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Abstract

About two dozens of exactly solvable Markov chains on one-dimensional finite and

semi-infinite integer lattices are constructed in terms of convolutions of orthogonality

measures of the Krawtchouk, Hahn, Meixner, Charlier, q-Hahn, q-Meixner and little

q-Jacobi polynomials. By construction, the stationary probability distributions, the

complete sets of eigenvalues and eigenvectors are provided by the polynomials and

the orthogonality measures. An interesting property possessed by these stationary

probability distributions, called ‘convolutional self-similarity,’ is demonstrated.

1 Introduction

In this paper we study one mathematical aspect of Markov chains on one-dimensional integer

lattices. The goal is constructing plenty of examples of workable Markov chains containing

enough adjustable parameters so that rich and functional applications could be made in

diverse disciplines. Markov chains are most easy to handle when, on top of the stationary

probability distributions, the complete set of eigenvectors and corresponding eigenvalues are

known. The eigenvectors discussed in the present paper form an orthogonal basis as they

belong to real symmetric matrices (2.16).

We pursue this goal within the framework of orthogonal polynomials of a discrete variable

[1]–[5]. To be more specific, we construct the basic transition matrix K by certain convolu-

tions of the ‘orthogonality measures = stationary probability distributions.’ The information

of the stationary distributions and the orthogonal eigenvectors are built in the scheme. In

most cases, the eigenvalues can be extracted directly from the convolutions. In all cases,

the eigenvalues are calculated exactly, see Theorem2.2. In some respects, in particular, in

incorporating many adjustable parameters, the present method is more advantageous than
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some sophisticated procedures, for example those based on the finite group actions. The

presentation of this paper is simple and plain so that non-experts can understand.

This paper is organised as follows. In section two, after a common problem setting,

the basic properties of K(x, y), the transition probability matrix from y to x, are stated in

Lemma and four Theorems. Lemma states K(x, y) is triangular in a certain basis. The

most fundamental one is Theorem2.1 stating K is related to a real symmetric matrix H
by a similarity transformation. The complete set of eigenvectors of K is identified based on

Lemma. It is followed by the eigenvalue formula Theorem2.2, the spectral representation

Theorem2.3 and solutions of the initial value problem and the ℓ-step transition matrix in

Theorem2.4. Section three provides fundamental data. The list of five types of convo-

lutions can be found in § 3.1, the polynomial data in § 3.2, the convolutional self-similarity

of various stationary distributions are explored in § 3.3. Many explicit examples of K(x, y)

constructed by convolutions are demonstrated in § 4.1–§ 4.5, corresponding to each type of

convolutions. Markov chains constructed by convolutions of type (i) and (iii) have the spe-

cial property that the eigenvalues are directly obtained from the determinant of K’s, which

have a factorised form of an upper and lower triangular matrix. The polynomials defined

on a one-dimensional integer lattice X = {0, 1, . . . , N}, the Krawtchouk, Hahn and q-Hahn

are the main players. Those K’s lead to a wider class of Markov chains on a semi-infinite

lattice by limiting procedures N → ∞, described by (q-)Meixner and Charlier polynomials.

Markov chains constructed by repeated convolutions of type (i) and (iii) for the Krawtchouk

are presented in § 4.6. Several examples of one parameter families of commuting K’s are pre-

sented in § 4.7. Section five deals with two related topics. The dual convolutions obtained

by mirroring {0, 1, . . . , N} → {N,N − 1, . . . , 0} are explored in § 5.1. Several semi-infinite

Markov chains involving the little q-Jacobi polynomials are derived in § 5.1.1 through dual

convolutions based on q-Hahn polynomials. The repeated discrete time birth and death

processes are presented in § 5.2. The final section is for comments on the salient properties

of the eigenvalues of the K’s constructed in this project. The proof of the triangularity

Lemma is provided as Appendix.
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2 Main Theorems

2.1 Problem setting

We discuss stationary Markov chains on a one-dimensional finite integer lattice X ,

X def
= {0, 1, . . . , N}, (2.1)

with its points denoted by x, y, z, etc. The main ingredient of the theory is the transi-

tion probability matrix K(x, y) on X which specifies the transition probability from y to x

satisfying the basic conditions of probability and its conservation,

K(x, y) ≥ 0,
∑

x∈X

K(x, y) = 1. (2.2)

For given K(x, y), much useful information can be extracted depending on the specific needs

of the applications. The most basic ones would be the solutions of the initial value problem

and the determination of the ℓ-step transition probability:

• Initial value problem : one step time evolution P(x; ℓ+ 1) =
∑

y∈X

K(x, y)P(y; ℓ),

P(x; 0) ≥ 0,
∑

x∈X

P(x; 0) = 1 ⇒ P(x; ℓ) =
∑

y∈X

Kℓ(x, y)P(y; 0), (2.3)

• ℓ-step transition probability from y to x : P(x, y; ℓ),

P(x; 0) = δx y ⇒ P(x, y; ℓ) = Kℓ(x, y). (2.4)

They can be obtained based on the complete set of eigenvalues and the corresponding eigen-

vectors of K(x, y). It is well known that K(x, y) has always a maximal eigenvalue 1 and the

range of spectrum

− 1 ≤ The moduli of the eigenvalues of K(x, y) ≤ 1, (2.5)

as a consequence of the non-negativity, i.e. Perron-Frobenius theorem, and probability con-

servation (2.2).

