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Abstract

The multi-indexed Laguerre and Jacobi polynomials form a complete set of orthog-

onal polynomials. They satisfy second order differential equations but not three term

recurrence relations, because of the ‘holes’ in their degrees. The multi-indexed La-

guerre and Jacobi polynomials have Wronskian expressions originating from multiple

Darboux transformations. For the ease of applications, two different forms of simplified

expressions of the multi-indexed Laguerre and Jacobi polynomials are derived based

on various identities. The parity transformation property of the multi-indexed Jacobi

polynomials is derived based on that of the Jacobi polynomial.
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1 Introduction

The exceptional and multi-indexed orthogonal polynomials [10, 9, 22, 2, 15, 11, 17, 18, 19, 21]

seem to be a focal point of recent research on exactly solvable quantum mechanics. They

belong to a new type of orthogonal polynomials which satisfy second order differential (differ-

ence) equations and form complete orthogonal basis in an appropriate Hilbert space. One of

their characteristic features is that they do not satisfy three term recurrence relations because

of the ‘holes’ in the degrees. This is how they avoid the constraints due to Bochner [23, 3].

They are constructed from the original quantum mechanical systems, the radial oscillator

potential and the Pöschl-Teller potential, by multiple application of Darboux transforma-

tions [5, 4] in terms of seed solutions called virtual state wavefunctions which are generated

by two types of discrete symmetry transformations [17, 18, 19, 21].
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The multi-indexed Laguerre and Jacobi polynomials have Wronskian expressions [17]

originating from multiple Darboux transformations [4]. In this note we present two different

forms of equivalent determinant expressions without higher derivatives of the Wronskians

by using various identities of the Laguerre and Jacobi polynomials [24]. These simplified

expressions show explicitly the constituents of the multi-indexed orthogonal polynomials and

they are helpful for deeper understanding. In [6] and [7] Durán employed similar simplified

expressions as the starting point of his exposition of the exceptional Laguerre and Jacobi

polynomials. See also [8] by Durán and Pérez. In their expressions, the matrix elements of

the determinants are polynomials. In the original expressions in [17], the matrix elements

of the determinants contain the non-polynomial factors, see (10)–(13). In the simplified

expressions presented in this paper in § 2.4–2.5, they are also all polynomials.

This short note is organised as follows. In § 2.1 the quantum mechanical settings for the

original Laguerre and Jacobi polynomials are recapitulated. That is, the Hamiltonians with

the radial oscillator potential and the Pöschl-Teller potential are introduced and their eigen-

values and eigenfunctions are presented. Type I and II discrete symmetry transformations

for the Hamiltonians of the Laguerre and Jacobi polynomials are explained in § 2.2. The seed

solutions for Darboux transformations, to be called the virtual state wavefunctions of type I

and II, for the Laguerre and Jacobi, are listed explicitly. In § 2.3 the Wronskian forms of the

multi-indexed Laguerre and Jacobi polynomials derived in [17] and [14] are recapitulated as

the starting point. § 2.4 and § 2.5 are the main content of this note. Those who are familiar

with the multi-indexed Laguerre and Jacobi polynomials can directly go to this part. The

first simplified expressions of the multi-indexed Laguerre and Jacobi polynomials are derived

in § 2.4 by using various identities of the original Laguerre and Jacobi polynomials. The sec-

ond simplified expressions, to be derived in § 2.5, are the consequences of the multi-linearity

of determinants and the form of the Schrödinger equation ψ′′(x) =
(

U(x) − E
)

ψ(x). Every

even order derivative ψ(2m)(x) in the Wronskian can be replaced by (−E)mψ(x). In § 2.6 the

parity transformation formula of the multi-indexed Jacobi polynomials is presented. Section

3 is for a summary and comments.
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2 Multi-indexed Laguerre and Jacobi Polynomials

The foundation of the theory of multi-indexed orthogonal polynomials is the exactly solvable

one dimensional quantum mechanical system H:

Hφn(x) = Enφn(x) (n = 0, 1, . . .), H = −
d2

dx2
+ U(x), (1)

and its iso-spectrally deformed system

HDφD n(x) = EnφD n(x) (n = 0, 1, . . .), HD = −
d2

dx2
+ UD(x), (2)

in terms of multiple application of Darboux transformations [17, 4]. In this note we discuss

two systems which have the Laguerre and Jacobi polynomials as the main parts of the

eigenfunctions. We follow the notation of [17] with slight modifications for simplification

sake.

