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Abstract

Corresponding to a certain Wronskian identity, we present two types of new Caso-

ratian identities. We apply these identities to the Darboux transformations of quan-

tum mechanical systems. The Wronskian identity is applied to the ordinary quantum

mechanics, and the two Casoratian identities are applied to the discrete quantum me-

chanics with pure imaginary and real shifts, respectively.

1 Introduction

The Wronski determinant, Wronskian, is a useful tool for analysis. For example, the linear

independence of n functions can be checked by calculating their Wronskian. The Wronskian

is a determinant of derivatives of functions. Its difference version is the Casorati determinant,

Casoratian. Corresponding to the type of difference operations, there are several types of

Casoratians. The Wronskian and Casoratians appear in the study of quantum mechanical

systems, especially for the deformations by multi-step Darboux transformations.

We have considered three types of quantum mechanical systems: oQM, idQM and rdQM

[1]. Based on them we have studied the new type of orthogonal polynomials, exceptional or

multi-indexed polynomials [2]–[14]. The Schrödinger equation is a second order differential

equation for ordinary quantum mechanics (oQM), and a second order difference equation

for discrete quantum mechanics (dQM). Discrete quantum mechanics with pure imaginary

shifts (idQM) is dQM for the continuous coordinate, and discrete quantum mechanics with

real shifts (rdQM) is dQM for the discrete coordinate. In our study of deformations of these

systems by multi-step Darboux transformations [4, 5, 7, 8, 9, 13, 14], the following Wronskian
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and Casoratian identities (n ≥ 0) have played a very important role (See § 2 for definitions

of Casoratians Wγ and WC):

oQM : W
[

W[f1, f2, . . . , fn, g],W[f1, f2, . . . , fn, h]
]

(x)

= W[f1, f2, . . . , fn](x)W[f1, f2, . . . , fn, g, h](x), (1)

idQM : Wγ

[

Wγ[f1, f2, . . . , fn, g],Wγ[f1, f2, . . . , fn, h]
]

(x)

= Wγ[f1, f2, . . . , fn](x)Wγ [f1, f2, . . . , fn, g, h](x), (2)

rdQM : WC

[

WC[f1, f2, . . . , fn, g],WC[f1, f2, . . . , fn, h]
]

(x)

= WC[f1, f2, . . . , fn](x+ 1)WC[f1, f2, . . . , fn, g, h](x). (3)

There is a nice generalization of the Wronskian identity (1) [15]. It is Theorem1 (10), and

the above identity corresponds to m = 2 case. It is expected that Casoratian identities (2)

and (3) have also similar generalizations. The first purpose of this paper is to find Casoratian

identities corresponding to Theorem1. They are presented as Theorem2 and 3.

The second purpose of this paper is the application of Theorem1–3. We apply them

to the deformation of quantum mechanical systems by multi-step Darboux transformations.

We consider quantum mechanical systems, whose Schrödinger equation is (27). For any

solution φ̃(x) of the Schrödinger equation Hφ̃(x) = Ẽφ̃(x), which may not belong to the

Hilbert space (namely, may not be square integrable), the Hamiltonian can be written as

H = Â†Â + Ẽ , where Â is some operator depending on φ̃ and satisfies Âφ̃(x) = 0 (some

modification is needed for rdQM). The Darboux transformation with the seed solution φ̃

maps the Hamiltonian H to Hnew = ÂÂ†+ Ẽ , and the transformed eigenfunctions φnew
n (x) =

Âφn(x) satisfy Hnewφnew
n (x) = Enφnew

n (x). The operators Â and Â† may have zero modes

(in the Hilbert space). For example, when the eigenfunction φn is taken as a seed solution,

Â has a zero mode, Âφn(x) = 0. Therefore, a Darboux transformation deforms a system

almost isospectrally. The property of the deformed system depends on the employed seed

solution:
seed solution deformed system

virtual state wavefuntion ⇒ isospectral
eigenstate wavefunction ⇒ state deleted

pseudo virtual state wavefunction ⇒ state added .

(Both virtual and pseudo virtual states do not belong to the Hilbert space. For a virtual

state, both Â and Â† have no zero mode. For a pseudo virtual state, Â has no zero mode

but Â† has a zero mode with new energy eigenvalue. See [16] for more explicit conditions
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for (pseudo) virtual state in oQM.) When the eigenfunctions of the original system are

described by the orthogonal polynomial Pn, those of the deformed system are described

by the multi-indexed orthogonal polynomials PD,n, where D is the set of the labels of the

seed solutions. The characteristic feature of the multi-indexed orthogonal polynomials is

the missing of degrees. When the set of missing degrees I = Z≥0\{degPD,n|n ∈ Z≥0} is

I = {0, 1, . . . , ℓ−1} (ℓ : a positive integer), we call PD,n a case-(1) multi-indexed polynomial,

and otherwise we call it a case-(2) polynomial. The situation of case-(1) is called stable in

[17]. When only the virtual state wavefunctions are used as seed solutions, the case-(1) multi-

indexed polynomials are obtained, and in the other combinations, the case-(2) multi-indexed

polynomials are obtained. We consider the multi-step Darboux transformations using both

virtual state wavefunctions labeled by Dv and eigenstate wavefunctions labeled by De as seed

solutions. In this case, no state with new energy eigenvalue is added. We interpret this in

two ways:

(i) : H virtual states and eigenstates of H−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ HDv∪De

(ii) : H virtual states of H−−−−−−−−−−−→ HDv

eigenstates of HDv−−−−−−−−−−−→ HDv∪De

. (4)

The first interpretation (i) is straightforward. The second one (ii) consists of two steps.

After deforming the original Hamiltonian H by the Darboux transformations with only the

virtual state wavefunctions as seed solutions, we deform the deformed Hamiltonian HDv
by

the Darboux transformations with the eigenstate wavefunctions of HDv
as seed solutions.

Corresponding to these two interpretations, the eigenfunctions of the deformed Hamiltonian

HDv∪De
are expressed in two ways, and they should agree. The agreement of these two

expressions is shown by using the Wronskian and Casoratian identities Theorem1–3.

This paper is organized as follows. In section 2 the Wronskian identities are recapitulated

and two types of the Casoratian identities are presented. In section 3, Theorem1, 2 and 3

are applied to quantum mechanical systems, oQM, idQM and rdQM, respectively. Section

4 is for a summary and comments.

2 Wronskian and Casoratian Identities

In this section, after recapitulating the known Wronskian identities, we derive two types of

Casoratian identities. To the best of our knowledge, Theorem2 and 3 are new results.
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2.1 Wronskian identities

In our study of the deformations of oQM systems [4, 7], the Wronskian identity (1) has

been used extensively. This identity (1) has an interesting generalization [15], Theorem1,

whose m = 2 case corresponds to (1). We present the definition of the Wronskian, its basic

properties and Theorem1, which is proved in [15]. We also present its Corollary.

Definition 1 The Wronski determinant of a set of n functions {fk(x)}nk=1, W, is defined

by

W[f1, . . . , fn](x)
def
= det

(dj−1fk(x)

dxj−1

)

1≤j,k≤n
, (5)

(for n = 0, we set W[·](x) = 1).

Lemma 1.1 For functions f(x) and g(x),

d

dx

f(x)

g(x)
=

W[g, f ](x)

g(x)2
. (6)

Lemma 1.2 For functions f1(x), . . . , fn(x) (n ≥ 0),

W[1, f1, . . . , fn](x) = W[f ′
1, . . . , f

′
n](x), (7)

where f ′
k(x)

def
= d

dx
fk(x).

