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Abstract

We consider dual polynomials of the multi-indexed (q-)Racah orthogonal polyno-
mials. The M -indexed (q-)Racah polynomials satisfy the second order difference equa-
tions and various 1 + 2L (L ≥ M + 1) term recurrence relations with constant coef-
ficients. Therefore their dual polynomials satisfy the three term recurrence relations
and various 2L-th order difference equations. This means that the dual multi-indexed
(q-)Racah polynomials are ordinary orthogonal polynomials and the Krall-type. We
obtain new exactly solvable discrete quantum mechanics with real shifts, whose eigen-
vectors are described by the dual multi-indexed (q-)Racah polynomials. These quantum
systems satisfy the closure relations, from which the creation/annihilation operators
are obtained, but they are not shape invariant.

1 Introduction

Ordinary orthogonal polynomials in one variable satisfying second order differential equations

are severely restricted by Bochner’s theorem [1, 2]. Allowed polynomials are the Hermite,

Laguerre, Jacobi and Bessel polynomials, but the weight function of the Bessel polynomial

is not positive definite. Various attempts to avoid this no-go theorem have been carried out

and there are three directions.

The first direction (i) is to change the second order to higher orders. This direction was

initiated by Krall [3] and he classified the orthogonal polynomials satisfying fourth order dif-

ferential equations [4]. Based on the Laguerre and Jacobi polynomials, by adding the Dirac

delta functions to the weight functions, orthogonal polynomials satisfying higher order differ-

ential equations are obtained [5]–[9]. Such polynomials are called the Krall polynomials. The
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second direction (ii) is to replace a differential equation with a difference equation. Studies

in this direction were summarized as the Askey scheme of (basic-)hypergeometric orthogonal

polynomials and various generalizations of the Bochner’s theorem were proposed [10, 2]. By

combining (i) and (ii), orthogonal polynomials satisfying higher order difference equations

were also studied. We call such polynomials the Krall-type polynomials. Some of them have

weight functions with delta functions [11] and some others have those without delta func-

tions [12]–[14]. The third direction (iii) is to allow missing degrees. This means the following

situation: polynomials {Pn} (n ∈ Z≥0) are orthogonal and satisfy second order differential

equation and form a complete set, but there are missing degrees, {degPn|n ∈ Z≥0} ( Z≥0

[15, 16]. By combining with (ii), we can also consider the situation in which second order

differential equation is replaced with second order difference equation. These polynomials

are called exceptional or multi-indexed orthogonal polynomials and various examples have

been obtained for classical orthogonal polynomials [15]–[33]. We distinguish the following two

cases; the set of missing degrees I = Z≥0\{degPn|n ∈ Z≥0} is case-(1): I = {0, 1, . . . , ℓ−1},

or case-(2): I 6= {0, 1, . . . , ℓ − 1}, where ℓ is a positive integer. The situation of case-(1) is

called stable in [20]. In the case of finite systems such as (q-)Racah polynomials, the index

set Z≥0 is replaced by {0, 1, . . . , N}. It is also possible to combine three directions (i), (ii)

and (iii), but such examples are not yet known.

Quantum mechanical formulation is useful for studying orthogonal polynomials. We

consider three kinds of quantum mechanical systems: ordinary quantum mechanics (oQM),

discrete quantum mechanics with pure imaginary shifts (idQM) [34]–[37] and discrete quan-

tum mechanics with real shifts (rdQM) [38]–[40]. Their features are the following:

Schrödinger eq. variable x examples of orthogonal polynomials

oQM differential eq. continuous Hermite, Laguerre, Jacobi
idQM difference eq. continuous continuous Hahn, (Askey-)Wilson
rdQM difference eq. discrete Hahn, (q-)Racah

In our previous works we have taken second order differential or difference operators as Hamil-

tonians, but it is also allowed to take higher order operators as Hamiltonians. Exceptional

and multi-indexed polynomials are obtained by applying the Darboux transformations with

appropriate seed solutions to the exactly solvable quantum mechanical systems described

by the classical orthogonal polynomials in the Askey scheme. When the virtual state wave-

functions are used as seed solutions, the case-(1) multi-indexed polynomials are obtained

[21, 23, 25]. When the eigenstate and/or pseudo virtual state wavefunctions are used as seed
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solutions, the case-(2) multi-indexed polynomials are obtained [31]–[33]. Another method

to obtain exceptional and multi-indexed polynomials is to use the Krall-type polynomials

[28]–[30].

In this paper we discuss dual polynomials of the case-(1) multi-indexed (q-)Racah poly-

nomials. Dual polynomials are introduced naturally for orthogonal polynomials of a discrete

variable [2] and they are treated in the framework of rdQM [38]–[40]. The polynomial

Pn(η(x)) = P̌n(x) and its dual polynomial Qx(En) = Q̌x(n) are related as P̌n(x) ∝ Q̌x(n).

The roles of the variable and the label (= degree for ordinary orthogonal polynomials) are

interchanged, and we have the following correspondence:

difference equation (w.r.t x) for P̌n(x) ↔ recurrence relation (w.r.t x) for Q̌x(n),

recurrence relation (w.r.t n) for P̌n(x) ↔ difference equation (w.r.t n) for Q̌x(n).

The multi-indexed (q-)Racah polynomials satisfy the second order difference equations [25].

On the other hand, the multi-indexed polynomials do not satisfy the three term recurrence

relations, which characterize the ordinary orthogonal polynomials [2], because they are not

the ordinary orthogonal polynomials. They satisfy recurrence relations with more terms [41]–

[48], and such recurrence relations for the multi-indexed (q-)Racah polynomials are studied

recently [49]. It is shown that the M-indexed (q-)Racah polynomials satisfy various 1 + 2L

(L ≥M + 1) term recurrence relations with constant coefficients. Therefore dual polynomi-

als of the multi-indexed (q-)Racah polynomials satisfy the three term recurrence relations

and various 2L-th order difference equations, namely they are ordinary orthogonal polyno-

mials and the Krall-type. The weight functions do not contain delta functions (Kronecker

deltas). By using these dual multi-indexed (q-)Racah polynomials, we construct new exactly

solvable rdQM systems, whose Hamiltonians are not tridiagonal but “(1 + 2L)-diagonal”.

These quantum systems satisfy the closure relations [50, 38], from which the creation and

annihilation operators are obtained, but they are not shape invariant.

This paper is organized as follows. In section 2 the essence of the multi-indexed (q-)Racah

polynomials are recapitulated. In section 3 we define the dual polynomials of the multi-

indexed (q-)Racah polynomials and present their properties. In section 4 we construct new

exactly solvable rdQM systems described by the dual multi-indexed (q-)Racah polynomials.

The closure relations and the creation and annihilation operators are presented in § 4.1 and

the shape invariance is discussed in § 4.2. Some examples are given in § 4.3. Section 5 is for

a summary and comments. In Appendix A some basic data of the multi-indexed (q-)Racah
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polynomials are summarized for readers’ convenience.

2 Multi-indexed (q-)Racah Orthogonal Polynomials

In this section we recapitulate the properties of the case-(1) multi-indexed Racah (R) and

q-Racah (qR) orthogonal polynomials [25, 49]. We follow the notation of [25, 49]. Various

quantities depend on a set of parameters λ = (λ1, λ2, . . .) and their dependence is expressed

like, f = f(λ), f(x) = f(x;λ). The parameter q is 0 < q < 1 and qλ stands for q(λ1,λ2,...) =

(qλ1 , qλ2, . . .). See Appendix A for the explicit forms of various quantities (Ξ̌D(x), ΞD(η),

P̌D,n(x), PD,n(η), P̌n(x), Pn(η), B(x), D(x), δ̃, φ0(x), dD,n, An, Cn, Ẽv, Iλ).

