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Abstract. The multi-indexed Laguerre and Jacobi polynomials form a complete set of or-
thogonal polynomials. They satisfy second-order differential equations but not three term
recurrence relations, because of the ‘holes’ in their degrees. The multi-indexed Laguerre and
Jacobi polynomials have Wronskian expressions originating from multiple Darboux trans-
formations. For the ease of applications, two different forms of simplified expressions of the
multi-indexed Laguerre and Jacobi polynomials are derived based on various identities. The
parity transformation property of the multi-indexed Jacobi polynomials is derived based on
that of the Jacobi polynomial.
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1 Introduction

The exceptional and multi-indexed orthogonal polynomials [2, 9, 10, 11, 15, 17, 18, 19, 21, 22]
seem to be a focal point of recent research on exactly solvable quantum mechanics. They belong
to a new type of orthogonal polynomials which satisfy second-order differential (difference)
equations and form complete orthogonal basis in an appropriate Hilbert space. One of their
characteristic features is that they do not satisfy three term recurrence relations because of the
‘holes’ in the degrees. This is how they avoid the constraints due to Bochner [3, 23]. They are
constructed from the original quantum mechanical systems, the radial oscillator potential and
the Pöschl–Teller potential, by multiple application of Darboux transformations [4, 5] in terms
of seed solutions called virtual state wavefunctions which are generated by two types of discrete
symmetry transformations [17, 18, 19, 21].

The multi-indexed Laguerre and Jacobi polynomials have Wronskian expressions [17] origi-
nating from multiple Darboux transformations [4]. In this note we present two different forms
of equivalent determinant expressions without higher derivatives of the Wronskians by using
various identities of the Laguerre and Jacobi polynomials [24]. These simplified expressions
show explicitly the constituents of the multi-indexed orthogonal polynomials and they are help-
ful for deeper understanding. In [6] and [7] Durán employed similar simplified expressions as
the starting point of his exposition of the exceptional Laguerre and Jacobi polynomials. See
also [8] by Durán and Pérez. In their expressions, the matrix elements of the determinants are
polynomials. In the original expressions in [17], the matrix elements of the determinants contain
the non-polynomial factors, see (10)–(13). In the simplified expressions presented in this paper
in Sections 2.4 and 2.5, they are also all polynomials.

This short note is organised as follows. In Section 2.1 the quantum mechanical settings for
the original Laguerre and Jacobi polynomials are recapitulated. That is, the Hamiltonians with
the radial oscillator potential and the Pöschl–Teller potential are introduced and their eigenval-
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ues and eigenfunctions are presented. Type I and II discrete symmetry transformations for the
Hamiltonians of the Laguerre and Jacobi polynomials are explained in Section 2.2. The seed
solutions for Darboux transformations, to be called the virtual state wavefunctions of Type I
and II, for the Laguerre and Jacobi, are listed explicitly. In Section 2.3 the Wronskian forms of
the multi-indexed Laguerre and Jacobi polynomials derived in [17] and [14] are recapitulated as
the starting point. Sections 2.4 and 2.5 are the main content of this note. Those who are familiar
with the multi-indexed Laguerre and Jacobi polynomials can directly go to this part. The first
simplified expressions of the multi-indexed Laguerre and Jacobi polynomials are derived in Sec-
tion 2.4 by using various identities of the original Laguerre and Jacobi polynomials. The second
simplified expressions, to be derived in Section 2.5, are the consequences of the multi-linearity
of determinants and the form of the Schrödinger equation ψ′′(x) = (U(x)− E)ψ(x). Every even
order derivative ψ(2m)(x) in the Wronskian can be replaced by (−E)mψ(x). In Section 2.6 the
parity transformation formula of the multi-indexed Jacobi polynomials is presented. Section 3
is for a summary and comments.