Proposition 1.1 For functions f1(x), . . . , fn(x) and g(x) (n ≥ 0),

W[gf1, . . . , gfn](x) =
(

g(x)
)n

W[f1, . . . , fn](x). (8)

Proposition 1.2 For functions f1(x), . . . , fn(x) and g(x) (n ≥ 0),

W[g, f1, . . . , fn](x) =
(

g(x)
)1−n

W
[

W[g, f1], . . . ,W[g, fn]
]

(x). (9)

Theorem 1 [15] For functions f1(x), . . . , fn(x) and u1(x), . . . , um(x) (n ≥ 0, m ≥ 1),

(

W[f1, . . . , fn](x)
)m−1

W[f1, . . . , fn, u1, . . . , um](x)

= W
[

W[f1, . . . , fn, u1], . . . ,W[f1, . . . , fn, um]
]

(x). (10)

This theorem is proved by induction on n. By applying Proposition 1.1 to Theorem1 (for

later use, n is changed to l), we obtain the following.

Corollary 1 For functions f1(x), . . . , fl(x) and u1(x), . . . , um(x) (l ≥ 0, m ≥ 1),

W[f1, . . . , fl, u1, . . . , um](x)

W[f1, . . . , fl](x)
= W

[

W[f1, . . . , fl, u1]

W[f1, . . . , fl]
, . . . ,

W[f1, . . . , fl, um]

W[f1, . . . , fl]

]

(x). (11)
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2.2 Casoratian identities for idQM

Next let us consider the Casoratian appearing in idQM. In our study of the deformations

of idQM systems [4, 9, 14], the Casoratian identity (2) has been used extensively. Parallel

to the Wronskian in § 2.1, we present the definition of the Casoratian, its basic properties,

Theorem and Corollary. Here we present their proofs. We use the convention
∏n−1

j=n aj = 1.

Definition 2 The Casorati determinant of a set of n functions {fk(x)}nk=1, Wγ, is defined

by

Wγ [f1, . . . , fn](x)
def
= i

1

2
n(n−1) det

(

fk
(

x
(n)
j

)

)

1≤j,k≤n
, x

(n)
j

def
= x+ i(n+1

2
− j)γ, (12)

(for n = 0, we set Wγ [·](x) = 1). Here γ is a nonzero real constant and i is the imaginary

unit.

Lemma 2.1 For functions f(x) and g(x),

f(x− iγ
2
)

g(x− iγ
2
)
− f(x+ iγ

2
)

g(x+ iγ
2
)
=

Wγ [g, f ](x)

ig(x− iγ
2
)g(x+ iγ

2
)
. (13)

Proof: Direct calculation shows this lemma.

Lemma 2.2 For functions f1(x), . . . , fn(x) (n ≥ 0),

Wγ[1, f1, . . . , fn](x) = inWγ[Df1, . . . , Dfn](x), (14)

where Dfk(x)
def
= fk(x− iγ

2
)− fk(x+ iγ

2
).

Proof: By definition, the LHS is written as a determinant. In the determinant, subtract the

j-th row from the (j+1)-th row (j = n, . . . , 2, 1 in turn), and expand the determinant along

the 1-st column. Since x
(n+1)
j+1 = x

(n)
j − iγ

2
and x

(n+1)
j = x

(n)
j + iγ

2
, we obtain the RHS.

Remark: The LHS of (13) is expressed as D f

g
(x).

Proposition 2.1 For functions f1(x), . . . , fn(x) and g(x) (n ≥ 0),

Wγ [gf1, . . . , gfn](x) =
n
∏

j=1

g
(

x
(n)
j

)

·Wγ[f1, . . . , fn](x). (15)

Proof: By definition, the LHS is written as a determinant. In the determinant, for each j-th

row, move the factor g(x
(n)
j ) out of the determinant.
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Proposition 2.2 For functions f1(x), . . . , fn(x) and g(x) (n ≥ 0),

Wγ [g, f1, . . . , fn](x) = g
(

x
(n+1)
1

)

n
∏

j=1

1

g(x
(n+1)
j )

·Wγ

[

Wγ[g, f1], . . . ,Wγ[g, fn]
]

(x). (16)

Remark: The overall factor in the RHS is written as
∏n

j=2 g(x
(n+1)
j )−1 for n ≥ 1.

Proof:

LHS
(i)
=

n+1
∏

j=1

g
(

x
(n+1)
j

)

·Wγ

[

1, f1
g
, · · · , fn

g

]

(x)
(ii)
=

n+1
∏

j=1

g
(

x
(n+1)
j

)

· inWγ

[

D f1
g
, · · · , D fn

g

]

(x)

(iii)
=

n+1
∏

j=1

g
(

x
(n+1)
j

)

· in
n
∏

j=1

1

ig(x
(n)
j − iγ

2
)g(x

(n)
j + iγ

2
)
·Wγ

[

Wγ [g, f1], . . . ,Wγ [g, fn]
]

(x)

(iv)
= RHS,

where we have used (i): Proposition 2.1, (ii): Lemma2.2, (iii): Lemma2.1 (with the remark

below Lemma2.2) and Proposition 2.1, (iv): x
(n)
j − iγ

2
= x

(n+1)
j+1 and x

(n)
j + iγ

2
= x

(n+1)
j .

The following theorem is a new result.

Theorem 2 For functions f1(x), . . . , fn(x) and u1(x), . . . , um(x) (n ≥ 0, m ≥ 1),

m−1
∏

j=1

Wγ[f1, . . . , fn]
(

x
(m−1)
j

)

·Wγ[f1, . . . , fn, u1, . . . , um](x)

= Wγ

[

Wγ[f1, . . . , fn, u1], . . . ,Wγ[f1, . . . , fn, um]
]

(x). (17)

Proof: Let us prove this theorem by induction on n. It is trivial for n = 0. For n > 0, since

it is trivial for f1(x) = 0, we assume f1(x) 6= 0. For n = 1, we have

m−1
∏

j=1

Wγ [f1]
(

x
(m−1)
j

)

·Wγ[f1, u1, . . . , um](x)

(i)
=

m−1
∏

j=1

f1
(

x
(m−1)
j

)

·
m
∏

j=2

1

f1
(

x
(m+1)
j

)
·Wγ

[

Wγ[f1, u1], . . . ,Wγ[f1, um]
]

(x)

(ii)
= Wγ

[

Wγ[f1, u1], . . . ,Wγ[f1, um]
]

(x),

where we have used (i): Proposition 2.2, (ii): x
(m−1)
j = x

(m+1)
j+1 . Hence n = 1 case holds.

Assume that (17) holds till n (n ≥ 1). Then we have

Wγ

[

Wγ [f1, . . . , fn+1, u1], . . . ,Wγ [f1, . . . , fn+1, um]
]

(x)
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(i)
= Wγ

[

gWγ

[

Wγ[f1, f2], . . . ,Wγ[f1, fn+1],Wγ[f1, u1]
]

, . . . ,

gWγ

[

Wγ[f1, f2], . . . ,Wγ[f1, fn+1],Wγ[f1, um]
]

]

(x)
(

g(x)
def
=

n+1
∏

j=2

1

f1
(

x
(n+2)
j

)

)

(ii)
=

m
∏

l=1

g
(

x
(m)
l

)

·Wγ

[

Wγ

[

Wγ[f1, f2], . . . ,Wγ [f1, fn+1],Wγ [f1, u1]
]

, . . . ,

Wγ

[

Wγ[f1, f2], . . . ,Wγ[f1, fn+1],Wγ[f1, um]
]

]

(x)

(iii)
=

m
∏

l=1

g
(

x
(m)
l

)

