl(H) (0 ≤ l ≤ K − 1) and a ‘constant’ inhomogeneous

term R−1(H). Such a K-th order differential equation is converted into a coupled first order

linear differential equation, which is expressed neatly in vector and matrix notation, see

the matrix A (3.6). Its general solution is a linear combination of eiαjt (which is a general

solution of the homogeneous equation) plus a particular solution (which corresponds to an

inhomogeneous term), see the last line of (3.18).

Although these operators a(j) (3.19) contain H in a complicated way, they do not cause

any problem when acting on the eigenfunction of H, because the operator H is replaced by

the eigenvalue. By noting

[H, t~X] =
(
(adH)X, (adH)2X, · · · , (adH)K−1X, (adH)KX

)

=
(
(adH)X, (adH)2X, · · · , (adH)K−1X,

K−1∑

i=0

(adH)i−1X ·Ri +R−1

)

= t~XA+ (0, 0, · · · , 0, R−1), (3.20)

we obtain

[H, a(j)] = [H, t~X]~pj(P
−1)j1 =

(
t~XA+ (0, 0, · · · , 0, R−1)

)
~pj(P

−1)j1

=
(
t~Xαj~pj +R−1pKj)

)
(P−1)j1 = a(j)αj. (3.21)
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This relation implies

Hψ(x) = Eψ(x) ⇒ Ha(j)ψ(x) = a(j)
(
H + αj(H)

)
ψ(x) = a(j)

(
E + αj(E)

)
ψ(x)

=
(
E + αj(E)

)
a(j)ψ(x). (3.22)

Therefore the operator a(j) maps a solution of the Schrödinger equation with energy E to

that with energy E + αj(E). Namely it is a creation operator (αj(E) > 0) or an annihilation

operator (αj(E) < 0) (we have assumed ψ(x) and a(j)ψ(x) are normalizable).

The discussion given in this section is very general but we have assumed the existence of

X satisfying the generalized closure relation (3.2). In the next section we discuss that such

X ’s really exist in the systems described by the multi-indexed orthogonal polynomials.

4 Relation to the Recurrence Relations

In this section we consider exactly solvable systems described by the multi-indexed orthog-

onal polynomials of Laguerre(L), Jacobi(J), Wilson(W) and Askey-Wilson(AW) types. We

discuss the existence of the generalized closure relations together with their connection to the

recurrence relations with constant coefficients for the multi-indexed orthogonal polynomials.

We follow the notation in [23, 27, 29].

4.1 Multi-indexed orthogonal polynomials

Isospectral deformations of the exactly solvable systems described by L, J, W and AW

polynomials are obtained by the M-step Darboux transformations with the virtual state

wavefunctions as seed solutions. The deformed systems are labeled by D = {d1, . . . , dM} =

{dI1, . . . , dIMI
, dII1 , . . . , d

II
MII

} (M = MI +MII), which are the degrees and types of the virtual

state wavefunctions, and their eigenstates have the following form,

HDφD n(x) = EnφD n(x), 0 = E0 < E1 < E2 < · · · , (4.1)

φD n(x) = ΨD(x)P̌D,n(x) (n = 0, 1, 2, . . .), P̌D,n(x)
def
= PD,n

(
η(x)

)
. (4.2)

Here PD,n(η)’s are multi-indexed orthogonal polynomials. The Hamiltonian HD of the de-

formed system is the second order differential or difference operator,

L, J : HD = p2 + UD(x), (4.3)

W,AW : HD =
√
VD(x)V

∗
D(x− iγ) eγp +

√
V ∗
D(x)VD(x+ iγ) e−γp − VD(x)− V ∗

D(x), (4.4)

10



where p = −i d
dx

and γ = 1 for W, γ = log q for AW. The deformed potential UD(x)

and potential function VD(x) are expressed in terms of the original U(x), V (x) and the

denominator polynomial ΞD(η). The explicit forms of PD,n(η), ΞD(η), ΨD(x), UD(x), VD(x),

etc. can be found in [23, 27, 29].

Since the multi-indexed orthogonal polynomials are not the ordinary orthogonal polyno-

mials, they do not satisfy the three term recurrence relations. They satisfy the recurrence

relations with more terms; 3 + 2M term recurrence relations with variable dependent coef-

ficients [23]. It is conjectured that they also satisfy 1 + 2L term recurrence relations with

constant coefficients [27, 29] of the form,

X(η)PD,n(η) =

L∑

k=−L

r
X,D
n,k PD,n+k(η) (∀n ≥ 0), (4.5)

in which X(η) is a degree L polynomial in η (with real number coefficients) and rX,D
n,k ’s are

constants. We have set PD,n(η) = 0 for n < 0. The polynomial X(η) (4.5) depends on the

denominator polynomial ΞD(η) [27]:

X(η) =

{ ∫ η

0
ΞD(y)Y (y)dy : L, J

I[ΞDY ](η) : W,AW
, degX(η) = L = ℓD + deg Y (η) + 1, (4.6)

where Y (η) is an arbitrary polynomial in η and the map I[·] is given in [27] and ℓD is

ℓD =

M∑

j=1

dj −
1

2
M(M − 1) + 2MIMII. (4.7)

So long as the two polynomials in η, ΞD(η) = Ξd1...dM (η) and Ξd1...dM−1
(η) (with some mod-

ification for W and AW), do not have common roots, the above form exhausts all possible

X(η) giving rise to the recurrence relations with constant coefficients (4.5). This conjecture

is proved for L and J in [29].

The normalization constants of the orthogonality relations, hD n, are related to those of

the original system (2.20),

(φD n, φDm) = hD nδnm, hD n = hn

M∏

j=1

(En − Ẽdj ), (4.8)

where Ẽdj ’s are energies of the virtual states, see (5.2), (5.13), (5.21) and (5.26). As in (2.21),

the normalization constants and the coefficients of the recurrence relations are related. Since
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the recurrence relations (4.5) give

X(η)φDn(x) =

L∑

k=−L

r
X,D
n,k φD n+k(x) (n ≥ 0), (4.9)

we have

(φD n, XφD n−l) = θ(−L ≤ l ≤ L)rX,D
n−l,l hD n

= (XφD n, φD n−l) = θ(−L ≤ l ≤ L)rX,D
n,−l hD n−l,

which means

r
X,D
n−l,l hD n = r

X,D
n,−l hD n−l (−L ≤ l ≤ L). (4.10)

Hence we obtain

r
X,D
n,−l =

hD n

hD n−l

r
X,D
n−l,l (1 ≤ l ≤ L). (4.11)

This result is obtained for an appropriate parameter range (with which the inner product is

well-defined) but the algebraic relations (4.11) themselves are valid for any parameter range.

If rX,D
m,k (0 ≤ m ≤ n − 1, −L ≤ k ≤ L) are known (hD n are given in (4.8)), we obtain rX,D

n,k

(−L ≤ k ≤ −1) by this relation (we can set rX,D
0,k = 0 (−L ≤ k ≤ −1)). Therefore, in

order to find the coefficients rX,D
n,k , it is sufficient to find rX,D

n,k (n ≥ 0, 0 ≤ k ≤ L). The top

coefficient rX,D
n,L is easily obtained by comparing the highest degree terms,

r
X,D
n,L =

cXcPD,n

cPD,n+L

, (4.12)

where cX and cPD,n are

X(η) = cXηL + (lower order terms),

PD,n(η) = cPD,nη
ℓD+n + (lower order terms).

The explicit forms of cPD,n are found in [29] (L, J) and [19] (W, AW).