2 Multi-indexed Laguerre and Jacobi polynomials

The foundation of the theory of multi-indexed orthogonal polynomials is the exactly solvable
one-dimensional quantum mechanical system H:

Hφn(x) = Enφn(x), n = 0, 1, . . . , H = − d2

dx2
+ U(x), (1)

and its iso-spectrally deformed system

HDφD n(x) = EnφD n(x), n = 0, 1, . . . , HD = − d2

dx2
+ UD(x), (2)

in terms of multiple application of Darboux transformations [4, 17]. In this note we discuss two
systems which have the Laguerre and Jacobi polynomials as the main parts of the eigenfunctions.
We follow the notation of [17] with slight modifications for simplification sake.

2.1 Original Laguerre and Jacobi polynomials

2.1.1 Radial oscillator potential

The Hamiltonian with the radial oscillator potential

U(x)
def
= x2 +

g(g − 1)

x2
− 2g − 1, 0 < x <∞, g >

1

2
, (3)

has the Laguerre polynomials L
(α)
n (η) as the main part of the eigenfunctions:

φn(x; g)
def
= φ0(x; g)L

(g− 1
2

)
n

(
η(x)

)
, En

def
= 4n, η(x)

def
= x2,

φ0(x; g)
def
= e−

1
2
x2xg, L(α)

n (η) =
1

n!

n∑
k=0

(−n)k
k!

(α+ k + 1)n−kη
k.

Here are some identities of the Laguerre polynomials [24] to be used in Sections 2.4 and 2.5,

∂ηL
(α)
n (η) = −L(α+1)

n−1 (η), (4)

L(α)
n (η)− L(α−1)

n (η) = L
(α)
n−1(η), (5)

ηL
(α+1)
n−1 (η)− αL(α)

n−1(η) = −nL(α−1)
n (η). (6)
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As is clear from (3), the lower boundary, x = 0, is the regular singular point with the character-
istic exponents g and 1 − g. The upper boundary point, x = ∞, is an irregular singular point.

Here (a)n
def
=

n∏
j=1

(a+ j − 1) is the shifted factorial or the so-called Pochhammer’s symbol.

2.1.2 Pöschl–Teller potential

The Hamiltonian with the Pöschl–Teller potential

U(x)
def
=
g(g − 1)

sin2 x
+
h(h− 1)

cos2 x
− (g + h)2, 0 < x <

π

2
, g >

1

2
, h >

1

2
,

has the Jacobi polynomials P
(α,β)
n (η) as the main part of the eigenfunctions:

φn
(
x; (g, h)

) def
= φ0

(
x; (g, h)

)
P

(g− 1
2
,h− 1

2
)

n

(
η(x)

)
, η(x)

def
= cos 2x,

φ0

(
x; (g, h)

) def
= (sinx)g(cosx)h, En(g, h)

def
= 4n(n+ g + h),

P (α,β)
n (η) =

(α+ 1)n
n!

n∑
k=0

1

k!

(−n)k(n+ α+ β + 1)k
(α+ 1)k

(
1− η

2

)k
.

Here are some identities of the Jacobi polynomials [24] to be used in in Sections 2.4 and 2.5,

∂ηP
(α,β)
n (η) = 1

2(n+ α+ β + 1)P
(α+1,β+1)
n−1 (η), (7)

(n+ β)P (α,β−1)
n (η)− βP (α−1,β)

n (η) = (n+ α+ β)1+η
2 P

(α,β+1)
n−1 (η), (8)

(n+ α)P (α−1,β)
n (η)− αP (α,β−1)

n (η) = −(n+ α+ β)1−η
2 P

(α+1,β)
n−1 (η). (9)

The two boundary points, x = 0, π2 are the regular singular points with the characteristic
exponents g, 1− g and h, 1− h, respectively.

2.2 Discrete symmetry transformations and virtual state wavefunctions

The seed solutions (virtual state wavefunctions) for Darboux transformations can be constructed
by applying discrete symmetry transformations of the Hamiltonian to the eigenfunctions. They
have negative energies and have no node and they are not square integrable, see [17] for more
detail.