·
m−1
∏

j=1

Wγ

[

Wγ [f1, f2], . . . ,Wγ [f1, fn+1]
](

x
(m−1)
j

)

×Wγ

[

Wγ[f1, f2], . . . ,Wγ[f1, fn+1],Wγ[f1, u1], . . . ,Wγ [f1, um]
]

(x)

(iv)
=

m
∏

l=1

g
(

x
(m)
l

)

·
m−1
∏

j=1

(

n
∏

l=2

f1
(

x
(m−1)
j + i(n+2

2
− l)γ

)

·Wγ[f1, f2, . . . , fn+1]
](

x
(m−1)
j

)

)

×
n+m
∏

l=2

f1
(

x
(n+m+1)
l

)

·Wγ[f1, f2, . . . , fn+1, u1, . . . , um](x)

(v)
=

m−1
∏

j=1

Wγ[f1, f2, . . . , fn+1]
(

x
(m−1)
j

)

·Wγ[f1, f2, . . . , fn+1, u1, . . . , um](x),

where we have used (i): Proposition 2.2, (ii): Proposition 2.1, (iii): induction assumption,

(iv): Proposition 2.2, (v): calculation of f1 factors. Therefore n + 1 case also holds. This

concludes the induction proof of (17).

The Casoratian identity (2) corresponds to m = 2 case of Theorem2.

We present a corollary of Theorem2 (for later use, n is changed to l).

Corollary 2 For functions f1(x), . . . , fl(x) and u1(x), . . . , um(x) (l ≥ 0, m ≥ 1),

Wγ [f1, . . . , fl, u1, . . . , um](x)
√

Wγ[f1, . . . , fl](x− im
2
γ)Wγ[f1, . . . , fl](x+ im

2
γ)

= Wγ

[

Wγ [f1, . . . , fl, u1]

w
, . . . ,

Wγ [f1, . . . , fl, um]

w

]

(x), (18)

where w(x)
def
=

√

Wγ [f1, . . . , fl](x− iγ
2
)Wγ[f1, . . . , fl](x+ iγ

2
).

Proof:

RHS
(i)
=

m
∏

j=1

1

w(x
(l)
j )

·Wγ

[

Wγ[f1, . . . , fl, u1], . . . ,Wγ[f1, . . . , fl, um]
]

(x)
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(ii)
=

m
∏

j=1

1

w(x
(l)
j )

·
m−1
∏

j=1

Wγ[f1, . . . , fl]
(

x
(m−1)
j

)

·Wγ [f1, . . . , fl, u1, . . . , um](x)

(iii)
= LHS,

where we have used (i): Proposition 2.1, (ii): Theorem2, (iii): direct calculation.

Remark: We regard the square root function
√

in Corollary 2 as a complex function.

The Casoratian Wγ reduces to the Wronskian W in the γ → 0 limit.

Proposition 2.3

lim
γ→0

γ−
1

2
n(n−1)Wγ[f1, . . . , fn](x) = W[f1, . . . , fn](x). (19)

Proof: For a determinant of an n×n matrix, let us define the operation Om (1 ≤ m ≤ n−1)

as follows: Subtract the j-th row from the (j + 1)-th row (j = n − 1, n − 2, . . . , m in

turn). By definition, Wγ [f1, . . . , fn](x) is written as a determinant. Apply the operations Om

(m = 1, 2, . . . , n− 1 in turn) to the determinant. Then the (j, k)-element of the determinant

becomes

j−1
∑

r=0

(−1)r
(

j − 1

r

)

fk
(

x
(n)
j−r

)

=

j−1
∑

r=0

(−1)r
(

j − 1

r

)

fk
(

x+ in−j
2
γ + i(r − j−1

2
)γ
)

(i)
=

j−1
∑

r=0

(−1)r
(

j − 1

r

)

(

j−1
∑

s=0

1

s!

ds

dxs
fk
(

x+ in−j
2
γ
)(

i(r − j−1
2
)γ
)s

+O(γj)
)

=

j−1
∑

s=0

(iγ)s

s!

ds

dxs
fk
(

x+ in−j
2
γ
)

j−1
∑

r=0

(−1)r
(

j − 1

r

)

(

r − j−1
2

)s
+O(γj)

(ii)
= (−iγ)j−1 d

j−1

dxj−1
fk
(

x+ in−j
2
γ
)

+O(γj)

= (−iγ)j−1d
j−1fk(x)

dxj−1
×

(

1 +O(γ)
)

,

where we have used (i): Taylor expansion, (ii): the following sum formula

j−1
∑

r=0

(−1)r
(

j − 1

r

)

(

r − j−1
2

)s
= (−1)j−1(j − 1)! δs,j−1 (0 ≤ s ≤ j − 1).

Thus we have

Wγ [f1, . . . , fn](x) = i
1

2
n(n−1) det

(

(−iγ)j−1d
j−1fk(x)

dxj−1
×

(

1 +O(γ)
)

)

1≤j,k≤n

8



= i
1

2
n(n−1)

n
∏

j=1

(−iγ)j−1 · det
(dj−1fk(x)

dxj−1
×
(

1 +O(γ)
)

)

1≤j,k≤n

= γ
1

2
n(n−1)W[f1, . . . , fn](x)×

(

1 +O(γ)
)

.

By multiplying γ−
1

2
n(n−1) and taking the γ → 0 limit, we obtain (19).

By multiplying appropriate powers of γ and taking the γ → 0 limit, the properties of the

Casoratian Wγ presented in this subsection reduce to those of the Wronskian W in § 2.1.

2.3 Casoratian identities for rdQM

Next let us consider the Casoratian appearing in rdQM. In our study of the deformations

of rdQM systems [5, 8, 13], the Casoratian identity (3) has been used extensively. Parallel

to the Wronskian in § 2.1, we present the definition of the Casoratian, its basic properties,

Theorem and Corollary. Since their proofs are similar to those of § 2.2, we omit them.

Definition 3 The Casorati determinant of a set of n functions {fk(x)}nk=1, WC, is defined

by

WC[f1, . . . , fn](x)
def
= det

(

fk(x+ j − 1)
)

1≤j,k≤n
, (20)

(for n = 0, we set WC[·](x) = 1).

Lemma 3.1 For functions f(x) and g(x),

f(x+ 1)

g(x+ 1)
− f(x)

g(x)
=

WC[g, f ](x)

g(x)g(x+ 1)
. (21)

Lemma 3.2 For functions f1(x), . . . , fn(x) (n ≥ 0),

WC[1, f1, . . . , fn](x) = WC[Df1, . . . , Dfn](x), (22)

where Dfk(x)
def
= fk(x+ 1)− fk(x).

Remark: The LHS of (21) is expressed as D f

g
(x).

Proposition 3.1 For functions f1(x), . . . , fn(x) and g(x) (n ≥ 0),

WC[gf1, . . . , gfn](x) =

n
∏

j=1

g(x+ j − 1) ·WC[f1, . . . , fn](x). (23)

9



Proposition 3.2 For functions f1(x), . . . , fn(x) and g(x) (n ≥ 0),

WC[g, f1, . . . , fn](x) = g(x)
n
∏

j=1

1

g(x+ j − 1)
·WC

[

WC[g, f1], . . . ,WC[g, fn]
]

(x). (24)

Remark: The overall factor in the RHS is written as
∏n

j=2 g(x+ j − 1)−1 for n ≥ 1.

The following theorem is a new result.

Theorem 3 For functions f1(x), . . . , fn(x) and u1(x), . . . , um(x) (n ≥ 0, m ≥ 1),

m−1
∏

j=1

WC[f1, . . . , fn](x+ j) ·WC[f1, . . . , fn, u1, . . . , um](x)

= WC

[

WC[f1, . . . , fn, u1], . . . ,WC[f1, . . . , fn, um]
]

(x). (25)

The Casoratian identity (3) corresponds to m = 2 case of Theorem3.

