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Abstract

We present new exactly solvable systems of the discrete quantum mechanics with
pure imaginary shifts, whose physical range of the coordinate is the whole real line.
These systems are shape invariant and their eigenfunctions are described by the multi-
indexed continuous Hahn and Meixner-Pollaczek orthogonal polynomials. The set of
degrees of these multi-indexed polynomials are {ℓD, ℓD +1, ℓD +2, . . .}, where ℓD is an
even positive integer (D : a multi-index set), but they form a complete set of orthogonal
basis in the weighted Hilbert space.

1 Introduction

Exactly solvable quantum mechanical systems in one dimension are closely related to the

orthogonal polynomials. In ordinary quantum mechanics (oQM), whose Schrödinger equa-

tion is the second order differential equation, the Hermite, Laguerre and Jacobi polynomials

appear in the harmonica oscillator, the radial oscillator and the Darboux–Pöschl–Teller po-

tential, respectively. In discrete quantum mechanics (dQM) [1, 2, 3], whose Schrödinger

equation is the second order difference equation, the Askey-Wilson, q-Racah polynomials

etc. appear. Orthogonal polynomials satisfying second order differential or difference equa-

tions are severely restricted by the Bochner’s theorem and its generalizations, and they are

summarized as the Askey scheme of the (basic) hypergeometric orthogonal polynomials [4, 5].

We have two types of dQM: dQM with pure imaginary shifts (idQM) and dQM with real

shifts (rdQM). The coordinate of idQM is continuous and that of rdQM is discrete.
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Recent developments in the theory of orthogonal polynomials and exactly solvable quan-

tum mechanical systems are based on the discovery of new types of orthogonal polynomials:

exceptional and multi-indexed polynomials {PD,n(η)|n ∈ Z≥0} [6]–[20]. These polynomials

satisfy second order differential or difference equations and form a complete set of orthog-

onal basis in an appropriate Hilbert space in spite of missing degrees. We distinguish the

following two cases; the set of missing degrees I = Z≥0\{degPD,n(η)|n ∈ Z≥0} is case-(1):

I = {0, 1, . . . , ℓ − 1}, or case-(2): I 6= {0, 1, . . . , ℓ − 1}, where ℓ is a positive integer. The

situation of case-(1) is called stable in [11]. Our approach to orthogonal polynomials is based

on the quantum mechanical formulation. We deform exactly solvable quantum mechanical

systems by multi-step Darboux transformations and obtain multi-indexed polynomials as

eigenfunctions of the deformed systems. In the quantum mechanical formulation, the multi-

indexed orthogonal polynomials appear as polynomials in the sinusoidal coordinate η(x)

[21, 22], PD,n(η(x)), where x is the coordinate of the quantum system.

The range of the coordinate x of oQM is a finite interval (0, 1
2
π) for the Darboux–Pöschl–

Teller potential (Jacobi polynomial), the half real line (0,∞) for the radial oscillator (La-

guerre polynomial) and the whole real line (−∞,∞) for the harmonic oscillator (Hermite

polynomial). The counterparts of idQM to the Jacobi, Laguerre and Hermite polynomials

of oQM are Askey-Wilson, Wilson and continuous Hahn polynomials, respectively. Their

physical range of the coordinate x is a finite interval (0, π), the half real line (0,∞) and

the whole real line (−∞,∞), respectively [5]. The situation of the multi-indexed polynomi-

als for oQM and idQM constructed so far is given in Table 1. The case-(2) multi-indexed

polynomials are obtained by taking the eigenfunctions as seed solutions of the Darboux

transformations, and some eigenvalues are deleted from the original spectrum [23]–[27]. The

Darboux transformations with the pseudo virtual state wavefunctions as seed solutions also

give the case-(2) multi-indexed polynomials, and some eigenvalues are added to the original

spectrum [28]–[31]. The case-(1) multi-indexed polynomials are obtained by taking virtual

state wavefunctions as seed solutions of the Darboux transformations, and the deformed

systems are isospectral to the original systems [13, 15]. For rdQM systems, for example, see

[32] for case-(2) and [17, 20] for case-(1).

The purpose of the present paper is to study the case-(1) multi-indexed polynomials of

idQM systems on the whole real line, namely, the case-(1) multi-indexed polynomials of

the continuous Hahn and Meixner-Pollaczek types, which have not been studied except for
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(physical) (typical) multi-indexed polynomial

range of x orthogonal polynomial case-(1) case-(2)

(0, 1
2
π) Jacobi © ©

oQM (0,∞) Laguerre © ©
(−∞,∞) Hermite × ©
(0, π) Askey-Wilson © ©

idQM (0,∞) Wilson © ©
(−∞,∞) continuous Hahn ? ©

©: possible and constructed, ×: impossible, ?: not yet studied

Table 1: multi-indexed polynomials in oQM and idQM

the 1-indexed Meixner-Pollaczek polynomial with special parameter [3]. The case-(1) multi-

indexed polynomials are obtained by the Darboux transformations with the virtual state

wavefunctions as seed solutions. For oQM on the whole real line, there is no virtual state

in the harmonic oscillator and it is impossible to construct the case-(1) multi-indexed Her-

mite polynomials. For the (Askey-)Wilson cases studied in [15], not only the final deformed

Hamiltonian but also the intermediate deformed Hamiltonians are hermitian. For the contin-

uous Hahn and Meixner-Pollaczek cases, however, the intermediate deformed Hamiltonians

may be singular. This difference comes from the simple fact that an odd degree polynomial

with real coefficients has at least one zero on the whole real line. We ignore the hermiticity

of the intermediate deformed Hamiltonians and require the hermiticity of the final deformed

Hamiltonian only.

This paper is organized as follows. In section 2 the discrete quantum mechanics with pure

imaginary shifts is recapitulated and the data of the continuous Hahn system is presented.

In section 3 we deform the continuous Hahn idQM system and obtain new exactly solvable

idQM systems and the case-(1) multi-indexed continuous Hahn polynomials. In section 4 we

present the case-(1) multi-indexed Meixner-Pollaczek polynomials and new exactly solvable

idQM systems. Section 5 is for a summary and comments. In Appendices A and B, some

properties of the multi-indexed continuous Hahn and Meixner-Pollaczek polynomials are

presented, respectively.
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2 Original Continuous Hahn System

After recapitulating the discrete quantum mechanics with pure imaginary shifts, we present

the data of the continuous Hahn system.

2.1 Discrete quantum mechanics with pure imaginary shifts

Let us recapitulate the discrete quantum mechanics with pure imaginary shifts (idQM) [2, 3].

The dynamical variables of idQM are the real coordinate x (x1 ≤ x ≤ x2) and the

conjugate momentum p = −i∂x, which are governed by the following factorized positive

semi-definite Hamiltonian:

H def
=

√
V (x) eγp

√
V ∗(x) +

√
V ∗(x) e−γp

√
V (x)− V (x)− V ∗(x) = A†A, (2.1)

A def
= i

(
e

γ
2
p
√
V ∗(x)− e−

γ
2
p
√
V (x)

)
, A† def

= −i
(√

V (x) e
γ
2
p −

√
V ∗(x) e−

γ
2
p
)
. (2.2)

Here the potential function V (x) is an analytic function of x and γ is a real constant. The ∗-
operation on an analytic function f(x) =

∑
n anx

n (an ∈ C) is defined by f ∗(x) =
∑

n a
∗
nx

n,

in which a∗n is the complex conjugation of an. Since the momentum operator appears in

exponentiated forms, the Schrödinger equation

Hφn(x) = Enφn(x) (n = 0, 1, 2, . . .), (2.3)

is an analytic difference equation with pure imaginary shifts instead of a differential equation.

Throughout this paper we consider those systems which have a square-integrable groundstate

together with an infinite number of discrete energy levels: 0 = E0 < E1 < E2 < · · · . The

orthogonality relation reads

(φn, φm)
def
=

∫ x2

x1

dx φ∗
n(x)φm(x) = hnδnm (n,m = 0, 1, 2, . . .), 0 < hn <∞. (2.4)

The eigenfunctions φn(x) can be chosen ‘real’, φ∗
n(x) = φn(x), and the groundstate wave-

function φ0(x) is determined as the zero mode of the operator A, Aφ0(x) = 0. The norm of

a function f(x) is ||f || def
= (f, f)

1
2 .