2.1 Original Laguerre and Jacobi polynomials

2.1.1 radial oscillator potential

The Hamiltonian with the radial oscillator potential

U(x)
def
= x2 +

g(g − 1)

x2
− 2g − 1, 0 < x <∞, g >

1

2
, (3)

has the Laguerre polynomials L
(α)
n (η) as the main part of the eigenfunctions:

φn(x; g)
def
= φ0(x; g)L

(g− 1

2
)

n

(

η(x)
)

, En
def
= 4n, η(x)

def
= x2,

φ0(x; g)
def
= e−

1

2
x2

xg, L(α)
n (η) =

1

n!

n
∑

k=0

(−n)k
k!

(α + k + 1)n−kη
k.

Here are some identities of the Laguerre polynomials [24] to be used in § 2.4–2.5,

∂ηL
(α)
n (η) = −L

(α+1)
n−1 (η), (4)

L(α)
n (η)− L(α−1)

n (η) = L
(α)
n−1(η), (5)

ηL
(α+1)
n−1 (η)− αL

(α)
n−1(η) = −nL(α−1)

n (η). (6)

As is clear from (3), the lower boundary, x = 0, is the regular singular point with the char-

acteristic exponents g and 1− g. The upper boundary point, x = ∞, is an irregular singular

point. Here (a)n
def
=

∏n

j=1(a + j − 1) is the shifted factorial or the so-called Pochhammer’s

symbol.
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2.1.2 Pöschl-Teller potential

The Hamiltonian with the Pöschl-Teller potential

U(x)
def
=
g(g − 1)

sin2 x
+
h(h− 1)

cos2 x
− (g + h)2, 0 < x <

π

2
, g >

1

2
, h >

1

2
,

has the Jacobi polynomials P
(α,β)
n (η) as the main part of the eigenfunctions:

φn

(

x; (g, h)
) def
= φ0

(

x; (g, h)
)

P
(g− 1

2
,h− 1

2
)

n

(

η(x)
)

, η(x)
def
= cos 2x,

φ0

(

x; (g, h)
) def
= (sin x)g(cos x)h, En(g, h)

def
= 4n(n+ g + h),

P (α,β)
n (η) =

(α+ 1)n
n!

n
∑

k=0

1

k!

(−n)k(n + α + β + 1)k
(α + 1)k

(1− η

2

)k

.

Here are some identities of the Jacobi polynomials [24] to be used in in § 2.4–2.5,

∂ηP
(α,β)
n (η) = 1

2
(n+ α + β + 1)P

(α+1,β+1)
n−1 (η), (7)

(n+ β)P (α,β−1)
n (η)− βP (α−1,β)

n (η) = (n+ α + β)1+η

2
P

(α,β+1)
n−1 (η), (8)

(n+ α)P (α−1,β)
n (η)− αP (α,β−1)

n (η) = −(n + α+ β)1−η

2
P

(α+1,β)
n−1 (η). (9)

The two boundary points, x = 0, π
2
are the regular singular points with the characteristic

exponents g, 1− g and h, 1− h, respectively.

2.2 Discrete symmetry transformations and virtual state wave-

functions

The seed solutions (virtual state wavefunctions) for Darboux transformations can be con-

structed by applying discrete symmetry transformations of the Hamiltonian to the eigenfunc-

tions. They have negative energies and have no node and they are not square integrable, see

[17] for more detail.

2.2.1 Laguerre (L) system

Type I transformation It is obvious that the transformation x→ ix is the symmetry of

the radial oscillator system. The seed solutions are

L1 : Hφ̃I
v(x) = Ẽ I

vφ̃
I
v(x), φ̃I

v(x)
def
= φ̃I

0(x)ξ
I
v

(

η(x)
)

, φ̃I
0(x)

def
= e

1

2
x2

xg,

ξIv(η)
def
= L

(g− 1

2
)

v (−η), Ẽ I
v

def
= −4(g + v + 1

2
), v ∈ Z≥0.