We present a corollary of Theorem3 (for later use, n is changed to l).

Corollary 3 For functions f1(x), . . . , fl(x) and u1(x), . . . , um(x) (l ≥ 0, m ≥ 1),

WC[f1, . . . , fl, u1, . . . , um](x)
√

WC[f1, . . . , fl](x)WC[f1, . . . , fl](x+m)

= WC

[

WC[f1, . . . , fl, u1]

w
, . . . ,

WC[f1, . . . , fl, um]

w

]

(x), (26)

where w(x)
def
=

√

WC[f1, . . . , fl](x)WC[f1, . . . , fl](x+ 1).

Remark: We regard the square root function
√

in Corollary 3 as a real function. We have

assumed WC[f1, . . . , fl](x) > 0.

3 Application to Quantum Mechanical Systems

In this section we consider the application of Theorem1–3 to the deformation of quantum me-

chanical systems by multi-step Darboux transformations. As quantum mechanical systems,

we consider oQM, idQM and rdQM, to which Theorem1, 2 and 3 are applied respectively.

For simplicity of presentation, we assume that rdQM systems are semi-infinite systems.

We assume that the original system with the Hamiltonian H, which is hermitian and

positive semi-definite, has the eigenfunctions (eigenstate wavefunctions) φn(x),

Hφn(x) = Enφn(x), 0 = E0 < E1 < · · · (n ∈ Z≥0), (27)
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and the virtual state wavefunctions φ̃v(x) [7, 8, 9, 13, 14],

Hφ̃v(x) = Ẽvφ̃v(x), Ẽv < 0. (28)

The virtual state wavefunction has a definite sign for the physical value of x. As seed solutions

of the multi-step Darboux transformations, we take both the virtual state wavefunctions

φ̃v(x) (v ∈ Dv) and the eigenfunctions φn(x) (n ∈ De). Here Dv and De are sets of labels of

the virtual states and the eigenstates respectively, and we set them as

Dv
def
= {v1, . . . , vMv

} (vj ∈ Z≥0), De
def
= {e1, . . . , eMe

} (ej ∈ Z≥0), (29)

where vj ’s are mutually distinct and ej ’s are mutually distinct. If there are two types of the

virtual states, the label includes the type. By combining these, we set

D def
= Dv ∪ De

def
= {d1, . . . , dM}, M

def
= Mv +Me. (30)

(Exactly speaking, the index sets Dv, De and D are ordered sets, but we do not care much

about the order, because the deformed Hamiltonians HDv
, HDe

andHD do not depend on the

order.) We set seed solutions as ψj(x) (j = 1, . . . ,M), namely, ψj(x) = φ̃vk(x) for dj = vk

and ψj(x) = φek(x) for dj = ek. By the multi-step Darboux transformations with the seed

solutions ψj(x) (j ∈ D), the Hamiltonian H is deformed to HD. The Schrödinger equation

of the deformed system is

HDφD n(x) = EnφD n(x) (n ∈ Z≥0\De). (31)

If the Krein-Adler condition [18, 19],

Me
∏

j=1

(m− ej) ≥ 0 ( ∀m ∈ Z≥0), (32)

is satisfied (it is trivial forDe = ∅), the norm of φD n(x) becomes positive definite, (φD n, φDn) >

0 (n ∈ Z≥0\De) [18, 19, 4, 5]. This condition (32) means De = {0, 1, . . . , n0}∪
⋃L
l=1{jl, jl+1}

(n0+1, L, jl ∈ Z≥0, n0+1 < j1, jl+2 ≤ jl+1, n0+1+2L =Me, {0, 1, . . . , n0} = ∅ for n0 = −1

and
⋃L
l=1Al = ∅ for L = 0), or equivalently, De = {0, 1, . . . , n0} ∪ ⋃L′

l=1{kl, kl + 1, . . . , kl +

2rl−1} (n0+1, L′, kl, rl−1 ∈ Z≥0, n0+1 < k1, kl+2rl < kl+1, n0+1+
∑L′

l=1 2rl =Me). For

oQM, it is shown that the deformed Hamiltonian HD with (32) is well-defined and hermitian

(for an appropriate range of the parameters) [18, 19]. For dQM, it is conjectured that the

11



deformed Hamiltonian HD with (32) is well-defined and hermitian (for an appropriate range

of the parameters) [4, 5]. This is strongly supported by the positive definiteness of the norm.

It is also supported by numerical calculation for each system. The eigenfunctions φD n(x)

are expressed in terms of the Wronskian/Casoratian.

Let us reinterpret this deformation as (4). First, by the multi-step Darboux transforma-

tions with the seed solutions φ̃v(x) (v ∈ Dv), the Hamiltonian H is deformed to HDv
. The

Schrödinger equation of this deformed system is

HDv
φDv n(x) = EnφDv n(x) (n ∈ Z≥0). (33)

The eigenfunctions φDv n(x) are expressed in terms of the Wronskian/Casoratian, and the

deformed Hamiltonian HDv
is well-defined and hermitian (for an appropriate range of the

parameters). Second, by the multi-step Darboux transformations with the seed solutions

φDv n(x) (n ∈ De), the Hamiltonian HDv
is deformed to HDvDe

. The Schrödinger equation of

this deformed system is

HDvDe
φDvDe n(x) = EnφDvDe n(x) (n ∈ Z≥0\De). (34)

The eigenfunctions φDvDe n(x) are expressed in terms of the Wronskian/Casoratian. If the

Krein-Adler condition (32) is satisfied, the deformed Hamiltonian HDvDe
is well-defined and

hermitian (for an appropriate range of the parameters). Since two deformed Hamiltonian

HD and HDvDe
should be the same, two eigenfunctions φD n(x) and φDvDe n(x) must be

the same (proportional). We will show this equality φD n(x) = φDvDe n(x) by using the

Wronskian/Casoratian identities Theorem1–3 (Corollary 1–3).

3.1 Application to oQM

First let us consider oQM. The virtual states are studied for the exactly solvable systems

whose eigenfunctions are described by the Laguerre and Jacobi polynomials [7]. The Hamil-

tonian H of oQM has the following form:

H = p2 + U(x), (35)

where x is the coordinate and p is the momentum, p = −i d
dx
. The deformed Hamiltonian

HD (31) is given by

HD = p2 + UD(x), UD(x) = U(x)− 2∂2x log
∣

∣W[ψ1, . . . , ψM ](x)
∣

∣, (36)
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and its eigenfunctions φD n(x) are given by (for example, see § 2 of [4] and Appendix A of

[20])

φD n(x) =
W[ψ1, . . . , ψM , φn](x)

W[ψ1, . . . , ψM ](x)
(n ∈ Z≥0\De). (37)

On the other hand, the eigenfunctions of HDv
(33) are given by [7]

φDv n(x) =
W[φ̃v1 , . . . , φ̃vMv

, φn](x)

W[φ̃v1 , . . . , φ̃vMv
](x)

(n ∈ Z≥0). (38)

So the eigenfunctions of HDvDe
(34) are expressed as

φDvDe n(x) =
W[φDv e1 , . . . , φDv eMe

, φDv n](x)

W[φDv e1, . . . , φDv eMe
](x)

(n ∈ Z≥0\De). (39)

We will show that two expressions (37) and (39) are actually identical by using the Wronskian

identity, Corollary 1.