The Hamiltonian H should be hermitian. From its form H = A†A, it is formally her-

mitian, H† = (A†A)† = (A)†(A†)† = A†A = H. However, the true hermiticity is defined

in terms of the inner product, (f1,Hf2) = (Hf1, f2) [2, 22, 15]. To show the hermiticity of
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H, singularities of some functions in the rectangular domain Dγ are important. Here Dγ is

defined by [15]

Dγ
def
=

{
x ∈ C

∣∣ x1 ≤ Rex ≤ x2, |Imx| ≤ 1
2
|γ|

}
. (2.5)

In the following, we assume that the eigenfunctions φn(x) (2.3) have the following form:

φn(x) = φ0(x)P̌n(x), P̌n(x)
def
= Pn

(
η(x)

)
(n = 0, 1, 2, . . .), (2.6)

where η(x) is a sinusoidal coordinate [21, 22] and Pn(η) is a orthogonal polynomial of degree

n in η. As a polynomial Pn(η), we consider the Askey-Wilson, Wilson, continuous Hahn

polynomials etc., which are members of the Askey-scheme of hypergeometric orthogonal

polynomials [5]. We call the idQM system by the name of the orthogonal polynomial:

Askey-Wilson system, Wilson system, continuous Hahn system etc. These idQM systems

have the property of shape invariance, which is a sufficient condition for exact solvability.

Concrete idQM systems have a set of parameters λ = (λ1, λ2, . . .). Various quantities depend

on them and their dependence is expressed like, f = f(λ), f(x) = f(x;λ). (We sometimes

omit writing λ-dependence, when it does not cause confusion.)

The shape invariant condition is the following [2, 22, 3]:

A(λ)A(λ)† = κA(λ+ δ)†A(λ+ δ) + E1(λ), (2.7)

where κ is a real positive constant and δ is the shift of the parameters. This condition

combined with the Crum’s theorem allows the wavefunction φn(x) and energy eigenvalue En
of the excited states to be expressed in terms of the ground state wavefunction φ0(x) and

the first excited state energy eigenvalue E1 with shifted parameters. As a consequence of the

shape invariance, we have

A(λ)φn(x;λ) = fn(λ)φn−1(x;λ+ δ), A(λ)†φn−1(x;λ+ δ) = bn−1(λ)φn(x;λ), (2.8)

where fn(λ) and bn−1(λ) are some constants satisfying fn(λ)bn−1(λ) = En(λ). These rela-

tions can be rewritten as

F(λ)P̌n(x;λ) = fn(λ)P̌n−1(x;λ + δ), B(λ)P̌n−1(x;λ+ δ) = bn−1(λ)P̌n(x;λ). (2.9)

Here the forward and backward shift operators F(λ) and B(λ) are defined by

F(λ)
def
= φ0(x;λ+ δ)−1 ◦ A(λ) ◦ φ0(x;λ) = iϕ(x)−1(e

γ

2
p − e−

γ

2
p), (2.10)
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B(λ) def
= φ0(x;λ)

−1 ◦ A(λ)† ◦ φ0(x;λ+ δ) = −i
(
V (x;λ)e

γ

2
p − V ∗(x;λ)e−

γ

2
p
)
ϕ(x), (2.11)

where ϕ(x) is an auxiliary function (ϕ(x) ∝ η(x− iγ
2
)− η(x+ iγ

2
)). The difference operator

H̃(λ) acting on the polynomial eigenfunctions is square root free:

H̃(λ)
def
= φ0(x;λ)

−1 ◦ H(λ) ◦ φ0(x;λ) = B(λ)F(λ)

= V (x;λ)(eγp − 1) + V ∗(x;λ)(e−γp − 1), (2.12)

H̃(λ)P̌n(x;λ) = En(λ)P̌n(x;λ). (2.13)

2.2 Continuous Hahn system

Let us consider the continuous Hahn system. The lower bound x1, upper bound x2 and the

parameter γ are

x1 = −∞, x2 = ∞, γ = 1. (2.14)

Namely, the physical range of the coordinate x is a whole real line. A set of parameters λ is

λ = (a1, a2), ai ∈ C, Re ai > 0. (2.15)

Here are the fundamental data [2]:

V (x;λ) = (a1 + ix)(a2 + ix)
(
⇒ V ∗(x;λ) = (a∗1 − ix)(a∗2 − ix)

)
, (2.16)

η(x) = x, ϕ(x) = 1, En(λ) = n(n+ b1 − 1), b1
def
= a1 + a2 + a∗1 + a∗2, (2.17)

φn(x;λ) = φ0(x;λ)P̌n(x;λ), (2.18)

φ0(x;λ) =
√

Γ(a1 + ix)Γ(a2 + ix)Γ(a∗1 − ix)Γ(a∗2 − ix), (2.19)

P̌n(x;λ) = Pn

(
η(x);λ

)
= pn

(
η(x); a1, a2, a

∗
1, a

∗
2

)
(2.20)

= in
(a1 + a∗1, a1 + a∗2)n

n!
3F2

(−n, n+ b1 − 1, a1 + ix

a1 + a∗1, a1 + a∗2

∣∣∣ 1
)

(2.21)

= cn(λ)η(x)
n + (lower order terms), cn(λ) =

(n+ b1 − 1)n
n!

, (2.22)

hn(λ) = 2π

∏2
j,k=1 Γ(n + aj + a∗k)

n! (2n+ b1 − 1)Γ(n+ b1 − 1)
, (2.23)

δ = (1
2
, 1
2
), κ = 1, fn(λ) = n+ b1 − 1, bn−1(λ) = n. (2.24)

(Although the notation b1 conflicts with bn−1(λ), we think this does not cause any confusion.)

Here pn(η; a1, a2, a3, a4) in (2.20) is the continuous Hahn polynomial of degree n in η [5], and

the symbol (a)n is the shifted factorial. Note that φ∗
0(x;λ) = φ0(x;λ) and P̌ ∗

n(x;λ) =

P̌n(x;λ). It is not necessary to distinguish P̌n and Pn since η(x) = x, but we will use both

notations to compare with other cases in [15].

6



3 New Exactly Solvable idQM Systems andMulti-indexed

Continuous Hahn Polynomials

In this section we deform the continuous Hahn system by applying the multi-step Darboux

transformations with the virtual state wavefunctions as seed solutions. The eigenfunctions

of the deformed systems are described by the case-(1) multi-indexed continuous Hahn poly-

nomials.

3.1 Virtual state wavefunctions

Let us introduce two types of twist operations t and constants δ̃ :

type I : t
I(λ)

def
= (1− a∗1, a2), δ̃

I def
= (−1

2
, 1
2
),

type II : t
II(λ)

def
= (a1, 1− a∗2), δ̃

II def
= (1

2
,−1

2
). (3.1)

Each twist operation is an involution t
2 = id, and satisfies t(λ + βδ) = t(λ) + βδ̃ (β ∈ R).

Their composition t
III(λ)

def
= (tI ◦ tII)(λ) = (1− a∗1, 1− a∗2) was used to construct the pseudo

virtual state wavefunctions [31]. For each of tI and t
II, the potential function V (x;λ) satisfies

V (x;λ)V ∗(x− iγ;λ) = α(λ)2V
(
x; t(λ)

)
V ∗

(
x− iγ; t(λ)

)
,

V (x;λ) + V ∗(x;λ) = α(λ)
(
V
(
x; t(λ)

)
+ V ∗

(
x; t(λ)

))
− α′(λ), (3.2)

where α(λ) and α′(λ) are

{
αI(λ) = 1

αII(λ) = 1
,

{
α′ I(λ) = −(a1 + a∗1 − 1)(a2 + a∗2)

α′ II(λ) = −(a2 + a∗2 − 1)(a1 + a∗1)
. (3.3)

In the following, we assume Re ai >
1
2
(i = 1, 2), which gives α′(λ) < 0. The relations (3.2)

imply a linear relation between two Hamiltonians [15]:

H(λ) = α(λ)H
(
t(λ)

)
+ α′(λ). (3.4)

Therefore φn(x; t(λ)) satisfies the Schrödinger equation H(λ)φn(x; t(λ)) = Ẽn(λ)φn(x; t(λ))

with Ẽn(λ) = α(λ)En(t(λ)) + α′(λ). Two types of virtual state wavefunctions φ̃v(x;λ)

(v ∈ V ⊂ Z≥0) are defined by

type I : φ̃I
v(x;λ)

def
= φv

(
x; tI(λ)

)
= φ̃I

0(x;λ)ξ̌
I
v(x;λ), φ̃I

0(x;λ)
def
= φ0

(
x; tI(λ)