4.2 Generalized closure relations

The recurrence relations with constant coefficients give rise to the generalized closure rela-

tions, for which we have the following:
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Conjecture 1 For any polynomial Y (η), we take X(η) as (4.6). Then we have the closure

relation of order K = 2L (3.2) and the eigenvalues of the matrix A (3.6) satisfy

α1(z) > α2(z) > · · · > αL(z) > 0 > αL+1(z) > αL+2(z) > · · · > α2L(z) (z ≥ 0). (4.13)

Remark 1 From the form of the Hamiltonian (4.3)–(4.4), the polynomials Ri(z) = RX
i (z)

with coefficients r
(j)
i = r

X(j)
i are

L, J : Ri(z) =

[ 1
2
(K−i)]∑

j=0

r
(j)
i zj (0 ≤ i ≤ K − 1), R−1(z) =

[ 1
2
K]∑

j=0

r
(j)
−1z

j , (4.14)

W,AW : Ri(z) =

K−i∑

j=0

r
(j)
i zj (0 ≤ i ≤ K − 1), R−1(z) =

K∑

j=0

r
(j)
−1z

j , (4.15)

where [a] denotes the greatest integer not exceeding a.

At present we do not have a proof of Conjecture 1 but we can verify it for small values of

M , dj and degY (η) by direct calculation. Such explicit examples will be given in the next

section and AppendixB.

In the rest of this section we assume that Conjecture 1 holds. Then we have the exact

Heisenberg operator solution of X (3.18) and the creation/annihilation operators a(j) (3.19).

Action of (3.18) on φD n(x) is

eitHXe−itHφD n(x) =

2L∑

j=1

eiαj (En)ta(j)φD n(x)−R−1(En)R0(En)−1φD n(x).

On the other hand the l.h.s. turns out to be

eiHtXe−iHtφD n(x) = eiHtXe−iEntφD n(x) = e−iEnteiHt

L∑

k=−L

r
X,D
n,k φD n+k(x)

=
L∑

k=−L

ei(En+k−En)t r
X,D
n,k φD n+k(x).

Comparing these t-dependence (see (4.13)) and using (3.15), we obtain

αj(En) =
{ En+L+1−j − En > 0 (1 ≤ j ≤ L)

En−(j−L) − En < 0 (L+ 1 ≤ j ≤ 2L)
, (4.16)

a(j)φD n(x) =

{
r
X,D
n,L+1−jφD n+L+1−j(x) (1 ≤ j ≤ L)

r
X,D

n,−(j−L)φD n−(j−L)(x) (L+ 1 ≤ j ≤ 2L)
, (4.17)
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−R−1(En)R0(En)−1 = r
X,D
n,0 . (4.18)

Therefore a(j) (1 ≤ j ≤ L) and a(j) (L+1 ≤ j ≤ 2L) are creation and annihilation operators,

respectively. Among them a(L) and a(L+1) are fundamental, a(L)φD,n(x) ∝ φD n+1(x) and

a(L+1)φD,n(x) ∝ φD n−1(x).

The creation and annihilation operators for eigenpolynomials are obtained by the simi-

larity transformation. The similarity transformed Hamiltonian is

H̃D
def
= ΨD(x)

−1 ◦ HD ◦ΨD(x), H̃DP̌D,n(x) = EnP̌D,n(x). (4.19)

Their explicit forms are

L, J : H̃D(λ) = −4

(
c2(η)

d2

dη2
+
(
c1(η,λ

[MI,MII])− 2c2(η)
∂ηΞD(η;λ)

ΞD(η;λ)

) d

dη

+ c2(η)
∂2ηΞD(η;λ)

ΞD(η;λ)
− c1(η,λ

[MI,MII] − δ)
∂ηΞD(η;λ)

ΞD(η;λ)

)
, (4.20)

W,AW : H̃D(λ) = V (x;λ[MI,MII])
Ξ̌D(x+ iγ

2
;λ)

Ξ̌D(x− iγ
2
;λ)

(
eγp − Ξ̌D(x− iγ;λ+ δ)

Ξ̌D(x;λ+ δ)

)

+ V ∗(x;λ[MI,MII])
Ξ̌D(x− iγ

2
;λ)

Ξ̌D(x+ iγ
2
;λ)

(
e−γp − Ξ̌D(x+ iγ;λ+ δ)

Ξ̌D(x;λ+ δ)

)
, (4.21)

where we have written the parameter (λ) dependence explicitly (see [23, 27, 29] for notation).

Corresponding to (3.2), this also satisfies the closure relation

(ad H̃)KX =
K−1∑

i=0

(ad H̃)iX · Ri(H̃) +R−1(H̃). (4.22)

From the creation/annihilation operators a(j) = a(j)(H, X), we obtain the creation/annihilation

operators for eigenpolynomials,

ã(j)
def
= ΨD(x)

−1 ◦ a(j)(H, X) ◦ΨD(x) = a(j)(H̃, X), (4.23)

ã(j)P̌D,n(x) =

{
r
X,D
n,L+1−jP̌D,n+L+1−j(x) (1 ≤ j ≤ L)

r
X,D

n,−(j−L)P̌D,n−(j−L)(x) (L+ 1 ≤ j ≤ 2L)
. (4.24)

5 Examples

In this section we present examples of the generalized closure relations for the deformed

systems described by the multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson

and Askey-Wilson types.
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We have verified Conjecture 1 for small M , dj and deg Y by direct calculation. Such

calculation suggests that the polynomials Ri(z) (0 ≤ i ≤ K − 1) depend on L (or K = 2L)

only and the dependence of dj and Y (η) enters in R−1(z). We arrive at the following:

Conjecture 2 The eigenvalues of the matrix A (3.6) with K = 2L are given by (5.3), (5.14),

(5.22) and (5.27) for L, J, W and AW, respectively.

Remark 1 We can show that (5.3), (5.14), (5.22) and (5.27) satisfy (4.13) and (4.16) for

appropriate parameter ranges. These αj(z)’s depend on dj and Y (η) only through the degree

of X(η), L = ℓD + deg Y (η) + 1.

Remark 2 The polynomials Ri(z) (0 ≤ i ≤ 2L− 1) are given by

Ri(z) = (−1)i+1
∑

1≤j1<j2<···<j2L−i≤2L

αj1(z)αj2(z) · · ·αj2L−i
(z) (0 ≤ i ≤ 2L− 1). (5.1)

These expressions are symmetric under the exchange of αj and α2L+1−j . For (5.3), (5.14),

(5.22) and (5.27), we can check that αj + α2L+1−j and αjα2L+1−j are polynomials in z, see

(5.15), (5.23) and (5.28). Hence Ri(z) (5.1) are indeed polynomials in z.

Remark 3 The above expressions (5.1) with (5.3), (5.14), (5.22) and (5.27) are valid for

L = 1 case, namely the original system (D = {}, ℓD = 0, ΞD(η) = 1, X(η) = Xmin(η) = η),

and the generalized closure relation reduces to the original closure relation.

If Conjecture 2 holds, the unknown quantity of the generalized closure relation is R−1(z)

only.

