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“Abstract'

We obtain an explicit formula for the two loop vacuun amplitude

! of closed bosonic string in terms of a Siegel modular forw (cusp

" form) of weight ten .

Recognition of the possibility of superstring theoxy as a

» ‘"theory of everything" has resulted in a great deal of actiVities_.

in theoretical particle physics. It could be a finiLe theory Irco"

from. divergences. So it 1s a pressing problem to 1nvestigate
quantum corrections in string amplitudes.t- v ’_ »
One-loop amplitudes are - explicitly calculated using either o

operator formalism {1] or path integral formalism [2] and the_

l finiteness of the ong- loop corrections for heterotic strlng -

amplitudes has been established £33,

The -evaluation of multiloop amplitudes is much more difficult.
Firstly, when we expiess the amplitude as an integral OVer the
moduli space, we do riot know the explicit dependence cf the
integrand on the moduli coordinatesa Seconcly, boundary of
fundamental region is not g0 clear as in the one loop case,

Recently, much progress has ‘been made in our understandinq of
the structure of multiloop amplitcdes° Remarkable work of Belavin7

and Knizhnik 4] has made it clear that the integration meesure_

’i & squared modulus of a holomorphic func*ion on;k(g, the moduli
-space of genus g. Using their reeult, Manin [5] succeeden in
9obtaining multiloop bosonic string vacuum amplltudes usingc

_algebraic geometrical techniquee. His results are very important,

however, physicists would be happier if they have more "explieit"

'formula with which they can calculate the amplitude in pract1ce.~

Is it possible to extract such a concrete object from rather"

: abstract results of algebraic geometry 2

In this paper we obtain the two-loop bosonic string vacuum

'amplitude u51ng the period matrix 1:ij as the moduli ccorﬂi- :




" nate. The period matrix is a good“ coordlnate because modular.

transformations ‘and its automorphic forms are known to be easily

expressed in terms of it.

ACcording to ref.‘[4'] the g-loop vacuum amplitude -~the sum over -

random genus g surfaces -- has the‘"following' form (D=26)

R £ T 4
2'3 =J ;E- 4 A"A‘Ai (det I T) ‘3._‘_\::(5:&"‘ :“333;331 (1)

where y1,y2,;..,y3g 3 are some complex coordinates on the
: Teichmuller space gg ('Lllj) is the period matrix of the
.-Riemann surface whose complex structure is specified by the
'Teichmuller coordinates. F(y) is a nowhere ~-zero- holomorphic
functionon Mg and has second order poles at tne infinity D,of

Mg' where surfaces degenerate.

The period matrix belongs to the Slegel upper half space of

: degree g, @g' the variety of complex symmetric gxgqg matrices

Aw1th positive definite imaginary parts. 'rhe modular group Fg =
Sp(Zg,Z) acts biholomorphically on @9' iie. every symplectic
”matrix M o= (A g) acts as [6,7] L

T - (A‘t +B)(C<t +D) BERED

Let Gg denote the Siegel fundamental domain 6 /r‘g

‘There is a canonical holomorphic map ;' ) - )
Ma—-—»@ B & 3

:The ,Tore_lli .s- theorem _a»ssel_'ts that this map i is injective.

‘ d‘et(ImT ) transforms as
et (TaT) — det (Imt)=

.*'I‘he invariant line elenent -

On the "other hand, t‘he complex dimensions of \M and' »@*g are

" 3g-3 and g(g+1)/2 respectively, and they coincide for g=2, 3. In
. [act, for g=2-it has been ghown. thaL Mz ( the stable . curve
compactification of Mg [8] and @*2,‘ a suitable»'

comp\ac‘tifyicati_on of G) 2 ) are isomorphic ! {91.

i'So', ‘hereafter, we investigete the two-loop {rat:u'um Ialmplitude

: directly on @g, where the good set of the coordinates 'T:il
e (1<j) is available. “Then we. have, instead of (1)

‘Z!l S&Ul Aﬁul\dfnl\dul’\dtnl\d'ru (O‘\Qt Iw\ 't )T-B ‘ F ('T-) ‘ (4

In order to explore the form of F(’[), we need some basic facts '

fro_m symplectic.»geometry. First, _note that under the’ action 62),'

(det(cesmOfF

on g ﬂéte‘?"?ines vthe invari'ant volume element (7]

d\/"’ RE‘; d"tq/\d’ti) ' ‘ o 7
' kc\e;tlm't)%‘ '

For g=2, the _combina'tion

dV = d’ttmd’tu/\d'ﬁzl\d"tnl\d’tzu\d'tz?- .(8-)“';

(det T m’t)3

is the modular 'invariant‘ volume_ elément.