2.2.1 Laguerre (L) system

Type I transformation. It is obvious that the transformation x→ ix is the symmetry of the
radial oscillator system. The seed solutions are

L1: Hφ̃I
v(x) = Ẽ I

vφ̃
I
v(x), φ̃I

v(x)
def
= φ̃I

0(x)ξI
v

(
η(x)

)
, φ̃I

0(x)
def
= e

1
2
x2xg,

ξI
v(η)

def
= L

(g− 1
2

)
v (−η), Ẽ I

v
def
= −4(g + v + 1

2), v ∈ Z≥0.

Hereafter we use v for the degree of the seed polynomial ξv in order to distinguish it with the
degree n of eigenpolynomial Pn.
Type II transformation. The exchange of the characteristic exponents of the regular singular
point x = 0, g → 1 − g, is another discrete symmetry transformation. It generates the seed
solutions,

L2: Hφ̃II
v (x) = Ẽ II

v φ̃
II
v (x), φ̃II

v (x)
def
= φ̃II

0 (x)ξII
v

(
η(x)

)
, φ̃II

0 (x)
def
= e−

1
2
x2x1−g,

ξII
v (η)

def
= L

( 1
2
−g)

v (η), Ẽ II
v

def
= −4

(
g − v− 1

2

)
, v = 0, 1, . . . ,

[
g − 1

2

]′
,

in which [a]′ denotes the greatest integer less than a.
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2.2.2 Jacobi (J) system

Type I transformation. The exchange of the characteristic exponents of the regular singular
point x = π

2 , h→ 1− h, is a discrete symmetry transformation:

J1: Hφ̃I
v(x) = Ẽ I

vφ̃
I
v(x), φ̃I

v(x)
def
= φ̃I

0(x)ξI
v

(
η(x)

)
, φ̃I

0(x)
def
= (sinx)g(cosx)1−h,

ξI
v(η)

def
= P

(g− 1
2
, 1
2
−h)

v (η), Ẽ I
v

def
= −4

(
g + v + 1

2

)(
h− v− 1

2

)
,

v = 0, 1, . . . ,
[
h− 1

2

]′
.

Type II transformation. Likewise the exchange of the characteristic exponents of the regular
singular point x = 0, g → 1− g, is a discrete symmetry transformation:

J2: Hφ̃II
v (x) = Ẽ II

v φ̃
II
v (x), φ̃II

v (x)
def
= φ̃II

0 (x)ξII
v

(
η(x)

)
, φ̃II

0 (x)
def
= (sinx)1−g(cosx)h,

ξII
v (η)

def
= P

( 1
2
−g,h− 1

2
)

v (η), Ẽ II
v

def
= −4

(
g − v− 1

2

)(
h+ v + 1

2

)
,

v = 0, 1, . . . ,
[
g − 1

2

]′
.

2.3 Wronskian forms of the multi-indexed Laguerre and Jacobi polynomials

We deform the original Hamiltonian system (1) by applying multiple Darboux transforma-
tions [4, 17] in terms of MI Type I seed solutions and MII Type II seed solutions specified by

the degree set D def
= {d1, . . . , dM} (ordered set), M

def
= MI +MII, MI

def
= #{dj | dj ∈ D, Type I},

MII
def
= #{dj | dj ∈ D, Type II}. The multi-indexed orthogonal polynomials {PD,n(η)} are the

main parts of the eigenfunctions {φD n(x)} of the deformed Hamiltonian system HD (2):

UD(x)
def
= U(x)− 2∂2

x log
∣∣W[φ̃d1 , . . . , φ̃dM ](x)

∣∣,
φD n(x)

def
=

W
[
φ̃d1 , . . . , φ̃dM , φn

]
(x)

W
[
φ̃d1 , . . . , φ̃dM

]
(x)

def
= cMF ψD(x)PD,n

(
η(x)

)
, n = 0, 1, . . . ,

ψD(x)
def
=

φ̂0(x)

ΞD
(
η(x)

) ,
in which φ̂0(x) and cF are defined by

φ̂0(x)
def
=

{
φ0(x; g +MI −MII), L,

φ0

(
x; (g +MI −MII, h−MI +MII)

)
, J,

cF
def
=

{
2, L,

−4, J.