5.1 Multi-indexed Laguerre polynomials

The data for the Laguerre polynomial are

En = 4n, Ẽ I
v = −4(g + v + 1

2
), Ẽ II

v = −4(g − v− 1
2
), hn = 1

2n!
Γ(n+ g + 1

2
). (5.2)

The eigenvalues of the matrix A (3.6) with K = 2L are conjectured as

αj(z) =

{
4(L+ 1− j) (1 ≤ j ≤ L)

−4(j − L) (L+ 1 ≤ j ≤ 2L)
, (5.3)

which are constants. It is trivial that these αj satisfy (4.13) and (4.16). We have Ri(z) = 0

(i : odd > 0) due to αj = −α2L+1−j . Note that Ri(z) (i : even ≥ 0) are also constants.
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Ex.1 We explain D = {1I} (type I) in detail as an illustration. First we consider the lowest

degree case X(η) = Xmin(η), which corresponds to Y (η) = 1. The degree of X(η) is L = 2

and the data of the closure relation of order K = 4 are

X(η) = Xmin(η) =
1
2
η(η + 2g + 1),

R0(z) = −1024, R1(z) = 0, R2(z) = 80, R3(z) = 0, (5.4)

R−1(z) = 64
(
3z2 + 2(10g + 11)z + 2(2g + 1)(6g + 13)

)
,

and (α1, α2, α3, α4) = (8, 4,−4,−8). The creation operators, a(1) and a(2), and the annihila-

tion operators, a(3) and a(4), have the following forms,

a(1) = 1
768

(
−128X − 16(adH)X + 8(adH)2X + (adH)3X + 1

8
R−1(H)

)
,

a(2) = −1
384

(
−256X − 64(adH)X + 4(adH)2X + (adH)3X + 1

4
R−1(H)

)
,

a(3) = 1
384

(
256X − 64(adH)X − 4(adH)2X + (adH)3X − 1

4
R−1(H)

)
, (5.5)

a(4) = −1
768

(
128X − 16(adH)X − 8(adH)2X + (adH)3X − 1

8
R−1(H)

)
.

Here differential operators H, (adH)X etc. are

HD = − d2

dx2
+ UD(x), X = X

(
η(x)

)
= X̌(x), f ′ =

df

dx
, f (k) =

dkf

dxk

(adH)X = −2X̌ ′ d

dx
− X̌ ′′, (adH)2X = 4X̌ ′′ d

2

dx2
+ 4X̌ ′′′ d

dx
+ X̌(4) + 2X̌ ′U ′

D(x),

(adH)3X = −8X̌ ′′′ d
3

dx3
− 12X̌(4) d

2

dx2
− 2

(
3X̌(5) + 6X̌ ′′U ′

D(x) + 2X̌ ′U ′′
D(x)

) d
dx

− X̌(6) − 6X̌ ′′′U ′
D(x)− 8X̌ ′′U ′′

D(x)− 2X̌ ′U ′′′
D (x), (5.6)

and the potential UD(x) in this case is

UD(x) = x2 +
g(g + 1)

x2
− 2g − 3 +

4

x2 + g + 1
2

− 4(2g + 1)

(x2 + g + 1
2
)2
. (5.7)

The eigenfunctions of HD are

φD n(x) =
2e−

1

2
x2

xg+1

x2 + g + 1
2

PD,n(x
2),

PD,n(η) = (g + 1
2
+ η)∂ηL

(g− 1

2
)

n (η)− (g + 3
2
+ η)L

(g− 1

2
)

n (η). (5.8)

The coefficients of the 5-term recurrence relations for X(η) = Xmin(η) are [25, 26, 27]

r
X,D
n,2 = 1

2
(n+ 1)(n+ 2), r

X,D
n,−2 =

1
8
(2g + 2n− 3)(2g + 2n+ 3),
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r
X,D
n,1 = −(n+ 1)(2g + 2n+ 3), r

X,D
n,−1 = −1

2
(2g + 2n− 1)(2g + 2n+ 3), (5.9)

r
X,D
n,0 = 1

8

(
24n2 + 4(10g + 11)n+ (2g + 1)(6g + 13)

)
.

We can check (4.16)–(4.18), (4.24), (4.11), etc.

Next we take Y (η) = η. Then we have L = 3 and the data of the closure relation of order

K = 6 are

X(η) = η2
(
1
3
η + 1

4
(2g + 1)

)
,

R0(z) = 147456, R2(z) = −12544, R4(z) = 224, R1(z) = R3(z) = R5(z) = 0, (5.10)

R−1(z) = −1536
(
10z3 + 3(26g + 33)z2 + 2(84g2 + 240g + 139)z

+ 2(2g + 1)(2g + 5)(10g + 27)
)
,

and (α1, α2, α3, α4, α5, α6) = (12, 8, 4,−4,−8,−12).

For Y (η) = η2, we have L = 4 and the data of the closure relation of order K = 8 are

X(η) = η3
(
1
4
η + 1

6
(2g + 1)

)
,

R0(z) = −37748736, R2(z) = 3358720, R4(z) = −69888, R6(z) = 480,

R1(z) = R3(z) = R5(z) = R7(z) = 0, (5.11)

R−1(z) = 24576
(
105z4 + 20(50g + 67)z3 + 60(52g2 + 152g + 107)z2

+ 32(6g + 5)(18g2 + 77g + 94)z + 8(2g + 1)(2g + 5)(2g + 7)(14g + 45)
)
,

and (α1, α2, . . . , α8) = (16, 12, 8, 4,−4,−8,−12− 16).

Ex.2 For D = {1II} (type II) and Y (η) = 1, we have L = 2 and the data of the closure

relation of order K = 4 are

X(η) = Xmin(η) = −1
2
η(η + 2g − 3),

R0(z) = −1024, R1(z) = 0, R2(z) = 80, R3(z) = 0, (5.12)

R−1(z) = −64
(
3z2 + 2(10g − 9)z + 2(2g − 3)(6g + 1)

)
,

and (α1, α2, α3, α4) = (8, 4,−4,−8).

More examples are presented in Appendix B.
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5.2 Multi-indexed Jacobi polynomials

The data for the Jacobi polynomial are

En = 4n(n+ g + h), hn =
Γ(n+ g + 1

2
)Γ(n+ h + 1

2
)

2n! (2n+ g + h)Γ(n + g + h)
,

Ẽ I
v = −4(g + v + 1

2
)(h− v− 1

2
), Ẽ II

v = −4(g − v− 1
2
)(h+ v + 1

2
), (5.13)

and we set a = g + h and b = g − h.

The eigenvalues of the matrix A (3.6) with K = 2L are conjectured as

αj(z) =

{
4(L+ 1− j)2 + 4(L+ 1− j)

√
z + a2 (1 ≤ j ≤ L)

4(j − L)2 − 4(j − L)
√
z + a2 (L+ 1 ≤ j ≤ 2L)

. (5.14)

Remark that αj(En) is square root free,
√
En + a2 = 2n + a. We can show that these αj

satisfy (4.13) and (4.16) for a > 2L− 1. Note that

αj(z) + α2L+1−j(z) =

{
8(L+ 1− j)2 (1 ≤ j ≤ L)

8(j − L)2 (L+ 1 ≤ j ≤ 2L)
, (5.15)

αj(z)α2L+1−j(z) =

{
16(L+ 1− j)2

(
(L+ 1− j)2 − z − a2

)
(1 ≤ j ≤ L)

16(j − L)2
(
(j − L)2 − z − a2

)
(L+ 1 ≤ j ≤ 2L)

.