Hereafter we use v for the degree of the seed polynomial ξv in order to distinguish it with

the degree n of eigenpolynomial Pn.
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Type II transformation The exchange of the characteristic exponents of the regular

singular point x = 0, g → 1− g, is another discrete symmetry transformation. It generates

the seed solutions,

L2 : Hφ̃II
v (x) = Ẽ II

v φ̃
II
v (x), φ̃II

v (x)
def
= φ̃II

0 (x)ξ
II
v

(

η(x)
)

, φ̃II
0 (x)

def
= e−

1

2
x2

x1−g,

ξIIv (η)
def
= L

( 1
2
−g)

v (η), Ẽ II
v

def
= −4(g − v− 1

2
), v = 0, 1, . . . , [g − 1

2
]′,

in which [a]′ denotes the greatest integer less than a.

2.2.2 Jacobi (J) system

Type I transformation The exchange of the characteristic exponents of the regular sin-

gular point x = π
2
, h→ 1− h, is a discrete symmetry transformation:

J1 : Hφ̃I
v(x) = Ẽ I

vφ̃
I
v(x), φ̃I

v(x)
def
= φ̃I

0(x)ξ
I
v

(

η(x)
)

, φ̃I
0(x)

def
= (sin x)g(cosx)1−h,

ξIv(η)
def
= P

(g− 1

2
, 1
2
−h)

v (η), Ẽ I
v

def
= −4(g + v + 1

2
)(h− v− 1

2
), v = 0, 1, . . . , [h− 1

2
]′.

Type II transformation Likewise the exchange of the characteristic exponents of the

regular singular point x = 0, g → 1− g, is a discrete symmetry transformation:

J2 : Hφ̃II
v (x) = Ẽ II

v φ̃
II
v (x), φ̃II

v (x)
def
= φ̃II

0 (x)ξ
II
v

(

η(x)
)

, φ̃II
0 (x)

def
= (sin x)1−g(cos x)h,

ξIIv (η)
def
= P

( 1
2
−g,h− 1

2
)

v (η), Ẽ II
v

def
= −4(g − v− 1

2
)(h+ v + 1

2
), v = 0, 1, . . . , [g − 1

2
]′.

2.3 Wronskian forms of the multi-indexed Laguerre and Jacobi

polynomials

We deform the original Hamiltonian system (1) by applying multiple Darboux transforma-

tions [17, 4] in terms of MI type I seed solutions and MII type II seed solutions specified by

the degree set D
def
= {d1, . . . , dM} (ordered set), M

def
= MI+MII, MI

def
= #{dj|dj ∈ D, type I},

MII
def
= #{dj|dj ∈ D, type II}. The multi-indexed orthogonal polynomials {PD,n(η)} are the

main parts of the eigenfunctions {φD n(x)} of the deformed Hamiltonian system HD (2):

UD(x)
def
= U(x)− 2∂2x log

∣

∣W[φ̃d1 , . . . , φ̃dM ](x)
∣

∣,

φD n(x)
def
=

W[φ̃d1 , . . . , φ̃dM , φn](x)

W[φ̃d1 , . . . , φ̃dM ](x)
(n = 0, 1, . . .)

def
= cM

F
ψD(x)PD,n

(

η(x)
)

, ψD(x)
def
=

φ̂0(x)

ΞD

(

η(x)
) ,
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in which φ̂0(x) and cF are defined by

φ̂0(x)
def
=

{

φ0(x; g +MI −MII) : L

φ0

(

x; (g +MI −MII, h−MI +MII)
)

: J
, cF

def
=

{

2 : L
−4 : J

.

The superscript I and II of the seed solutions are suppressed for simplicity of notation. The

Wronskian of n-functions {f1, . . . , fn} is defined by formula

W[f1, . . . , fn](x)
def
= det

(dj−1fk(x)

dxj−1

)

1≤j,k≤n
.

There are two different but equivalent Wronskian definitions of the denominator polyno-

mial ΞD(η) and the multi-indexed orthogonal polynomial PD,n(η). The first is based on the

Wronskians of the ‘polynomials’ [17]:

ΞD(η)
def
= W[µd1 , . . . , µdM ](η)×

{

η(MI+g− 1

2
)MIIe−MIη : L

(

1−η

2

)(MI+g− 1

2
)MII

(

1+η

2

)(MII+h− 1

2
)MI : J

, (10)

PD,n(η)
def
= W[µd1 , . . . , µdM , Pn](η)×

{

η(MI+g+ 1

2
)MIIe−MIη : L

(

1−η

2

)(MI+g+ 1

2
)MII

(

1+η

2

)(MII+h+ 1

2
)MI : J

, (11)