The superscript I and II of the seed solutions are suppressed for simplicity of notation. The
Wronskian of n-functions {f1, . . . , fn} is defined by formula

W[f1, . . . , fn](x)
def
= det

(
dj−1fk(x)

dxj−1

)
1≤j,k≤n

.

There are two different but equivalent Wronskian definitions of the denominator polyno-
mial ΞD(η) and the multi-indexed orthogonal polynomial PD,n(η). The first is based on the
Wronskians of the ‘polynomials’ [17]:

ΞD(η)
def
= W[µd1 , . . . , µdM ](η)×

{
η(MI+g− 1

2
)MIIe−MIη, L,(1−η

2

)(MI+g− 1
2

)MII
(1+η

2

)(MII+h− 1
2

)MI , J,
(10)
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PD,n(η)
def
= W[µd1 , . . . , µdM , Pn](η)×

{
η(MI+g+

1
2

)MIIe−MIη, L,(1−η
2

)(MI+g+
1
2

)MII
(1+η

2

)(MII+h+ 1
2

)MI , J,
(11)

µv(η)
def
=


eηL

(g− 1
2

)
v (−η), L, v Type I,

η
1
2
−gL

( 1
2
−g)

v (η), L, v Type II,(1+η
2

) 1
2
−h
P

(g− 1
2
, 1
2
−h)

v (η), J, v Type I,(1−η
2

) 1
2
−g
P

( 1
2
−g,h− 1

2
)

v (η), J, v Type II,

(12)

Pn(η)
def
=

L
(g− 1

2
)

n (η), L,

P
(g− 1

2
,h− 1

2
)

n (η), J.
(13)

The second is based on the Wronskians of the virtual state wavefunctions φ̃v(x) and the eigen-
function φn(x) [14]:

ΞD(η) = c
− 1

2
M(M−1)

F W
[
φ̃d1 , . . . , φ̃dM

]
(x)

×

{
η−M

′(M ′+g− 1
2

)e−M
′η, L,(1−η

2

)−M ′(M ′+g− 1
2

)(1+η
2

)−M ′(M ′−h+ 1
2

)
, J,

(14)

PD,n(η) = c
− 1

2
M(M+1)

F W
[
φ̃d1 , . . . , φ̃dM , φn

]
(x)

×

{
η−(M ′+ 1

2
)(M ′+g)e−(M ′− 1

2
)η, L,(1−η

2

)−(M ′+ 1
2

)(M ′+g)(1+η
2

)−(M ′− 1
2

)(M ′−h)
, J,

(15)

in which M ′
def
= 1

2(MI −MII) and η = η(x).

2.4 Simplified forms of the multi-indexed Laguerre
and Jacobi polynomials, A

In this and the subsequent subsections we will derive simplified expressions of the multi-indexed
Laguerre and Jacobi polynomials PD,n(η) and the corresponding denominator polynomials ΞD(η)
starting from the Wronskian expressions (10)–(15) in the previous subsection.