Ex.1 First we consider D = {1I} (type I) and take X = Xmin (⇒ ℓD = 1, L = 2, K = 4),

X(η) = Xmin(η) =
1
4
η
(
(b+ 2)η + 2(a− 1)

)
. (5.16)

The closure relation of order 4 holds with the following Ri:

R0(z) = −1024(z + a2 − 1)(z + a2 − 4), R1(z) = −1024(z + a2 − 5
2
),

R2(z) = 80(z + a2 − 33
5
), R3(z) = 40,

R−1(z) = 128(b+ 2)
(
z2 −

(
(b+ 2)2 + 3a2 − 10a+ 1

)
z (5.17)

+ 2(a− 1)(a− 2)
(
(b+ 2)2 − 2a2 − a− 3)

))
.

The eigenvalues of A (3.6) are

α1(H) = 16 + 8
√
H + a2, α2(H) = 4 + 4

√
H + a2,

α4(H) = 16− 8
√
H + a2, α3(H) = 4− 4

√
H + a2,
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and αj(En) is square root free,
√
En + a2 = 2n+ a. We can check (3.11) for a > 3. Therefore

a(1) and a(2) are the creation operators, and a(3) and a(4) are the annihilation operators. The

potential and eigenfunctions are

UD(x) =
g(g + 1)

sin2 x
+

(h− 1)(h− 2)

cos2 x
− a2 +

8(a− 1)

a− 1 + (b+ 2) cos 2x
− 8(2g + 1)(2h− 3)

(
a− 1 + (b+ 2) cos 2x

)2 ,

φD n(x) =
−8(sin x)g+1(cosx)h−1

a− 1 + (b+ 2) cos 2x
PD,n(cos 2x),

PD,n(η) =
1
4
(1 + η)

(
a− 1 + (b+ 2)η

)
∂ηP

(g− 1

2
,h− 1

2
)

n (η)

− 1
4
(3
2
− h)

(
a+ 1 + (b+ 2)η

)
P

(g− 1

2
,h− 1

2
)

n (η). (5.18)

The coefficients of the 5-term recurrence relations are [27]

r
X,D
n,2 =

(n + 1)2(b+ 2)(a+ n)2(2h+ 2n− 3)

(a+ 2n)4(2h+ 2n+ 1)
,

r
X,D
n,−2 =

(b+ 2)(2g + 2n− 3)(2g + 2n + 3)(h+ n− 3
2
)2

4(a+ 2n− 3)4
,

r
X,D
n,1 =

(n + 1)(a− 1)(a+ n)(2g + 2n+ 3)(2h+ 2n− 3)

(a+ 2n− 1)3(a+ 2n+ 3)
, (5.19)

r
X,D
n,−1 =

(a− 1)(2g + 2n− 1)(2g + 2n+ 3)(h+ n− 3
2
)2

(a+ 2n− 3)(a+ 2n− 1)3
,

r
X,D
n,0 =

b+ 2

4(a+ 2n− 2)2(a + 2n+ 1)2

(
−b(b + 4)

(
2n(a + n)− (a− 2)(a− 1)

)

+ (a+ 2n− 1)(a+ 2n+ 1)
(
2n(a+ n)− (a− 2)(2a− 1)

))
.

We can check (4.16)–(4.18), (4.24), (4.11), etc.

Ex.2 Next we consider D = {1II} (type II) and take X = Xmin. Since these two cases

D = {1I} and D = {1II} are essentially same [5], we present R−1(z) only,

R−1(z) = −128(b− 2)
(
z2 −

(
(b− 2)2 + 3a2 − 10a+ 1

)
z

+ 2(a− 1)(a− 2)
(
(b− 2)2 − 2a2 − a− 3)

))
. (5.20)

More examples are presented in Appendix B.

5.3 Multi-indexed Wilson polynomials

The data for the Wilson polynomial are

En = n(n + b1 − 1), b1
def
=

4∑

i=1

ai, hn =
2πn! (n+ b1 − 1)n

∏
1≤i<j≤4 Γ(n+ ai + aj)

Γ(2n+ b1)
,

19



Ẽ I
v = −(a1 + a2 − v− 1)(a3 + a4 + v), Ẽ II

v = −(a3 + a4 − v− 1)(a1 + a2 + v), (5.21)

and we set σ1 = a1+a2, σ2 = a1a2, σ
′
1 = a3+a4, σ

′
2 = a3a4, b2 =

∑
1≤i<j≤4

aiaj, b3 =
∑

1≤i<j<k≤4

aiajak

and b4 = a1a2a3a4.

The eigenvalues of the matrix A (3.6) with K = 2L are conjectured as

αj(z) =

{
(L+ 1− j)2 + (L+ 1− j)

√
4z + (b1 − 1)2 (1 ≤ j ≤ L)

(j − L)2 − (j − L)
√

4z + (b1 − 1)2 (L+ 1 ≤ j ≤ 2L)
. (5.22)

Remark that αj(En) is square root free,
√

4En + (b1 − 1)2 = 2n + b1 − 1. We can show that

these αj satisfy (4.13) and (4.16) for b1 > 2L. Note that

αj(z) + α2L+1−j(z) =

{
2(L+ 1− j)2 (1 ≤ j ≤ L)

2(j − L)2 (L+ 1 ≤ j ≤ 2L)
, (5.23)

αj(z)α2L+1−j(z) =

{
(L+ 1− j)2

(
(L+ 1− j)2 − 4z − (b1 − 1)2

)
(1 ≤ j ≤ L)

(j − L)2
(
(j − L)2 − 4z − (b1 − 1)2

)
(L+ 1 ≤ j ≤ 2L)

.

Ex.1 We consider D = {1I} and take X = Xmin (⇒ ℓD = 1, L = 2, K = 4),

X(η) = Xmin(η) =
1
4
η
(
2(σ1−σ′

1− 2)η+4(σ2σ
′
1−σ1σ

′
2−σ1σ

′
1+2σ′

2)+σ1+3σ′
1− 2

)
. (5.24)

The closure relation of order 4 holds with the following Ri: Ri(z) (0 ≤ i ≤ 4) are given by

Conjecture 2 and (5.1),

R3(z) = 10, R2(z) = 5z′ − 33, z′
def
= 4z + (b1 − 1)2,

R1(z) = −8(2z′ − 5), R0(z) = −4(z′ − 1)(z′ − 4), (5.25)

and R−1(z) is presented in (B.23) because of its lengthy expression. The coefficients of the

5-term recurrence relations are found in [27] and we can check (4.16)–(4.18), (4.24), (4.11),

etc.

5.4 Multi-indexed Askey-Wilson polynomials

The data for the Askey-Wilson polynomial are

En = (q−n − 1)(1− b4q
n−1), b4

def
=

4∏

i=1

ai, hn =
2π(b4q

n−1; q)n(b4q
2n; q)∞

(qn+1; q)∞
∏

1≤i<j≤4(aiajq
n; q)∞

,

Ẽ I
v = −(1− a1a2q

−v−1)(1− a3a4q
v), Ẽ II

v = −(1 − a3a4q
−v−1)(1− a1a2q

v), (5.26)
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and we set σ1 = a1 + a2, σ2 = a1a2, σ
′
1 = a3 + a4, σ

′
2 = a3a4, b1 =

4∑
i=1

ai, b2 =
∑

1≤i<j≤4

aiaj and

b3 =
∑

1≤i<j<k≤4

aiajak.