)
,

ξ̌Iv(x;λ)
def
= ξIv

(
η(x);λ

) def
= P̌v

(
x; tI(λ)

)
= Pv

(
η(x); tI(λ)

)
(v ∈ V I), (3.5)
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type II φ̃II
v (x;λ)

def
= φv

(
x; tII(λ)

)
= φ̃II

0 (x;λ)ξ̌
II
v (x;λ), φ̃II

0 (x;λ)
def
= φ0

(
x; tII(λ)

)
,

ξ̌IIv (x;λ)
def
= ξIIv

(
η(x);λ

) def
= P̌v

(
x; tII(λ)

)
= Pv

(
η(x); tII(λ)

)
(v ∈ V II). (3.6)

The virtual state polynomials ξv(η;λ) are polynomials of degree v in η. They are chosen

‘real,’ φ̃∗
0(x;λ) = φ̃0(x;λ), ξ̌

∗
v(x;λ) = ξ̌v(x;λ) and the virtual energies Ẽv(λ) are

{
Ẽ I
v(λ) = −(a1 + a∗1 − v− 1)(a2 + a∗2 + v)

Ẽ II
v (λ) = −(a2 + a∗2 − v− 1)(a1 + a∗1 + v)

. (3.7)

Note that α′(λ) = Ẽ0(λ) < 0 and

Ẽ I
v(λ) < 0 ⇔ a1 + a∗1 > v + 1, Ẽ II

v (λ) < 0 ⇔ a2 + a∗2 > v + 1, (3.8)

for v ≥ 0. We choose V I and V II as

V I =
{
0, 1, 2, . . . , [a1 + a∗1 − 1]′

}
, V II =

{
0, 1, 2, . . . , [a2 + a∗2 − 1]′

}
, (3.9)

where [x]′ denotes the greatest integer not equal or exceeding x. Although we have included

0 in V, the Darboux transformations with the label 0 virtual state do not give essentially

new systems, see the end of § 3.3.

3.2 New exactly solvable systems

By applying multi-step Darboux transformations to the continuous Hahn system in § 2.2, we
can deform it and obtain new exactly solvable idQM systems. The virtual state wavefunctions

in § 3.1 are used as seed solutions, and new systems are isospectral to the original one.

The deformed systems are labeled by D = {d1, . . . , dM} = {dI1, . . . , dIMI
, dII1 , . . . , d

II
MII

}
(M =MI+MII, d

I
j ∈ V I : mutually distinct, dIIj ∈ V II : mutually distinct), which are the de-

grees and types of the virtual state wavefunctions used in M-step Darboux transformations.

The Hamiltonian is deformed as H → Hd1 → Hd1d2 → · · · → Hd1...ds → · · · → Hd1...dM = HD

by M-step Darboux transformations. Exactly speaking, D is an ordered set. Various quan-

tities of the deformed systems are denoted as HD, φD n, AD, etc. The general formula is as

follows [15]:

HDφD n(x) = EnφD n(x) (n = 0, 1, 2, . . .), (3.10)

HD = A†
DAD, (3.11)

AD = i
(
e

γ
2
p

√
V ∗
D(x)− e−

γ
2
p
√
VD(x)

)
, A†

D = −i
(√

VD(x) e
γ
2
p −

√
V ∗
D(x) e

− γ
2
p
)
, (3.12)
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VD(x) =
√
V (x− iM

2
γ)V ∗(x− iM+2

2
γ)

× Wγ[φ̃d1 , . . . , φ̃dM ](x+ iγ
2
)

Wγ[φ̃d1 , . . . , φ̃dM ](x− iγ
2
)

Wγ[φ̃d1 , . . . , φ̃dM , φ0](x− iγ)

Wγ[φ̃d1 , . . . , φ̃dM , φ0](x)
, (3.13)

φD n(x) = Wγ [φ̃d1, . . . , φ̃dM , φn](x)

×




√∏M−1
j=0 V (x+ i(M

2
− j)γ)V ∗(x− i(M

2
− j)γ)

Wγ [φ̃d1 , . . . , φ̃dM ](x− iγ
2
)Wγ[φ̃d1 , . . . , φ̃dM ](x+ iγ

2
)




1
2

, (3.14)

where Wγ[f1, . . . , fn] is the Casorati determinant of a set of n functions {fj(x)},

Wγ [f1, . . . , fn](x)
def
= i

1
2
n(n−1) det

(
fk
(
x
(n)
j

))

1≤j,k≤n
, x

(n)
j

def
= x+ i(n+1

2
− j)γ, (3.15)

(for n = 0, we set Wγ [·](x) = 1). These properties of the Darboux transformation are proved

algebraically, and their analytical properties are not considered. Therefore, the deformed

Hamiltonian HD may be singular. In order to obtain well-defined deformed systems, we

have to check the regularity and hermiticity of HD. It is also necessary to check the square

integrability of φD n(x).

To obtain the concrete forms of VD(x) and φD n(x), we have to evaluate the Casoratians.

Let us define the following functions:

νI(x;λ)
def
=
φ0(x;λ)

φ̃I
0(x;λ)

, rIj(x
(M)
j ;λ,M)

def
=

νI(x
(M)
j ;λ)

νI
(
x;λ+ (M − 1)δ̃

I) (j = 1, 2, . . . ,M),

νII(x;λ)
def
=

φ0(x;λ)

φ̃II
0 (x;λ)

, rIIj (x
(M)
j ;λ,M)

def
=

νII(x
(M)
j ;λ)

νII
(
x;λ+ (M − 1)δ̃

II) (j = 1, 2, . . . ,M), (3.16)

whose explicit forms are

rIj(x
(M)
j ;λ,M) = (−1)j−1i1−M (a1 − M−1

2
+ ix)j−1(a

∗
1 − M−1

2
− ix)M−j ,

rIIj (x
(M)
j ;λ,M) = (−1)j−1i1−M (a2 − M−1

2
+ ix)j−1(a

∗
2 − M−1

2
− ix)M−j . (3.17)

Furthermore, let us define Ξ̌D(x;λ) and P̌D,n(x;λ) as follows:

i
1
2
M(M−1)

∣∣∣ ~X
(M)

dI1
· · · ~X

(M)

dI
MI

~Y
(M)

dII1
· · · ~Y

(M)

dII
MII

∣∣∣ = ϕM(x)Ξ̌D(x;λ)×A, (3.18)

i
1
2
M(M+1)

∣∣∣ ~X
(M+1)

dI1
· · · ~X

(M+1)

dI
MI

~Y
(M+1)

dII1
· · · ~Y

(M+1)

dII
MII

~Z
(M+1)
n

∣∣∣

= ϕM+1(x)P̌D,n(x;λ)× B, (3.19)
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where A and B are

A =

MI−1∏

j=1

(a2 − M−1
2

+ ix, a∗2 − M−1
2

− ix)j ·
MII−1∏

j=1

(a1 − M−1
2

+ ix, a∗1 − M−1
2

− ix)j , (3.20)

B =

MI∏

j=1

(a2 − M
2
+ ix, a∗2 − M

2
− ix)j ·

MII∏

j=1

(a1 − M
2
+ ix, a∗1 − M

2
− ix)j , (3.21)

and ~X
(M)
v , ~Y

(M)
v and ~Z

(M)
v are

(
~X(M)
v

)
j
= rIIj (x

(M)
j ;λ,M)ξ̌Iv(x

(M)
j ;λ), (j = 1, 2, . . . ,M),

(
~Y (M)
v

)
j
= rIj(x

(M)
j ;λ,M)ξ̌IIv (x

(M)
j ;λ),

(
~Z(M)
n

)
j
= rIIj (x

(M)
j ;λ,M)rIj(x

(M)
j ;λ,M)P̌n(x

(M)
j ;λ). (3.22)

The auxiliary function ϕM(x) introduced in [27] is ϕM(x) = 1 in the present case. These

Ξ̌D(x;λ) and P̌D,n(x;λ) are ‘real’, Ξ̌∗
D(x;λ) = Ξ̌D(x;λ) and P̌

∗
D,n(x;λ) = P̌D,n(x;λ). They

are polynomials in the sinusoidal coordinate η(x):

Ξ̌D(x;λ)
def
= ΞD

(
η(x);λ

)
, P̌D,n(x;λ)

def
= PD,n

(
η(x);λ

)
. (3.23)

We call ΞD(η;λ) the denominator polynomial and PD,n(η;λ) the multi-indexed polynomial.