The set of parameters λ = (λ1, λ2, λ3, λ4), its shift δ and κ are

R : λ = (a, b, c, d), δ = (1, 1, 1, 1), κ = 1,

qR : qλ = (a, b, c, d), δ = (1, 1, 1, 1), κ = q−1.
(2.1)

For N ∈ Z>0, we take nmax = xmax = N and

R : a = −N, qR : a = q−N , (2.2)

and assume the following parameter ranges:

R : 0 < d < a+ b, 0 < c < 1 + d, d+max(D) + 1 < a+ b

qR : 0 < ab < d < 1, qd < c < 1, ab < dqmax(D)+1.
(2.3)

Here D = {d1, d2, . . . , dM} (d1 < d2 < · · · < dM , dj ∈ Z≥1) is the multi-index set. The

denominator polynomials ΞD(η) and the multi-indexed (q-)Racah polynomials PD,n(η) (n =

0, 1, . . . , nmax) are polynomials in the sinusoidal coordinate η,

Ξ̌D(x;λ)
def
= ΞD

(
η(x;λ+ (M − 1)δ);λ

)
, deg ΞD(η) = ℓD, (2.4)

P̌D,n(x;λ)
def
= PD,n

(
η(x;λ+Mδ);λ

)
, degPD,n(η) = ℓD + n, (2.5)

where ℓD is

ℓD
def
=

M∑

j=1

dj −
1

2
M(M − 1). (2.6)

The sinusoidal coordinates η(x;λ) are

η(x;λ) =

{
x(x+ d) : R

(q−x − 1)(1− dqx) : qR
, (2.7)
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and the energy eigenvalues En(λ) are

En(λ) =

{
n(n+ d̃) : R

(q−n − 1)(1− d̃qn) : qR
, d̃

def
=

{
a+ b+ c− d− 1 : R

abcd−1q−1 : qR
. (2.8)

The normalization of these quantities is

η(0;λ) = E0(λ) = 0, Ξ̌D(0;λ) = ΞD(0;λ) = 1, P̌D,n(0;λ) = PD,n(0;λ) = 1. (2.9)

In the sequence P̌D,n(0;λ), P̌D,n(1;λ), . . . , P̌D,n(xmax;λ), the sign changes n times. Note that

P̌D,0(x;λ) = Ξ̌D(x;λ+ δ), (2.10)

and Ξ̌D(x;λ) is positive for x = 0, 1, . . . , xmax. We set

PD,n(η;λ)
def
= 0 (n < 0). (2.11)

The original (q-)Racah polynomials Pn(η) correspond to the “M = 0” (D = ∅) case, Pn(η) =

P∅,n(η). We remark that if we treat the parameter a as an indeterminate, P̌D,n(x) are defined

for n ∈ Z≥0 and x ∈ C. However, for the choice (2.2) (we take the limit from an indeterminate

a to a in (2.2)), P̌D,n(x) are well-defined for n ∈ {0, 1, . . . , nmax} and x ∈ C, or n ∈ Z>nmax

and x ∈ {0, 1, . . . , xmax}.

The Hamiltonian of the deformed system HD = (HD;x,y)0≤x,y≤xmax
is a real symmetric

matrix (a tridiagonal matrix in this case),

HD = −
√
BD(x) e

∂
√
DD(x)−

√
DD(x) e

−∂
√
BD(x) +BD(x) +DD(x), (2.12)

where matrices e±∂ are (e±∂)x,y = δx±1,y and the unit matrix 1 = (δx,y) are suppressed. The

notation f(x)Ag(x) (or f(x) ◦ A ◦ g(x)), where f(x) and g(x) are functions of x and A is a

matrix A = (Ax,y), stands for a matrix whose (x, y)-element is f(x)Ax,yg(y). Namely, it is

a matrix product diag(f(0), f(1), . . . f(xmax))A diag(g(0), g(1), . . . , g(xmax)). The notation

Af(x) stands for a vector whose x-th component is
xmax∑
y=0

Ax,yf(y). Note that the matrices e∂

and e−∂ are not inverse to each other. The potential functions BD(x) and DD(x) are

BD(x;λ) = B(x;λ+M δ̃)
Ξ̌D(x;λ)

Ξ̌D(x+ 1;λ)

Ξ̌D(x+ 1;λ+ δ)

Ξ̌D(x;λ+ δ)
, (2.13)

DD(x;λ) = D(x;λ+M δ̃)
Ξ̌D(x+ 1;λ)

Ξ̌D(x;λ)

Ξ̌D(x− 1;λ+ δ)

Ξ̌D(x;λ+ δ)
, (2.14)
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which satisfy the boundary conditions

DD(0;λ) = 0, BD(xmax;λ) = 0. (2.15)

The eigenvectors of the Hamiltonian are

φD n(x;λ) = ψD(x;λ)P̌D,n(x;λ), ψD(x;λ) =

√
Ξ̌D(1;λ)

φ0(x;λ+M δ̃)√
Ξ̌D(x;λ) Ξ̌D(x+ 1;λ)

, (2.16)

HD(λ)φD n(x;λ) = En(λ)φD n(x;λ) (n = 0, 1, . . . , nmax), (2.17)

and the normalization of ψD and φD n is ψD(0;λ) = φD n(0;λ) = 1. Namely the multi-indexed

(q-)Racah polynomials satisfy the second order difference equations

H̃D(λ)P̌D,n(x;λ) = En(λ)P̌D,n(x;λ) (n = 0, 1, . . . , nmax), (2.18)

where the similarity transformed Hamiltonian H̃D(λ) = ψD(x;λ)
−1 ◦ HD(λ) ◦ ψD(x;λ) is

H̃D(λ) = B(x;λ+M δ̃)
Ξ̌D(x;λ)

Ξ̌D(x+ 1;λ)

(
Ξ̌D(x+ 1;λ+ δ)

Ξ̌D(x;λ+ δ)
− e∂

)

+D(x;λ+M δ̃)
Ξ̌D(x+ 1;λ)

Ξ̌D(x;λ)

(
Ξ̌D(x− 1;λ+ δ)

Ξ̌D(x;λ+ δ)
− e−∂

)
. (2.19)

The orthogonality relations of the multi-indexed (q-)Racah polynomials are

xmax∑

x=0

ψD(x;λ)
2

Ξ̌D(1;λ)
P̌D,n(x;λ)P̌D,m(x;λ) =

δnm
dD,n(λ)2

(n,m = 0, 1, . . . , nmax). (2.20)

We remark that
dD,n(λ)

dD,0(λ)
=

(n−1∏

m=0

Am(λ)

Cm+1(λ)
·

M∏

j=1

En(λ)− Ẽdj (λ)

−Ẽdj (λ)

) 1

2

, (2.21)

where An and Cn are the coefficients of the three term recurrence relations for the original

(q-)Racah polynomials Pn(η) and Ẽv is the virtual state energy.

The multi-indexed (q-)Racah polynomials satisfy the recurrence relations with constant

coefficients [49]. We have the following results:

Theorem 1 [49] For any polynomial Y (η)( 6= 0), we take X(η) = X(η;λ) = XD,Y (η;λ) as

X(η) = Iλ+Mδ

[
ΞDY

]
(η), degX(η) = L = ℓD + deg Y (η) + 1, (2.22)

where ΞDY means a polynomial (ΞDY )(η) = ΞD(η)Y (η), and define X̌(x) = X̌(x;λ) by

X̌(x;λ)
def
= X

(
η(x;λ+Mδ);λ

)
(x ∈ C) (2.23)
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=
x∑

j=1

(
η(j;λ+Mδ)− η(j − 1;λ+Mδ)

)

× Ξ̌D(j;λ)Y
(
η(j;λ+ (M − 1)δ)

)
(x ∈ Z≥0). (2.24)

Then the multi-indexed (q-)Racah polynomials PD,n(η) satisfy 1+2L term recurrence relations

with constant coefficients:

X̌(x;λ)P̌D,n(x;λ) =

min(L,N−n)∑

k=−min(L,n)

rX,D
n,k (λ)P̌D,n+k(x;λ)

(
n = 0, 1, . . . , nmax

x = 0, 1, . . . , xmax

)
. (2.25)

Remark For L > 1
2
N , number of terms is not 1+2L but N +1. Unless N−L+1 ≤ n ≤ N ,

(2.25) is an equation as a polynomial, namely it holds for x ∈ C. On the other hand, for

N − L+ 1 ≤ n ≤ N , (2.25) holds only for x = 0, 1, . . . , xmax.

We note that the overall normalization and the constant term of X(η) are not important,

because the change of the former induces that of the overall normalization of rX,D
n,k and the

shift of the latter induces that of rX,D
n,0 . The constant term of X(η) is chosen as X(0) = 0.

There are the following relations among the coefficients rX,D
n,k [49]

rX,D
n+k,−k(λ) =

dD,n(λ)
2

dD,n+k(λ)2
rX,D
n,k (λ) (1 ≤ k ≤ L;n+ k ≤ nmax). (2.26)

Direct verification of this theorem is rather straightforward for lower M and smaller dj, n,

deg Y and N , by a computer algebra system, e.g. Mathematica. The coefficients rX,D
n,k are

explicitly obtained for small dj and n. However, to obtain the closed expression of rX,D
n,k for

general n is not an easy task even for small dj , and it is a different kind of problem. Since

Y (η) is arbitrary, we obtain infinitely many recurrence relations. Although not all of them are

independent, the relations among them are unclear. Note that L ≥M+1 because of ℓD ≥M .

The minimal degree one, which corresponds to Y (η) = 1, is Xmin(η) = Iλ+Mδ

[
ΞD

]
(η),

degXmin(η) = ℓD + 1.

3 Dual Polynomials of the Multi-Indexed (q-)Racah

Polynomials

For ordinary orthogonal polynomials, a discrete orthogonality relation of a system of poly-

nomials induces an orthogonality relation for the dual system where the role of the variable

and the degree are interchanged [2] (see also [38]–[40]). In this section we consider dual
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polynomials of the multi-indexed (q-)Racah polynomials, where the degree is replaced by

the number of sign changes.