The eigenvalues of the matrix A (3.6) with K = 2L are conjectured as

αj(z) =





1
2

(
(q−

1

2
(L+1−j) − q

1

2
(L+1−j))2(z + 1 + q−1b4)

+(q−(L+1−j) − qL+1−j)
√

(z + 1 + q−1b4)2 − 4q−1b4
)

(1 ≤ j ≤ L)

1
2

(
(q−

1

2
(j−L) − q

1

2
(j−L))2(z + 1 + q−1b4)

−(q−(j−L) − qj−L)
√

(z + 1 + q−1b4)2 − 4q−1b4
)

(L+ 1 ≤ j ≤ 2L)

. (5.27)

Remark that αj(En) is square root free,
√

(En + 1 + q−1b4)2 − 4q−1b4 = q−n − b4q
n−1. We

can show that these αj satisfy (4.13) and (4.16) for b4 < q2L. Note that

αj(z) + α2L+1−j(z) =

{
(q−

1

2
(L+1−j) − q

1

2
(L+1−j))2(z + 1 + q−1b4) (1 ≤ j ≤ L)

(q−
1

2
(j−L) − q

1

2
(j−L))2(z + 1 + q−1b4) (L+ 1 ≤ j ≤ 2L)

,

αj(z)α2L+1−j(z) (5.28)

=





(q−
1

2
(L+1−j) − q

1

2
(L+1−j))2

×
(
(q−

1

2
(L+1−j) + q

1

2
(L+1−j))2q−1b4 − (z + 1 + q−1b4)

2
)

(1 ≤ j ≤ L)

(q−
1

2
(j−L) − q

1

2
(j−L))2

×
(
(q−

1

2
(j−L) + q

1

2
(j−L))2q−1b4 − (z + 1 + q−1b4)

2
)

(L+ 1 ≤ j ≤ 2L)

.

Ex.1 We consider D = {1I} and take X = Xmin (⇒ ℓD = 1, L = 2, K = 4),

X(η) = Xmin(η) =
η

(1 + q)σ2

(
2q

1

2 (σ2−σ′
2q

2)η− (1+ q)
(
σ1(1−σ′

2)q+ σ′
1(σ2− q2)

))
. (5.29)

The closure relation of order 4 holds with the following Ri: Ri(z) (0 ≤ i ≤ 4) are given by

Conjecture 2 and (5.1),

R3(z) = q−2(1− q)2(1 + 3q + q2)z′, z′
def
= z + 1 + q−1b4,

R2(z) = −q−3(1− q)2
(
(1− q − 5q2 − q3 + q4)z′ 2 + q−2(1 + q)2(1 + 3q2 + q4)b4

)
,

R1(z) = −q−3(1− q)4(1 + q)2z′
(
2z′ 2 − q−3(1 + q + 4q2 + q3 + q4)b4

)
, (5.30)

R0(z) = −q−3(1− q)4(1 + q)2
(
z′ 2 − q−2(1 + q)2b4

)(
z′ 2 − q−3(1 + q2)2b4

)
,

and R−1(z) is presented in (B.26) because of its lengthy expression. The coefficients of the

5-term recurrence relations are found in [27] and we can check (4.16)–(4.18), (4.24), (4.11),

etc.
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6 Summary and Comments

Exactly solvable quantum mechanical systems described by Laguerre, Jacobi, Wilson and

Askey-Wilson polynomials satisfy the shape invariance and closure relation. The shape in-

variance is inherited by the deformed systems described by the multi-indexed orthogonal

polynomials of Laguerre, Jacobi, Wilson and Askey-Wilson types. The closure relation is

not inherited, because it is related to the three term recurrence relations for the ordinary

orthogonal polynomials. These multi-indexed orthogonal polynomials satisfy the 1 + 2L

(L ≥ 2) term recurrence relations with constant coefficients (4.5), which is obtained from

multiplication by X . We generalize the closure relation (3.2) and discuss that the deformed

systems satisfy the generalized closure relations, which corresponds to the 1 + 2L term re-

currence relations with constant coefficients. This is stated as Conjecture 1. The generalized

closure relation gives the exact Heisenberg operator solution of X , and its negative/positive

frequency parts provide the creation/annihilation operators of the system. For small L

cases, we can verify the generalized closure relations. Some examples and Conjecture 2 are

presented. Although we have discussed Laguerre, Jacobi, Wilson and Askey-Wilson cases,

the method is applicable to other case (1) and case (2) exceptional/multi-indexed polyno-

mials. For example, the exceptional Hermite polynomials with multi-indices are worth for

investigation.

In contrast to the shape invariance which is applicable to quantum system only, the

(generalized) closure relation is applicable to not only quantum system but also classical

system [2]. The commutator [· , ·] in quantum mechanics becomes the Poisson bracket {· , ·}PB
in classical mechanics. To obtain the classical limit, we have to recover ~ (reduced Planck

constant) dependence, because we have used the ~ = 1 unit. Then the commutator 1
i~
[· , ·]

and the Hamiltonian H become the Poisson bracket {· , ·}PB and the classical Hamiltonian

Hcl respectively, in the ~ → 0 limit. The time evolution equation of a phase space function

F is d
dt
F = −{Hcl, F}PB and it is solved as F (t) =

∞∑
n=0

(−t)n

n!
(adPBHcl)nF , where adPBHcl

stands for the operation (adPBHcl)F = {Hcl, F}PB. By the similar calculation in § 3, the
generalized closure relation gives us the time evolution of X , X(t), explicitly.

For the ordinary orthogonal polynomials, any recurrence relations of the formX(η)Pn(η) =
L∑

k=−L

rXn,kPn+k(η) can be obtained from the three term recurrence relations. On the other

hand, for multi-indexed orthogonal polynomials of L, J, W and AW types, different choices

22



of X give different recurrence relations with constant coefficients (4.5) in general. Cor-

respondingly we have infinitely many creation/annihilation operators. It is a challenging

problem to study their relations. Even for the simplest choice X = Xmin, there are L cre-

ation operators a(j) (1 ≤ j ≤ L) and L annihilation operators a(j) (L+1 ≤ j ≤ 2L) and it is

a good problem to study their relations (commutators etc.). In harmonic oscillator, the co-

herent state is obtained as an eigenstate of the annihilation operator. It is also a challenging

problem to find the eigenstates of the annihilation operators a(j) (L+ 1 ≤ j ≤ 2L).
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A Diagonalization of Some Matrix

In this appendix we present some formulas for the diagonalization of a matrix (A.1).

Let us consider a K ×K matrix A,

A =




0 R0

1 0 O R1

1 0 R2

. . .
. . .

...

O 1 0 RK−2

1 RK−1




, (A.1)

where Ri’s are real numbers. Its characteristic polynomial is

|xE − A| = xK −
K−1∑

i=0

Rix
i. (A.2)

We assume that the matrix A has K distinct real non-vanishing eigenvalues,

|xE −A| =
K∏

j=1

(x− αj), α1 > α2 > · · · > αK , αi 6= 0. (A.3)

Then Ri is expressed by αj,

Ri = (−1)K−i−1
∑

1≤j1<j2<···<jK−i≤K

αj1αj2 · · ·αjK−i
(0 ≤ i ≤ K − 1). (A.4)
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The eigenvector ~pj = (pij)1≤i≤K corresponding to the eigenvalue αj is

pij = αK−i
j −

K−i∑

k=1

RK−k α
K−i−k
j . (A.5)

(Here our summation convention is
∑n−1

i=n ∗ = 0.) Note that pKj = 1. The matrix A is

diagonalized as

P−1AP = diag(α1, α2, . . . , αK), P = (pij)1≤i,j≤K =
(
~p1 ~p2 · · · ~pK

)
. (A.6)

The determinant of P is

|P | =
∏

1≤i<j≤K

(αi − αj) 6= 0, (A.7)

and the matrix elements of P−1 are

(P−1)ji = αi−1
j

K∏

k=1

k 6=j

(αj − αk)
−1. (A.8)

Note that
K∑

j=1

α−1
j (P−1)j1 =

K∑

j=1

1

αj

K∏
k=1

k 6=j

(αj − αk)

=
(−1)K−1

K∏
j=1

αj

= R−1
0 . (A.9)

B More Examples

In this appendix we present more examples of the generalized closure relations, which support

Conjecture 1 and Conjecture 2. We take X(η) = Xmin(η) (Y (η) = 1). The order of the

generalized closure relation is K = 2L = 2(ℓD + 1). Since Ri(z) (0 ≤ i ≤ 2L − 1) are

obtained by Conjecture 2 and (5.1), we present R−1(z) only.