µv(η)
def
=



























eη × L
(g− 1

2
)

v (−η) : L, v type I

η
1

2
−g × L

( 1
2
−g)

v (η) : L, v type II
(

1+η

2

)
1

2
−h

× P
(g− 1

2
, 1
2
−h)

v (η) : J, v type I
(

1−η

2

)
1

2
−g

× P
( 1
2
−g,h− 1

2
)

v (η) : J, v type II

, (12)

Pn(η)
def
=

{

L
(g− 1

2
)

n (η) : L

P
(g− 1

2
,h− 1

2
)

n (η) : J
. (13)

The second is based on the Wronskians of the virtual state wavefunctions φ̃v(x) and the

eigenfunction φn(x) [14]:

ΞD(η) = c
− 1

2
M(M−1)

F W[φ̃d1 , . . . , φ̃dM ](x)×

{

η−M ′(M ′+g− 1

2
)e−M ′η : L

(

1−η

2

)−M ′(M ′+g− 1

2
)(1+η

2

)−M ′(M ′−h+ 1

2
)

: J
,

(14)

PD,n(η) = c
− 1

2
M(M+1)

F W[φ̃d1 , . . . , φ̃dM , φn](x)

×

{

η−(M ′+ 1

2
)(M ′+g)e−(M ′− 1

2
)η : L

(

1−η

2

)−(M ′+ 1

2
)(M ′+g)(1+η

2

)−(M ′− 1

2
)(M ′−h)

: J
, (15)

in which M ′ def
= 1

2
(MI −MII) and η = η(x).
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2.4 Simplified forms of the multi-indexed Laguerre and Jacobi
polynomials, A:

In this and the subsequent subsections we will derive simplified expressions of the multi-

indexed Laguerre and Jacobi polynomials PD,n(η) and the corresponding denominator poly-

nomials ΞD(η) starting from the Wronskian expressions (10)–(15) in the previous subsection.

In this subsection we simplify the Wronskians of the ‘polynomials’ (10)–(13). Let us first

transform the higher derivatives of the ‘seed polynomials’ µv(η) in (12). For the L system,

we obtain

L1 : ∂η
(

eηL
(g− 1

2
)

v (−η)
)

= eηL
(g+1− 1

2
)

v (−η),

L2 : ∂η
(

η
1

2
−gL

( 1
2
−g)

v (η)
)

= (v− g + 1
2
)η

1

2
−(g+1)L

( 1
2
−(g+1))

v (η),

by using (4)–(5) and (4)–(6), respectively. By repeating these we arrive at for j ∈ Z≥1,

∂j−1
η

(

eηL
(g− 1

2
)

v (−η)
)

= eη × L
(g+j− 3

2
)

v (−η),

∂j−1
η

(

η
1

2
−gL

( 1
2
−g)

v (η)
)

= (−1)j−1(g − 1
2
− v)j−1η

3

2
−g−jL

( 3
2
−g−j)

v (η)

= η
1

2
−g−K × (−1)j−1(g − 1

2
− v)j−1η

K+1−jL
( 3
2
−g−j)

v (η),

in which K is a positive integer. For the J system, we obtain

J1 : ∂η
(

(1+η

2
)
1

2
−hP

(g− 1

2
, 1
2
−h)

v (η)
)

= 1
2
(v− h+ 1

2
)(1+η

2
)
1

2
−(h+1)P

(g+1− 1

2
, 1
2
−(h+1))

v (η),

J2 : ∂η
(

(1−η

2
)
1

2
−gP

( 1
2
−g,h− 1

2
)

v (η)
)

= −1
2
(v− g + 1

2
)(1−η

2
)
1

2
−(g+1)P

( 1
2
−(g+1),h+1− 1

2
)

v (η),

by using (7)&(8) and (7)&(9), respectively. Repeated applications of these formulas lead to

∂j−1
η

(

(1+η

2
)
1

2
−hP

(g− 1

2
, 1
2
−h)

v (η)
)

=
(−1)j−1

2j−1
(h− 1

2
− v)j−1(

1+η

2
)
3

2
−h−jP

(g+j− 3

2
, 3
2
−h−j)

v (η)

= (1+η

2
)
1

2
−h−K ×

(−1)j−1

2j−1
(h− 1

2
− v)j−1(

1+η

2
)K+1−jP

(g+j− 3

2
, 3
2
−h−j)

v (η),

∂j−1
η

(

(1−η

2
)
1

2
−gP

( 1
2
−g,h− 1

2
)

v (η)
)

=
1

2j−1
(g − 1

2
− v)j−1(

1−η

2
)
3

2
−g−jP

( 3
2
−g−j,h+j− 3

2
)

v (η)

= (1−η

2
)
1

2
−g−K ×

1

2j−1
(g − 1

2
− v)j−1(

1−η

2
)K+1−jP

( 3
2
−g−j,h+j− 3

2
)

v (η).