Among many known strategies of procuring K(x, y) with explicit forms of eigensystems,

one very promising plan is to construct K(x, y) within the framework of orthogonal polyno-

mials on X . Simple examples are Birth and Death (BD) processes, well known processes of
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nearest neighbour hopping. All hypergeometric orthogonal polynomials of a discrete vari-

able belonging to Askey scheme provide exactly solvable continuous time BD processes [6, 7]

and a good part of it solves the discrete time versions [8], typical Markov chains. The nor-

malised orthogonality measures always provide the stationary probability distributions of

the corresponding BD and the polynomials the eigenvectors.

2.2 Basic properties of K(x, y)

Here we develop a rather general method of building K(x, y) by ‘convolutions’ of the nor-

malised orthogonality measures. There are many different types of convolutions available,

but the main structure of the logic is common, which we will describe by choosing one typical

convolution. In § 4 many explicit examples of K(x, y) together with the eigensystems, etc,

constructed by various types of convolutions, will be displayed together with multitudes of

derivative forms obtained by the limiting procedures of N → ∞.

Let us introduce some notation. The normalised orthogonality measure of orthogonal

polynomials P̌n(x)
def
= Pn(η(x)) (deg Pn(η) = n) on X is denoted by π(x,N,λ) (x ∈ X )

π(x,N,λ) > 0,
∑

x∈X

π(x,N,λ) = 1,
∑

x∈X

π(x,N,λ)P̌m(x,λ)P̌n(x,λ) = 0 (m,n ∈ X , m 6= n),

(2.6)

in which η(x) is called the sinusoidal coordinate [9]. For the explicit forms, see (2.11). Here

λ stands for the set of parameters other than the size of the lattice N . The N dependence of

the polynomials is suppressed for simplicity. Throughout this paper we adopt the universal

normalisation of the polynomials,

P̌0(x,λ) = 1 (x ∈ X ), P̌n(0,λ) = 1 (n ∈ X ), (2.7)

and η(0) = 0. As mentioned above, later π will denote the stationary probability distribution

of the Markov chain. The formulation presented in this subsection would in principle apply

for any polynomials of a discrete variable [1] in the Askey family [2]–[5]. But for the actual

construction of K(x, y) we deal with three kinds of orthogonal polynomials, the Krawtchouk

(K), Hahn (H) and q-Hahn (qH), and the initial is attached, e.g. πK(x,N,λ), P̌Kn(x,λ)

when formulas need specification of the polynomials. In later subsections, more polynomials

defined on a semi-infinite lattice X = Z≥0 will be discussed. They are the Charlier (C),
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Meixner (M), and q-Meixner (qM), which are obtained from (K), (H) and (qH) by limiting

processes of some parameters in λ and N → ∞.

The rules of the game is to construct K(x, y) by a convolution of two or more π(x) with

certain choice of parameter dependence λ1 and λ2, for example,

(i) : K(x, y)
def
=

min(x,y)
∑

z=0

π(x− z,N − z,λ2)π(z, y,λ1) (x, y ∈ X ), (2.8)

in such a way that K(x, y) satisfies a symmetry condition with another π with a parameter

dependence λ,

K(x, y)π(y,N,λ) = K(y, x)π(x,N,λ) (x, y ∈ X ). (2.9)

The explicit forms of five types of convolutions K(x, y) are listed in § 3.1. It is easy to see that

the above K(x, y) (2.8) and four other types listed in § 3.1 satisfy the basic condition of prob-

ability conservation
∑

x∈X K(x, y) = 1 independently of the choices of parameters λ1 and

λ2 (and λ3). That is, the probability conservation condition is satisfied irrespective of the

presence of π(x,N,λ) for the symmetry condition. Now K is a positive matrix and its eigen-

values are greater than −1. Let us note that the probability conservation
∑

x∈X K(x, y) = 1

means that V̌0(x)
def
= 1 is the left eigenvector of K belonging to the highest eigenvalue 1:

∑

y∈X

K(y, x)V̌0(y) = V̌0(x).

For obtaining the rest of left eigenvectors of K, the following Lemma is essential.

Lemma The transition matrices K’s generated by five types of convolutions (3.1)–(3.5)

satisfy the triangularity condition

∑

y∈X

K(y, x)η(y)n =
n
∑

m=0

anmη(x)
m (n ∈ X )

(

anm = 0 for n < m
)

, (2.10)

η(x) =

{

x : (i)–(v)
q−x − 1 : (i), (iii), (iv)

. (2.11)

That is the r.h.s. of (2.10) is a polynomial in η(x) of degree at most n. The vectors {η(x)n}
(n ∈ X , η(x)0

def
= 1) form a basis of RN+1, because η(x) is an increasing function. Since the

proof of Lemma is of rather technical nature, it is consigned to Appendix. It should be

noted that the triangularity of K is the consequence of the explicit forms of the convolutions

(3.1)–(3.5) and it is independent of the specific choice of the parameters λ1 and λ2 (and λ3).
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This Lemma means that the left eigenvalue of K is κ(n) = ann and the corresponding

left eigenvector is given by a certain degree n polynomial in η(x), V̌n(x)
def
= Vn(η(x)) (V̌0(x) =

V̌n(0) = 1),
∑

y∈X

K(y, x)V̌n(y) = κ(n)V̌n(x) (n ∈ X ). (2.12)

By taking y summation of the symmetry condition (2.9), we find that π(x,N,λ) is the

eigenvector of K(x, y) with the maximal eigenvalue 1,

∑

y∈X

K(x, y)π(y,N,λ) =
∑

y∈X

K(y, x)π(x,N,λ) = π(x,N,λ).