In this subsection we simplify the Wronskians of the ‘polynomials’ (10)–(13). Let us first
transform the higher derivatives of the ‘seed polynomials’ µv(η) in (12). For the L system, we
obtain

L1: ∂η
(
eηL

(g− 1
2

)
v (−η)

)
= eηL

(g+1− 1
2

)
v (−η),

L2: ∂η
(
η

1
2
−gL

( 1
2
−g)

v (η)
)

=
(
v− g + 1

2

)
η

1
2
−(g+1)L

( 1
2
−(g+1))

v (η),

by using (4)–(5) and (4)–(6), respectively. By repeating these we arrive at for j ∈ Z≥1,

∂j−1
η

(
eηL

(g− 1
2

)
v (−η)

)
= eηL

(g+j− 3
2

)
v (−η),

∂j−1
η

(
η

1
2
−gL

( 1
2
−g)

v (η)
)

= (−1)j−1
(
g − 1

2 − v
)
j−1

η
3
2
−g−jL

( 3
2
−g−j)

v (η)

= η
1
2
−g−K(−1)j−1

(
g − 1

2 − v
)
j−1

ηK+1−jL
( 3
2
−g−j)

v (η),

in which K is a positive integer. For the J system, we obtain

J1: ∂η
((1+η

2

) 1
2
−h
P

(g− 1
2
, 1
2
−h)

v (η)
)

= 1
2

(
v− h+ 1

2

)(1+η
2

) 1
2
−(h+1)

P
(g+1− 1

2
, 1
2
−(h+1))

v (η),

J2: ∂η
((1−η

2

) 1
2
−g
P

( 1
2
−g,h− 1

2
)

v (η)
)

= −1
2

(
v− g + 1

2

)(1−η
2

) 1
2
−(g+1)

P
( 1
2
−(g+1),h+1− 1

2
)

v (η),
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by using (7), (8) and (7), (9), respectively. Repeated applications of these formulas lead to

∂j−1
η

((1+η
2

) 1
2
−h
P

(g− 1
2
, 1
2
−h)

v (η)
)

=
(−1)j−1

2j−1

(
h− 1

2 − v
)
j−1

(1+η
2

) 3
2
−h−j

P
(g+j− 3

2
, 3
2
−h−j)

v (η)

=
(1+η

2

) 1
2
−h−K (−1)j−1

2j−1

(
h− 1

2 − v
)
j−1

(1+η
2

)K+1−j
P

(g+j− 3
2
, 3
2
−h−j)

v (η),

∂j−1
η

((1−η
2

) 1
2
−g
P

( 1
2
−g,h− 1

2
)

v (η)
)

=
1

2j−1

(
g − 1

2 − v
)
j−1

(1−η
2

) 3
2
−g−j

P
( 3
2
−g−j,h+j− 3

2
)

v (η)

=
(1−η

2

) 1
2
−g−K 1

2j−1

(
g − 1

2 − v
)
j−1

(1−η
2

)K+1−j
P

( 3
2
−g−j,h+j− 3

2
)

v (η).

The higher derivatives of the eigenpolynomials Pn(η) in (13) are replaced simply through (4)
and (7), respectively,

∂j−1
η L

(g− 1
2

)
n (η) = (−1)j−1L

(g+j− 3
2

)

n+1−j (η),

∂j−1
η P

(g− 1
2
,h− 1

2
)

n (η) =
1

2j−1
(n+ g + h)j−1P

(g+j− 3
2
,h+j− 3

2
)

n+1−j (η),

in which we adopt the convention L
(α)
n (η) = P

(α,β)
n (η) = 0, n ∈ Z<0.

Let us define M -dimensional column vectors ~X
(M)
v =

(
X

(M)
v,j

)M
j=1

and ~Z
(M)
n =

(
Z

(M)
n,j

)M
j=1

by

X
(M)
v,j (η)

def
=



L
(g+j− 3

2
)

v (−η), L, v Type I,

(−1)j−1
(
g − 1

2 − v
)
j−1

ηM−jL
( 3
2
−g−j)

v (η), L, v Type II,

(−1)j−1

2j−1

(
h− 1

2 − v
)
j−1

(1+η
2

)M−j
P

(g+j− 3
2
, 3
2
−h−j)

v (η), J, v Type I,

1
2j−1

(
g − 1

2 − v
)
j−1

(1−η
2

)M−j
P

( 3
2
−g−j,h+j− 3

2
)

v (η), J, v Type II,

Z
(M)
n,j (η)

def
=

(−1)j−1L
(g+j− 3

2
)

n+1−j (η), L,

1
2j−1 (n+ g + h)j−1P

(g+j− 3
2
,h+j− 3

2
)

n+1−j (η), J.