Corollary 1 with the replacements m→ m+ 1 and um+1 = v becomes

W[f1, . . . , fl, u1, . . . , um, v](x)

W[f1, . . . , fl](x)

= W
[W[f1, . . . , fl, u1]

W[f1, . . . , fl]
, . . . ,

W[f1, . . . , fl, um]

W[f1, . . . , fl]
,
W[f1, . . . , fl, v]

W[f1, . . . , fl]

]

(x).

Dividing this equation by (11), we obtain

W[f1, . . . , fl, u1, . . . , um, v](x)

W[f1, . . . , fl, u1, . . . , um](x)
=

W
[

W[f1,...,fl,u1]
W[f1,...,fl]

, . . . , W[f1,...,fl,um]
W[f1,...,fl]

, W[f1,...,fl,v]
W[f1,...,fl]

]

(x)

W
[

W[f1,...,fl,u1]
W[f1,...,fl]

, . . . , W[f1,...,fl,um]
W[f1,...,fl]

]

(x)
. (40)

This shows the equality φD n(x) = φDvDe n(x) by the following replacements:

l =Mv, m =Me, fj = φ̃vj , uj = φej , v = φn. (41)

3.2 Application to idQM

Next let us consider idQM. The virtual states are studied for the exactly solvable systems

whose eigenfunctions are described by the Wilson and Askey-Wilson [9], Meixner-Pollaczek

and continuous Hahn [14] polynomials. The Hamiltonian H of idQM has the following form:

H =
√

V (x) eγp
√

V ∗(x) +
√

V ∗(x) e−γp
√

V (x)− V (x)− V ∗(x), (42)

where x is the coordinate and p is the momentum, p = −i d
dx
, and γ is a nonzero real

constant. The potential function V (x) is an analytic function of x and the ∗-operation on an
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analytic function f(x) =
∑

n anx
n (an ∈ C) is defined by f ∗(x) =

∑

n a
∗
nx

n, in which a∗n is

the complex conjugation of an. The function
√

is the square root function as a complex

function. The deformed Hamiltonian HD (31) is given by [4, 9, 14]

HD =
√

VD(x) e
γp

√

V ∗
D(x) +

√

V ∗
D(x) e

−γp
√

VD(x)− VD(x)− V ∗
D(x) + Eµ, (43)

VD(x) =
√

V (x− iM
2
γ)V ∗(x− iM+2

2
γ)

(

µ
def
= min{n |n ∈ Z≥0\De}

)

× Wγ[ψ1, . . . , ψM ](x+ iγ
2
)

Wγ [ψ1, . . . , ψM ](x− iγ
2
)

Wγ[ψ1, . . . , ψM , φµ](x− iγ)

Wγ [ψ1, . . . , ψM , φµ](x)
, (44)

and its eigenfunctions φD n(x) are given by

φD n(x) =

(M−1
∏

j=0

V
(

x+ i(M
2
− j)γ

)

V ∗
(

x− i(M
2
− j)γ

)

)
1

4

× Wγ[ψ1, . . . , ψM , φn](x)
√

Wγ [ψ1, . . . , ψM ](x− iγ
2
)Wγ [ψ1, . . . , ψM ](x+ iγ

2
)

(n ∈ Z≥0\De). (45)

On the other hand, the eigenfunctions and the potential function of HDv
(33) are given by

[9, 14]

φDv n(x) =

(Mv−1
∏

j=0

V
(

x+ i(Mv

2
− j)γ

)

V ∗
(

x− i(Mv

2
− j)γ

)

)
1

4

× Wγ[φ̃v1, . . . , φ̃vMv
, φn](x)

√

Wγ[φ̃v1 , . . . , φ̃vMv
](x− iγ

2
)Wγ[φ̃v1 , . . . , φ̃vMv

](x+ iγ
2
)

(n ∈ Z≥0), (46)

VDv
(x) =

√

V
(

x− iMv

2
γ
)

V ∗
(

x− iMv+2
2
γ
)

× Wγ[φ̃v1 , . . . , φ̃vMv
](x+ iγ

2
)

Wγ [φ̃v1, . . . , φ̃vMv
](x− iγ

2
)

Wγ[φ̃v1 , . . . , φ̃vMv
, φ0](x− iγ)

Wγ[φ̃v1 , . . . , φ̃vMv
, φ0](x)

. (47)

So the eigenfunctions of HDvDe
(34) are expressed as

φDvDe n(x) =

(Me−1
∏

j=0

VDv

(

x+ i(Me

2
− j)γ

)

V ∗
Dv

(

x− i(Me

2
− j)γ

)

)
1

4

(n ∈ Z≥0\De)

× Wγ[φDv e1, . . . , φDv eMe
, φDv n](x)

√

Wγ [φDv e1 , . . . , φDv eMe
](x− iγ

2
)Wγ [φDv e1 , . . . , φDv eMe

](x+ iγ
2
)
. (48)

We will show that two expressions (45) and (48) are actually identical by using the Casoratian

identity, Corollary 2.

Corollary 2 is

Wγ[f1, . . . , fl, u1, . . . , um](x)
(

w(x)
def
=

√

Wγ[f1, . . . , fl](x− iγ
2
)Wγ [f1, . . . , fl](x+ iγ

2
)
)
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=
√

Wγ[f1, . . . , fl](x− im
2
γ)Wγ[f1, . . . , fl](x+ im

2
γ)

×Wγ

[Wγ[f1, . . . , fl, u1]

w
, . . . ,

Wγ[f1, . . . , fl, um]

w

]

(x),

and, by the replacements m→ m+ 1 and um+1 = v, it becomes

Wγ[f1, . . . , fl, u1, . . . , um, v](x)

=
√

Wγ[f1, . . . , fl](x− im+1
2
γ)Wγ[f1, . . . , fl](x+ im+1

2
γ)

×Wγ

[Wγ [f1, . . . , fl, u1]

w
, . . . ,

Wγ [f1, . . . , fl, um]

w
,
Wγ[f1, . . . , fl, v]

w

]

(x).

From these two equations, we obtain

Wγ[f1, . . . , fl, u1, . . . , um, v](x)
√

Wγ [f1, . . . , fl, u1, . . . , um](x− iγ
2
)Wγ [f1, . . . , fl, u1, . . . , um](x+ iγ

2
)

=

(

Wγ[f1, . . . , fl](x− im+1
2
γ)Wγ[f1, . . . , fl](x+ im+1

2
γ)

Wγ[f1, . . . , fl](x− im−1
2
γ)Wγ[f1, . . . , fl](x+ im−1

2
γ)

)
1

4

(49)

×
Wγ

[

Wγ [f1,...,fl,u1]

w
, . . . , Wγ [f1,...,fl,um]

w
, Wγ [f1,...,fl,v]

w

]

(x)
√

Wγ

[

Wγ [f1,...,fl,u1]
w

, . . . , Wγ [f1,...,fl,um]
w

]

(x− iγ
2
)Wγ

[

Wγ [f1,...,fl,u1]
w

, . . . , Wγ [f1,...,fl,um]
w

]

(x+ iγ
2
)

.