The set of all eigenvectors of K is given by

∑

y∈X

K(x, y)π(y,N,λ)V̌n(y) = κ(n)π(x,N,λ)V̌n(x) (n ∈ X ). (2.13)

Let us introduce the square root of the stationary distribution π(x,N,λ) and a diagonal

matrix Φ on X ,

φ̂0(x,λ)
def
=
√

π(x,N,λ), Φ(x, x)
def
= φ̂0(x,λ), Φ(x, y)

def
= 0 (x 6= y). (2.14)

By a similarity transformation in terms of this Φ, we define a matrix H as follows:

H def
= Φ−1KΦ, H(x, y) =

φ̂0(y,λ)

φ̂0(x,λ)
K(x, y). (2.15)

By dividing both sides of the symmetry condition (2.9) by φ̂0(x,λ)φ̂0(y,λ), we obtain

H(x, y) = H(y, x) (x, y ∈ X ), (2.16)

namely H is a real symmetric matrix. Hence it is diagonalizable and its eigenvectors can be

taken to be orthogonal with each other. On the other hand, (2.12) and (2.9) imply

∑

y∈X

H(x, y)φ̂0(y,λ)V̌n(y) = κ(n)φ̂0(x,λ)V̌n(x) (n ∈ X ), (2.17)

namely φ̂0(x,λ)V̌n(x)’s are eigenvectors of H. The polynomial V̌n(x) of degree n in η(x),

being orthogonal with others with respect to the measure φ̂0(x,λ)
2 = π(x,N,λ), should be

P̌n(x,λ). Therefore we obtain the following theorem.
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Theorem 2.1 The eigenvectors of the two matrices H = Φ−1KΦ and K are described by

the orthogonal polynomials P̌n(x,λ) = Pn(η(x),λ) (n ∈ X ), belonging to π(x,N,λ),

∑

y∈X

H(x, y)φ̂0(y,λ)P̌n(y,λ) = κ(n)φ̂0(x,λ)P̌n(x,λ) (n ∈ X ), (2.18)

∑

y∈X

K(x, y)π(y,N,λ)P̌n(y,λ) = κ(n)π(x,N,λ)P̌n(x,λ) (n ∈ X ). (2.19)

Here we suppress the parameter dependence of the eigenvalues {κ(n)} for the simplicity of

presentation.

The set of orthogonal vectors {φ̂0(x,λ)P̌n(x,λ)},
∑

x∈X

φ̂0(x,λ)
2P̌m(x,λ)P̌n(x,λ) =

∑

x∈X

π(x,N,λ)Pm

(

η(x),λ
)

Pn

(

η(x),λ
)

=
∑

x∈X

π(x,N,λ)P̌m(x,λ)P̌n(x,λ) =
δmn

d2n
(m,n ∈ X ), d0 = 1, (2.20)

form the complete set of eigenvectors of H. Now the scale of the polynomials {P̌n(x,λ)} is

fixed by the universal normalisation (2.7), the normalisation constant d2n is uniquely deter-

mined by the above formula. It should be noted that, because of the context, the present

definition of d2n corresponds to d2n/d
2
0 in our previous series of papers [6, 7, 9]. The parameter

dependence of d2n is also suppressed. Based on the universal normalisation condition of the

polynomials (2.7), we arrive at the universal formula for the eigenvalues {κ(n)} in terms of

K(x, y), π(x,N,λ) and {P̌n(x,λ)}.

Theorem 2.2 By setting x = 0 in (2.19), we obtain the universal expression of the eigen-

values

κ(n) =
∑

y∈X

K(0, y)
π(y,N,λ)

π(0, N,λ)
P̌n(y,λ) (n ∈ X ), κ(0) = 1. (2.21)

Let us introduce the set of orthonormal eigenvectors of H,

φ̂n(x,λ)
def
= dnφ̂0(x,λ)P̌n(x,λ),

∑

x∈X

φ̂m(x,λ)φ̂n(x,λ) = δmn (n,m ∈ X ). (2.22)

Theorem 2.3 The spectral representation of the real symmetric matrix H provides that of

K,

H(x, y) =
∑

n∈X

κ(n)φ̂n(x,λ)φ̂n(y,λ), (2.23)
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K(x, y) = φ̂0(x,λ)
∑

n∈X

κ(n)φ̂n(x,λ)φ̂n(y,λ) · φ̂0(y,λ)
−1

=
∑

n∈X

κ(n)d2n π(x,N,λ)P̌n(x,λ)P̌n(y,λ). (2.24)

Theorem 2.4 The solution of the initial value problem of the Markov chain with the tran-

sition rate K(x, y) after ℓ steps is given by

P(x; ℓ) = φ̂0(x,λ)
∑

n∈X

cnκ(n)
ℓ φ̂n(x,λ) = π(x,N,λ)

∑

n∈X

cndnκ(n)
ℓP̌n(x,λ), (2.25)

in which {cn} are determined by the expansion of the initial distribution P(x; 0),

P(x; 0) = φ̂0(x,λ)
∑

n∈X

cnφ̂n(x,λ)

⇒ cn =
∑

x∈X

φ̂n(x,λ)φ̂0(x,λ)
−1P(x; 0) = dn

∑

x∈X

P̌n(x,λ)P(x; 0) (n ∈ X ), c0 = 1. (2.26)