Their degrees are ℓD and ℓD + n, respectively (we assume cΞD(λ) 6= 0 and cPD,n(λ) 6= 0, see

(A.1)–(A.2)). Here ℓD is

ℓD
def
=

M∑

j=1

dj − 1
2
M(M − 1) + 2MIMII. (3.24)

Then, the Casoratians Wγ [φ̃d1 , . . . , φ̃dM ](x) and Wγ [φ̃d1 , . . . , φ̃dM , φn](x) are expressed as

Wγ [φ̃d1 , . . . , φ̃dM ](x;λ)

=
M∏

j=1

φ0

(
x
(M)
j ;λ

)
·Wγ

[ 1
νI
ξ̌I
dI1
, . . . ,

1

νI
ξ̌I
dI
MI

,
1

νII
ξ̌II
dII1
, . . . ,

1

νII
ξ̌II
dII
MII

]
(x;λ)

=

M∏

j=1

φ0

(
x
(M)
j ;λ

)
· νI

(
x;λ+ (M − 1)δ̃

I)−MI
νII

(
x;λ+ (M − 1)δ̃

II)−MII

×
M+1∏

j=1

rIj
(
x
(M)
j ;λ,M

)−1
rIIj

(
x
(M)
j ;λ,M

)−1 × ϕM(x)Ξ̌D(x;λ)A, (3.25)

Wγ [φ̃d1 , . . . , φ̃dM , φn](x;λ)
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=
M+1∏

j=1

φ0

(
x
(M+1)
j ;λ

)
·Wγ

[ 1
νI
ξ̌I
dI1
, . . . ,

1

νI
ξ̌I
dI
MI

,
1

νII
ξ̌II
dII1
, . . . ,

1

νII
ξ̌II
dII
MII

, P̌n

]
(x;λ)

=
M+1∏

j=1

φ0

(
x
(M+1)
j ;λ

)
· νI

(
x;λ+M δ̃

I)−MI
νII

(
x;λ+M δ̃

II)−MII

×
M+1∏

j=1

rIj
(
x
(M+1)
j ;λ,M + 1

)−1
rIIj

(
x
(M+1)
j ;λ,M + 1

)−1 × ϕM+1(x)P̌D,n(x;λ)B, (3.26)

where A and B are given in (3.20) and (3.21) respectively. After some calculation, the

eigenfunction (3.14) is rewritten as

φD n(x;λ) = ψD(x;λ)P̌D,n(x;λ), (3.27)

ψD(x;λ)
def
=

φ0(x;λ
[MI,MII])√

Ξ̌D(x− iγ
2
;λ)Ξ̌D(x+ iγ

2
;λ)

, λ
[MI,MII] def

= λ+MIδ̃
I
+MIIδ̃

II
. (3.28)

The ground state wavefunction φD 0 is annihilated by AD, AD(λ)φD 0(x;λ) = 0. The lowest

degree multi-indexed orthogonal polynomial P̌D,0(x;λ) is proportional to Ξ̌D(x;λ + δ), see

(A.3). The potential function VD(x) (3.13) is expressed neatly in terms of the denominator

polynomial:

VD(x;λ) = V (x;λ[MI,MII])
Ξ̌D(x+ iγ

2
;λ)

Ξ̌D(x− iγ
2
;λ)

Ξ̌D(x− iγ;λ+ δ)

Ξ̌D(x;λ+ δ)
. (3.29)

Since the deformed Hamiltonian HD(λ) is expressed in terms of the potential function

VD(x;λ), HD(λ) is determined by the denominator polynomial Ξ̌D(x;λ), whose normal-

ization is irrelevant. Under the permutation of dj’s, the deformed Hamiltonian HD is invari-

ant, but the denominator polynomial Ξ̌D(x) and the multi-indexed polynomials P̌D,n(x) may

change their signs.

As mentioned before, we have to check the regularity and hermiticity of HD(λ). Let us

consider the function g(x),

g(x)
def
= V (x+ iγ

2
;λ[MI,MII])φ0(x+ iγ

2
;λ[MI,MII])2

= Γ(a1 − 1
2
M ′ + 1

2
+ ix)Γ(a2 +

1
2
M ′ + 1

2
+ ix)

× Γ(a∗1 − 1
2
M ′ + 1

2
− ix)Γ(a∗2 +

1
2
M ′ + 1

2
− ix), (3.30)

where M ′ = MI −MII. Asymptotic behavior of g(x) at x ∼ ±∞ is g(x) ∼ 4π2e∓πIm (a1+a2)

|x|2Re (a1+a2)e−2π|x| (for x ∈ R), where we have used the asymptotic formula of the gamma

function |Γ(x + iy)|2 ∼ 2π|y|2x−1e−π|y| (x, y ∈ R, x: fixed, y ∼ ±∞). The necessary and
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sufficient condition for g(x) to have no poles in the rectangular domain Dγ is Re a1− 1
2
M ′ >

0 and Re a2 +
1
2
M ′ > 0. This condition is automatically satisfied, because (3.9) implies

MI − 1 ≤ maxj{dIj} < 2Re a1 − 1 and MII − 1 ≤ maxj{dIIj } < 2Re a2 − 1, for MI,MII > 0.

(For MI = 0 or MII = 0, it is trivial.) By the same argument as ref.[15] (§ 2.2 and § 3.4),
the deformed Hamiltonian HD(λ) is well-defined and hermitian, if the following condition is

satisfied:

The denominator polynomial Ξ̌D(x;λ) has no zero in Dγ (2.5). (3.31)

This is a sufficient condition for the hermiticity. For the Wilson and Askey-Wilson cases [15],

not only the final M-step Hamiltonian HD but also the intermediate s-step Hamiltonians

Hd1...ds are well-defined and hermitian. In the present case, however, the intermediate s-

step Hamiltonians Hd1...ds may be singular. This situation is similar to the M-step Darboux

transformations with the eigenfunctions as seed solutions [27], in which the intermediate

s-step Hamiltonians may be singular but the final M-step Hamiltonian is well-defined and

hermitian if the Krein-Adler condition is satisfied:
∏M

j=1(n− dj) ≥ 0 (∀n ∈ Z≥0). To satisfy

the condition (3.31), the degree of ΞD(η;λ), ℓD, should be even, because the rectangular

domain Dγ contains the real axis. Although we have no analytical proof that there exists a

range of parameters λ satisfying the condition (3.31), we can verify that there exists such

a range of λ by numerical calculation (for small M and dj). We have observed various

sufficient conditions for the parameter range satisfying (3.31), with MIMII 6= 0 or = 0 and

Im ai 6= 0 or = 0. For example, for MII = 0 case, the following parameter ranges seem to be

sufficient conditions:

· MI = 1, 0 ≤ d1 < 2Re a1 − 1, d1: even, Re a1 − Re a2 <
1
2
(d1 + 1),

· MI = 2, 0 ≤ d1 < d2 < 2Re a1 − 1, d1: even, d2: odd, Re a1 − Re a2 <
1
2
(d1 + 1),

· MI = 2, 0 ≤ d1 < d2 < 2Re a1 − 1, d1: even, d2 = d1 + 1, Re a1 − Re a2 > d2 + 2,

· 0 ≤ d1 < d2 < · · · < dM < 2Re a1 − 1, (−1)dj = (−1)j−1 (1 ≤ j ≤M), Re a1 ≪ Re a2.

In the following we assume that the condition (3.31) is satisfied.

If the deformed systems is well-defined, the general formula gives the orthogonality of

the eigenfunctions [15]:

(φD n, φDm) =

M∏

j=1

(En − Ẽdj) · hnδnm (n,m = 0, 1, 2, . . .). (3.32)

12



Namely, the orthogonality relations of the multi-indexed polynomials P̌D,n(x;λ) are
∫ x2

x1

dxψD(x;λ)
2P̌D,n(x;λ)P̌D,m(x;λ) = hD,n(λ)δnm (n,m = 0, 1, 2, . . .), (3.33)

hD,n(λ) = hn(λ)

MI∏

j=1

(
En(λ)− Ẽ I

dIj
(λ)

)
·
MII∏

j=1

(
En(λ)− Ẽ II

dIIj
(λ)

)
. (3.34)

The multi-indexed orthogonal polynomial PD,n(η;λ) has n zeros in the physical region η ∈ R

(⇔ η(x1) < η < η(x2)), which interlace the n+1 zeros of PD,n+1(η;λ) in the physical region,

and ℓD zeros in the unphysical region η ∈ C\R. These properties and (3.33) can be verified

by numerical calculation.