The higher derivatives of the eigenpolynomials Pn(η) in (13) are replaced simply through (4)

and (7), respectively,

∂j−1
η L

(g− 1

2
)

n (η) = (−1)j−1L
(g+j− 3

2
)

n+1−j (η),

7



∂j−1
η P

(g− 1

2
,h− 1

2
)

n (η) =
1

2j−1
(n+ g + h)j−1P

(g+j− 3

2
,h+j− 3

2
)

n+1−j (η),

in which we adopt the convention L
(α)
n (η) = P

(α,β)
n (η) = 0 (n ∈ Z<0).

Let us define M dimensional column vectors ~X
(M)
v =

(

X
(M)
v,j

)M

j=1
and ~Z

(M)
n =

(

Z
(M)
n,j

)M

j=1

by

X
(M)
v,j (η)

def
=



























L
(g+j− 3

2
)

v (−η) : L, v type I

(−1)j−1(g − 1
2
− v)j−1η

M−jL
( 3
2
−g−j)

v (η) : L, v type II

(−1)j−1

2j−1 (h− 1
2
− v)j−1(

1+η

2
)M−jP

(g+j− 3

2
, 3
2
−h−j)

v (η) : J, v type I

1
2j−1 (g −

1
2
− v)j−1(

1−η

2
)M−jP

( 3
2
−g−j,h+j− 3

2
)

v (η) : J, v type II

,

Z
(M)
n,j (η)

def
=







(−1)j−1L
(g+j− 3

2
)

n+1−j (η) : L

1
2j−1 (n + g + h)j−1P

(g+j− 3

2
,h+j− 3

2
)

n+1−j (η) : J
.

The Wronskians in (10)–(11) are replaced by ordinary determinants consisting of these col-

umn vectors:

W[µd1, . . . , µdM ](η) =
∣

∣

∣

~X
(M)
d1

(η) · · · ~X
(M)
dM

(η)
∣

∣

∣

×

{
(

eη
)MI

(

η
3

2
−g−M

)MII : L
(

(1+η

2
)
3

2
−h−M

)MI
(

(1−η

2
)
3

2
−g−M

)MII : J
,

W[µd1 , . . . , µdM , Pn](η) =
∣

∣

∣

~X
(M+1)
d1

(η) · · · ~X
(M+1)
dM

(η) ~Z(M+1)
n (η)

∣

∣

∣

×

{
(

eη
)MI

(

η
1

2
−g−M

)MII : L
(

(1+η

2
)
1

2
−h−M

)MI
(

(1−η

2
)
1

2
−g−M

)MII : J
.

We arrive at the main result, the simple expressions of ΞD(η) and PD,n(η)

ΞD(η) = A×
∣

∣

∣

~X
(M)
d1

(η) · · · ~X
(M)
dM

(η)
∣

∣

∣
, (16)

PD,n(η) = A×
∣

∣

∣

~X
(M+1)
d1

(η) · · · ~X
(M+1)
dM

(η) ~Z(M+1)
n (η)

∣

∣

∣
, (17)

A =

{

η−MII(MII−1) : L

(1+η

2
)−MI(MI−1)(1−η

2
)−MII(MII−1) : J

.

It should be stressed that the components of the matrices in (16) and (17) are all polyno-

mials in η. This is a good contrast with the starting Wronskians W[µd1, . . . , µdM ](η) and

W[µd1 , . . . , µdM , Pn](η) in (10), (11), in which µdj ’s have non-polynomial factors (12).
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2.5 Simplified forms of the multi-indexed Laguerre and Jacobi
polynomials, B:

Here we will simplify the Wronskians of the virtual state wavefunctions and the eigenpoly-

nomials (14), (15). By replacing the even order derivatives of the virtual state wavefunctions

and eigenfunctions in the Wronskians (14), (15), by the rule ψ(2m)(x) → (−E)mψ(x), we

obtain

W[φ̃d1 , . . . , φ̃dM , φn](x) = det(aj,k)1≤j,k≤M+1, (18)
{

a2l−1,k = (−Ẽdk)
l−1φ̃dk(x) (1 ≤ k ≤M), a2l−1,M+1= (−En)

l−1φn(x) (1 ≤ l ≤ [M+2
2

])

a2l,k = (−Ẽdk)
l−1φ̃′

dk
(x) (1 ≤ k ≤M), a2l,M+1= (−En)

l−1φ′
n(x) (1 ≤ l ≤ [M+1

2
])
,

in which [a] denotes the greatest integer not exceeding a. The first derivatives in the 2l-th

row can be simplified by adding −
φ′
0
(x)

φ0(x)
× (2l − 1)-th row,

φ′
n(x) →

( d

dx
−
φ′
0(x)

φ0(x)

)

φn(x) =
cF

η′(x)
φ0(x)ζn

(

η(x)
)

= φ0(x)ζn
(

η(x)
)

× A,

φ̃′
v(x) →

( d

dx
−
φ′
0(x)

φ0(x)

)

φ̃v(x) =
cF

η′(x)
φ̃0(x)ζ̃v

(

η(x)
)

= φ̃0(x)ζ̃v
(

η(x)
)

× A,

A =
cF

η′(x)
=

{

x−1 : L
(sin x cos x)−1 : J

, (19)

in which ζn(η) and ζ̃v(η) are polynomials in η defined by

ζn(η)
def
=







−2ηL
(g+ 1

2
)

n−1 (η) : L

−1
2
(n + g + h)(1− η2)P

(g+ 1

2
,h+ 1

2
)

n−1 (η) : J
,

ζ̃v(η)
def
=































2ηL
(g+ 1

2
)

v (−η) : L, I

−2(g − 1
2
− v)L

(−g− 1

2
)

v (η) : L, II

(h− 1
2
− v)(1− η)P

(g+ 1

2
,−h− 1

2
)

v (η) : J, I

−(g − 1
2
− v)(1 + η)P

(−g− 1

2
,h+ 1

2
)

v (η) : J, II

.

Use is made of (4)–(6) for L and (7)–(9) for J.

By extracting the functions φ0(x), φ̃0(x) from each column of the matrix aj,k (18) and

the factor A of (19) from the even rows, we arrive at another set of simplified determinant

expressions for the multi-indexed polynomials:

PD,n(η) = c
− 1

2
M(M+1)

F det(aj,k)1≤j,k≤M+1 ×A, (20)
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{

a2l−1,k = (−Ẽdk)
l−1ξdk(η) (1 ≤ k ≤M), a2l−1,M+1= (−En)

l−1Pn(η) (1 ≤ l ≤ [M+2
2

])

a2l,k = (−Ẽdk)
l−1ζ̃dk(η) (1 ≤ k ≤M), a2l,M+1= (−En)

l−1ζn(η) (1 ≤ l ≤ [M+1
2

])
,

A =

{

η−([M ′]+1)([M ′]+M−2[M
2
]) : L

(

1−η

2

)−([M ′]+1)([M ′]+M−2[M
2
])(1+η

2

)−([−M ′]+1)([−M ′]+M−2[M
2
])

: J
.

In a similar way, we obtain

ΞD(η) = c
− 1

2
M(M−1)

F det(aj,k)1≤j,k≤M ×A, (21)
{

a2l−1,k = (−Ẽdk)
l−1ξdk(η) (1 ≤ l ≤ [M+1

2
])

a2l,k = (−Ẽdk)
l−1ζ̃dk(η) (1 ≤ l ≤ [M

2
])

, A =

{

η−[M ′]([M ′]+M−2[M
2
]) : L

(

1−η

2
1+η

2

)−[M ′]([M ′]+M−2[M
2
])

: J
.

Again all the components of the matrices aj,k in (20) and (21) are polynomials in η.

2.6 Parity transformation of the multi-indexed Jacobi polynomi-
als

The Jacobi polynomial has the parity transformation property [24]

P (α,β)
n (−x) = (−1)nP (β,α)

n (x). (22)

We will show that this property is inherited by the multi-indexed Jacobi polynomials. It is

based on the property of the Wronskian

W[f1, . . . , fn](−η) = (−1)
1

2
n(n−1)W[g1, . . . , gn](η), gk(η)

def
= fk(−η).