Clearly, in order t'oi:dve’te':m,ine the function £(T) = 1,@(’},‘) we



'need another condition on it. In ref [10], it is proved that

there is no global obstruction for modular jnvariance in multi-_

loop amplifudes. So it is natural to r‘quire that f('t) is a
Siegel modilar form that is explained below. From (4); (5) and
(8) its weight is ten. ' ; ’

Siegel modular forms are natnral generaliiation of elliptic
modular forms to. higher genus case. A ‘modular form of degree g
4’('ﬁ) is defined by the following two conditions. v

{i) For every element M of Sp(Zg,Z),‘#(QT) satisfies a

functional equation of the form ‘
VIM-T)= detlct+ D)k d(T) | (9)
. for some even integer k ;
(ii) it isiholomorphie in @59.
( plus a condition at infinity for g=1 )
i The integer k in'(i)‘is called the weight of the modular form.

{ Remark: The term "degree" is more frequently used in the lite-

rature on modular forms, but it 1is 1dentical with the term

"genus" in this,context.l The best known'eXample of Siegel .

modular form is the Eisenstein series [7]. In general, if T is a

‘point °f€3§: the Eisenstein series of degree g and of weight k
is ‘defined as follows. ‘

A (T)y=12, det(C’C+D) o
‘ CD

The summation extends over all classes of coprime pairs, i.e.

- over all 1nequ1valent bottom rows of elements of Sp(Zg,Z) with

'respect to left multiplications by unimodular integer matrices of

'degree 9.
The set of all siegel modular forms of degree g and weight k

forms a finite dimensional complex vector space, denoted by' quk

-For g=1, it ia well known [11] that the graded ring of the

modular iorms are generated by two Eisenstein series of degree

-one,; E4 and Eg | algebraically independent over C ),

Z qﬂk = .(C[ E4-:-Es] ' | «m

'An analogons result for genus two has been obtained by Igusa

[12]" The Eisenstein series of degree two, "1’4'@6'&&‘10 and '{,[/12 :

are algebraically independent over C and

me,k- t[m,@‘,m,q& T am

. For g Te the vacuum amplitude is expressed in terms of -the

modular form of weight 12, A(‘i’) ‘.?;'l‘(.‘Z Vl (t}) ¢ rl is the

Dedekind eta function ).-There are two linearly independent
modular forms of weight 12, bhut the particular combination

A("C7=(2m)‘2 26 3-3 (E4 -EGZ) appears in the formula. This is
the only cusp form of weight 12, which is characterized by the

conditlon [3((00) 0 . The pointVOQ corresponds to a degene—'

‘rate torus where we see the divergence due to the tachyon pole,’

For g= =2, we saw that the vacuum amplitude should ‘be expressed

by the modular form of weight 10, Now dimcﬂl_‘o =2, and m\o is

spanned by two modular forms, 6246%5 and é¥10° So we must look»

for £19T) among the linear combinations of the these two. modular

’forms.

According to ref [4,13], at the corner of the moduli space

) corresponding to the degeneration ‘of Riemann surface 1llustrated



-
in fig.1 ( pinching a cycle homologous to zero } or in £ig.2 (

pinching a nonzero homology cycle ), we have

FlTa)~t?* (t~o) o (13)

where t is the coordlnate in M transversal to the subvariety
Daof the degenerate surface [4,14]. Intuitively, t can be taken
§ as lt\ =exp(—T)._where T is the length of the cylinder that
connects two tori { fig.1.(c) ) .[4]. F(T) is uniq_cely dete‘rmined
-up to a multiple constant by this behavior at the corner of the
modu11 space when F(‘C) is defined as a function of the moduli
space. '
The pe‘riod matrix ‘C(t) as a function of t has an expansion
(14] for fig.d: 3. 3
AN
v 0

Tt)= ] l t (mt::\x) t O(t ) an

1{_0 2 : (t—ao)

and for fig.2: h '
e | TiHvte mrtan ) o

: ! /t ) . .
Ty= [ FT BT o) as
it T0p aehygr Ol

where C4,C, are some Acon'stants, and "(j"i‘j are constants deter-

mined by Abelian. integralls' on the _Riemann surface(s).in the t-—-) 0

limit. . »

_ We can use (13) and (15) to get the following constraint on £ @

b 5T S)eo
LnA> W S A

This condition on 'f('f(‘,"‘)' is nothing but the definition of 'a-cusp'

form [7'12,]‘ For g=2; t_hex:e -‘exi-sts only oné cusp -form of weight 10,

Ko = - 43867- 94" 5"7“ 53" (T - @,o) on

which is the lowest weight cusp form of genus two. Therefore -

f(’t’) is ’X 10 ‘up to some numerical constant. So our

conclusxon is.