For the cases of type I only (MI =M , MII = 0, D = {d1, . . . , dM}), the expressions (3.18)
and (3.19) are slightly simplified,

Wγ [ξ̌
I
d1
, . . . , ξ̌IdM ](x;λ) = ϕM(x)Ξ̌D(x;λ), (3.35)

νI(x;λ+M δ̃
I
)−1Wγ[ξ̌

I
d1
, . . . , ξ̌IdM , ν

IP̌n](x;λ) = ϕM+1(x)P̌D,n(x;λ)

= i
1
2
M(M+1)

∣∣∣∣∣∣∣∣∣∣

ξ̌Id1(x
(M+1)
1 ;λ) · · · ξ̌IdM (x

(M+1)
1 ;λ) rI1(x

(M+1)
1 )P̌n(x

(M+1)

1 ;λ)

ξ̌Id1(x
(M+1)
2 ;λ) · · · ξ̌IdM (x

(M+1)
2 ;λ) rI2(x

(M+1)
2 )P̌n(x

(M+1)
2 ;λ)

... · · · ...
...

ξ̌Id1(x
(M+1)
M+1 ;λ) · · · ξ̌IdM (x

(M+1)
M+1 ;λ) rIM+1(x

(M+1)
M+1 )P̌n(x

(M+1)
M+1 ;λ)

∣∣∣∣∣∣∣∣∣∣

, (3.36)

where rIj(x) = rIj(x;λ,M + 1). The cases of type II only (MI = 0, MII =M) are similar.

3.3 Shape invariance

The shape invariance of the original system is inherited by the deformed systems. By the

same argument of [15], the Hamiltonian HD(λ) is shape invariant:

AD(λ)AD(λ)
† = κAD(λ+ δ)†AD(λ+ δ) + E1(λ). (3.37)

As a consequence of the shape invariance, the actions of AD(λ) and AD(λ)
† on the eigen-

functions φD n(x;λ) are

AD(λ)φD n(x;λ) = κ
M
2 fn(λ)φD n−1(x;λ+ δ),

AD(λ)
†φD n−1(x;λ + δ) = κ−

M
2 bn−1(λ)φD n(x;λ). (3.38)

The forward and backward shift operators are defined by

FD(λ)
def
= ψD (x;λ+ δ)−1 ◦ AD(λ) ◦ ψD (x;λ)

13



=
i

ϕ(x)Ξ̌D(x;λ)

(
Ξ̌D(x+ iγ

2
;λ+ δ)e

γ

2
p − Ξ̌D(x− iγ

2
;λ+ δ)e−

γ

2
p
)
, (3.39)

BD(λ)
def
= ψD (x;λ)−1 ◦ AD(λ)

† ◦ ψD (x;λ+ δ)

=
−i

Ξ̌D(x;λ+ δ)

(
V (x;λ[MI,MII])Ξ̌D(x+ iγ

2
;λ)e

γ

2
p

− V ∗(x;λ[MI,MII])Ξ̌D(x− iγ
2
;λ)e−

γ

2
p
)
ϕ(x), (3.40)

and their actions on P̌D,n(x;λ) are

FD(λ)P̌D,n(x;λ) = fn(λ)P̌D,n−1(x;λ+ δ),

BD(λ)P̌D,n−1(x;λ+ δ) = bn−1(λ)P̌D,n(x;λ). (3.41)

The similarity transformed Hamiltonian is square root free:

H̃D(λ)
def
= ψD(x;λ)

−1 ◦ HD(λ) ◦ ψD(x;λ) = BD(λ)FD(λ)

= V (x;λ[MI,MII])
Ξ̌D(x+ iγ

2
;λ)

Ξ̌D(x− iγ
2
;λ)

(
eγp − Ξ̌D(x− iγ;λ+ δ)

Ξ̌D(x;λ+ δ)

)

+ V ∗(x;λ[MI,MII])
Ξ̌D(x− iγ

2
;λ)

Ξ̌D(x+ iγ
2
;λ)

(
e−γp − Ξ̌D(x+ iγ;λ+ δ)

Ξ̌D(x;λ+ δ)

)
, (3.42)

and the multi-indexed orthogonal polynomials P̌D,n(x;λ) are its eigenpolynomials:

H̃D(λ)P̌D,n(x;λ) = En(λ)P̌D,n(x;λ). (3.43)

The properties (A.4)–(A.5) are also the consequences of the shape invariance. By (A.3),

the similar property holds for the denominator polynomial Ξ̌D(x;λ). By the remark below

(3.29), the M-step deformed system labeled by D with 0 is equivalent to the (M − 1)-step

deformed system labeled by D′ with shifted parameters λ+ δ̃.

3.4 Limit from the Wilson system

The continuous Hahn polynomial can be obtained from the Wilson polynomial [5]. The

potential function V (x;λ), the energy eigenvalue En(λ), the sinusoidal coordinate η(x) and

the eigenfunctions φn(x;λ) of the Wilson system are [15]

λ = (a1, a2, a3, a4), Re ai > 0, {a∗1, a∗2, a∗3, a∗4} = {a1, a2, a3, a4} (as a set), b1 =

4∑

j=1

aj ,

V (x;λ) =

∏4
j=1(aj + ix)

2ix(2ix+ 1)
, En(λ) = n(n+ b1 − 1), η(x) = x2, (3.44)
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φn(x;λ) = φ0(x;λ)P̌n(x;λ), φ0(x;λ) =

√∏4
j=1 Γ(aj + ix)Γ(aj − ix)

Γ(2ix)Γ(−2ix)
, (3.45)

P̌n(x;λ) = Pn

(
η(x);λ

)
=Wn

(
η(x); a1, a2, a3, a4

)

= (a1 + a2, a1 + a3, a1 + a4)n · 4F3

(−n, n + b1 − 1, a1 + ix, a1 − ix

a1 + a2, a1 + a3, a1 + a4

∣∣∣ 1
)
, (3.46)

where Wn(η; a1, a2, a3, a4) is the Wilson polynomial of degree n in η [5].

Let us consider the following limit:

xW = x+ t, λ
W = (a1 − it, a∗1 + it, a2 − it, a∗2 + it), t→ ∞. (3.47)

Here the superscript W indicates the quantities of the Wilson system, and x, a1 and a2 are

quantities of the continuous Hahn system. The physical range of xW (0 ≤ xW < ∞) gives

the physical range of x (−∞ < x <∞). The continuous Hahn polynomial is obtained from

the Wilson polynomial [5],

lim
t→∞

1

(−2t)n n!
P̌W
n (xW;λW) = P̌n(x;λ). (3.48)

Note that P̌W
n (xW;λW) is a polynomial in ηW(xW) = (xW)2 and P̌n(x;λ) is a polynomial in

η(x) = x. Other quantities are also obtained:

lim
t→∞

VW(xW;λW) = V (x;λ), lim
t→∞

EW
n (λW) = En(λ),

lim
t→∞

e
π
2
(Im (a1+a2)+2t)

√
2π(2t)b1−1

φW
0 (xW;λW) = φ0(x;λ). (3.49)

The continuous Hahn system is obtained from the Wilson system by the limit (3.47).

Next let us consider the deformed case. We can show that the denominator polynomial

Ξ̌D(x;λ) and the multi-indexed polynomials P̌D,n(x;λ) of the continuous Hahn type are

obtained from those of the Wilson type by the same limit (3.47):

lim
t→∞

(−1)
1
2
M(M−1)

(−2t)ℓD
∏M

j=1 dj !
Ξ̌W
D (xW;λW) = Ξ̌D(x;λ), (3.50)

lim
t→∞

(−1)
1
2
M(M−1)

(−2t)ℓD+nn!
∏M

j=1 dj!
P̌W
D,n(x

W;λW) = P̌D,n(x;λ), (3.51)

where explicit forms of Ξ̌W
D and P̌W

D,n are found in [15]. We remark that the denominator

polynomial Ξ̌D(x;λ) is obtained as (3.50) algebraically, but the condition (3.31) is not in-

herited from that of the Wilson type in general. Therefore the limit (3.47) of the deformed

Wilson systems do not give the deformed continuous Hahn systems in general.
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4 New Exactly Solvable idQM Systems andMulti-indexed

Meixner-Pollaczek Polynomials

In this section we deform the Meixner-Pollaczek system. Since the method is the same as in

§ 3, we present results briefly. The eigenfunctions of the deformed systems are described by

the case-(1) multi-indexed Meixner-Pollaczek polynomials.