Corresponding to the multi-indexed (q-)Racah polynomials P̌D,n(x;λ), let us define Q̌D,x(n;λ)

by

Q̌D,x(n;λ)
def
=
P̌D,n(x;λ)

P̌D,0(x;λ)

(
n = 0, 1, . . . , nmax

x = 0, 1, . . . , xmax

)
. (3.1)

(Remark that if the parameter a is treated as an indeterminate, Q̌D,x(n;λ) is defined for

n, x ∈ Z≥0.) Then we have

Q̌D,x(0;λ) = 1, Q̌D,0(n;λ) = 1. (3.2)

Orthogonality relations (2.20) are rewritten as

xmax∑

x=0

φ̂D n(x;λ)φ̂Dm(x;λ) = δnm (n,m = 0, 1, . . . , nmax), (3.3)

where the normalized eigenvectors φ̂D n(x;λ) are

φ̂D n(x;λ)
def
=

dD,n(λ)√
Ξ̌D(1;λ)

ψD(x;λ)P̌D,n(x;λ) =
φD 0(x;λ)√
Ξ̌D(1;λ)

dD,n(λ)Q̌D,x(n;λ). (3.4)

Since the matrix size is finite nmax = xmax = N , (3.3) implies

nmax∑

n=0

φ̂D n(x;λ)φ̂D n(y;λ) = δxy (x, y = 0, 1, . . . , xmax), (3.5)

namely dual orthogonality relations

nmax∑

n=0

dD,n(λ)
2

Ξ̌D(1;λ)
Q̌D,x(n;λ)Q̌D,y(n;λ) =

δxy
φD 0(x;λ)2

(x, y = 0, 1, . . . , xmax). (3.6)

The second order difference equations for P̌D,n(x;λ) (2.18) are rewritten as the three

term recurrence relations for Q̌D,x(n;λ),

En(λ)Q̌D,x(n;λ) = Adual
D,x (λ)Q̌D,x+1(n;λ) +Bdual

D,x (λ)Q̌D,x(n;λ) + Cdual
D,x (λ)Q̌D,x−1(n;λ)

(n = 0, 1, . . . , nmax ; x = 0, 1, . . . , xmax), (3.7)

where we have used (2.10). Here Adual
D,x , B

dual
D,x and Cdual

D,x are

Adual
D,x (λ)

def
= −BD(x;λ), Cdual

D,x (λ)
def
= −DD(x;λ), Bdual

D,x (λ)
def
= −Adual

D,x (λ)− Cdual
D,x (λ), (3.8)
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and satisfy the boundary conditions

Cdual
D,0 (λ) = 0, Adual

D,xmax
(λ) = 0. (3.9)

This means that Q̌D,x(n;λ) are generated by the three term recurrence relations (3.7) with

the initial conditions

Q̌D,0(n;λ) = 1, Q̌D,−1(n;λ)
def
= 0. (3.10)

Therefore Q̌D,x(n;λ) are polynomials in En(λ),

Q̌D,x(n;λ)
def
= QD,x

(
En(λ);λ

)
, degQD,x(E) = x. (3.11)

These polynomials QD,x(E) are ordinary orthogonal polynomials. So, the sign changes x

times in the sequence Q̌D,x(0;λ), Q̌D,x(1;λ), . . . , Q̌D,x(nmax;λ). We call QD,x(E) as the dual

multi-indexed (q-)Racah polynomials. Correspondence of this duality is

x↔ n, η(x) ↔ En, PD,n(η) ↔ QD,x(E),
φD 0(x)

φD 0(0)
↔

dD,n

dD,0

. (3.12)

The multi-indexed (q-)Racah polynomials PD,n(η) and their dual polynomials QD,x(E) are

different polynomials. This contrasts with the original (q-)Racah cases. The (q-)Racah poly-

nomials and their dual polynomials are same polynomials with the parameter correspondence

(a, b, c, d) ↔ (a, b, c, d̃). We remark that if we treat the parameter a as an indeterminate,

the dual multi-indexed (q-)Racah polynomials QD,x(E) are defined for x ∈ Z≥0 and E ∈ C

by the three term recurrence relations

EQD,x(E ;λ) = Adual
D,x (λ)QD,x+1(E ;λ) +Bdual

D,x (λ)QD,x(E ;λ) + Cdual
D,x (λ)QD,x−1(E ;λ), (3.13)

with the initial condition QD,0(E) = 1 and QD,−1(E)
def
= 0. For (2.2), we have Adual

D,N(λ) = 0.

The 1 + 2L term recurrence relations with constant coefficients for P̌D,n(x;λ) (2.25) are

rewritten as the 2L-th order difference equations for Q̌D,x(n;λ),

min(L,N−n)∑

k=−min(L,n)

rX,D
n,k (λ)Q̌D,x(n+ k;λ) = X̌(x;λ

)
Q̌D,x(n;λ)

(
n = 0, 1, . . . , nmax

x = 0, 1, . . . , xmax

)
. (3.14)

(Remark: For L > 1
2
N , the order is not 2L but N .) Therefore the dual multi-indexed

(q-)Racah polynomials QD,x(E) are the Krall-type polynomials. Since we can take various

X = XD,Y for a multi-indexed set D, these Krall-type polynomials QD,x(E) satisfy various

difference equations of order 2L ≥ 2M + 2.
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In the q → 1 limit, the q-Racah polynomial reduced to the Racah polynomial [10]:

lim
q→1

P̌ qR
n (x;λ) = P̌R

n (x;λ). Similarly, the (dual) multi-indexed q-Racah polynomials reduce to

the (dual) multi-indexed Racah polynomials: lim
q→1

P̌ qR
D,n(x;λ) = P̌R

D,n(x;λ) and lim
q→1

Q̌qR
D,x(n;λ) =

Q̌R
D,x(n;λ).

4 New Exactly Solvable rdQM Systems

In this section we present new exactly solvable rdQM systems, whose eigenvectors are de-

scribed by the dual multi-indexed (q-)Racah polynomials. Unlike the previous section, we

assume that the coordinate is x and the label of states is n as usual. Although tridiagonal

matrices have been considered in our previous papers [38, 39, 40, 33], the Hamiltonian of

rdQM is not restricted to tridiagonal matrices and any real symmetric matrix is allowed.

Let us fix the multi-index set D = {d1, d2, . . . , dM} (d1 < d2 < · · · < dM , dj ∈ Z≥1).

We take a polynomial X(η) = XD,Y (η) (2.22) and assume that Y (η)( 6= 0) is a polynomial

with real non-negative coefficients. For each X(η), we define the Hamiltonian HX dual
D (λ) =

(
HX dual

D;x,y (λ)
)
0≤x,y≤xmax

by

HX dual
D (λ)

def
=

min(L,N−x)∑

k=−min(L,x)

rX,D
x,k (λ)

dD,x(λ)

dD,x+k(λ)
ek∂, (4.1)

where matrices ek∂ (k ∈ Z) are defined by

ek∂
def
=

{
(e∂)k (k ≥ 0)
(e−∂)−k (k < 0)

, namely (ek∂)x,y = δx+k,y. (4.2)

This Hamiltonian HX dual
D is a band matrix with lower and upper bandwidth L, namely a

“(1 + 2L)-diagonal” matrix, e.g.L = 1 (⇔ M = 0,D = ∅): tridiagonal matrix, L = 2:

pentadiagonal matrix, etc. (For L > N , it is “(1 + 2N)-diagonal”.) By using (2.21) (with

n→ x), explicit forms of dD,x/dD,x+k with 0 ≤ x+ k ≤ N are (convention:
∏n−1

i=n ∗ = 1)

dD,x(λ)

dD,x+k(λ)
=

( M∏

j=1

Ex(λ)− Ẽdj (λ)

Ex+k(λ)− Ẽdj(λ)

) 1

2

×






( k∏

i=1

Cx+i(λ)

Ax+i−1(λ)

) 1

2

(0 ≤ k ≤ L)

( −k∏

i=1

Ax−i(λ)

Cx+1−i(λ)

) 1

2

(−L ≤ k ≤ −1)

. (4.3)

This Hamiltonian HX dual
D is real symmetric because of (2.26) (with n→ x).
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Multiplying (3.14) (with replacement x↔ n) by dD,x(λ)/dD,0(λ), we have

min(L,N−x)∑

k=−min(L,x)

rX,D
x,k (λ)

dD,x(λ)

dD,x+k(λ)

dD,x+k(λ)

dD,0(λ)
Q̌D,n(x+ k;λ) = X̌(n;λ

)dD,x(λ)

dD,0(λ)
Q̌D,n(x;λ)

(n = 0, 1, . . . , nmax ; x = 0, 1, . . . , xmax). (4.4)

Therefore eigenvectors of the Hamiltonian HX dual
D (λ),

HX dual
D (λ)φdual

D n (x;λ) = EX dual
D,n (λ)φdual

D n (x;λ) (n = 0, 1, . . . , nmax), (4.5)

are given by

φdual
D n (x;λ)

def
=
dD,x(λ)

dD,0(λ)
Q̌D,n(x;λ)

( n = 0, 1, . . . , nmax

x = 0, 1, . . . , xmax

)
, (4.6)

EX dual
D,n (λ)

def
= X̌(n;λ

)
, Q̌D,n(x;λ) = QD,n

(
Ex(λ);λ

)
. (4.7)

Their orthogonality relations are obtained from (3.6):

xmax∑

x=0

φdual
D n (x;λ)φ

dual
Dm(x;λ) =

Ξ̌D(1;λ)δnm
dD,0(λ)2 φD 0(n;λ)2

(n,m = 0, 1, . . . , nmax). (4.8)

Since each term of the sum in (2.24) is positive for x = 1, 2, . . . , xmax, we have

0 = X̌(0;λ) < X̌(1;λ) < · · · < X̌(xmax;λ). (4.9)

Therefore the energy eigenvalues EX dual
D,n (λ) satisfy

0 = EX dual
D,0 (λ) < EX dual

D,1 (λ) < · · · < EX dual
D,nmax

(λ), (4.10)

and the Hamiltonian HX dual
D is positive semi-definite.