B.1 Laguerre type

We present R−1(z) for all D with K ≤ 8.

K = 2

D = {} : R−1(z) = −8(z + 2g + 1). (B.1)

K = 4

D = {1I} : R−1(z) = 64
(
2(1 + 2g)(13 + 6g) + 2(11 + 10g)z + 3z2

)
, (B.2)
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D = {1II} : R−1(z) = −64
(
2(2g − 3)(1 + 6g) + 2(10g − 9)z + 3z2

)
. (B.3)

K = 6

D = {2I} : R−1(z) = −1536
(
2(1 + 2g)(3 + 2g)(41 + 14g) + 4(61 + 108g + 36g2)z

+ 24(3 + 2g)z2 + 5z3
)
, (B.4)

D = {2II} : R−1(z) = −1536
(
2(2g − 5)(2g − 1)(3 + 14g) + 4(25− 84g + 36g2)z

+ 12(4g − 5)z2 + 5z3
)
, (B.5)

D = {1I, 2I} : R−1(z) = −1536
(
2(1 + 2g)(5 + 2g)(45 + 14g) + 4(97 + 132g + 36g2)z

+ 12(7 + 4g)z2 + 5z3
)
, (B.6)

D = {1II, 2II} : R−1(z) = 1536
(
2(2g − 5)(2g − 3)(14g − 1) + 4(61− 108g + 36g2)z

+ 24(2g − 3)z2 + 5z3
)
. (B.7)

K = 8

D = {3I} :

R−1(z) = 12288(8(1 + 2g)(3 + 2g)(5 + 2g)(113 + 30g)

+ 16(935 + 2072g + 1284g2 + 224g3)z + 4(1405 + 1848g + 492g2)z2

+ 20(41 + 22g)z3 + 35z4
)
, (B.8)

D = {3II} :

R−1(z) = −12288
(
24(2g − 7)(2g − 1)(−5− 16g + 20g2)

+ 16(−245 + 968g − 972g2 + 224g3)z + 4(805− 1512g + 492g2)z2

+ 20(22g − 35)z3 + 35z4
)
, (B.9)

D = {1I, 3I} :

R−1(z) = 24576
(
8(1 + 2g)(5 + 2g)(17 + 6g)(39 + 10g)

+ 16(1625 + 2984g + 1500g2 + 224g3)z + 4(2005 + 2136g + 492g2)z2

+ 20(47 + 22g)z3 + 35z4
)
, (B.10)

D = {1II, 3II} :

R−1(z) = 24576
(
8(2g − 7)(2g − 3)(6g − 7)(10g − 1)

+ 16(−647 + 1736g − 1188g2 + 224g3)z + 4(1333− 1800g + 492g2)z2

+ 20(22g − 41)z3 + 35z4
)
, (B.11)

25



D = {1I, 2I, 3I} :

R−1(z) = 12288
(
24(1 + 2g)(7 + 2g)(251 + 144g + 20g2)

+ 16(2411 + 3944g + 1716g2 + 224g3)z + 4(2629 + 2424g + 492g2)z2

+ 20(53 + 22g)z3 + 35z4
)
, (B.12)

D = {1II, 2II, 3II} :

R−1(z) = 12288
(
8(2g − 7)(2g − 5)(2g − 3)(30g − 7)

+ 16(−1145 + 2552g − 1404g2 + 224g3)z + 4(1885− 2088g + 492g2)z2

+ 20(22g − 47)z3 + 35z4
)
, (B.13)

D = {1I, 1II} :

R−1(z) = 73728
(
8(2g − 3)(1 + 2g)(5 + 6g)(19 + 10g)

+ 16(−135− 328g + 156g2 + 224g3)z + 4(−299 + 168g + 492g2)z2

+ 20(3 + 22g)z3 + 35z4
)
. (B.14)

We have also calculated for K = 10 and K = 12 cases,

K = 10 : D = {4I}, {4II}, {1I, 4I}, {1II, 4II}, {2I, 3I}, {2II, 3II}, {1I, 2I, 4I}, {1II, 2II, 4II},

{1I, 2I, 3I, 4I}, {1II, 2II, 3II, 4II}, {2I, 1II}, {1I, 2II},

K = 12 : D = {5I}, {5II}, {1I, 5I}, {1II, 5II}, {2I, 4I}, {2II, 4II}, {1I, 2I, 5I}, {1II, 2II, 5II},

{1I, 3I, 4I}, {1II, 3II, 4II}, {1I, 2I, 3I, 5I}, {1II, 2II, 3II, 5II}, {1I, 2I, 3I, 4I, 5I},

{1II, 2II, 3II, 4II, 5II}, {3I, 1II}, {1I, 3II}, {1I, 2I, 1II}, {1I, 1II, 2II}, {2I, 2II},

and checked Conjecture 1 and Conjecture 2.

B.2 Jacobi type

We present R−1(z) for all D with K ≤ 6.

K = 2

D = {} : R−1(z) = 16b(a− 1). (B.15)

K = 4

D = {1I} : R−1(z) = 128(2 + b)
(
2(a− 2)(a− 1)

(
(2 + b)2 − 3− a− 2a2

)

−
(
(2 + b)2 + 1− 10a+ 3a2

)
z + z2

)
, (B.16)
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D = {1II} : R−1(z) =
(
R−1(z) in (B.16)

)∣∣
b→−b

. (B.17)

K = 6

D = {2I} :

R−1(z) = 3072(1− a)
(
2(a− 3)(a− 2)

(
3(a− 2)a(2 + a)(3 + a)

− 3(2 + a)(5 + a + a3)(3 + b)− (14− 3a+ 3a2)(3 + b)2

+ (10 + 3a+ 3a2)(3 + b)3 + 2(3 + b)4 − (3 + b)5
)

+ 3
(
2(a− 2)a(−13 + 2a2) + (46− 28a− 2a2 + 12a3 − 3a4)(3 + b)

− 2(1− 6a− a2)(3 + b)2 − 2(1 + 4a)(3 + b)3 − 2(3 + b)4 + (3 + b)5
)
z

+ 6
(
(a− 2)a− (4− 3a)(3 + b) + 2(3 + b)2 − (3 + b)3

)
z2

+ 3(3 + b)z3
)
, (B.18)

D = {2II} : R−1(z) = −
(
R−1(z) in (B.18)

)∣∣
b→−b

, (B.19)

D = {1I, 2I} :

R−1(z) = −1536(1− a)(4 + b)
(
2(a− 3)(a− 2)

(
3(a− 2)a(2 + a)(3 + a)

+ 3(2 + a)(5 + a+ a3)(3 + b)− (14− 3a+ 3a2)(3 + b)2

− (10 + 3a+ 3a2)(3 + b)3 + 2(3 + b)4 + (3 + b)5
)

+ 3
(
2(a− 2)a(−13 + 2a2)− (46− 28a− 2a2 + 12a3 − 3a4)(3 + b)

+ 2(1− 6a− a2)(3 + b)2 + 2(1 + 4a)(3 + b)3 − 2(3 + b)4 − (3 + b)5
)
z

+ 6
(
(a− 2)a+ (4− 3a)(3 + b) + 2(3 + b)2 + (3 + b)3

)
z2

− 3(3 + b)z3
)
, (B.20)

D = {1II, 2II} : R−1(z) = −
(
R−1(z) in (B.20)

)∣∣
b→−b

. (B.21)

B.3 Wilson type

We present R−1(z) for all D with K ≤ 4.