F(’l:) = const X (’X,m (’t))
"Z;_ = _C_OhSt L d\/ de’clm’ﬂ ‘IXAO( )l

-2 (18)
According to ref [15] lxﬂo‘is bounded in @%2' so F(’t) is
nonzero in accordance with [4]. For F(’C) to be holomorphic on
M,Z' %‘IO cannot have zeros on Mz This is not so. obvious in
(17). But - ‘Igusa [16] has also obtained a beautiful formula which
‘expresses %10 as a product of theta constants ’\9[4](0\!{)
The theta function with characteristics (3 ?) ‘for a, %eag is

-defined by the sum

(19}

’\9[1‘,’]@“5 Z em[a(ﬁ«amma);, (ﬂ+6\)('+ )]
- n€z3~-'.~.-, R

where 72 6 9, ’t 6 @g _
L

) We call" characteristics (a,b)é (% 2/2',)zg even or odd depending on

whether 4a‘b is even ‘or odd. Then we have [16]

/X,m('t)-‘ ?H-ﬂ_ ,\9[_—"*1(0 "c) f (20)
. (al\r)é(zllz,r :



' : - L i L . ‘ -
Where (3,b) runs -over ten even charaCteri:tics. It is known that

for genus two, the even theta constants do not vanlsh except when
,j 7: is equivalent te a dlagonal matrlx by i 2 1173 Therefore

B 9610 has no uevos onvbtz. ‘

" Let “us Investigate the behavior'of the integrahd at tﬁe
degeneratlon of Rlemann surface. For the deformation depxcted in

:flg 15 we svbstitute Qf by (14; and take the llmit t"ﬁ 0.-'

. We get

_Therefore the 1ntegrand factorizes into the proddct of two onee
i loop amplltudes together thh the second ordér pole coming from
_.tﬁln tube in between. -* : ‘_

v Slmllarly for the defermation aepicted in fig.2, weeSﬂbstitute
N f‘{j by (15} and take the limit £~ 0. We get ' '

'Xm "t’(i‘) "ew t winé'wwscﬁ-t'zw@i i
X(/&\‘Z ,f&iz{ )1&3 't)wya("‘ )Z

- Cmy (22)
+0 (-é%)
.After some calculation we £ind
dV(de‘tIm"tf‘ull)(.‘Dl |
‘ A dirt diq dzxt 'h ﬂ'}("ﬁo%lt\)—‘}}exp (4%Im Cﬁ
B C(23)

X lq'\f‘ﬂ'(l 4“)”(&— ) ol (B v“‘fv‘)‘\z

~ where ,q=exp(zum:), veexp(2T ia).

’x,m(rtm)ee A("Cu)ﬂ(’tzz)’c‘+ Oét%) gfm

In (23), the behavior at t~o0 is - R S
Tty

which is: exactly the ~ame behavior as eqg. (22) EX (4]. Fdf the

icoefficient of the leading - term, compare it witn that of 1= 1oop

', amplitude with tw0»tachycn insertions. ( see for example 111 )

P\i r~ u’*c cfl ImT) Bexﬂén (1m o/ Im‘ﬂ
X \wﬂ( W‘*(ba fu) v “fu !)F

(25)

From {23) (25}, they cozncide except for the zerc mo&e factor.