For a multi-index set D, we can take various X = XD,Y , because a polynomial Y with

real non-negative coefficients is arbitrary. The Hamiltonian HX dual
D and energy eigenvalues

EX dual
D,n depend on X , but the eigenvectors φdual

D n (x) do not. Hence φdual
D n (x) are simultaneous

eigenvectors of variousHX dual
D . In other words, the Hamiltonians associated withX1 = XD,Y1

and X2 = XD,Y2 commute with each other,

[
HX1 dual

D ,HX2 dual
D

]
= 0. (4.11)

By the similarity transformation in terms of the ground state eigenvector φdual
D 0 (x), the

Schrödinger equation (4.5) is rewritten as

H̃X dual
D (λ)Q̌D,n(x;λ) = EX dual

D,n (λ)Q̌D,n(x;λ) (n = 0, 1, . . . , nmax), (4.12)
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H̃X dual
D (λ) = φdual

D 0 (x;λ)
−1 ◦ HX dual

D (λ) ◦ φdual
D 0 (x;λ) =

min(L,N−x)∑

k=−min(L,x)

rX,D
x,k (λ)ek∂. (4.13)

Multiplying (3.7) (x ↔ n) by dD,x(λ)/dD,0(λ), we obtain the three term recurrence

relations for the eigenvectors φdual
D n (x;λ),

Ex(λ)φ
dual
D n (x;λ) = Adual

D,n (λ)φ
dual
D n+1(x;λ) +Bdual

D,n (λ)φ
dual
D n (x;λ) + Cdual

D,n (λ)φ
dual
D n−1(x;λ)

(n = 0, 1, . . . , nmax ; x = 0, 1, . . . , xmax). (4.14)

4.1 Closure relation

Corresponding to the three term recurrence relations (4.14), the Hamiltonian HX dual
D and

the sinusoidal coordinate Ex are expected to satisfy the ordinary closure relation [50, 38]

(closure relation of order 2 [48]),

[
HX dual

D , [HX dual
D , E ]

]
= E R0(H

X dual
D ) + [HX dual

D , E ]R1(H
X dual
D ) +R−1(H

X dual
D ), (4.15)

where E is a diagonal matrix E = (Exδx,y)0≤x,y≤xmax
and Ri(z)’s are polynomials in z. (In

the notation used in (2.12), this matrix E is expressed as Ex1 or simply Ex.) For the original

(q-)Racah systems, the degrees of Ri(z) are (degR0, degR1, degR−1) = (2, 1, 2). For the

dual multi-indexed (q-)Racah systems, the degrees of Ri(x) need to be much higher. This

is because the expression of EX dual
D,n is more complicated than that of En. We can find Ri(z)

satisfying (4.15), whose degrees are (degR0, degR1, degR−1) = (N,N − 2, N), (N,N,N −

2), (N−1, N−1, N), etc. In order to construct the creation/annihilation operators, however,

these minimal choices (the number of coefficients of Ri(z)’s is 3N + 1) are not appropriate,

because the relations (4.20)–(4.22) are not satisfied, which are the desired properties (4.28).

For this purpose, we take (degR0, degR1, degR−1) = (N,N,N) (the number of coefficients

of Ri(z)’s is 3N + 3).

The method of closure relation [50, 38] is the following: (i) Find Ri(z) satisfying (4.15),

(ii) Calculate α±(z) from Ri(z), (iii) Heisenberg solution EH(t) is obtained, (iv) Creation/

annihilation operators a(±) are obtained. Here we change a part of the logic, namely mix

(i) and (ii) by using some consequence of (iv). We define functions α±(z) and polynomials

Ri(z) by guess work, which is expected from some consequence of (iv). Then we check the

closure relation (4.15) for these Ri(z).
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Let us define R0(z), R1(z), R−1(z) and α±(z) by

R0(z)
def
=

N∑

j=0

r
(j)
0 zj , R1(z)

def
=

N∑

j=0

r
(j)
1 zj , R−1(z)

def
=

N∑

j=0

r
(j)
−1z

j , (4.16)

α±(z)
def
= 1

2

(
R1(z)±

√
R1(z)2 + 4R0(z)

)
⇔

{
R0(z) = −α+(z)α−(z)
R1(z) = α+(z) + α−(z)

, (4.17)

where coefficients r
(j)
0 and r

(j)
1 are determined by the condition

α±

(
X̌(j)

)
= X̌(j ± 1)− X̌(j) (j = 0, 1, . . . , N), (4.18)

and coefficients r
(j)
−1 are determined by the condition

R−1

(
X̌(j)

)
= −

(
X̌(j + 1)− X̌(j)

)(
X̌(j)− X̌(j − 1)

)
Bdual

D,j (j = 0, 1, . . . , N). (4.19)

The condition (4.18) is rewritten as

R0

(
X̌(j)

)
=
(
X̌(j + 1)− X̌(j)

)(
X̌(j)− X̌(j − 1)

)
(j = 0, 1, . . . , N), (4.20)

R1

(
X̌(j)

)
= X̌(j + 1)− 2X̌(j) + X̌(j − 1) (j = 0, 1, . . . , N), (4.21)

and the condition (4.19) is rewritten as

R−1

(
X̌(j)

)
= −R0

(
X̌(j)

)
Bdual

D,j (j = 0, 1, . . . , N). (4.22)

Note that

R1

(
X̌(j)

)2
+ 4R0

(
X̌(j)

)
=
(
X̌(j + 1)− X̌(j − 1)

)2
(j = 0, 1, . . . , N). (4.23)

These systems of linear equations (4.20), (4.21) and (4.19) are solved by using Cramer’s rule.

By using X̌(0) = 0, we obtain

Ri(z) =

N∏

j=1

X̌(j)−1 ·
∏

1≤k<j≤N

(
X̌(j)− X̌(k)

)−1

×

∣∣∣∣∣∣∣∣∣∣∣∣

X̌(1) X̌(1)2 · · · X̌(1)N β
(0)
i − β

(1)
i

X̌(2) X̌(2)2 · · · X̌(2)N β
(0)
i − β

(2)
i

...
... · · ·

...
...

X̌(N) X̌(N)2 · · · X̌(N)N β
(0)
i − β

(N)
i

z z2 · · · zN β
(0)
i

∣∣∣∣∣∣∣∣∣∣∣∣

, (4.24)
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where β
(j)
i (i = 0, 1,−1; j = 0, 1, . . . , N) are





β
(j)
0 =

(
X̌(j + 1)− X̌(j)

)(
X̌(j)− X̌(j − 1)

)

β
(j)
1 = X̌(j + 1)− 2X̌(j) + X̌(j − 1)

β
(j)
−1 = −

(
X̌(j + 1)− X̌(j)

)(
X̌(j)− X̌(j − 1)

)
Bdual

D,j

. (4.25)

We remark that conditions (4.20), (4.21) and (4.19) are N +1 equations for N +1 unknown

coefficients r
(j)
i and those relations do not hold for j 6= 0, 1, . . . , N . This contrasts with the

original (q-)Racah systems, in which the degrees of Ri(z) are 2 or 1 and similar relations

hold for any j [38].

Then we have the following conjecture.

Conjecture 1 The closure relation (4.15) holds for Ri(z) (4.16), (4.24).