The Wronskians in (10)–(11) are replaced by ordinary determinants consisting of these column
vectors:

W[µd1 , . . . , µdM ](η) =
∣∣ ~X(M)

d1
(η) · · · ~X(M)

dM
(η)
∣∣

×

{(
eη
)MI
(
η

3
2
−g−M)MII , L,((1+η

2

) 3
2
−h−M)MI

((1−η
2

) 3
2
−g−M)MII , J,

W[µd1 , . . . , µdM , Pn](η) =
∣∣ ~X(M+1)

d1
(η) · · · ~X(M+1)

dM
(η)~Z(M+1)

n (η)
∣∣

×

{(
eη
)MI
(
η

1
2
−g−M)MII , L,((1+η

2

) 1
2
−h−M)MI

((1−η
2

) 1
2
−g−M)MII , J.

We arrive at the main result, the simple expressions of ΞD(η) and PD,n(η)

ΞD(η) = A
∣∣ ~X(M)

d1
(η) · · · ~X(M)

dM
(η)
∣∣, (16)

PD,n(η) = A
∣∣ ~X(M+1)

d1
(η) · · · ~X(M+1)

dM
(η)~Z(M+1)

n (η)
∣∣, (17)

A =

{
η−MII(MII−1), L,(1+η

2

)−MI(MI−1)(1−η
2

)−MII(MII−1)
, J.

It should be stressed that the components of the matrices in (16) and (17) are all polyno-
mials in η. This is a good contrast with the starting Wronskians W[µd1 , . . . , µdM ](η) and
W[µd1 , . . . , µdM , Pn](η) in (10), (11), in which µdj ’s have non-polynomial factors (12).
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2.5 Simplified forms of the multi-indexed Laguerre
and Jacobi polynomials, B

Here we will simplify the Wronskians of the virtual state wavefunctions and the eigenpolyno-
mials (14), (15). By replacing the even order derivatives of the virtual state wavefunctions and
eigenfunctions in the Wronskians (14), (15), by the rule ψ(2m)(x)→ (−E)mψ(x), we obtain

W
[
φ̃d1 , . . . , φ̃dM , φn

]
(x) = det(aj,k)1≤j,k≤M+1, (18)

a2l−1,k = (−Ẽdk)l−1φ̃dk(x), 1 ≤ k ≤M, 1 ≤ l ≤
[
M+2

2

]
,

a2l−1,M+1 = (−En)l−1φn(x), 1 ≤ l ≤
[
M+2

2

]
,

a2l,k = (−Ẽdk)l−1φ̃′dk(x), 1 ≤ k ≤M, 1 ≤ l ≤
[
M+1

2

]
,

a2l,M+1 = (−En)l−1φ′n(x), 1 ≤ l ≤
[
M+1

2

]
,

in which [a] denotes the greatest integer not exceeding a. The first derivatives in the 2l-th row

can be simplified by adding −φ′0(x)
φ0(x) × (2l − 1)-th row,

φ′n(x)→
(
d

dx
− φ′0(x)

φ0(x)

)
φn(x) =

cF
η′(x)

φ0(x)ζn
(
η(x)

)
= φ0(x)ζn

(
η(x)

)
A,

φ̃′v(x)→
(
d

dx
− φ′0(x)

φ0(x)

)
φ̃v(x) =

cF
η′(x)

φ̃0(x)ζ̃v

(
η(x)

)
= φ̃0(x)ζ̃v

(
η(x)

)
A,

A =
cF
η′(x)