4.1 Original Meixner-Pollaczek system

The Meixner-Pollaczek system is the idQM system with (2.14) and a set of parameters λ is

λ = (a, φ), a > 0, 0 < φ < π. (4.1)

The fundamental data are the following [2]:

V (x;λ) = ei(
π
2
−φ)(a+ ix), η(x) = x, ϕ(x) = 1, En(λ) = 2n sinφ, (4.2)

φn(x;λ) = φ0(x;λ)P̌n(x;λ), φ0(x;λ) = e(φ−
π
2
)x
√

Γ(a+ ix)Γ(a− ix), (4.3)

P̌n(x;λ) = Pn

(
η(x);λ

)
= P (a)

n

(
η(x);φ

)
=

(2a)n
n!

einφ2F1

(−n, a+ ix

2a

∣∣∣ 1− e−2iφ
)
, (4.4)

hn(λ) = 2π
Γ(n+ 2a)

n! (2 sinφ)2a
, cn(λ) =

(2 sinφ)n

n!
, (4.5)

δ = (1
2
, 0), κ = 1, fn(λ) = 2 sinφ, bn−1(λ) = n. (4.6)

Here P
(a)
n (η;φ) in (4.4) is the Meixner-Pollaczek polynomial of degree n in η [5].

4.2 Virtual state wavefunctions

Let us introduce a twist operation t,

t(λ)
def
= (1− a, φ), δ̃

def
= (−1

2
, 0), (4.7)

which is an involution t
2 = id and satisfies t(λ + βδ) = t(λ) + βδ̃ (β ∈ R). The potential

function V (x;λ) satisfies (3.2) with

α(λ) = 1, α′(λ) = 2(1− 2a) sinφ. (4.8)

In the following, we assume a > 1
2
, which gives α′(λ) < 0. The virtual state wavefunctions

φ̃v(x;λ) (v ∈ V ⊂ Z≥0) are defined by

φ̃v(x;λ)
def
= φv

(
x; t(λ)

)
= φ̃0(x;λ)ξ̌v(x;λ), φ̃0(x;λ)

def
= φ0

(
x; t(λ)

)
,
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ξ̌v(x;λ)
def
= ξv

(
η(x);λ

) def
= P̌v

(
x; t(λ)

)
= Pv

(
η(x); t(λ)

)
(v ∈ V), (4.9)

which satisfy the Schrödinger equation H(λ)φ̃v(x;λ) = Ẽv(λ)φ̃v(x;λ). The virtual state

polynomial ξv(η;λ) is a polynomial of degree v in η, and the virtual energy Ẽv(λ) is

Ẽv(λ) = 2(v + 1− 2a) sinφ, (4.10)

which is negative for 2a > v + 1. We choose V as

V =
{
0, 1, 2, . . . , [2a− 1]′

}
. (4.11)

4.3 New exactly solvable systems

Isospectral deformations of the Meixner-Pollaczek system are obtained by the multi-step Dar-

boux transformations with the virtual state wavefunctions as seed solutions. The deformed

systems are labeled by D = {d1, . . . , dM} (dj ∈ V : mutually distinct).

Let us define the following functions:

ν(x;λ)
def
=
φ0(x;λ)

φ̃0(x;λ)
, rIj(x

(M)
j ;λ,M)

def
=

ν(x
(M)
j ;λ)

ν
(
x;λ+ (M − 1)δ̃

) (j = 1, 2, . . . ,M), (4.12)

whose explicit form is

rj(x
(M)
j ;λ,M) = (−1)j−1i1−M(a− M−1

2
+ ix)j−1(a− M−1

2
− ix)M−j . (4.13)

The denominator polynomial and the multi-indexed polynomial are defined by (3.23) and

Wγ [ξ̌d1 , . . . , ξ̌dM ](x;λ) = ϕM(x)Ξ̌D(x;λ), (4.14)

ν(x;λ +M δ̃)−1Wγ[ξ̌d1 , . . . , ξ̌dM , νP̌n](x;λ) = ϕM+1(x)P̌D,n(x;λ)

= i
1
2
M(M+1)

∣∣∣∣∣∣∣∣∣∣

ξ̌d1(x
(M+1)
1 ;λ) · · · ξ̌dM (x

(M+1)
1 ;λ) r1(x

(M+1)
1 )P̌n(x

(M+1)

1 ;λ)

ξ̌d1(x
(M+1)
2 ;λ) · · · ξ̌dM (x

(M+1)
2 ;λ) r2(x

(M+1)
2 )P̌n(x

(M+1)
2 ;λ)

... · · · ...
...

ξ̌d1(x
(M+1)
M+1 ;λ) · · · ξ̌dM (x

(M+1)
M+1 ;λ) rM+1(x

(M+1)
M+1 )P̌n(x

(M+1)
M+1 ;λ)

∣∣∣∣∣∣∣∣∣∣

, (4.15)

where rj(x) = rj(x;λ,M +1) and ϕM(x) = 1. Their degrees are ℓD and ℓD +n, respectively

(we assume cΞD(λ) 6= 0 and cPD,n(λ) 6= 0, see (B.1)–(B.2)). Here ℓD is (3.24) with MII = 0.

These Ξ̌D(x;λ) and P̌D,n(x;λ) are ‘real’, Ξ̌∗
D(x;λ) = Ξ̌D(x;λ) and P̌

∗
D,n(x;λ) = P̌D,n(x;λ).

Then, the Casoratians Wγ [φ̃d1 , . . . , φ̃dM ](x) and Wγ [φ̃d1 , . . . , φ̃dM , φn](x) are expressed as

Wγ [φ̃d1 , . . . , φ̃dM ](x;λ) =

M∏

j=1

φ0

(
x
(M)
j ;λ

)
·Wγ

[
ξ̌d1 , . . . , ξ̌dM

]
(x;λ)
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=
M∏

j=1

φ0

(
x
(M)
j ;λ

)
× ϕM(x)Ξ̌D(x;λ), (4.16)

Wγ [φ̃d1 , . . . , φ̃dM , φn](x;λ) =
M+1∏

j=1

φ0

(
x
(M+1)
j ;λ

)
·Wγ

[
ξ̌d1 , . . . , ξ̌dM , νP̌n

]
(x;λ)

=

M+1∏

j=1

φ0

(
x
(M+1)
j ;λ

)
× ν

(
x;λ+M δ̃

)
ϕM+1(x)P̌D,n(x;λ). (4.17)

The eigenfunction φD n(x;λ) (3.14) is rewritten as (3.27) and ψD(x;λ) is

ψD(x;λ)
def
=

φ0(x;λ+M δ̃)√
Ξ̌D(x− iγ

2
;λ)Ξ̌D(x+ iγ

2
;λ)

. (4.18)

The ground state wavefunction φD 0 is annihilated by AD, AD(λ)φD 0(x;λ) = 0. The lowest

degree multi-indexed orthogonal polynomial P̌D,0(x;λ) is proportional to Ξ̌D(x;λ + δ), see

(B.3). The potential function VD(x) (3.13) is expressed as

VD(x;λ) = V (x;λ+M δ̃)
Ξ̌D(x+ iγ

2
;λ)

Ξ̌D(x− iγ
2
;λ)

Ξ̌D(x− iγ;λ+ δ)

Ξ̌D(x;λ+ δ)
. (4.19)

To check the regularity and hermiticity of HD(λ), let us consider the function g(x),

g(x)
def
= V (x+ iγ

2
;λ+M δ̃)φ0(x+ iγ

2
;λ+M δ̃)2

= e2(φ−
π
2
)x Γ(a− 1

2
M + 1

2
+ ix)Γ(a− 1

2
M + 1

2
− ix). (4.20)

Asymptotic behavior of g(x) at x ∼ ±∞ is g(x) ∼ 2π|x|2a−Me2(φ−
π
2
)x−π|x| (for x ∈ R).

The necessary and sufficient condition for g(x) to have no poles in the rectangular domain

Dγ is a − 1
2
M > 0. This condition is automatically satisfied because of (4.11). By the

same argument as § 3.2, the deformed Hamiltonian HD(λ) is well-defined and hermitian, if

the condition (3.31) is satisfied. To satisfy the condition (3.31), the degree of ΞD(η;λ), ℓD,

should be even. Although we have no analytical proof that there exists a range of parameters

λ satisfying the condition (3.31), numerical calculation (for small M and dj) suggests the

following conjecture.