From the closure relation (4.15), the exact Heisenberg operator solution of the sinusoidal

coordinate E can be obtained [50, 38],

EH(t)
def
= eiH

X dual
D

tE e−iHX dual
D

t

= a(+)eiα+(HX dual
D

)t + a(−)eiα−(HX dual
D

)t − R−1(H
X dual
D )R0(H

X dual
D )−1, (4.26)

where a(±) = a(±)(HX dual
D , E ) are

a(±) def
= ±

(
[HX dual

D , E ]−
(
E +R−1(H

X dual
D )R0(H

X dual
D )−1

)
α∓(H

X dual
D )

)

×
(
α+(H

X dual
D )− α−(H

X dual
D )

)−1
. (4.27)

Note that square roots in α±(H
X dual
D ) are well-defined, because the matrix R1(H

X dual
D )2 +

4R0(H
X dual
D ) is positive semi-definite, see (4.23). Action of (4.26) on φdual

D n (x) is

EH(t)φ
dual
D n (x) = eiα+(EX dual

D,n )ta(+)φdual
D n (x) + eiα−(EX dual

D,n )ta(−)φdual
D n (x)

− R−1(E
X dual
D,n )R0(E

X dual
D,n )−1φdual

D n (x).

On the other hand it turns out to be

EH(t)φ
dual
D n (x) = eiH

X dual
D

tE e−iHX dual
D

tφdual
D n (x) = eiH

X dual
D

tE e−iEX dual
D,n

tφdual
D n (x)

= e−iEX dual
D,n

teiH
X dual
D

t
(
Adual

D,n φ
dual
D n+1(x) +Bdual

D,n φ
dual
D n (x) + Cdual

D,n φ
dual
D n−1(x)

)

= ei(E
X dual
D,n+1

−EX dual
D,n

)tAdual
D,n φ

dual
D n+1(x) +Bdual

D,n φ
dual
D n (x) + ei(E

X dual
D,n−1

−EX dual
D,n

)tCdual
D,n φ

dual
D n−1(x),

14



where we have used (4.14). Comparing these t-dependence, we obtain

α±(E
X dual
D,n ) = EX dual

D,n±1 − EX dual
D,n , −R−1(E

X dual
D,n )R0(E

X dual
D,n )−1 = Bdual

D,n , (4.28)

a(+)φdual
D n (x) = Adual

D,n φ
dual
D n+1(x), a(−)φdual

D n (x) = Cdual
D,n φ

dual
D n−1(x). (4.29)

Therefore a(+) and a(−) are creation and annihilation operators, respectively. The relations

(4.28) correspond to (4.20)–(4.22).

Remark: The value of function X̌(x) (2.23) at x = −1 is

X̌(−1) =

{
−(d+M − 1)Y (0) : R

−(1− q)(1− dqM−1)Y (0) : qR
. (4.30)

For Y (0) = 0, we have X̌(−1) = 0. By (4.20), this and X̌(0) = 0 give r
(0)
0 = 0, namely

R0(0) = 0. Therefore action of a(±) on φdual
D 0 (x) is not well-defined for this case. Although the

coefficient r
(0)
−1 also vanishes by (4.19), namely R−1(0) = 0, and the limit lim

z→0
R−1(z)R0(z)

−1

exists, it does not coincide with −Bdual
D,0 .

By the similarity transformation, the closure relation (4.15) is rewritten for the similarity

transformed Hamiltonian H̃X dual
D (λ) (4.13),

[
H̃X dual

D , [H̃X dual
D , E ]

]
= E R0(H̃

X dual
D ) + [H̃X dual

D , E ]R1(H̃
X dual
D ) +R−1(H̃

X dual
D ). (4.31)

From the creation and annihilation operators a(±) = a(±)(HX dual
D , E ) (4.27), we obtain the

creation and annihilation operators for polynomial eigenvectors,

ã(±) def
= φdual

D 0 (x)
−1 ◦ a(±)(HX dual

D , E ) ◦ φdual
D 0 (x) = a(±)(H̃X dual

D , E ), (4.32)

ã(+)Q̌D,n(x) = Adual
D,n Q̌D,n+1(x), ã(−)Q̌D,n(x) = Cdual

D,n Q̌D,n−1(x). (4.33)

4.2 No shape invariance

We will show that the rdQM system described by HX dual
D (λ) is not shape invariant.

First let us factorize the Hamiltonian HX dual
D (λ) (4.1). Since it is positive semi-definite,

it can be factorized as

HX dual
D (λ) = AX dual

D (λ)†AX dual
D (λ), (4.34)

where AX dual
D (λ) is an upper triangular matrix (with upper bandwidth L for L ≤ 1

2
N). By

imposing the condition AX dual
D (λ)x,x ≥ 0 (x = 0, 1, . . . , xmax), this upper triangular matrix
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AX dual
D (λ) = (ax,y)0≤x,y≤xmax

is given by

ax,y =





0 (0 ≤ y ≤ x− 1)√
h′x,x (y = x)

h′x,y√
h′x,x

(x+ 1 ≤ y ≤ xmax)

(0 ≤ x ≤ xmax). (4.35)

Here h′x,y are defined by

h′x,y = hx,y −
x−1∑

z=0

h′z,xh
′
z,y√

h′z,z
(0 ≤ x ≤ y ≤ xmax), (4.36)

where hx,y = HX dual
D (λ)x,y and the convention

∑n−1
i=n ∗ = 0 is assumed. Note that the zero

eigenvalue of HX dual
D (λ) implies AX dual

D (λ)xmax,xmax
= 0. So, the last row of AX dual

D (λ) is

zero.

Next we recall the general theory of the shape invariance for finite rdQM systems (xmax =

nmax = N) [38]. The Hamiltonian H(λ) = (H(λ)x,y)0≤x,y≤xmax
is positive semi-definite,

whose eigenvalues are 0 = E0(λ) < E1(λ) < · · · < Enmax
(λ) and corresponding eigenvectors

are φn(x;λ), and factorized as H(λ) = A(λ)†A(λ), where A(λ) is upper triangular and

A(λ)xmax,xmax
= 0. Since the last row of A(λ) is zero, we have

A(λ)A(λ)† =

(
B ~0
t~0 0

)
, A(λ)φn(x;λ) =

(
~b
0

)
.

Let us write these N ×N matrix B and N component vector ~b as

B =
(
A(λ)A(λ)†

)[N×N ]
, ~b =

(
A(λ)φn(x;λ)

)[N ]
. (4.37)

(In our previous studies [38]–[40], we treat tridiagonal Hamiltonians and A is an upper

triangular matrix with upper bandwidth 1. Here this is not assumed.) Shape invariance is

a relation between the system with parameters λ and that with λ′. Usually, appropriate

choice of parameters allow us to express λ′ as shifts of parameters λ′ = λ+ δ, but here we

do not assume this. The number N , which corresponds to the size of the Hamiltonian, is

one element of λ and it changes to N − 1 in λ′. Then the shape invariant condition is

(
A(λ)A(λ)†

)[N×N ]
= κA(λ′)†A(λ′) + E1(λ), (4.38)

where κ is a positive constant and E1(λ) is the abbreviation for E1(λ)1N . The Darboux

transformation is defined by

Hnew(λ)
def
= A(λ′)†A(λ′) = H(λ′), (4.39)
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φnew
n (x;λ)

def
=
(
A(λ)φn+1(x;λ)

)[N ]
(n = 0, 1, . . . , N − 1). (4.40)

The shape invariant condition (4.38) gives

(
A(λ)A(λ)†

)[N×N ]
φnew
n (x;λ) =

(
κA(λ′)†A(λ′) + E1(λ)

)
φnew
n (x;λ)

=

(((
A(λ)A(λ)†

)[N×N ] ~0
t~0 0

)((
A(λ)φn+1(x;λ)

)[N ]

0

))[N ]

=
(
A(λ)A(λ)† · A(λ)φn+1(x;λ)

)[N ]

=
(
A(λ) · A(λ)†A(λ)φn+1(x;λ)

)[N ]

=
(
A(λ) · H(λ)φn+1(x;λ)

)[N ]

=
(
En+1(λ)A(λ)φn+1(x;λ)

)[N ]

= En+1(λ)φ
new
n (x;λ),

namely,

Hnew(λ)φnew
n (x;λ) =

1

κ

(
En+1(λ)− E1(λ)

)
φnew
n (x;λ). (4.41)

From the relation Hnew(λ) = H(λ′), we obtain

En(λ
′) =

1

κ

(
En+1(λ)− E1(λ)

)
(n = 0, 1, . . . , N − 1). (4.42)

This relation implies that the energy eigenvalues En(λ) are determined by the information

of the first excited state energy E1(λ). For example, the energy eigenvalues En(λ) for the

original (q-)Racah systems are given by (2.8), and new set of parameters λ′ is λ + δ. It is

easy to check (4.42) and En(λ) =
n−1∑
s=0

κsE1(λ+ sδ) (n = 0, 1, . . . , N) for these cases.

Now let us consider the shape invariance for the new exactly solvable rdQM HX dual
D (λ).

Assume that this system is shape invariant,

(
AX dual

D (λ)AX dual
D (λ)†

)[N×N ]
= κdualAX dual

D (λ′)†AX dual
D (λ′) + EX dual

D,1 (λ).