=

{
x−1, L,

(sinx cosx)−1, J,
(19)

in which ζn(η) and ζ̃v(η) are polynomials in η defined by

ζn(η)
def
=

−2ηL
(g+ 1

2
)

n−1 (η), L,

−1
2(n+ g + h)

(
1− η2

)
P

(g+ 1
2
,h+ 1

2
)

n−1 (η), J,

ζ̃v(η)
def
=


2ηL

(g+ 1
2

)
v (−η), L, I,

−2
(
g − 1

2 − v
)
L

(−g− 1
2

)
v (η), L, II,(

h− 1
2 − v

)
(1− η)P

(g+ 1
2
,−h− 1

2
)

v (η), J, I,

−
(
g − 1

2 − v
)
(1 + η)P

(−g− 1
2
,h+ 1

2
)

v (η), J, II.

Use is made of (4)–(6) for L and (7)–(9) for J.

By extracting the functions φ0(x), φ̃0(x) from each column of the matrix aj,k (18) and the
factor A of (19) from the even rows, we arrive at another set of simplified determinant expressions
for the multi-indexed polynomials:

PD,n(η) = c
− 1

2
M(M+1)

F det(aj,k)1≤j,k≤M+1A, (20)

a2l−1,k = (−Ẽdk)l−1ξdk(η), 1 ≤ k ≤M, 1 ≤ l ≤
[
M+2

2

]
,

a2l−1,M+1 = (−En)l−1Pn(η), 1 ≤ l ≤
[
M+2

2

]
,

a2l,k = (−Ẽdk)l−1ζ̃dk(η), 1 ≤ k ≤M, 1 ≤ l ≤
[
M+1

2

]
,

a2l,M+1 = (−En)l−1ζn(η), 1 ≤ l ≤
[
M+1

2

]
,

A =

{
η−([M ′]+1)([M ′]+M−2[M

2
]), L,(1−η

2

)−([M ′]+1)([M ′]+M−2[M
2

])(1+η
2

)−([−M ′]+1)([−M ′]+M−2[M
2

])
, J.
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In a similar way, we obtain

ΞD(η) = c
− 1

2
M(M−1)

F det(aj,k)1≤j,k≤MA, (21)

a2l−1,k = (−Ẽdk)l−1ξdk(η), 1 ≤ l ≤
[
M+1

2

]
,

a2l,k = (−Ẽdk)l−1ζ̃dk(η), 1 ≤ l ≤
[
M
2

]
,

A =

{
η−[M ′]([M ′]+M−2[M

2
]), L,(1−η

2
1+η

2

)−[M ′]([M ′]+M−2[M
2

])
, J.

Again all the components of the matrices aj,k in (20) and (21) are polynomials in η.

2.6 Parity transformation of the multi-indexed Jacobi polynomials

The Jacobi polynomial has the parity transformation property [24]

P (α,β)
n (−x) = (−1)nP (β,α)

n (x). (22)

We will show that this property is inherited by the multi-indexed Jacobi polynomials. It is based
on the property of the Wronskian

W[f1, . . . , fn](−η) = (−1)
1
2
n(n−1)W[g1, . . . , gn](η), gk(η)

def
= fk(−η).

In this subsection, we indicate the types of the virtual states explicitly by (v, t), in which t
stands for Type I or II. Based on (22), we obtain

µ(v,t)

(
−η; (g, h)

)
= (−1)vµ(v,̄t)

(
η; (h, g)

)
, t̄

def
=

{
II, t = I,

I, t = II,

Pn
(
−η; (g, h)

)
= (−1)nPn

(
η; (h, g)

)
.