In the following, we consider the replacements (identification) (41). The eigenfunctions (46)

of HDv
are expressed as

φDv n(x) = G(x)
Wγ[f1, . . . , fl, v](x)

w(x)
, φDv ej(x) = G(x)

Wγ [f1, . . . , fl, uj](x)

w(x)
, (50)

G(x)
def
=

(

l−1
∏

j=0

V
(

x+ i( l
2
− j)γ

)

V ∗
(

x− i( l
2
− j)γ

)

)
1

4

. (51)

By Proposition 2.1, we have

Wγ [φDv e1 , . . . , φDv eMe
, φDv n](x)

√

Wγ[φDv e1, . . . , φDv eMe
](x− iγ

2
)Wγ[φDv e1, . . . , φDv eMe

](x+ iγ
2
)

=
Wγ

[

Wγ [f1,...,fl,u1]
w

, . . . , Wγ [f1,...,fl,um]
w

, Wγ [f1,...,fl,v]
w

]

(x)
√

Wγ

[

Wγ [f1,...,fl,u1]
w

, . . . , Wγ [f1,...,fl,um]
w

]

(x− iγ
2
)Wγ

[

Wγ [f1,...,fl,u1]
w

, . . . , Wγ [f1,...,fl,um]
w

]

(x+ iγ
2
)

×
∏m+1

j=1 G(x
(m+1)
j )

√

∏m

j=1G(x
(m)
j − iγ

2
)G(x

(m)
j + iγ

2
)
, (52)
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and a short calculation shows

∏m+1
j=1 G(x

(m+1)
j )

√

∏m

j=1G(x
(m)
j − iγ

2
)G(x

(m)
j + iγ

2
)
=

( l−1
∏

j=0

V
(

x+ i( l+m
2

− j)γ
)

V ∗
(

x− i( l+m
2

− j)γ
)

(53)

×
l+m−1
∏

j=m

V
(

x+ i( l+m
2

− j)γ
)

V ∗
(

x− i( l+m
2

− j)γ
)

)
1

8

.

For the potential function VDv
(x) (47), a short calculation shows

m−1
∏

j=0

VDv

(

x+ i(m
2
− j)γ

)

V ∗
Dv

(

x− i(m
2
− j)γ

)

=

(m−1
∏

j=0

V
(

x+ i( l+m
2

− j)γ
)

V ∗
(

x− i( l+m
2

− j)γ
)

×
l+m−1
∏

j=l

V
(

x+ i( l+m
2

− j)γ
)

V ∗
(

x− i( l+m
2

− j)γ
)

)
1

2

× Wγ [f1, . . . , fl](x− im+1
2
γ)Wγ [f1, . . . , fl](x+ im+1

2
γ)

Wγ [f1, . . . , fl](x− im−1
2
γ)Wγ [f1, . . . , fl](x+ im−1

2
γ)
. (54)

From (54), (52)–(53) and (49), we obtain

(48) =

(l+m−1
∏

j=0

V
(

x+ i( l+m
2

− j)γ
)

V ∗
(

x− i( l+m
2

− j)γ
)

)
1

4

× Wγ[f1, . . . , fl, u1, . . . , um, v](x)
√

Wγ[f1, . . . , fl, u1, . . . , um](x− iγ
2
)Wγ [f1, . . . , fl, u1, . . . , um](x+ iγ

2
)

(55)

= (45),

namely the equality φD n(x) = φDvDe n(x).

3.3 Application to rdQM

Next let us consider rdQM. The virtual states are studied for the exactly solvable systems

whose eigenfunctions are described by the Racah and q-Racah [8], Meixner and little q-Jacobi

(Laguerre) [13] polynomials. The Hamiltonian of rdQM, H = (Hx,y), is a tri-diagonal real

symmetric (Jacobi) matrix and its rows and columns are indexed by integers x and y, which

take values in {0, 1, . . . , xmax} (finite) or Z≥0 (semi-infinite) or Z (full infinite),

Hx,y = −
√

B(x)D(x+ 1) δx+1,y −
√

B(x− 1)D(x) δx−1,y +
(

B(x) +D(x)
)

δx,y. (56)
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There exist finite and semi-infinite rdQM systems with virtual states [8, 13], but we do

not know full infinite rdQM systems with virtual states. In the following, for simplicity of

presentation, we consider semi-infinite systems only (For finite systems, some modification

is needed). The potential functions B(x) and D(x) are real and positive but vanish at the

boundary: B(x) > 0 (n ∈ Z≥0), D(x) > 0 (n ∈ Z≥1) and D(0) = 0. The function
√

is

the square root function as a real function. We take the normalization of φn(x) (27) and

φ̃v(x) (28) of the original system as φn(0) = φ̃v(0) = 1. For simplicity in notation, we write

the matrix H as follows:

H = −
√

B(x) e∂
√

D(x)−
√

D(x) e−∂
√

B(x) +B(x) +D(x), (57)

where matrices e±∂ are (e±∂)x,y
def
= δx±1,y and the unit matrix 1 = (δx,y) is suppressed. The

notation f(x)Ag(x), where f(x) and g(x) are functions of x and A is a matrix A = (Ax,y),

stands for a matrix whose (x, y)-element is f(x)Ax,yg(y). Note that the matrices e∂ and e−∂

are not inverse to each other: e∂e−∂ = 1 but e−∂e∂ 6= 1. This Hamiltonian can be expressed

in a factorized form:

H = A†A, A def
=

√

B(x)− e∂
√

D(x), A† =
√

B(x)−
√

D(x) e−∂. (58)

The deformed Hamiltonian HD (31) is given by [5, 8, 13]

HD = −
√

BD(x) e
∂
√

DD(x)−
√

DD(x) e
−∂

√

BD(x) +BD(x) +DD(x) + Eµ (59)

= A†
DAD + Eµ,

(

µ
def
= min{n |n ∈ Z≥0\De}

)

,

where the potential functions BD(x) and DD(x) are

BD(x) =
√

B(x+M)D(x+M + 1)
WC[ψ1, . . . , ψM ](x)

WC[ψ1, . . . , ψM ](x+ 1)

WC[ψ1, . . . , ψM , φµ](x+ 1)

WC[ψ1, . . . , ψM , φµ](x)
,

DD(x) =
√

B(x− 1)D(x)
WC[ψ1, . . . , ψM ](x+ 1)

WC[ψ1, . . . , ψM ](x)

WC[ψ1, . . . , ψM , φµ](x− 1)

WC[ψ1, . . . , ψM , φµ](x)
. (60)

Its eigenfunctions φD n(x) are given by

φD n(x) = (−1)MǫD

( M
∏

j=1

B(x+ j − 1)D(x+ j)

)
1

4

× WC[ψ1, . . . , ψM , φn](x)
√

WC[ψ1, . . . , ψM ](x)WC[ψ1, . . . , ψM ](x+ 1)
, (61)
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where the sign factor ǫD is defined by

ǫD = ǫd1...dM
def
=

∏

1≤i<j≤M

sgn (Eψi
− Eψj

), (62)

(for M = 0, 1, we set ǫD = 1. D is regarded as an ordered set.). Here Eψj
is Eψj

= Ẽvk for

dj = vk and Eψj
= Eek for dj = ek. This sign factor ǫD was written as (−1)MSd1...dM in [13],

but we missed it in [5, 8]. The sign factor ǫD is important for Darboux transformations, but

not as an eigenfunction.

Before we go any further, let us mention the square root function and the sign of

WC[ψ1, . . . , ψM ](x). If the Krein-Adler condition (32) is satisfied and the range of parame-

ters is chosen appropriately, we have the following two facts (conjectures for De 6= ∅ case,

which are supported by numerical calculation). (i) : The potential functions BD(x) and

DD(x) are real and positive (except for DD(0) = 0). (ii) : The function WC[ψ1, . . . , ψM ](x)

has a definite sign ǫd1...dM , namely sgnWC[ψ1, . . . , ψM ](x) = ǫd1...dM (x ∈ Z≥0). The fact (i)

means that HD (59) is well-defined and hermitian, and (ii) implies that φD n(x) (61) is real,

because WC[ψ1, . . . , ψM ](x)WC[ψ1, . . . , ψM ](x + 1) in the square root is positive. However,

in the intermediate steps of the multi-step Darboux transformations with De 6= ∅, the Krein-

Adler condition (32) may not be satisfied. This means that the function WC[ψ1, . . . , ψM ′ ](x)

(M ′ < M) may not have a definite sign. If so, the argument of the square root in (61) (with

M → M ′) becomes negative, and the potential functions BD(x) and DD(x) (with M →M ′)

also become negative. Since we regard
√

as a real function, its argument should be real

and non-negative, and its value is also real and non-negative. We remark that the final result

(31), which is obtained by theM-step Darboux transformations with D satisfying the Krein-

Adler condition (32), is correct, because the calculation of the Darboux transformation is

purely algebraic. Since the argument of
√

may be negative in the intermediate steps, we

have to specify how to treat
√

f(x) for the function f(x) that does not have a definite sign.