Then (4.42) gives

EX dual
D,n (λ′) =

1

κdual
(
EX dual
D,n+1(λ)− EX dual

D,1 (λ)
)

(n = 0, 1, . . . , N − 1),

namely,

X̌(x;λ′) =
1

κdual
(
X̌(x+ 1;λ)− X̌(1;λ)

)
(x = 0, 1, . . . , N − 1).

However, these relations do not hold in general, because the concrete expression of EX dual
D,n (λ) =

X̌(n;λ) is much more complicated than En(λ) (2.8). We will convince this by calculating

small M examples, see § 4.3. Therefore the new exactly solvable rdQM HX dual
D (λ) is not

shape invariant.
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4.3 Examples

To write down the Hamiltonian HX dual
D (λ) (4.1) or similarity transformed one H̃X dual

D (λ)

(4.13), we need explicit form of the coefficients rX,D
n,k (λ) (2.25). We can calculate rX,D

n,k explic-

itly for smallM , dj, deg Y and n, and check various properties of the system for small N : the

Schrödinger equation (4.5) (or (4.12)), commutativity (4.11), the closure relation (4.15) (or

(4.31)), action of the creation/annihilation operators (4.29) (or (4.33)), etc. Monotonically

increasing property of the eigenvalues (4.10) can be also checked for small N by assigning

various numerical values to q, b, c, d satisfying (2.3). However, to find the closed expression

of rX,D
n,k for general n is very difficult. We have obtained such general n expression of rX,D

n,k

for

R : D = {1}, Y = 1; D = {2}, Y = 1; D = {1, 2}, Y = 1; D = {1}, Y (η) = η,

qR : D = {1}, Y = 1; D = {2}, Y = 1,

but their explicit forms are somewhat lengthy. Here we write down rX,D
n,k for D = {1} and

Y = 1 [49]. For other cases, we present X(η) only. From X(η) = X(η;λ) and (2.23), the

energy eigenvalues EX dual
D,n (λ) (4.7) are obtained. Since the overall normalization of X(η) is

not important, we multiply X(η) (2.22) by an appropriate positive factor.

4.3.1 dual multi-indexed Racah systems

We set σ1 = a + b, σ2 = ab, σ′
1 = c+ d and σ′

2 = cd.

Ex.1 D = {1}, Y (η) = 1 (⇒ L = 2, X = Xmin)

X(η) = −2c(d− a+ 1)(d− b+ 1)Iλ+δ[ΞD](η)

= −η
(
(2− σ1 + σ′

1)η − σ1(2c+ d+ 2σ′
2) + 2σ2c+ 2σ′

1 + σ′
2(5 + 2d) + d2

)
, (4.43)

rX,D
n,2 = −

(2− σ1 + σ′
1)(c+ n)(c+ n+ 3)(a+ n, b+ n, d̃+ n)2

(d̃+ 2n)4
,

rX,D
n,−2 = −

(2− σ1 + σ′
1)(d̃− c+ n− 3)(d̃− c+ n)(d̃− a+ n− 1, d̃− b+ n− 1, n− 1)2

(d̃+ 2n− 3)4
,

rX,D
n,1 = −

2(a+ n)(b+ n)(c+ n)(c + n+ 2)(d̃− c+ n)(d̃+ n)

(d̃+ 2n+ 3)(d̃+ 2n− 1)3

×
(
−2(2− σ1 + σ′

1)n(n + d̃+ 1) + 2(1− d̃)(1 + c− σ2) + d(1− d̃2)
)
, (4.44)

rX,D
n,−1 = −

2n(d̃− a+ n)(d̃− b+ n)(c + n)(d̃− c+ n− 2)(d̃− c+ n)

(d̃+ 2n− 3)(d̃+ 2n− 1)3
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×
(
−2(2− σ1 + σ′

1)n(n + d̃− 1) + 2(1 + c− σ2) + 2(σ2 + c− d̃)d̃+ d(1− d̃2)
)
,

rX,D
n,0 = −

2∑

k=1

(
rX,D
n,−k + rX,D

n,k

)
.

Ex.2 D = {2}, Y (η) = 1 (⇒ L = 3, X = Xmin)

X(η) = 3c(1 + c)(d− a+ 1)(d− a+ 2)(d− b+ 1)(d− b+ 2)Iλ+δ[ΞD](η)

= η
(
(σ1 − σ′

1 − 4)(σ1 − σ′
1 − 3)η2

− (σ1 − σ′
1 − 3)

(
3(1 + c)(d− a)(d− b) + 2(5 + 6c)d− 2σ1(2 + 3c) + 4 + 10c

)
η

+ (3c2 + 6c+ 2)d2(d− σ1)
2 + (12 + 40c+ 21c2)d3 (4.45)

+
(
22 + 88c+ 50c2 − σ1(16 + 55c+ 30c2) + σ2(3 + 9c+ 6c2)

)
d2

+
(
12 + 70c+ 46c2 − σ1(16 + 71c+ 45c2) + σ2

1(4 + 15c+ 9c2) + 3σ2(3 + 10c+ 7c2)

− 3σ1σ2(1 + c)(1 + 2c)
)
d+ 3(a− 2)(a− 1)(b− 2)(b− 1)c(c+ 1)

)
.

Ex.3 D = {1, 2}, Y (η) = 1 (⇒ L = 3, X = Xmin)

X(η) = 3c(c+ 1)(d− a+ 1)(d− a + 2)(d− b+ 1)(d− b+ 2)Iλ+2δ[ΞD](η)

= η
(
(σ1 − σ′

1 − 3)(σ1 − σ′
1 − 2)η2

− (σ1 − σ′
1 − 3)

(
3(1 + c)d(d− σ1) + (7 + 9c)d+ 2 + 4c− σ1 − 3c(σ1 − σ2)

)
η

+ (2 + 6c+ 3c2)d2(d− σ1)
2 + (12 + 40c+ 21c2)d3 (4.46)

+
(
22 + 89c+ 50c2 − σ1(14 + 55c+ 30c2) + 3σ2c(3 + 2c)

)
d2

+
(
12 + 76c+ 47c2 − σ1(10 + 73c+ 45c2) + σ2

1(2 + 15c+ 9c2)− 3σ1σ2c(3 + 2c)

+ 3σ2c(10 + 7c)
)
d− 3(σ1 − σ2 − 1)c

(
7 + 5c− σ1(3 + 2c) + σ2(1 + c)

))
.

Ex.4 D = {1}, Y (η) = η (⇒ L = 3)

X(η) = −6c(d− a + 1)(d− b+ 1)Iλ+δ[ΞDY ](η)

= −η
(
2(σ′

1 − σ1 + 2)η2

+
(
3d(1 + c)(d− σ1) + (5 + 9c)d− 2 + 2c+ σ1 + 3c(σ2 − σ1)

)
η (4.47)

+ d
(
d(1 + 3c)(d− σ1) + (1 + 7c)d− 2 + 2c+ σ1 + 3c(σ2 − σ1)

))
.
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4.3.2 dual multi-indexed q-Racah systems

We set σ1 = a + b, σ2 = ab, σ′
1 = c+ d and σ′

2 = cd.

Ex.1 D = {1}, Y (η) = 1 (⇒ L = 2, X = Xmin)

X(η) = −(1 + q)(1− c)(1− a−1dq)(1− b−1dq)Iλ+δ[ΞD](η)

= −η
(
(1− σ−1

2 σ′
2q

2)η + σ−1
2 q2(1 + q − 2cq)d2

− σ−1
2

(
σ1q(1 + q)(1− c) + (1− q)(σ2 + cq2)

)
d+ 2− c(1 + q)

)
, (4.48)

rX,D
n,2 = −

(1 − σ−1
2 σ′

2q
2)(1− cqn)(1− cqn+3)(aqn, bqn, d̃qn; q)2

(d̃q2n; q)4
,

rX,D
n,−2 = −

d2q2(1− σ−1
2 σ′

2q
2)(1− c−1d̃qn−3)(1− c−1d̃qn)(a−1d̃qn−1, b−1d̃qn−1, qn−1; q)2

(d̃q2n−3; q)4
,

rX,D
n,1 = −

(1 + q)(1− aqn)(1− bqn)(1− cqn)(1− cqn+2)(1− c−1d̃qn)(1− d̃qn)

σ2d(1− d̃q2n+3)(d̃q2n−1; q)3

×
(
−
(
σ2σ

′
1 + σ1(1− c)dq − σ′

1dq
2
)
(σ2cq

2n + d)

+ (q + q−1)d
(
σ1σ2c+ σ2(1− c)σ′

1q − σ1σ
′
2q

2
)
qn
)
, (4.49)

rX,D
n,−1 = −

(1 + q)(1− qn)(1− a−1d̃qn)(1− b−1d̃qn)(1− cqn)(1− c−1d̃qn−2)(1− c−1d̃qn)

σ2(1− d̃q2n−3)(d̃q2n−1; q)3

×
(
−
(
σ2σ

′
1 + σ1(1− c)dq − σ′

1dq
2
)
(σ2cq

2n−1 + dq)

+ (q + q−1)d
(
σ1σ2c+ σ2(1− c)σ′

1q − σ1σ
′
2q

2
)
qn
)
,

rX,D
n,0 = −

2∑

k=1

(
rX,D
n,−k + rX,D

n,k

)
.