The ℓ-step transition matrix from y to x is

P(x, y; ℓ) = Kℓ(x, y) = φ̂0(x,λ)
∑

n∈X

κ(n)ℓ φ̂n(x,λ)φ̂n(y,λ)φ̂0(y,λ)
−1

= π(x,N,λ)
∑

n∈X

d2nκ(n)
ℓP̌n(x,λ)P̌n(y,λ). (2.27)

Since κ(0) = 1 and −1 < κ(n) < 1 (n 6= 0), the stationary distribution is reached asymptot-

ically,

lim
ℓ→∞

P(x; ℓ) = lim
ℓ→∞

P(x, y; ℓ) = π(x,N,λ). (2.28)

It should be stressed that the results and theorems derived in this section are valid for

other choices of convolutions than (2.8) so long as the basic condition (2.2) and the symmetry

condition (2.9) and Lemma are satisfied.

When a good N → ∞ limit exists, it leads to a Markov chain on a semi-infinite lattice

X = Z≥0, and the above theorems also hold. That is, the symmetry condition (2.9), the

eigenvectors (2.19) and the eigenvalue formula (2.21) are

K(x, y)π(y,λ) = K(y, x)π(x,λ) (x, y ∈ X ), (2.29)
∑

y∈X

K(x, y)π(y,λ)P̌n(y,λ) = κ(n)π(x,λ)P̌n(x,λ) (n ∈ X ), (2.30)

κ(n) =
∑

y∈X

K(0, y)
π(y,λ)

π(0,λ)
P̌n(y,λ) (n ∈ X ), κ(0) = 1, (2.31)

where X = Z≥0.
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3 Fundamental Data

Here we present fundamental data for constructing and displaying the explicit forms of

various realisations of K(x, y). Starting with the list of convolutions in § 3.1, the basic data

of ‘orthogonality measures = stationary distributions,’ polynomials and the normalisation

constants d2n etc are presented in § 3.2.

3.1 List of convolutions

Here we list five forms of ‘convolutions’ used for the construction of K(x, y). The list is not

exhaustive at all. A new and interesting convolution might be added in future.

(i) : K(x, y)
def
=

min(x,y)
∑

z=0

π(x− z,N − z,λ2)π(z, y,λ1), (3.1)

(ii) : K(x, y)
def
=

min(x,y)
∑

z=max(0,x+y−N)

π(x− z,N − y,λ2)π(z, y,λ1), (3.2)

(iii) : K(x, y)
def
=

N
∑

z=max(x,y)

π(x, z,λ2)π(z − y,N − y,λ1), (3.3)

(iv) : K(x, y)
def
=

min(x,y)
∑

z2=0

π(z2, y,λ1)
N
∑

z1=max(x,y)

π(x− z2, z1 − z2,λ3)π(z1 − y,N − y,λ2), (3.4)

(v) : K(x, y)
def
=

min(x,y)
∑

z2=0

π(z2, y,λ1)
N
∑

z1=x+y−z2

π(x− z2, z1 − y,λ3)π(z1 − y,N − y,λ2). (3.5)

It is easy to convince oneself that the basic condition (2.2) is satisfied for each convolution.

It is obvious that these are very different from the standard forms of convolutions, e.g.

(f ∗ g)(x) =
∑

z∈X

f(x− z)g(z),

since the formulas (3.1)–(3.5) must contain x and y. The above forms could be considered

as deformations of convolutions containing x and y, like

(f ∗ g)(x, y) =
∑

z∈X

f(x− z)g(z − y).

Similar expressions appear in section 4 during the reduction, N → ∞, processes.

The stationary probability measures π(x,N,λ) presented in the subsequent subsection

have a remarkable property of ‘self-similarity’ under ‘ordinary’ convolutions. This will be

demonstrated in § 3.3.
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3.2 Polynomials data

Here we provide the basic data of the participating polynomials. Most are known facts

collected for the consistency of notation, which is standard. For the explicit definitions of

the basic quantities, e.g. (a)n, (a ; q)n, rFs and rφs, consult [2, 3]. The data of the second

family of orthogonal polynomials of the q-Meixner (3.34)–(3.38) are not reported in standard

references [1]–[5]. We believe some explicit expressions of the general formulas (A.1)–(A.3),

e.g. (3.8), (3.9) etc. are new. The parametrisation of some polynomials [9], (H) and (qH),

is different from the conventional ones. There are many equivalent and different looking

expressions. We adopt the ones easy to grasp and simple to use. Recall that dn > 0.

The measure π(x,N,λ) is defined for N ∈ Z≥0 and x ∈ {0, 1, . . . , N}. For simplicity in

presentation, we extend the domain of definition to x,N ∈ Z by setting π(x,N,λ) = 0 for

otherwise. Similarly, the domain of definition of π(x,λ) (x ∈ Z≥0) is extended to x ∈ Z by

setting π(x,λ) = 0 for otherwise.