Conjecture 1 Let dj’s be 0 ≤ d1 < d2 < · · · < dM < 2a − 1. Then, the necessary and

sufficient condition for the condition (3.31) is (−1)dj = (−1)j−1 (j = 1, 2, . . . ,M).

In the following we assume that the condition (3.31) is satisfied.
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If the deformed systems is well-defined, the eigenfunctions are orthogonal. Namely, the

orthogonality relations of the multi-indexed polynomials P̌D,n(x;λ) are (3.33) with

hD,n(λ) = hn(λ)

M∏

j=1

(
En(λ)− Ẽdj(λ)

)
. (4.21)

The multi-indexed orthogonal polynomial PD,n(η;λ) has n zeros in the physical region η ∈ R

(⇔ η(x1) < η < η(x2)), which interlace the n+1 zeros of PD,n+1(η;λ) in the physical region,

and ℓD zeros in the unphysical region η ∈ C\R. These properties and (3.33) can be verified

by numerical calculation.

The shape invariance of the original system is inherited by the deformed systems. The

properties (3.37)–(3.43) (with the replacement λ
[MI,MII] → λ + M δ̃) hold. The property

(B.4) implies that the M-step deformed system labeled by D with 0 is equivalent to the

(M − 1)-step deformed system labeled by D′ with shifted parameters λ+ δ̃.

4.4 Limit from the continuous Hahn system

The Meixner-Pollaczek polynomial can be obtained from the continuous Hahn polynomial

[5]. Let us consider the following limit:

xcH = x+
t

tanφ
, λ

cH =
(
a− i

t

tanφ
, t
)
, t→ ∞. (4.22)

Here the superscript cH indicates the quantities of the continuous Hahn system.

Under this limit (4.22), the Meixner-Pollaczek polynomial is obtained from the continuous

Hahn polynomial [5],

lim
t→∞

(sin φ
t

)n

P̌ cH
n (xcH;λcH) = P̌n(x;λ). (4.23)

Other quantities are also obtained:

lim
t→∞

sinφ

t
V cH(xcH;λcH) = V (x;λ), lim

t→∞

sinφ

t
E cH
n (λcH) = En(λ),

lim
t→∞

(sinφ
t

)t− 1
2 e

t
tanφ

(π
2
−φ)+t

√
2π

φcH
0 (xcH;λcH) = φ0(x;λ). (4.24)

The Meixner-Pollaczek system is obtained from the continuous Hahn system by the limit

(4.22).

Next let us consider the deformed case. Under the limit (4.22), the type I twist operation

of the continuous Hahn system t
cH I reduces to the twist operation of the Meixner-Pollaczek
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system t, but type II t
cH II does not have a good limit. Hence we consider the deformed

continuous Hahn systems with MII = 0. We can show that the denominator polynomial

Ξ̌D(x;λ) and the multi-indexed polynomials P̌D,n(x;λ) of the Meixner-Pollaczek type are

obtained from those of the continuous Hahn type (with type I only) by the limit (4.22)

lim
t→∞

(sinφ
t

)∑M
j=1 dj

Ξ̌cH
D (xcH;λcH) = Ξ̌D(x;λ), (4.25)

lim
t→∞

(sin φ
t

)∑M
j=1 dj+n

P̌ cH
D,n(x

cH;λcH) = P̌D,n(x;λ). (4.26)

We conjecture that the condition (3.31) of the Meixner-Pollaczek system is obtained from

that of the continuous Hahn system. If this is true, the deformed Meixner-Pollaczek systems

are obtained from the deformed continuous Hahn systems (with type I only) by the limit

(4.22).

4.5 Limit to the harmonic oscillator

The harmonic oscillator is an ordinary quantum mechanical system and its eigenfunctions

are the following:

H = p2 + x2 − 1, En = 2n, η(x) = x, −∞ < x <∞, (4.27)

φn(x) = φ0(x)P̌n(x), φ0(x) = e−
1
2
x2

, (4.28)

P̌n(x) = Pn

(
η(x)

)
= Hn

(
η(x)

)
= (2x)n · 2F0

(−n
2
, −n−1

2

−
∣∣∣ − 1

x2

)
, (4.29)

where Hn(η) is the Hermite polynomial of degree n in η [5].

Let us consider the following limit of the Meixner-Pollaczek system:

xMP =
√
t x, λ

MP = (t, π
2
), t→ ∞. (4.30)

Under this limit, the Meixner-Pollaczek system reduces to the harmonic oscillator:

lim
t→∞

HMP(λMP) = H, lim
t→∞

EMP
n (λMP) = En, (4.31)

lim
t→∞

et√
2π tt−

1
2

φMP
0 (xMP;λMP) = φ0(x), lim

t→∞

n!

t
n
2

P̌MP
n (xMP;λMP) = P̌n(x). (4.32)

We remark that the Meixner-Pollaczek polynomial P
(a)
n (x;φ) with any φ reduces to the

Hermite polynomial as [5]

lim
t→∞

n!

t
n
2

P (t)
n

(√t x− t cosφ

sinφ
;φ

)
= Hn(x), (4.33)
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but this limit does not lead to a good limit of the quantum system.

Next let us consider the deformed case. There is no virtual state in the harmonic oscillator

[29]. Hence the limit (4.30) of the virtual state wavefunction of the Meixner-Pollaczek system

can not be a virtual state wavefunction. In fact, the limit of φ̃MP
v is

lim
t→∞

tt−
1
2 e−t

√
2π

φ̃MP
0 (xMP;λMP) = e

1
2
x2

, lim
t→∞

v!

t
v
2

ξ̌MP
v (xMP;λMP) = i−vHv(ix). (4.34)

This is the pseudo virtual state wavefunction of the harmonic oscillator φ̃v(x) = i−vφv(ix)

[29]. The deformed harmonic oscillator system, which is obtained by the Darboux transfor-

mations with φ̃v (v ∈ D) as seed solutions, has energy eigenvalues En (n = 0, 1, . . .) and Ẽdj
(j = 1, . . . ,M). The eigenfunctions with En are obtained as the limit of φMP

D n, but those with

Ẽdj can not be obtained from the eigenfunctions of the deformed Meixner-Pollaczek system.

In this sense the limit (4.30) of the deformed Meixner-Pollaczek system is not a good limit.

5 Summary and Comments

The continuous Hahn and Meixner-Pollaczek idQM systems are exactly solvable and their

physical range of the coordinate is the whole real line. We deform them by the multi-

step Darboux transformations with the virtual state wavefunctions as seed solutions, and

obtain new exactly solvable idQM systems and the case-(1) multi-indexed continuous Hahn

and Meixner-Pollaczek polynomials. By this result, the construction of the multi-indexed

polynomials in idQM is essentially completed. The remaining task is to study the properties

of various multi-indexed polynomials and to use them to investigate quantum mechanical

systems.

The deformed quantum system labeled by an index set D may be equivalent to another

labeled by a different index set D′ with shifted parameters, which means that the correspond-

ing two multi-indexed orthogonal polynomials labeled by D and D′ with shifted parameters

are proportional. Such equivalence is studied for the case-(2) multi-indexed polynomials

of Hermite, Laguerre, Jacobi, Wilson and Askey-Wilson types [29, 31] and for the case-(1)

multi-indexed polynomials of Laguerre, Jacobi, Wilson and Askey-Wilson types [33] (see

also [34]). The case-(1) multi-indexed continuous Hahn polynomials obtained in this paper

have equivalence in the same form as the (Askey-)Wilson cases [33], which is derived from

the properties (A.4)–(A.5). The case-(1) multi-indexed Meixner-Pollaczek polynomials also

have similar equivalence derived from the property (B.4).
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The multi-indexed orthogonal polynomials do not satisfy the three term recurrence rela-

tions, which are characterizations of the ordinary orthogonal polynomials [4], because they

are not ordinary orthogonal polynomials. Instead, they satisfy the recurrence relations with

more terms [35]–[43]. The case-(1) multi-indexed continuous Hahn and Meixner-Pollaczek

polynomials satisfy such recurrence relations. The recurrence relations with constant co-

efficients are related to the generalized closure relations [42], which give the creation and

annihilation operators of the deformed quantum systems. We will report these topics else-

where [44].
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A Some Properties of the Multi-indexed Continuous

Hahn Polynomials

We present some properties of the multi-indexed continuous Hahn polynomials.