K = 2

D = {} : R−1(z) = −2z2 + (b1 − 2b2)z − (b1 − 2)b3. (B.22)

K = 4 D = {1I} :

R−1(z)

=
1

8
(b1 − 3)(b1 − 2)

(
2b1 + b1(σ1 − 5σ′

1)− b1(σ
2
1 + 7σ′ 2

1 ) + 16(σ1σ
′
2 + 4σ′

1σ2 − 3σ′
1σ

′
2)
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+ 8
(
σ2
1σ

′
2 + σ1σ

′
1b

2
1 + σ1σ

′
1(σ2 + 15σ′

2) + σ′ 2
1 (21σ2 − 6σ′

2)
)
− 8

(
σ3
1σ

′
2 + σ2

1σ
′
1(7σ2 + 2σ′

2)

+ σ1σ
′ 2
1 (14σ2 − 15σ′

2)− 9σ′ 3
1 σ2 − 4σ1σ

′ 2
2 + 4σ′

1(2σ
2
2 − 4σ2σ

′
2 + σ′ 2

2 )
)

− 16
(
σ1σ

′
1(σ1 + 3σ′

1)(σ1σ
′
2 + σ′

1σ2)− σ2
1σ

′ 2
2 − σ1σ

′
1(5σ

2
2 − 8σ2σ

′
2 + 7σ′ 2

2 ) + σ′ 2
1 σ2(σ2 − 4σ′

2)
)

− 16(σ1σ
′
2 + σ′

1σ2)
(
σ2
1σ

′
2 − 3σ1σ

′
1(σ2 − σ′

2)− σ′ 2
1 σ2

))

+
1

2

(
−6 + 9(3σ1 + 5σ′

1) + 8(σ2
1 + 2σ1σ

′
1 + 16σ′ 2

1 − 12σ2 + 6σ′
2)− 2(13σ3

1 + 53σ2
1σ

′
1 + 143σ1σ

′ 2
1

− 17σ′ 3
1 + 52σ1σ

′
2 + 220σ′

1σ2) + 8
(
σ4
1 + 7σ3

1σ
′
1 + 15σ2

1σ
′ 2
1 − 17σ1σ

′ 3
1 − 2σ′ 4

1 + σ2
1(9σ2 + 11σ′

2)

+ 2σ1σ
′
1(37σ2 − 15σ′

2)− σ′ 2
1 (11σ2 + 13σ′

2) + 12σ2(σ2 − 2σ′
2)
)
− 8

(
σ1σ

′
1(σ

3
1 − 4σ2

1σ
′
1 − 16σ1σ

′ 2
1

− 5σ′ 3
1 ) + σ3

1(3σ2 + 5σ′
2) + σ2

1σ
′
1(23σ2 − 33σ′

2)− σ1σ
′ 2
1 (35σ2 + 11σ′

2)− σ′ 3
1 (17σ2 − σ′

2)

+ 2σ1(6σ
2
2 − 12σ2σ

′
2 + 11σ′ 2

2 ) + 2σ′
1(σ

2
2 + 4σ2σ

′
2 + 6σ′ 2

2 )
)
− 8

(
2σ2

1σ
′ 2
1 b

2
1 − σ4

1σ
′
2 − σ3

1σ
′
1(σ2

− 11σ′
2) + σ2

1σ
′ 2
1 (27σ2 − 5σ′

2) + σ1σ
′ 3
1 (19σ2 − 9σ′

2)− σ′ 4
1 σ2 − σ2

1(3σ
2
2 − 6σ2σ

′
2 + 19σ′ 2

2 )

+ 4σ1σ
′
1(3σ2 − 5σ′

2)(σ2 + σ′
2) + σ′ 2

1 (σ2 − σ′
2)(9σ2 + 7σ′

2)
)
+ 8

(
σ4
1σ

′
1σ

′
2 + σ3

1σ
′ 2
1 (5σ2 − 4σ′

2)

+ σ2
1σ

′ 3
1 (4σ2 − 5σ′

2)− σ1σ
′ 4
1 σ2 − 4σ3

1σ
′ 2
2 + σ2

1σ
′
1(5σ2 − 7σ′

2)(σ2 + σ′
2)

+ σ1σ
′ 2
1 (7σ2 − 5σ′

2)(σ2 + σ′
2) + 4σ′ 3

1 σ
2
2

))
z

− 2
(
14 + 13σ1 + 67σ′

1 − 6(3σ2
1 + 11σ1σ

′
1 − 8σ′ 2

1 + 10σ2 − 2σ′
2) + 2

(
2σ3

1 + 3σ2
1σ

′
1 − 48σ1σ

′ 2
1

− σ′ 3
1 + σ1(21σ2 − 5σ′

2)− σ′
1(31σ2 + 9σ′

2)
)
+ 2

(
2σ1σ

′
1(σ

2
1 + 12σ1σ

′
1 − 2σ′ 2

1 )− 3σ2
1(σ2 − σ′

2)

+ 6σ1σ
′
1(7σ2 − σ′

2) + σ′ 2
1 (9σ2 − 13σ′

2) + 2(3σ2
2 − 6σ2σ

′
2 − 5σ′ 2

2 )
)
− 2

(
3σ2

1σ
′ 2
1 (σ1 − σ′

1)

+ σ3
1σ

′
2 − σ′ 3

1 σ2 + σ2
1σ

′
1(11σ2 − 6σ′

2) + σ1σ
′ 2
1 (6σ2 − 11σ′

2) + σ1(3σ
2
2 − 6σ2σ

′
2 − 5σ′ 2

2 )

+ σ′
1(5σ

2
2 + 6σ2σ

′
2 − 3σ′ 2

2 )
))
z2

+ 8
(
8− 2(2σ1 − 7σ′

1)− (13σ1 − 3σ′
1)σ

′
1 − 6σ2 + 2σ′

2 + 3(σ1 − σ′
1)σ1σ

′
1 + 3(σ1σ2 − σ′

1σ
′
2)

− σ1σ
′
2 + σ′

1σ2
)
z3

+ 12(−2 + σ1 − σ′
1)z

4, (B.23)

D = {1II} : R−1(z) =
(
R−1(z) in (B.23)

)∣∣
(a1,a2)↔(a3,a4)

. (B.24)

B.4 Askey-Wilson type

We present R−1(z) for all D with K ≤ 4.