3.2.1 Krawtchouk (K)

The polynomial depends on one positive parameter λ = p (0 < p < 1),

π(x,N, p) =

(

N

x

)

px(1− p)N−x,

(

N

x

)

=
N !

x! (N − x)!
, d2n =

(

N

n

)

( p

1− p

)n

, (3.6)

π(N − x,N, p) = π(x,N, 1− p), (3.7)

s1η(x)π(x,N, p) = −π(x− 1, N − 1, p), η(x) = x, s1
def
= − 1

pN
, (3.8)

η(z)π(z, x, p) = pη(x)π(z − 1, x− 1, p), (3.9)

P̌n(x, p) = Pn(x, p) = 2F1

(−n, −x

−N

∣

∣

∣
p−1
)

, Pn(x, p) = Px(n, p), (3.10)

P̌n(N − x, p) = (−1)n(p−1 − 1)nP̌n(x, 1− p). (3.11)

Pn(x, p) is a self-dual Pn(x, p) = Px(n, p) [9] degree n polynomial in x and π is the binomial

distribution.

3.2.2 Charlier (C)

This polynomial is defined on a semi-infinite integer lattice X = Z≥0 with λ = a (a > 0),

π(x, a) =
axe−a

x!
, d2n =

an

n!
, (3.12)

s1η(x)π(x, a) = −π(x− 1, a), η(x) = x, s1
def
= −1

a
, (3.13)
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P̌n(x, a) = Pn(x, a) = 2F0

(−n, −x

−
∣

∣

∣
−a−1

)

, Pn(x, a) = Px(n, a). (3.14)

Pn(x, a) is a degree n polynomial in x and π is the Poisson distribution. It is self-dual

Pn(x, a) = Px(n, a), too. By the replacement p → pN−1 and the limit N → ∞, the

Krawtchouk (K) goes to Charlier (C),

P̌Kn(x, p) → P̌Cn(x, p), πK(x,N, p) → πC(x, p), d2Kn → d2Cn.

3.2.3 Hahn (H)

The polynomial depends on two positive parameters λ = (a, b) (a, b > 0),

π(x,N, a, b) =

(

N

x

)

(a)x (b)N−x

(a + b)N
, d2n =

(

N

n

)

(a)n (2n+ a+ b− 1)(a+ b)N
(b)n (n+ a+ b− 1)N+1

, (3.15)

π(N − x,N, a, b) = π(x,N, b, a), (3.16)

s1η(x)π(x,N, a, b) = −π(x− 1, N − 1, a+ 1, b), η(x) = x, s1
def
= −a + b

aN
, (3.17)

η(z)π(z, x, a, b) =
a

a+ b
η(x)π(z − 1, x− 1, a+ 1, b), (3.18)

P̌n(x, a, b) = Pn(x, a, b) = 3F2

(−n, n+ a + b− 1, −x

a, −N

∣

∣

∣
1
)

, (3.19)

P̌n(N − x, a, b) = (−1)n
(b)n
(a)n

P̌n(x, b, a). (3.20)

Pn(x, a, b) is a degree n polynomial in x and π is connected with the hypergeometric distri-

bution or the Polya distribution.

3.2.4 Meixner (M)

This polynomial is defined on a semi-infinite integer lattice X = Z≥0 with λ = (a, b) (a > 0,

0 < b < 1),

π(x, a, b) =
(a)x b

x(1− b)a

x!
, d2n =

(a)n b
n

n!
, (3.21)

s1η(x)π(x, a, b) = −π(x− 1, a+ 1, b), η(x) = x, s1
def
= −b−1 − 1

a
, (3.22)

P̌n(x, a, b) = Pn(x, a, b) = 2F1

(−n, −x

a

∣

∣

∣
1− b−1

)

, Pn(x, a, b) = Px(n, a, b). (3.23)

Pn(x, a, b) is a self-dual degree n polynomial in x and π is connected with the negative

binomial distribution. By the replacement b → N(1−b)b−1 and the limit N → ∞, the Hahn

(H) goes to Meixner (M),

P̌Hn(x, a, b) → P̌Mn(x, a, b), πH(x,N, a, b) → πM(x, a, b), d2Hn → d2Mn.
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By the replacement b → b/(a + b) and the limit a → ∞, the Meixner (M) goes to Charlier

(C)

P̌Mn(x, a, b) → P̌Cn(x, b), πM(x, a, b) → πC(x, b), d2Mn → d2Cn.

3.2.5 q-Hahn (qH)

The three polynomials, the q-Hahn (qH), q-Meixner (qM) and q-Charlier (qC), to be discussed

hereafter, depend on q, 0 < q < 1 on top of the other parameters. The q dependence of π

and P̌n is suppressed. The limiting processes of these q-polynomials to non q-polynomials

will not be discussed here. It should be stressed that these three polynomials P̌n(x) are

degree n polynomials in q−x − 1, not in x. The q-Hahn is defined on a finite integer lattice

with two positive parameters λ = (a, b) (0 < a < 1, b < 1),

π(x,N, a, b) =

[

N

x

]

(a ; q)x (b ; q)N−xa
N−x

(ab ; q)N
,

[

N

x

]

def
=

(q ; q)N
(q ; q)x (q ; q)N−x

, (3.24)

d2n =

[

N

n

]

(a, abq−1 ; q)n
(abqN , b ; q)n an

1− abq2n−1

1− abq−1
, (3.25)

s1η(x)π(x,N, a, b) = −π(x− 1, N − 1, aq, b), s1
def
= − 1− ab

(1 − a)(q−N − 1)
, (3.26)

η(z)π(z, x, a, b) =
1− a

1− ab
η(x)π(z − 1, x− 1, aq, b), η(x) = q−x − 1, (3.27)

P̌n(x, a, b) = Pn

(

η(x), a, b
)

= 3φ2

(q−n, abqn−1, q−x

a, q−N

∣

∣

∣
q ; q
)

, (3.28)