Ex.2 D = {2}, Y (η) = 1 (⇒ L = 3, X = Xmin)

X(η) = (1 + q + q2)(1− c)(1− cq)(a− dq)(a− dq2)(b− dq)(b− dq2)Iλ+δ[ΞD](η)

= η
(
(σ2 − cdq3)(σ2 − cdq4)η2 + (σ2 − cdq3)

(
(1 + q + q2)(q3d2 − q(1− cq)σ1d− cσ2)

− 3cq5d2 − (1− q)2(σ2 − cq3)d+ 3σ2
)
η

+ (1 + q + q2)
(
q6(1− 2cq)d4 − q3

(
q(1− cq)(1 + q − 2cq)σ1 + (1− q)(σ2 + cq3)

)
d3

+ q
(
q2(1− c)(1− cq)σ2

1 + (1− q)(1− cq)(σ2 + cq3)σ1 + q(1 + q)(1 + c2q2)σ2
)
d2

−
(
q(1− cq)(2− (1 + q)c)σ1 − (1− q)(σ2 + q3c)c

)
σ2d− (2− cq)cσ2

2

)
(4.50)

+ 3q9c2d4 + q4(1− q)
(
(2 + q)σ2 + q2(1 + 2q2)c

)
cd3

− q
(
(1− q)2(σ2

2 + q5c2) + q(1 + q)(1 + 4q2 + q4)cσ2
)
d2
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− σ2(1− q)
(
(2 + q2)σ2 + q3(1 + 2q)c

)
d+ 3σ2

2

)
.

5 Summary and Comments

The case-(1) multi-indexed (M-indexed) (q-)Racah orthogonal polynomials P̌D,n(x) satisfy

the second order difference equations (2.18) [25] and various 1 + 2L (L ≥ M + 1) term

recurrence relations with constant coefficients (2.25) [49]. Corresponding to these properties,

their dual polynomials Q̌D,x(n) (3.1) satisfy the three term recurrence relations (3.7) and

various 2L-th order difference equations (3.14). That is, the dual multi-indexed (q-)Racah

polynomials are ordinary orthogonal polynomials and the Krall-type. Their weight functions

do not contain delta functions (Kronecker deltas).

We construct new exactly solvable rdQM systems, whose eigenvectors are described by the

dual multi-indexed (q-)Racah polynomials. Their Hamiltonians (4.1) are not tridiagonal but

“(1+2L)-diagonal”. These quantum systems satisfy the closure relations (4.15), from which

the creation/annihilation operators (4.29) are obtained, but they are not shape invariant. As

a sufficient condition for exact solvability, we know two conditions: the closure relation and

the shape invariance. Concerning the exactly solvable models we have studied, we observe

that when they satisfy the (generalized) closure relation, they are also shape invariant. The

new exactly solvable rdQM systems (4.1) give counterexamples to this observation.

Finally we list some problems related to the dual multi-indexed (q-)Racah polynomials.

1. The commutativity (4.11) originates from the non-uniqueness of X giving the recur-

rence relations with constant coefficients (2.25). The relations among the recurrence

relations for various X (Y ) are unclear. It is an important problem to clarify them.

2. Orthogonal polynomials of a discrete variable in the Askey-scheme can be obtained as

certain limits of the (q-)Racah polynomials [10]. It is an interesting problem to study

various limits of the (dual) multi-indexed (q-)Racah polynomials. We remark that the

(dual) multi-indexed (q-)Racah polynomials may not reduce to good polynomials in

the same limits used for the (q-)Racah polynomials. For example, the case-(1) multi-

indexed polynomials are not allowed for some reduced polynomials. See [51] for similar

situation in the Krall-type case.

3. For each (exactly solvable) rdQM system, we can construct the (exactly solvable)
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birth and death process [52], which is a stationary Markov chain. The new exactly

solvable systems described by the dual multi-indexed (q-)Racah polynomials provide

new exactly solvable birth and death processes.

4. We may be able to deform the new exactly solvable systems (4.1) by multi-step Dar-

boux transformations with appropriate seed solutions. At least it is possible to take

eigenvectors as seed solutions. However, some formulas in [39] may be modified, be-

cause the Hamiltonians (4.1) are not tridiagonal. It is an interesting problem to study

such deformation and to clarify whether virtual state vectors exist or not. This will

give examples of the combined three directions (i)–(iii) in § 1.

5. The case-(1) multi-indexed polynomials of the Laguerre, Jacobi, Wilson and Askey-

Wilson types satisfy the second order difference equations [21, 23] and various 1 + 2L

term recurrence relations with constant coefficients [45, 47]. But their variable x is

continuous and dual polynomials are not defined naturally. It is a challenging problem

to construct the Krall-type polynomials related to these multi-indexed polynomials.
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A Data for Multi-indexed (q-)Racah Polynomials

For readers’ convenience, we present some data for the multi-indexed (q-)Racah polynomials

[38, 25, 49], which are not presented in the main text.

• (q-)Racah polynomials Pn(η;λ):

P̌n(x;λ)
def
= Pn

(
η(x;λ);λ

)
=






4F3

(−n, n+ d̃, −x, x+ d

a, b, c

∣∣∣ 1
)

: R

4φ3

(q−n, d̃qn, q−x, dqx

a, b, c

∣∣∣ q ; q
)

: qR

(A.1)

=

{
Rn

(
η(x;λ); a− 1, d̃− a, c− 1, d− c

)
: R

Rn

(
η(x;λ) + 1 + d ; aq−1, d̃a−1, cq−1, dc−1|q

)
: qR

,

where η(x;λ) is given by (2.7) and d̃ is given by (2.8). Here Rn

(
x(x+ γ + δ + 1);α, β, γ, δ

)

and Rn(q
−x+γδqx+1;α, β, γ, δ|q) are the Racah and q-Racah polynomials in the conventional
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parametrization [10], respectively. Our parametrization respects the correspondence between

the (q-)Racah and (Askey-)Wilson polynomials, and symmetries in (a, b, c, d) are transparent.

• potential functions:

B(x;λ) =





−
(x+ a)(x+ b)(x+ c)(x+ d)

(2x+ d)(2x+ 1 + d)
: R

−
(1− aqx)(1− bqx)(1− cqx)(1− dqx)

(1− dq2x)(1− dq2x+1)
: qR

,

D(x;λ) =





−
(x+ d− a)(x+ d− b)(x+ d− c)x

(2x− 1 + d)(2x+ d)
: R

−d̃
(1− a−1dqx)(1− b−1dqx)(1− c−1dqx)(1− qx)

(1− dq2x−1)(1− dq2x)
: qR

. (A.2)

• three term recurrence relations: (Pn(η;λ)
def
= 0 (n < 0))

ηPn(η;λ) = An(λ)Pn+1(η;λ) +Bn(λ)Pn(η;λ) + Cn(λ)Pn−1(η;λ). (A.3)

• coefficients of the three term recurrence relations: (A−1(λ)
def
= 0)

Bn(λ) = −An(λ)− Cn(λ),

An(λ) =





(n+ a)(n + b)(n+ c)(n + d̃)

(2n+ d̃)(2n+ 1 + d̃)
: R

(1− aqn)(1− bqn)(1− cqn)(1− d̃qn)

(1− d̃q2n)(1− d̃q2n+1)
: qR

, (A.4)

Cn(λ) =






(n+ d̃− a)(n+ d̃− b)(n+ d̃− c)n

(2n− 1 + d̃)(2n+ d̃)
: R

d
(1− a−1d̃qn)(1− b−1d̃qn)(1− c−1d̃qn)(1− qn)

(1− d̃q2n−1)(1− d̃q2n)
: qR

.