K = 2

D = {} : R−1(z) = −1

2
q−1(q − 1)2

(
(b1 + b3q

−1)z + (1− b4q
−2)(b1 − b3)

)
. (B.25)
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K = 4 D = {1I} :

R−1(z)×
2q

17

2 σ2

(1− q)4(1 + q)

=(q2 − σ2σ
′
2)(q

3 − σ2σ
′
2)
(
−q(1 + q)(σ2

1 − q2σ′ 2
1 )− (1− q)(1− q − q2)(σ2 − q2σ′

2)

+ σ2
1

(
σ2 + q(1 + q + q2)σ′

2

)
+ q2(1 + q)σ1σ

′
1(σ2 − q2σ′

2)− qσ′ 2
1

(
(1 + q + q2)σ2 + q3σ′

2

)

− (1− q)(σ2
2 − q4σ′ 2

2 )− (1 + q)
(
(1− q)σ2

1σ
′
2(σ2 + q3σ′

2) + σ1σ
′
1(σ

2
2 − q4σ′ 2

2 )

− q(1− q)σ′ 2
1 σ2(σ2 + qσ′

2)− 2(1− q)2σ2σ
′
2(σ2 − q2σ′

2)
)
− q2σ2

1σ
′ 2
2

(
(1 + q + q2)σ2 + q3σ′

2

)

+ (1 + q)σ1σ
′
1σ2σ

′
2(σ2 − q2σ′

2) + qσ′ 2
1 σ

2
2

(
σ2 + q(1 + q + q2)σ′

2

)
+ (1− q)σ2σ

′
2(σ

2
2 − q4σ′ 2

2 )

+ σ2σ
′
2

(
q(1 + q)(q2σ2

1σ
′ 2
2 − σ′ 2

1 σ
2
2)− (1− q)(1 + q − q2)σ2σ

′
2(σ2 − q2σ′

2)
))

+ q
(
q4
(
−3q(1 + q)σ2

1 + 3q3(1 + q)σ′ 2
1 − (3− 8q + 3q3)(σ2 − q2σ′

2)
)
+ q3

(
2qσ2

1

(
σ2

+ q(1 + q + q2)σ′
2

)
− (1 + q)(1 + q + q2 − 2q3)σ1σ

′
1(σ2 − q2σ′

2)− 2q2σ′ 2
1

(
(1 + q + q2)σ2

+ q3σ′
2

)
− (1 + 3q − 2q2)(σ2

2 − q4σ′ 2
2 )

)
+ q

(
q(1 + q)σ2

1σ
′
2

(
(1 + 2q)(2− 2q + q2)σ2

− q2(1 + q)(1− 2q + 3q2 − q3)σ′
2

)
+ q(1 + q)(1 + q − q2)σ1σ

′
1(σ

2
2 − q4σ′ 2

2 )

+ q(1 + q)σ′ 2
1 σ2

(
(1 + q)(1− 2q + 3q2 − q3)σ2 − q2(1 + 2q)(2− 2q + q2)σ′

2

)
+ (2− 4q

− 6q2 + 13q3 − 4q4 − 6q5 + 3q6)σ2σ
′
2(σ2 − q2σ′

2)
)
+ q

(
−σ2

1σ
′
2

(
(1 + 2q + q3)σ2

2

+ 2q2(1− q3)σ2σ
′
2 − q4(1 + 2q2 + q3)σ′ 2

2

)
+ (1 + q)(1− q − 2q2 − q3 + q4)σ1σ

′
1σ2σ

′
2

× (σ2 − q2σ′
2)− σ′ 2

1 σ2
(
(1 + 2q2 + q3)σ2

2 − 2q2(1− q3)σ2σ
′
2 − q4(1 + 2q + q3)σ′ 2

2

)

+ (1 + q)(3− 4q + 3q2)σ2σ
′
2(σ

2
2 − q4σ′ 2

2 )
)
+ σ2σ

′
2

(
−(1 + q)σ2

1σ
′
2

(
(1 + q)(1− 3q + 2q2 − q3)σ2

+ q3(2 + q)(1− 2q + 2q2)σ′
2

)
− (1 + q)(1− q − q2)σ1σ

′
1(σ

2
2 − q4σ′ 2

2 ) + q(1 + q)σ′ 2
1 σ2

×
(
(2 + q)(1− 2q + 2q2)σ2 + q(1 + q)(1− 3q + 2q2 − q3)σ′

2

)
+ (3− 6q − 4q2 + 13q3

− 6q4 − 4q5 + 2q6)σ2σ
′
2(σ2 − q2σ′

2)
)
+ σ2σ

′
2

(
−2q2σ2

1σ
′ 2
2

(
(1 + q + q2)σ2 + q3σ′

2

)

+ (1 + q)(2− q − q2 − q3)σ1σ
′
1σ2σ

′
2(σ2 − q2σ′

2) + 2qσ′ 2
1 σ

2
2

(
σ2 + q(1 + q + q2)σ′

2

)

+ (2− 3q − q2)σ2σ
′
2(σ

2
2 − q4σ′ 2

2 )
)
+ σ2

2σ
′ 2
2

(
3q(1 + q)(q2σ2

1σ
′ 2
2 − σ′ 2

1 σ
2
2)

− (3− 8q2 + 3q3)σ2σ
′
2(σ2 − q2σ′

2)
))
z

+ q2
(
−3q3

(
q(1 + q)(σ2

1 − q2σ′ 2
1 ) + (1− 4q + q3)(σ2 − q2σ′

2)
)
+ q2

(
qσ2

1σ2 + q2(1 + q + q2)σ2
1σ

′
2

− (1 + q)(2 + 2q + 2q2 − q3)σ1σ
′
1(σ2 − q2σ′

2)− q5σ′ 2
1 σ

′
2 − q2(1 + q + q2)σ′ 2

1 σ2

− (2 + 3q − q2)(σ2
2 − q4σ′ 2

2 )
)
+ q(1 + q)σ2

1σ
′
2

(
(1 + q − 2q2 + q3)σ2 − q2(1− 2q + q2 + q3)σ′

2

)

+ q(1 + q)2σ1σ
′
1(σ

2
2 − q4σ′ 2

2 ) + q(1 + q)σ′ 2
1 σ2

(
(1− 2q + q2 + q3)σ2 − q2(1 + q − 2q2 + q3)σ′

2

)
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+ (1− 4q + q3)(1− 4q2 + q3)σ2σ
′
2(σ2 − q2σ′

2)− q2σ2
1σ

′ 2
2

(
(1 + q + q2)σ2 + q3σ′

2

)

+ (1 + q)
(
1− 2q(1 + q + q2)

)
σ1σ

′
1σ2σ

′
2(σ2 − q2σ′

2) + qσ′ 2
1 σ

2
2

(
σ2 + q(1 + q + q2)σ′

2

)

+ (1− 3q − 2q2)σ2σ
′
2(σ

2
2 − q4σ′ 2

2 ) + 3σ2σ
′
2

(
q3(1 + q)σ2

1σ
′ 2
2 − q(1 + q)σ′ 2

1 σ
2
2

− (1− 4q2 + q3)σ2σ
′
2(σ2 − q2σ′

2)
))
z2

+ q3
(
−q2

(
q(1 + q)(σ2

1 − q2σ′ 2
1 ) + (1− 8q + q3)(σ2 − q2σ′

2)
)
− q(1 + q)(σ2 − q2σ′

2)

×
(
(1 + q + q2)σ1σ

′
1 + σ2 + q2σ′

2

)
+ q(1 + q)(q2σ2

1σ
′ 2
2 − σ′ 2

1 σ
2
2)

− (1− 8q2 + q3)σ2σ
′
2(σ2 − q2σ′

2)
)
z3

+ 2q6(σ2 − q2σ′
2)z

4, (B.26)

D = {1II} : R−1(z) =
(
R−1(z) in (B.26)

)∣∣
(a1,a2)↔(a3,a4)

. (B.27)
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