π(N − x,N, a, b) =
(ab)x

bN
π(x,N, b, a), P̌n(N − x,N, a, b) 6∝ P̌n(x,N, b, a). (3.29)

3.2.6 q-Meixner (qM)

This is a polynomial in η(x) = q−x − 1 defined on a semi-infinite integer lattice X = Z≥0

with λ = (b, c) (0 < b < q−1, c > 0),

π(x, b, c) =
(bq ; q)x

(q,−bcq ; q)x
cxq(

x

2)
(−bcq ; q)∞
(−c ; q)∞

, d2n =
qn(bq ; q)n

(q,−c−1q ; q)n
, (3.30)

s1η(x)π(x, b, c) = −π(x− 1, bq, c), η(x) = q−x − 1, s1
def
= − q

c(1− bq)
, (3.31)

P̌n(x, b, c) = Pn

(

η(x), b, c
)

= 2φ1

(q−n, q−x

bq

∣

∣

∣
q ;−c−1qn+1

)

, (3.32)

φ̂0(x, b, c) =
√

π(x, b, c), φ̂n(x, b, c) = dnφ̂0(x, b, c)P̌n(x, b, c),
∑

x∈X

φ̂n(x, b, c)φ̂m(x, b, c) = δnm (n,m ∈ X ). (3.33)
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The completeness relation is not satisfied

∑

n∈X

φ̂n(x, b, c)φ̂n(y, b, c) 6= δx y (x, y ∈ X ),

by these polynomials [10] as seen clearly by (3.15) of [7]. Another set of orthogonal polyno-

mials obtained from the original set by the parameter change (involution)

(b, c) → (−bc, c−1),

is needed for the completeness,

π(−)(x, b, c) =
(−bcq ; q)x
(q, bq ; q)x

c−xq(
x

2) (bq ; q)∞
(−c−1 ; q)∞

, d(−) 2
n =

qn(−bcq ; q)n
(q,−cq ; q)n

(d(−)
n > 0), (3.34)

s1η(x)π
(−)(x, b, c) = −π(−)(x− 1, bq, c), s1

def
= − cq

1 + bcq
, (3.35)

P̌ (−)
n (x, b, c) = P (−)

n

(

η(x), b, c
)

= 2φ1

(q−n, q−x

−bcq

∣

∣

∣
q ;−cqn+1

)

, (3.36)

φ̂
(−)
0 (x, b, c)

def
= (−1)x

√

π(−)(x, b, c), φ̂(−)
n (x, b, c)

def
= d(−)

n φ̂
(−)
0 (x, b, c)P̌ (−)

n (x, b, c), (3.37)
∑

x∈X

φ̂n(x, b, c)φ̂
(−)
m (x, b, c) = 0,

∑

x∈X

φ̂(−)
n (x, b, c)φ̂(−)

m (x, b, c) = δnm (n,m ∈ X ). (3.38)

qM (3.30)–(3.38) is obtained from qH by the replacement a → bq, b → −b−1c−1q−N and the

limit N → ∞. The q-Charlier with λ = c (c > 0) is obtained from q-Meixner by setting

b = 0.

3.3 Convolutional self-similarity of stationary distributions

It is well known that the Gaussian distribution

πG(x, σ)
def
=

1√
2π σ

e−
x2

2σ2 (σ > 0),

keeps its form under the standard convolution

∫ ∞

−∞

πG(x− z, σ)πG(z, τ)dz = πG(x,
√
σ2 + τ 2 ).

Here we show that the π’s listed in the previous subsection also keep their forms under several

forms of convolutions. This means repeating these convolutions as a part of constructing

K(x, y) would be redundant, as using two π’s is the same as one π. The following formulas

are verified easily by straightforward calculation.
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Charlier (C)

x
∑

z=0

π(x− z, a2)π(z, a1) = π(x, a1 + a2), (3.39)

x
∑

z=y

π(x− z, a2)π(z − y, a1) = π(x− y, a1 + a2). (3.40)

These are classical results obtained by the binomial theorem.

Meixner (M)

x
∑

z=0

π(x− z, a2, b)π(z, a1, b) = π(x, a1 + a2, b), (3.41)

x
∑

z=y

π(x− z, a2, b)π(z − y, a1, b) = π(x− y, a1 + a2, b). (3.42)

These are obtained by the sum formula of πH

∑

x∈X

πH(x,N, a, b) = 1 ⇐⇒
n
∑

k=0

(

n

k

)

(a)k(b)n−k = (a + b)n (n ∈ Z≥0), (3.43)

which is derived from the formula [4](1.5.4),

2F1

(−n, b

c

∣

∣

∣
1
)

=
(c− b)n
(c)n

(n ∈ Z≥0). (3.44)

These four formulas (C) and (M) are symmetric in λ1 and λ2.