• ground state eigenvector: φ0(x;λ) > 0

φ0(x;λ)
2 =





(a, b, c, d)x
(d− a + 1, d− b+ 1, d− c+ 1, 1)x

2x+ d

d
: R

(a, b, c, d ; q)x

(a−1dq, b−1dq, c−1dq, q ; q)x d̃x
1− dq2x

1− d
: qR

. (A.5)
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• normalization constant: dn(λ) > 0

dn(λ)
2 =






(a, b, c, d̃)n

(d̃− a+ 1, d̃− b+ 1, d̃− c+ 1, 1)n

2n + d̃

d̃

×
(−1)N (d− a + 1, d− b+ 1, d− c+ 1)N

(d̃+ 1)N(d+ 1)2N
: R

(a, b, c, d̃ ; q)n

(a−1d̃q, b−1d̃q, c−1d̃q, q ; q)n dn
1− d̃q2n

1− d̃

×
(−1)N (a−1dq, b−1dq, c−1dq ; q)N d̃

Nq
1

2
N(N+1)

(d̃q ; q)N(dq ; q)2N
: qR

. (A.6)

• auxiliary functions: (convention:
∏

1≤j<k≤M

∗ = 1 for M = 0, 1)

ϕ(x;λ)
def
=
η(x+ 1;λ)− η(x;λ)

η(1;λ)
=





2x+ d+ 1

d+ 1
: R

q−x − dqx+1

1− dq
: qR

, (A.7)

ϕM(x;λ)
def
=

∏

1≤j<k≤M

η(x+ k − 1;λ)− η(x+ j − 1;λ)

η(k − j;λ)
(ϕ0(x) = ϕ1(x) = 1)

=
∏

1≤j<k≤M

ϕ
(
x+ j − 1;λ+ (k − j − 1)δ

)
. (A.8)

• twist operation t and twisted shift δ̃:

t(λ)
def
= (λ4 − λ1 + 1, λ4 − λ2 + 1, λ3, λ4), δ̃

def
= (0, 0, 1, 1). (A.9)

Note that η
(
x; t(λ)

)
= η(x;λ) and η(x;λ+ βδ̃) = η(x;λ+ βδ) (β ∈ R).

• virtual state polynomial ξv(η;λ):

ξ̌v(x;λ)
def
= ξv

(
η(x;λ);λ

) def
= P̌v

(
x; t(λ)

)
= Pv

(
η(x;λ); t(λ)

)
. (A.10)

• potential functions B′(x;λ)
def
= B

(
x; t(λ)

)
, D′(x;λ)

def
= D

(
x; t(λ)

)
:

B′(x;λ) =





−
(x+ d− a + 1)(x+ d− b+ 1)(x+ c)(x+ d)

(2x+ d)(2x+ 1 + d)
: R

−
(1− a−1dqx+1)(1− b−1dqx+1)(1− cqx)(1− dqx)

(1− dq2x)(1− dq2x+1)
: qR

,

D′(x;λ) =






−
(x+ a− 1)(x+ b− 1)(x+ d− c)x

(2x− 1 + d)(2x+ d)
: R

−
cdq

ab

(1− aqx−1)(1− bqx−1)(1− c−1dqx)(1− qx)

(1− dq2x−1)(1− dq2x)
: qR

. (A.11)
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• α(λ) and virtual state energy Ẽv:

α(λ) =

{
1 : R
abd−1q−1 : qR

, Ẽv(λ) =

{
−(c+ v)(d̃− c− v) : R

−(1− cqv)(1− c−1d̃q−v) : qR
. (A.12)

• Casorati determinant (Casoratian) of a set of n functions {fj(x)} :

WC[f1, f2, . . . , fn](x)
def
= det

(
fk(x+ j − 1)

)

1≤j,k≤n
, (A.13)

(for n = 0, we set WC[·](x) = 1).

• rj(xj ;λ,M) (1 ≤ j ≤ M + 1): (xj
def
= x+ j − 1)

rj(xj ;λ,M) =






(x+ a, x+ b)j−1(x+ d− a+ j, x+ d− b+ j)M+1−j

(d− a+ 1, d− b+ 1)M
: R

(aqx, bqx; q)j−1(a
−1dqx+j, b−1dqx+j; q)M+1−j

(abd−1q−1)j−1qMx(a−1dq, b−1dq; q)M
: qR

. (A.14)

• normalization constants CD(λ), CD,n(λ), d̃D,n(λ) > 0 and dD,n(λ) > 0 :

CD(λ) =
1

ϕM(0;λ)

∏

1≤j<k≤M

Ẽdj(λ)− Ẽdk(λ)

α(λ)B′(j − 1;λ)
, (A.15)

CD,n(λ) = (−1)MCD(λ)d̃D,n(λ)
2, (A.16)

d̃D,n(λ)
2 =

ϕM(0;λ)

ϕM+1(0;λ)

M∏

j=1

En(λ)− Ẽdj (λ)

α(λ)B′(j − 1;λ)
, (A.17)

dD,n(λ) = dn(λ)d̃D,n(λ). (A.18)

• denominator polynomial ΞD(η;λ) and multi-indexed (q-)Racah polynomials PD,n(η;λ):

Ξ̌D(x;λ)
def
= ΞD

(
η(x;λ+ (M − 1)δ);λ

)

def
= CD(λ)

−1ϕM(x;λ)−1 det
(
ξ̌dk(xj ;λ)

)
1≤j,k≤M

, (A.19)

P̌D,n(x;λ)
def
= PD,n

(
η(x;λ+Mδ);λ

)

def
= CD,n(λ)

−1ϕM+1(x;λ)
−1

×

∣∣∣∣∣∣∣∣∣

ξ̌d1(x1;λ) · · · ξ̌dM (x1;λ) r1(x1)P̌n(x1;λ)

ξ̌d1(x2;λ) · · · ξ̌dM (x2;λ) r2(x2)P̌n(x2;λ)
... · · ·

...
...

ξ̌d1(xM+1;λ) · · · ξ̌dM (xM+1;λ) rM+1(xM+1)P̌n(xM+1;λ)

∣∣∣∣∣∣∣∣∣

, (A.20)

where xj
def
= x+ j − 1 and rj(xj) = rj(xj ;λ,M) (1 ≤ j ≤M + 1) are given in (A.14). Other

determinant expressions of P̌D,n(x;λ) can be found in [53].
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• coefficients of the highest degree term:

Pn(η;λ) = cn(λ)η
n + (lower order terms), PD(η;λ) = cPD,n(λ)η

ℓD+n + (lower order terms),

ξv(η;λ) = c̃v(λ)η
v + (lower order terms), ΞD(η;λ) = cΞD(λ)η

ℓD + (lower order terms),

cn(λ) =





(d̃+ n)n
(a, b, c)n

: R

(d̃qn; q)n
(a, b, c; q)n

: qR

, c̃v(λ) =





(c+ d− a− b+ v + 1)v
(d− a+ 1, d− b+ 1, c)v

: R

(a−1b−1cdqv+1; q)v
(a−1dq, b−1dq, c; q)v

: qR
, (A.21)

cΞD(λ) =

M∏

j=1

c̃dj(λ)×





∏M

j=1(d− a + 1, d− b+ 1, c)j−1∏
1≤j<k≤M

(c+ d− a− b+ dj + dk + 1)
: R

∏M

j=1(a
−1dq, b−1dq, c; q)j−1∏

1≤j<k≤M

(1− a−1b−1cdqdj+dk+1)
: qR

, (A.22)

cPD,n(λ) = cΞD(λ)cn(λ)×





M∏

j=1

c+ j − 1

c+ dj + n
: R

M∏

j=1

1− cqj−1

1− cqdj+n
: qR

. (A.23)

• coefficients g
′ (k)
n (λ):

η(x;λ)n+1 − η(x− 1;λ)n+1

η(x;λ)− η(x− 1;λ)
=

n∑

k=0

g′ (k)n (λ)η(x;λ− δ)n−k (n ∈ Z≥0), (A.24)

where g
′ (k)
n (λ) is given by

R : g′ (k)n (λ)
def
=

k∑

r=0

k−r∑

l=0

(
n+ 1

r

)(
n− r − l

n− k

)
(−1)r+l

(d
2

)2r(d− 1

2

)2(k−r−l)

g
′ (l)W
n−r , (A.25)

qR : g′ (k)n (λ)
def
=

k∑

r=0

k−r∑

l=0

(
n+ 1

r

)(
n− r − l

n− k

)
(−1)r

(
2d

1

2

)l
q

1

2
(n−r−l)

(
1 + d

)r(
1 + dq−1

)k−r−l

× g
′ (l)AW
n−r , (A.26)

Here g
′ (k)W
n and g

′ (k)AW
n are [45]

g′ (k)Wn

def
=

(−1)k

22k+1

(
2n + 2

2k + 1

)
,

g′ (k)AWn

def
= θ(k : even)

(n+ 1)!

2k

k
2∑

r=0

(
n− k + r

r

)
(−1)rq−

1

2
(n−k+2r)

(k
2
− r)! (n− k

2
+ 1 + r)!

1− qn−k+1+2r

1− q
,

26



and θ(P ) is a step function for a proposition P , θ(P ) = 1 (P : true), 0 (P : false).

• map Iλ : {polynomial} → {polynomial}:

p(η) =

n∑

k=0

akη
k 7→ Iλ[p](η)

def
=

n+1∑

k=0

bkη
k, (A.27)

where bk’s are defined by

bk+1 =
1

g
′ (0)
k (λ)

(
ak −

n∑

j=k+1

g
′ (j−k)
j (λ)bj+1

)
(k = n, n− 1, . . . , 1, 0), b0 = 0. (A.28)
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