In this subsection, we indicate the types of the virtual states explicitly by (v, t), in which

t stands for type I or II. Based on (22), we obtain

µ(v,t)

(

−η; (g, h)
)

= (−1)vµ(v,̄t)

(

η; (h, g)
)

, t̄
def
=

{

II : t = I
I : t = II

,

Pn

(

−η; (g, h)
)

= (−1)nPn

(

η; (h, g)
)

.

For the multi-index set D = {(d1, t1), . . . , (dM , tM)} of the virtual state wavefunctions, let us

define the ‘mirror reflected’ multi-index set D′ def
= {(d1, t̄1), . . . , (dM , t̄M)}. Corresponding to

MI
def
= #{dj |(dj, I) ∈ D},MII

def
= #{dj|(dj, II) ∈ D}, we haveM ′

I
def
= #{dj|(dj, I) ∈ D′} =MII,

M ′
II

def
= #{dj |(dj, II) ∈ D′} = MI. By parity transformation η → −η, the multi-indexed

Jacobi polynomial PD,n

(

η; (g, h)
)

is mapped to PD′,n

(

η; (h, g)
)

with the ‘mirror reflected’

multi-index set D′:

PD,n

(

−η; (g, h)
)
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= (1−η

2
)(MII+h+ 1

2
)MI(1+η

2
)(MI+g+ 1

2
)MIIW[µ(d1,t1), . . . , µ(dM ,tM ), Pn]

(

−η; (g, h)
)

= (1−η

2
)(MII+h+ 1

2
)MI(1+η

2
)(MI+g+ 1

2
)MII(−1)

1

2
M(M+1)

×W[(−1)d1µ(d1 ,̄t1), . . . , (−1)dMµ(dM ,̄tM ), (−1)nPn]
(

η; (h, g)
)

= (1−η

2
)(MII+h+ 1

2
)MI(1+η

2
)(MI+g+ 1

2
)MII(−1)

1

2
M(M+1)(−1)d1+···+dM+n

×W[µ(d1 ,̄t1), . . . , µ(dM ,̄tM ), Pn]
(

η; (h, g)
)

= (−1)n+
1

2
M(M+1)+

∑M
k=1

dkPD′,n

(

η; (h, g)
)

.

Similarly, the denominator polynomial ΞD

(

η; (g, h)
)

is mapped to ΞD′

(

η; (h, g)
)

with a sign

factor:

ΞD

(

−η; (g, h)
)

= (−1)
1

2
M(M−1)+

∑M
k=1

dkΞD′

(

η; (h, g)
)

.

For the special case of ‘mirror symmetric’ multi-index set D′ = D (as a set), i.e. {dj|(dj, I) ∈

D} = {dj|(dj, II) ∈ D} (as a set), we have PD′,n(η) = ±PD,n(η). In fact, this formula turns

out to be

PD′,n(η) = (−1)(
M
2
)2PD,n(η).

For this special case the parity transformation gives

PD,n

(

−η; (g, h)
)

= (−1)nPD,n

(

η; (h, g)
)

, ΞD

(

−η; (g, h)
)

= ΞD

(

η; (h, g)
)

.

3 Summary and Comments

The multi-indexed Laguerre and Jacobi polynomials are defined by the Wronskian expres-

sions originating from multiple Darboux transformations. Two simplified determinant ex-

pressions of them, (16)–(17) and (20)–(21), which do not contain derivatives, are derived

based on the properties of the Wronskian and identities of the Laguerre and Jacobi poly-

nomials. For (20)–(21), the Schrödinger equation is used. For (16)–(17), various identities

of the Laguerre and Jacobi polynomials are used, which are essentially forward shift rela-

tions. Although the calculation in § 2.4 is performed for polynomials, it can be done for

wavefunctions just like [20], in which simplified determinant expressions are presented for

the multi-indexed polynomials obtained by multiple Darboux transformations with pseudo

virtual states wavefunctions as seed solutions. The parity transformation property of the

multi-indexed Jacobi polynomials is also derived.

11



Multi-indexed orthogonal polynomials have been constructed for the classical orthogonal

polynomials in the Askey scheme [1, 12], i.e., the Wilson, Askey-Wilson, Meixner, little q-

Jacobi and (q-) Racah polynomials, etc [18, 19, 21]. These polynomials belong to ‘discrete’

quantum mechanics [16], in which the Schrödinger equations are second order difference equa-

tions. The Casoratian expressions of these multi-indexed polynomials can also be simplified

by using various identities as demonstrated here. These simplifications will be published

elsewhere [13].
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