For 28ro mode factor, the correspcn&emce between Im C1 and

(Ima?ziImeis easily verified by examining their hehavior
- under (e loop modular transformac*ahs. We consider subgroup'

’»SL(Z z) <: Sp€4 2) generatﬂd by follow;ng two generators 5 To

0 0 -5 | R

5 « o 1 o0 L. "-”kzéﬁ,- =
o 6 0 i

Transformations of rtﬁj ( £~ 0 ) are

s | (27a)

| Qa

I ét  t27m)
4

S0



( we neglect h:.gher order terms in t.)
Note that transformatlons of Q’and a are exactly that &f 1=

-'1oop modular transformatlons and transformatlons of C1 is

s: C, — (i‘ . r: O = (:{ | (26)

: From (28), it can be easily verified that modula'r transforma-

tions of Im C1 are same as- that of (Im a)z/Im’r. As a result,
although the forms of zZero mode factor seem dlfferent, there is
‘no problem in modular invariance. '

In either case, for Fig.1 or fig.2, we get natural results
ftom_ physical 'p'oi'nt of view, i.e. two loop amplitudes teduce to

desired ‘one l‘oop' 'ampli‘tué’es,

We have argu'e"d that- thev integrand of the two—loop vacuum ampli-

tude for closed bosonic strings can be expressed in terms of a .

cusp form of wejght ten, u51ng the elements of the period matrlx
as coordinates on the modull space;. '_ .

v ~Our. arguement does not dlrectly generallze to higher genus
‘cases, because we relled on some special properties of ‘g=2.

-h However,.our results may bear some hints on the explicit calcula—

“tions of the gener-al multiloop ampl:.tudes. '

We thank very much Professor T. Eguch:L for useful discussions

and Professor N, '(urokawa for draw1ng our attention to ‘ref. ‘[12].

We have also benefited from dlscussuons w:.th Mr. K. Miki_and‘ Mr;_'

S, Yahikozawa.

11

11

21

31
i B267(1986)75,

B References'
‘M.Jacob ed., Dual Models (North Holland, A‘mste’rda'm 1974);

'_M B.Green and J.H. Schwarz, Nucl. Phys B198(1982)441,

JiH. Schwartz, Puys Rep 89(1982)223.
J.Polchinskl, “Zomm. Math Phys. 104(1986)37"

H D’ Hoker and D.H. Phong, Phys Rev.Lett. 55(1986)91 2.

D.J Gross, J.A. Harvey, E.Martinec and R. Rohm, ‘Nuel, Phys, »

 S.Yahikozawa, Phys.Lett.i66B(1986)135.

(4]
(5]
(61

Ty

(81

o1

A A Belav1n apd V.G. Knizhnik, Phys Lett. 168B(1986)201.‘

'Yu I. Manin, Phys.Lett.1 723(1986)184.

L.hAlvarez-Gaume, G.Moore and C.Vafa, Theta functions; .

modular inyariance and strings, preprint ’HUTP—BG/AO-? 7.

C.L;Siegei, Topics in complex function theory { Wlley, _

New York 1973).__

P Deligne and D. Mumford, Publ 1HES 36(1959)75,

.uriedan and S. Shenker, EFi preprint 86 18A(1986).
Y.Namikawa, Nagoya Mathg J. 52(1973)197'

F.OOrt and K.Ueno; J.Fac,So.UnVsTokyo 20(1973)377.

{10

'R.Catenacci, : M.Corhalba, M.M‘a;‘tellini and C.Reina,

" Phys.Lett.172B(1986)328;

111

.G.Go‘mez, ~Phys.Lett.1 75B{1986)32. '

J.P.Serre, Cours d'Arithmetique, Presses Univ. de France,

19705

T.M.Apostol, Modulaf functions and Pirichlet Series ln

Rumber theory, GTM 41 U Springer, Heidelberg, 1976 )a__ k

[121 J.Igusa, Amer.J.Math. 84(1962)175.

12



{3} E.Gava, R.Iengo, T.Jayaraman and R.Ramachandran, Phys.Lett. ' Figure captions

.168}3(1_9-86)207. Fig 1.{a), (b) Pinching a homologically trivial cycle.

{14] J.D.Fay, Theta functions on Riemann snrfaces, LNM 352 (c) Deformati"n which 1s conformally eqguiv 11ent ‘to (b).

(Springer, Heidelberg, 1973). Fig 2.(a),(b) Pinching a homologically nontriv.al cycle.

" [15} D.Mumford, Tata Lectures on Theté, vol I and II, {c) Deformation whic;h 15'conformally equlvalent to (.b).mv
' (Birkhauser, 1983); . | o o |
’J.igusa, Theta functi_on‘s {Springer, Heidelberg, 1972). .
[16] J.Igusa, Amer.J.Math. 89(1967)817. =

[17] W.F.Hammond, Amer.J.Math. 87{1965)502.



S o ofig. 1