Krawtchouk (K)

x
∑

z=0

π(x− z,N − z, a2)π(z,N, a1) = π
(

x,N, 1− (1− a1)(1− a2)
)

, (3.45)

y
∑

z=x

π(x, z, a2)π(z, y, a1) = π(x, y, a1a2), (3.46)

x
∑

z=y

π(x− z,N − z, a2)π(z − y,N − y, a1) = π
(

x− y,N − y, 1− (1− a1)(1− a2)
)

. (3.47)

In all formulas the binomial theorem is used. The result (3.45) was reported in [11]p115,

(2.3) together with the n-fold repetition in (2.6). All three formulas work when λ1 = a1 and

λ2 = a2 are interchanged.
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Hahn (H)

x
∑

z=0

π(x− z,N − z, a1, b1)π(z,N, a2, a1 + b1) = π(x,N, a1 + a2, b1), (3.48)

y
∑

z=x

π(x, z, a1, b1)π(z, y, a1 + b1, b2) = π(x, y, a1, b1 + b2), (3.49)

x
∑

z=y

π(x− z,N − z, a1, b1)π(z − y,N − y, a2, a1 + b1) = π(x− y,N − y, a1 + a2, b1). (3.50)

These formulas are obtained by the sum formula of πH (3.43). It is very interesting to note

that, like (C), (M) and (K), (3.49) and (3.50) work when λ1 and λ2 are interchanged,

y
∑

z=x

π(x, z, a1 + b1, b2)π(z, y, a1, b1) = π(x, y, a1, b1 + b2), (3.51)

x
∑

z=y

π(x− z,N − z, a2, a1 + b1)π(z − y,N − y, a1, b1) = π(x− y,N − y, a1 + a2, b1). (3.52)

These are obtained by the sum formula (n,m ∈ Z≥0),

n
∑

k=0

(

n

k

)

(b1)n−k(b2)k
(a)m+k

(a+ b1 + b2)m+k

=
(a)m(b1 + b2)n
(a + b1 + b2)m+n

(a+ b1)m+n

(a+ b1)m
, (3.53)

which is derived from the Pfaff-Saalschütz formula [2](2.2.8),

3F2

( −n, a, b

c, 1 + a + b− c− n

∣

∣

∣
1
)

=
(c− a, c− b)n
(c, c− a− b)n

(n ∈ Z≥0). (3.54)

q-Hahn (qH)

x
∑

z=0

π(x− z,N − z, a1, b1)π(z,N, a2, a1b1) = π(x,N, a1a2, b1), (3.55)

y
∑

z=x

π(x, z, a1, b1)π(z, y, a1b1, b2) = π(x, y, a1, b1b2), (3.56)

x
∑

z=y

π(x− z,N − z, a1, b1)π(z − y,N − y, a2, a1b1) = π(x− y,N − y, a1a2, b1). (3.57)

These are obtained by the sum formula for πqH

∑

x∈X

πqH(x,N, a, b) = 1 ⇐⇒
n
∑

k=0

[

n

k

]

(a ; q)k(b ; q)n−ka
n−k = (ab ; q)n (n ∈ Z≥0), (3.58)
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which is derived from the formula [4](1.11.4),

2φ1

(q−n, b

c

∣

∣

∣
q ;

cqn

b

)

=
(b−1c ; q)n
(c ; q)n

(n ∈ Z≥0). (3.59)

Similarly to the Hahn cases, (3.56) and (3.57) work when λ1 and λ2 are interchanged,

y
∑

z=x

π(x, z, a1b1, b2)π(z, y, a1, b1) = π(x, y, a1, b1b2), (3.60)

x
∑

z=y

π(x− z,N − z, a2, a1b1)π(z − y,N − y, a1, b1) = π(x− y,N − y, a1a2, b1). (3.61)

These are obtained by the sum formula (n,m ∈ Z≥0)

n
∑

k=0

[

n

k

]

(b1 ; q)n−k(b2 ; q)k
bk1 (a ; q)m+k

(ab1b2 ; q)m+k

=
(a ; q)m(b1b2 ; q)n
(ab1b2 ; q)m+n

(ab1 ; q)m+n

(ab1 ; q)m
, (3.62)

which is derived from the q-Pfaff-Saalschütz formula [4](1.11.9),

3φ2

( q−n, a, b

c, abc−1q1−n

∣

∣

∣
q ; q
)

=
(a−1c, b−1c; q)n
(c, a−1b−1c; q)n

(n ∈ Z≥0). (3.63)

4 Many Examples of K(x, y)

In this section we present various examples of K(x, y) constructed by the five types of

convolutions listed in § 3.1 applied to the polynomials Krawtchouk (K), Hahn (H) and q-

Hahn (qH). For each polynomial, the limiting forms obtained by N → ∞ are displayed,

Charlier (C), Meixner (M) and q-Meixner (qM). We do strongly hope that these examples

would enrich many related disciplines.

The symmetry condition (2.9) or (2.29) is easily verified without evaluating the sum(s)

in K(x, y) for all examples in this section except for those in § 4.6.

4.1 Type (i) convolution

This convolution

(i) : K(x, y)
def
=

min(x,y)
∑

z=0

π(x− z,N − z,λ2)π(z, y,λ1),

has been applied to (K) and (H) in many papers [11]–[13] in connection with “cumulative

Bernoulli trials.” It has a factorised form, K(x, y) =
∑N

z=0A(x, z)B(z, y), the non-vanishing
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elements of A(x, z) and B(z, y) being π(x − z,N − z,λ2) (x ≥ z) and π(z, y,λ1) (z ≤
y), respectively. Namely, A is a lower triangular matrix and B is upper triangular. The

determinant of K is easily obtained as

∏

n∈X

κ(n) = detK =
∏

x∈X

A(x, x) ·
∏

x∈X

B(x, x) =
∏

n∈X

π(0, n,λ2)π(n, n,λ1),

from which eigenvalues κ(n) are obtained, if it is known that the eigenvalues are independent

of N (⇒ κ(n) = π(0, n,λ2)π(n, n,λ1)). In fact, as we will see shortly, the eigenvalues

are N independent for all the examples in this section. Therefore for type (i) and (iii)

convolutions, the determinant formulas give eigenvalues. Moreover, for x = 0 only one term

z = 0 contributes to K(0, y). This greatly simplifies the eigenvalue formula (2.21)