We missed pointing out this remark in [5].

We adopt the following rule for
√

f(x). If it is not necessary, the value of
√

f(x) is

not evaluated and is left as it is. By using the property
√
a
√
b =

√
ab , the calculation

is continued as follows:
√

f(x)/
√

f(x) =
√

f(x)/f(x) =
√
1 = 1 and

√

f(x)
√

f(x) =
√

f(x)2 = sgn f(0) · f(x). We remark that this rule gives correct results for the function

with a definite sign. Let us illustrate this rule by the calculation on the sign factor ǫD.

We assume that the virtual state energy Ẽv (28) is a monotonically increasing or decreasing
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function of v, which is possible by choosing the range of parameters appropriately. We

assume sgnWC[ψ1, . . . , ψM ](x) = ǫD for x = 0, 1 (for an appropriate range of the parameters)

even if the Krein-Adler condition (32) is not satisfied. This assumption can be verified

by numerical calculation. In the intermediate steps of the Darboux transformations, the

deformed Hamiltonian Hd1...ds , which may be singular, is [5, 8, 13]

Hd1...ds = Âd1...dsÂ†
d1...ds

+ Eψs
, (63)

Âd1...ds =

√

B̂d1...ds(x)− e∂
√

D̂d1...ds(x), Â†
d1...ds

=

√

B̂d1...ds(x)−
√

D̂d1...ds(x) e
−∂, (64)

where the potential functions B̂d1...ds(x) and D̂d1...ds(x) are

B̂d1...ds(x) =
√

B(x+ s− 1)D(x+ s)
WC[ψ1, . . . , ψs−1](x)

WC[ψ1, . . . , ψs−1](x+ 1)

WC[ψ1, . . . , ψs](x+ 1)

WC[ψ1, . . . , ψs](x)
,

D̂d1...ds(x) =
√

B(x− 1)D(x)
WC[ψ1, . . . , ψs−1](x+ 1)

WC[ψ1, . . . , ψs−1](x)

WC[ψ1, . . . , ψs](x− 1)

WC[ψ1, . . . , ψs](x)
. (65)

Its “eigenfunctions” φd1...ds n(x) are

φd1...ds n(x)
def
= Âd1...dsφd1...ds−1 n (66)

= (−1)sǫd1...ds

( s
∏

j=1

B(x+ j − 1)D(x+ j)

)
1

4 WC[ψ1, . . . , ψs, φn](x)
√

WC[ψ1, . . . , ψs](x)WC[ψ1, . . . , ψs](x+ 1)
.

By calculation with careful treatment of the square root, the next step “eigenfunction”

φd1...ds+1 n(x) becomes

φd1...ds+1 n(x) = Âd1...ds+1
φd1...ds n(x)

=

√

√

B(x+ s)D(x+ s+ 1)
WC[ψ1, . . . , ψs](x)

WC[ψ1, . . . , ψs](x+ 1)

WC[ψ1, . . . , ψs+1](x+ 1)

WC[ψ1, . . . , ψs+1](x)

× (−1)sǫd1...ds

( s
∏

j=1

B(x+ j − 1)D(x+ j)

)
1

4 WC[ψ1, . . . , ψs, φn](x)
√

WC[ψ1, . . . , ψs](x)WC[ψ1, . . . , ψs](x+ 1)

−
√

√

B(x)D(x+ 1)
WC[ψ1, . . . , ψs](x+ 2)

WC[ψ1, . . . , ψs](x+ 1)

WC[ψ1, . . . , ψs+1](x)

WC[ψ1, . . . , ψs+1](x+ 1)

× (−1)sǫd1...ds

( s
∏

j=1

B(x+ j)D(x+ j + 1)

)
1

4 WC[ψ1, . . . , ψs, φn](x+ 1)
√

WC[ψ1, . . . , ψs](x+ 1)WC[ψ1, . . . , ψs](x+ 2)

(i)
= (−1)s+1ǫd1...ds

(s+1
∏

j=1

B(x+ j − 1)D(x+ j)

)
1

4 1
√

WC[ψ1, . . . , ψs+1](x)WC[ψ1, . . . , ψs+1](x+ 1)
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× 1
√

WC[ψ1, . . . , ψs](x+ 1)2

(

√

WC[ψ1, . . . , ψs+1](x)2WC[ψ1, . . . , ψs, φn](x+ 1)

−
√

WC[ψ1, . . . , ψs+1](x+ 1)2WC[ψ1, . . . , ψs, φn](x)

)

(ii)
= (−1)s+1ǫd1...ds

(s+1
∏

j=1

B(x+ j − 1)D(x+ j)

)
1

4 1
√

WC[ψ1, . . . , ψs+1](x)WC[ψ1, . . . , ψs+1](x+ 1)

× ǫd1...ds+1

ǫd1...ds
WC[ψ1, . . . , ψs+1, φn](x)

= (−1)s+1ǫd1...ds+1

(s+1
∏

j=1

B(x+ j − 1)D(x+ j)

)
1

4

× WC[ψ1, . . . , ψs+1, φn](x)
√

WC[ψ1, . . . , ψs+1](x)WC[ψ1, . . . , ψs+1](x+ 1)
, (67)

where we have used (i):
√
a
√
b =

√
ab, (ii): the rule

√

f(x)2 = sgn f(0) · f(x) and the

Casoratian identity (3). This calculation establishes the sign factor ǫD in (61).

Let’s return to the main topic of this subsection. The eigenfunctions φD n(x) (31) are

given by (61). On the other hand, the eigenfunctions of HDv
(33) are given by [8, 13]

φDv n(x) = (−1)MvǫDv

(Mv
∏

j=1

B(x+ j − 1)D(x+ j)

)
1

4

× WC[φ̃v1, . . . , φ̃vMv
, φn](x)

√

WC[φ̃v1 , . . . , φ̃vMv
](x)WC[φ̃v1 , . . . , φ̃vMv

](x+ 1)
(n ∈ Z≥0), (68)

and the potential functions of HDv
are

BDv
(x) =

√

B(x+Mv)D(x+Mv + 1)

× WC[φ̃v1 , . . . , φ̃vMv
](x)

WC[φ̃v1, . . . , φ̃vMv
](x+ 1)

WC[φ̃v1 , . . . , φ̃vMv
, φ0](x+ 1)

WC[φ̃v1 , . . . , φ̃vMv
, φ0](x)

,

DDv
(x) =

√

B(x− 1)D(x)

× WC[φ̃v1, . . . , φ̃vMv
](x+ 1)

WC[φ̃v1 , . . . , φ̃vMv
](x)

WC[φ̃v1 , . . . , φ̃vMv
, φ0](x− 1)

WC[φ̃v1 , . . . , φ̃vMv
, φ0](x)

. (69)

So the eigenfunctions of HDvDe
(34) are expressed as

φDvDe n(x) = (−1)MeǫDe

(Me
∏

j=1

BDv
(x+ j − 1)DDv

(x+ j)

)
1

4

(n ∈ Z≥0\De)

× WC[φDv e1 , . . . , φDv eMe
, φDv n](x)

√

WC[φDv e1 , . . . , φDv eMe
](x)WC[φDv e1, . . . , φDv eMe

](x+ 1)
. (70)

20



We will show that two expressions (61) and (70) are actually identical by using the Casoratian

identity, Corollary 3.