For the multi-index set D = {(d1, t1), . . . , (dM , tM )} of the virtual state wavefunctions, let us

define the ‘mirror reflected’ multi-index set D′ def
= {(d1, t̄1), . . . , (dM , t̄M )}. Corresponding to

MI
def
= #{dj | (dj , I) ∈ D}, MII

def
= #{dj | (dj , II) ∈ D}, we have M ′I

def
= #{dj | (dj , I) ∈ D′} = MII,

M ′II
def
= #{dj | (dj , II) ∈ D′} = MI. By parity transformation η → −η, the multi-indexed Jacobi

polynomial PD,n
(
η; (g, h)

)
is mapped to PD′,n

(
η; (h, g)

)
with the ‘mirror reflected’ multi-index

set D′:

PD,n
(
−η; (g, h)

)
=
(1−η

2

)(MII+h+ 1
2

)MI
(1+η

2

)(MI+g+
1
2

)MIIW
[
µ(d1,t1), . . . , µ(dM ,tM ), Pn

](
−η; (g, h)

)
=
(1−η

2

)(MII+h+ 1
2

)MI
(1+η

2

)(MI+g+
1
2

)MII(−1)
1
2
M(M+1)

×W
[
(−1)d1µ(d1 ,̄t1), . . . , (−1)dMµ(dM ,̄tM ), (−1)nPn

](
η; (h, g)

)
=
(1−η

2

)(MII+h+ 1
2

)MI
(1+η

2

)(MI+g+
1
2

)MII(−1)
1
2
M(M+1)(−1)d1+···+dM+n

×W
[
µ(d1 ,̄t1), . . . , µ(dM ,̄tM ), Pn

](
η; (h, g)

)
= (−1)

n+ 1
2
M(M+1)+

M∑
k=1

dk
PD′,n

(
η; (h, g)

)
.

Similarly, the denominator polynomial ΞD
(
η; (g, h)

)
is mapped to ΞD′

(
η; (h, g)

)
with a sign

factor:

ΞD
(
−η; (g, h)

)
= (−1)

1
2
M(M−1)+

M∑
k=1

dk
ΞD′
(
η; (h, g)

)
.
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For the special case of ‘mirror symmetric’ multi-index set D′ = D (as a set), i.e., {dj | (dj , I) ∈
D} = {dj | (dj , II) ∈ D} (as a set), we have PD′,n(η) = ±PD,n(η). In fact, this formula turns out
to be

PD′,n(η) = (−1)(M
2

)2PD,n(η).

For this special case the parity transformation gives

PD,n
(
−η; (g, h)

)
= (−1)nPD,n

(
η; (h, g)

)
, ΞD

(
−η; (g, h)

)
= ΞD

(
η; (h, g)

)
.

3 Summary and comments

The multi-indexed Laguerre and Jacobi polynomials are defined by the Wronskian expressions
originating from multiple Darboux transformations. Two simplified determinant expressions of
them, (16), (17) and (20), (21), which do not contain derivatives, are derived based on the pro-
perties of the Wronskian and identities of the Laguerre and Jacobi polynomials. For (20), (21),
the Schrödinger equation is used. For (16), (17), various identities of the Laguerre and Jacobi
polynomials are used, which are essentially forward shift relations. Although the calculation in
Section 2.4 is performed for polynomials, it can be done for wavefunctions just like [20], in which
simplified determinant expressions are presented for the multi-indexed polynomials obtained by
multiple Darboux transformations with pseudo virtual states wavefunctions as seed solutions.
The parity transformation property of the multi-indexed Jacobi polynomials is also derived.

Multi-indexed orthogonal polynomials have been constructed for the classical orthogonal
polynomials in the Askey scheme [1, 12], i.e., the Wilson, Askey–Wilson, Meixner, little q-Jacobi
and (q-)Racah polynomials, etc. [18, 19, 21]. These polynomials belong to ‘discrete’ quantum
mechanics [16], in which the Schrödinger equations are second-order difference equations. The
Casoratian expressions of these multi-indexed polynomials can also be simplified by using various
identities as demonstrated here. These simplifications will be published elsewhere [13].
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