• coefficients of the highest degree terms:

ΞD(η;λ) = cΞD(λ)η
ℓD + (lower order terms),

cΞD(λ) =

MI∏

j=1

cdIj

(
t
I(λ)

)
·
MII∏

j=1

cdIIj

(
t
II(λ)

)
·

∏

1≤j<k≤MI

(dIk − dIj) ·
∏

1≤j<k≤MII

(dIIk − dIIj )

×
MI∏

j=1

MII∏

k=1

(a1 + a∗1 − dIj − a2 − a∗2 + dIIk ), (A.1)

PD(η;λ) = cPD,n(λ)η
ℓD+n + (lower order terms),

cPD,n(λ) = cΞD(λ)cn(λ)

MI∏

j=1

(−a1 − a∗1 − n + dIj + 1) ·
MII∏

j=1

(−a2 − a∗2 − n + dIIj + 1). (A.2)

• P̌D,0(x;λ) vs Ξ̌D(x;λ):

P̌D,0(x;λ) = A Ξ̌D(x;λ+ δ),

A =

MI∏

j=1

(−a1 − a∗1 + dIj + 1) ·
MII∏

j=1

(−a2 − a∗2 + dIIj + 1). (A.3)
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• dj = 0 case :

P̌D,n(x;λ)
∣∣∣
dI
MI

=0
= A P̌D′,n(x;λ+ δ̃

I
),

D′ = {dI1 − 1, . . . , dIMI−1 − 1, dII1 + 1, . . . , dIIMII
+ 1},

A = (−1)MI(a1 + a∗1 + n− 1)

MI−1∏

j=1

(−a1 − a∗1 + a2 + a∗2 + dIj + 1) ·
MII∏

j=1

(dIIj + 1), (A.4)

P̌D,n(x;λ)
∣∣∣
dII
MII

=0
= B P̌D′,n(x;λ+ δ̃

II
),

D′ = {dI1 + 1, . . . , dIMI
+ 1, dII1 − 1, . . . , dIIMII−1 − 1},

B = (−1)M(a2 + a∗2 + n− 1)

MII−1∏

j=1

(−a2 − a∗2 + a1 + a∗1 + dIIj + 1) ·
MI∏

j=1

(dIj + 1). (A.5)

B Some Properties of the Multi-indexedMeixner-Pollaczek

Polynomials

We present some properties of the multi-indexed Meixner-Pollaczek polynomials.

• coefficients of the highest degree terms:

ΞD(η;λ) = cΞD(λ)η
ℓD + (lower order terms),

cΞD(λ) =
M∏

j=1

cdj
(
t(λ)

)
·

∏

1≤j<k≤M

(dk − dj), (B.1)

PD(η;λ) = cPD,n(λ)η
ℓD+n + (lower order terms),

cPD,n(λ) = cΞD(λ)cn(λ)

M∏

j=1

(−2a− n+ dj + 1). (B.2)

• P̌D,0(x;λ) vs Ξ̌D(x;λ):

P̌D,0(x;λ) = A Ξ̌D(x;λ+ δ), A =
M∏

j=1

(−2a + dj + 1). (B.3)

• dj = 0 case :

P̌D,n(x;λ)
∣∣∣
dM=0

= A P̌D′,n(x;λ+ δ̃), D′ = {d1 − 1, . . . , dM−1 − 1},

A = (−1)M(2a+ n− 1)(2 sinφ)M−1. (B.4)
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[18] D.Gómez-Ullate, Y.Grandati and R.Milson, “Rational extensions of the quantum har-

monic oscillator and exceptional Hermite polynomials,” J. Phys. A47 (2014) 015203

(27pp), arXiv:1306.5143[math-ph].

[19] A. J.Durán, “Exceptional Meixner and Laguerre orthogonal polynomials,” J. Approx.

Theory 184 (2014) 176-208, arXiv:1310.4658[math.CA].

[20] S.Odake and R. Sasaki, “Multi-indexed Meixner and Little q-Jacobi (Laguerre) Poly-

nomials,” J. Phys. A50 (2017) 165204 (23pp), arXiv:1610.09854[math.CA].

[21] S.Odake and R. Sasaki, “Unified theory of annihilation-creation operators for solvable

(‘discrete’) quantum mechanics,” J. Math. Phys. 47 (2006) 102102 (33pp), arXiv:

quant-ph/0605215.

[22] S.Odake and R. Sasaki, “Unified theory of exactly and quasi-exactly solvable ‘discrete’

quantum mechanics: I. Formalism,” J. Math. Phys 51 (2010) 083502 (24pp), arXiv:

0903.2604[math-ph].

25

http://arxiv.org/abs/0909.3668
http://arxiv.org/abs/1207.5584
http://arxiv.org/abs/1102.0812
http://arxiv.org/abs/1203.5868
http://arxiv.org/abs/1306.5143
http://arxiv.org/abs/1310.4658
http://arxiv.org/abs/1610.09854
http://arxiv.org/abs/quant-ph/0605215


[23] M.M.Crum, “Associated Sturm-Liouville systems,” Quart. J. Math. Oxford Ser. (2) 6

(1955) 121-127, arXiv:physics/9908019.

[24] M.G.Krein, “On continuous analogue of a formula of Christoffel from the theory of

orthogonal polynomials,” (Russian) Doklady Acad. Nauk. CCCP, 113 (1957) 970-973.
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[27] L.Garćıa-Gutiérrez, S.Odake and R. Sasaki, “Modification of Crum’s theorem for ‘dis-

crete’ quantum mechanics,” Prog. Theor. Phys. 124 (2010) 1-26, arXiv:1004.0289

[math-ph].

[28] C.Quesne, “Novel enlarged shape invariance property and exactly solvable rational

extensions of the Rosen-Morse II and Eckart potentials,” SIGMA 8 (2012) 080 (19pp),

arXiv:1208.6165[math-ph].

[29] S.Odake and R. Sasaki, “Krein-Adler transformations for shape-invariant potentials and

pseudo virtual states,” J. Phys. A46 (2013) 245201 (24pp), arXiv:1212.6595[math-

ph].

[30] S.Odake and R. Sasaki, “Extensions of solvable potentials with finitely many discrete

eigenstates,” J. Phys. A46 (2013) 235205 (15pp), arXiv:1301.3980[math-ph].

[31] S.Odake and R. Sasaki, “Casoratian Identities for the Wilson and Askey-Wilson Poly-

nomials,” J. Approx. Theory 193 (2015) 184-209, arXiv:1308.4240[math-ph].

[32] S.Odake and R. Sasaki, “Dual Christoffel transformations,” Prog. Theor. Phys. 126

(2011) 1-34, arXiv:1101.5468[math-ph].

[33] S.Odake, “Equivalences of the Multi-Indexed Orthogonal Polynomials,” J. Math. Phys.

55 (2014) 013502 (17pp), arXiv:1309.2346[math-ph].

[34] K.Takemura, “Multi-indexed Jacobi polynomials and Maya diagrams,” J. Math. Phys.

55 (2014) 113501 (10pp), arXiv:1311.3570[math-ph].

26

http://arxiv.org/abs/physics/9908019
http://arxiv.org/abs/0902.2593
http://arxiv.org/abs/1004.0289
http://arxiv.org/abs/1208.6165
http://arxiv.org/abs/1212.6595
http://arxiv.org/abs/1301.3980
http://arxiv.org/abs/1308.4240
http://arxiv.org/abs/1101.5468
http://arxiv.org/abs/1309.2346
http://arxiv.org/abs/1311.3570


[35] R. Sasaki, S. Tsujimoto and A. Zhedanov, “Exceptional Laguerre and Jacobi polynomi-

als and the corresponding potentials through Darboux-Crum transformations,” J. Phys.

A43 (2010) 315204, arXiv:1004.4711[math-ph].

[36] S.Odake, “Recurrence Relations of the Multi-Indexed Orthogonal Polynomials,” J.

Math. Phys. 54 (2013) 083506 (18pp), arXiv:1303.5820[math-ph].

[37] A. J.Durán, “Higher order recurrence relation for exceptional Charlier, Meixner, Her-

mite and Laguerre orthogonal polynomials,” Integral Transforms Spec. Funct. 26 (2015)

357-376, arXiv:1409.4697[math.CA].

[38] H.Miki and S.Tsujimoto, “A new recurrence formula for generic exceptional orthogonal

polynomials,” J. Math. Phys. 56 (2015) 033502 (13pp), arXiv:1410.0183[math.CA].

[39] S.Odake, “Recurrence Relations of the Multi-Indexed Orthogonal Polynomials : II,” J.

Math. Phys. 56 (2015) 053506 (18pp), arXiv:1410.8236[math-ph].
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