As noted in the Remark below Corollary 3, Corollary 3 has been shown forWC[f1, . . . , fl](x)

> 0. If WC[f1, . . . , fl](x) is a definite sign function with sign ǫ, Corollary 3 becomes

WC[f1, . . . , fl, u1, . . . , um](x)
(

w(x)
def
=

√

WC[f1, . . . , fl](x)WC[f1, . . . , fl](x+ 1)
)

= ǫm−1
√

WC[f1, . . . , fl](x)WC[f1, . . . , fl](x+m)

×WC

[WC[f1, . . . , fl, u1]

w
, . . . ,

WC[f1, . . . , fl, um]

w

]

(x),

and, by the replacements m→ m+ 1 and um+1 = v, it becomes

WC[f1, . . . , fl, u1, . . . , um, v](x)

= ǫm
√

WC[f1, . . . , fl](x)WC[f1, . . . , fl](x+m+ 1)

×WC

[WC[f1, . . . , fl, u1]

w
, . . . ,

WC[f1, . . . , fl, um]

w
,
WC[f1, . . . , fl, v]

w

]

(x).

From these two equations, we obtain

WC[f1, . . . , fl, u1, . . . , um, v](x)
√

WC[f1, . . . , fl, u1, . . . , um](x)WC[f1, . . . , fl, u1, . . . , um](x+ 1)

= ǫm
(

WC[f1, . . . , fl](x)WC[f1, . . . , fl](x+m+ 1)

WC[f1, . . . , fl](x+ 1)WC[f1, . . . , fl](x+m)

)
1

4

(71)

×
WC

[

WC[f1,...,fl,u1]
w

, . . . , WC[f1,...,fl,um]
w

, WC[f1,...,fl,v]
w

]

(x)
√

WC

[

WC[f1,...,fl,u1]
w

, . . . , WC[f1,...,fl,um]
w

]

(x)WC

[

WC[f1,...,fl,u1]
w

, . . . , WC[f1,...,fl,um]
w

]

(x+ 1)

.

In the following, we consider the replacements (identification) (41). The sign factor ǫ in (71)

becomes ǫ = ǫDv
. The eigenfunctions (68) of HDv

are expressed as

φDv n(x) = G(x)
WC[f1, . . . , fl, v](x)

w(x)
, φDv ej(x) = G(x)

WC[f1, . . . , fl, uj](x)

w(x)
, (72)

G(x)
def
= (−1)lǫDv

(

l
∏

j=1

B(x+ j − 1)D(x+ j)
)

1

4

. (73)

By Proposition 3.1, we have

WC[φDv e1 , . . . , φDv eMe
, φDv n](x)

√

WC[φDv e1 , . . . , φDv eMe
](x)WC[φDv e1, . . . , φDv eMe

](x+ 1)
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=
WC

[

WC[f1,...,fl,u1]
w

, . . . , WC[f1,...,fl,um]
w

, WC[f1,...,fl,v]
w

]

(x)
√

WC

[

WC[f1,...,fl,u1]
w

, . . . , WC[f1,...,fl,um]
w

]

(x)WC

[

WC[f1,...,fl,u1]
w

, . . . , WC[f1,...,fl,um]
w

]

(x+ 1)

×
∏m

j=0G(x+ j)
√

∏m−1
j=0 G(x+ j)G(x+ 1 + j)

, (74)

and a short calculation shows
∏m

j=0G(x+ j)
√

∏m−1
j=0 G(x+ j)G(x+ 1 + j)

=
(

(−1)lǫDv

)m+1
( l
∏

j=1

B(x+ j − 1)D(x+ j) ·
l+m
∏

j=m+1

B(x+ j − 1)D(x+ j)

)
1

8

. (75)

For the potential functions BDv
(x) and DDv

(x) (69), a short calculation shows

m
∏

j=1

BDv
(x+ j − 1)DDv

(x+ j)

=

( m
∏

j=1

B(x+ j − 1)D(x+ j) ·
l+m
∏

j=l+1

B(x+ j − 1)D(x+ j)

)
1

2

× WC[f1, . . . , fl](x)WC[f1, . . . , fl](x+m+ 1)

WC[f1, . . . , fl](x+ 1)WC[f1, . . . , fl](x+m)
. (76)

From (76), (74)–(75) and (71), we obtain

(70) = (−1)l+m(−1)lmǫDv
ǫDe

(l+m
∏

j=1

B(x+ j − 1)D(x+ j)

)
1

4

× WC[f1, . . . , fl, u1, . . . , um, v](x)
√

WC[f1, . . . , fl, u1, . . . , um](x)WC[f1, . . . , fl, u1, . . . , um](x+ 1)
(77)

(i)
= (61),

namely the equality φD n(x) = φDvDe n(x). In (i) we have used ǫD = (−1)lmǫDv
ǫDe

because

an ordered set D is now {v1, . . . , vMv
, e1, . . . , eMe

}.

4 Summary and Comments

The Wronskian and Casoratian identities (1), (2) and (3) have played an important role

in the study of deformations of the quantum mechanical systems (oQM, idQM and rdQM,
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respectively) by the multi-step Darboux transformations. A generalization of the Wron-

skian identity (1) is known as Theorem1. Corresponding to this generalization, we have

presented similar generalizations of the Casoratian identities (2) and (3) as Theorem2 and

3, respectively.

We have also discussed the application of these Theorem1–3 to quantum mechanical

systems. Multi-step Darboux transformations with both the virtual state wavefunctions

and the eigenstate wavefunctions as seed solutions are considered. By interpreting this

deformation in two ways, as (4), we obtain two different expressions of the eigenfunctions.

The equality of these two expressions is shown by using Theorem1–3.

The multi-indexed orthogonal polynomials PD,n, whose characteristic feature is the miss-

ing degrees, are obtained from the eigenfunctions φD n(x) by removing the “ground state”

part [4, 5, 7, 8, 9, 13, 14]. The multi-indexed polynomials PDv,n obtained from (38), (46) and

(68) are case-(1) polynomials, namely the set of missing degrees Z≥0\{degPDv,n|n ∈ Z≥0} is

{0, 1, . . . , ℓ− 1}. For De 6= ∅, the multi-indexed polynomials PD,n obtained from (37), (45)

and (61) are case-(2) polynomials, namely the set of missing degrees is not {0, 1, . . . , ℓ− 1}.
Since the expressions (37), (45) and (61) are equal to (39), (48) and (70), respectively, we

obtain another expression of PD,n from (39), (48) and (70). Namely, the case-(2) polynomials

PD,n are expressed in terms of the case-(1) polynomials PDv,n. For their explicit forms, we

leave them as an exercise for interested readers.
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[2] D.Gómez-Ullate, N.Kamran and R.Milson, “An extended class of orthogonal polyno-

mials defined by a Sturm-Liouville problem,” J. Math. Anal. Appl. 359 (2009) 352-367,

arXiv:0807.3939[math-ph].

23

http://arxiv.org/abs/1104.0473
http://arxiv.org/abs/0807.3939


[3] S.Odake and R. Sasaki, “Infinitely many shape invariant potentials and new orthogonal

polynomials,” Phys. Lett. B679 (2009) 414-417, arXiv:0906.0142[math-ph].
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