κ(n) =
∑

y∈X

π(0, N,λ2)π(0, y,λ1)
π(y,N,λ)

π(0, N,λ)
P̌n(y,λ) (n ∈ X ). (4.1)

4.1.1 Krawtchouk (K)

By taking λ1 = a and λ2 = b, the matrix K(x, y) is

K(x, y) =

min(x,y)
∑

z=0

π(x− z,N − z, b)π(z, y, a)
(

⇒ detK =
∏

n∈X

an(1− b)n
)

. (4.2)

For the following λ,

λ = p
def
=

b

1− a+ ab
, (4.3)

the symmetry condition (2.9) is satisfied and Theorem2.1 gives (2.19),

∑

y∈X

K(x, y)π(y,N, p)P̌n(y, p) = κ(n)π(x,N, p)P̌n(x, p).

By writing down the eigenvalue formula (4.1), we have

κ(n) =
∑

y∈X

π(y,N, b)P̌n(y, p) = an(1− b)n, (4.4)

by using a generating function of Krawtchouk Pn(x) [4](9.11.11),

N
∑

n=0

(

N

n

)

Pn(x, p)t
n =

(

1− 1− p

p
t
)x

(1 + t)N−x, (4.5)

17



together with the self-duality of (K) Pn(x, p) = Px(n, p). In a summation formula like (4.4)

y summation is easily performed as the only y dependence of P̌n(y,λ) in this paper is due

to (−y)k (or (q−y ; q)k for qH, qM and qC) (k = 0, 1, . . . , n), which gives
∑

y∈X

π(y,N, b)(−y)k = (−N)kb
k. (4.6)

This cancels the N dependence in the hypergeometric summation of P̌n(y, p). This is the

general mechanism leading to the N -independence of the eigenvalues for (K), (H) and (qH).

By direct calculation using (4.6), we obtain

κ(n) =
n
∑

k=0

(−n)k p
−k

(−N)k k!
(−N)kb

k =
n
∑

k=0

(−n)k
(bp−1)k

k!
= 1F0

(−n

−
∣

∣

∣
bp−1

)

. (4.7)

As we will show in the following, all the eigenvalues κ(n) of K’s constructed in this section

are expressed by a terminating (q-)hypergeometric series, except for those corresponding to

the extra eigenvectors of (qM).

Krawtchouk→Charlier This is achieved by b → bN−1, N → ∞,

P̌n(x, p) → P̌Cn(x, p
′), p′

def
=

b

1− a
,

π(x,N, p) → πC(x, p
′), κ(n) → κC(n) = an,

K(x, y) → KC(x, y, a, b) =

min(x,y)
∑

z=0

πC(x− z, b)π(z, y, a), (4.8)

and the relations (2.9), (2.19) and (2.21) of (K) reduce to those of (C). The resulting KC is

a standard convolution of the π’s of (C) and (K). This was discussed in [11]§ 4. Based on

KC (4.8), let us rederive these results. The symmetry condition (2.29) is satisfied for λ = p′

and Theorem2.1 gives (2.30). The direct calculation of the eigenvalue formula (2.31) gives

κC(n) =
∞
∑

y=0

πC(y, b)P̌Cn(y, p
′) = an = 1F0

(−n

−
∣

∣

∣
bp′ −1

)

. (4.9)

It can also be obtained by using a generating function of (C) [4](9.14.11) together with the

self-duality of (C).

4.1.2 Hahn (H)

By taking λ1 = (a, b) and λ2 = (b, c), the matrix K(x, y) is

K(x, y) =

min(x,y)
∑

z=0

π(x− z,N − z, b, c)π(z, y, a, b)
(

⇒ detK =
∏

n∈X

(a)n(c)n
(a+ b)n(b+ c)n

)

. (4.10)
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For the following λ,

λ = (a + b, c), (4.11)

the symmetry condition (2.9) is satisfied and Theorem2.1 gives (2.19),

∑

y∈X

K(x, y)π(y,N, a+ b, c)P̌n(y, a+ b, c) = κ(n)π(x,N, a + b, c)P̌n(x, a+ b, c).

By evaluating the eigenvalue formula (4.1), we obtain a balanced 3F2,

κ(n) =
∑

y∈X

π(y,N, b, c)P̌n(y, a+ b, c)

= 3F2

(−n, n+ a + b+ c− 1, b

a+ b, b+ c

∣

∣

∣
1
)

=
(a)n(c)n

(a+ b)n(b+ c)n
. (4.12)

The last equality is due to the Pfaff-Saalschütz formula (3.54). This provides another sum

formula for the dual Hahn polynomial Q̌n(x, a+ b, c) [9],

N
∑

n=0

(

N

n

)

(b)n(c)N−nQ̌n(x, a + b, c) =
(b+ c)N(a)x(c)x
(a+ b)x(b+ c)x

, (4.13)

Q̌n(x, a+ b, c)
def
= 3F2

(−n, x+ a+ b+ c− 1, −x

a+ b, −N

∣

∣

∣
1
)

. (4.14)

By rewriting (a)x = Γ(a+ x)/Γ(a), this sum formula is valid for ∀x ∈ C.

Hahn→Meixner This is achieved by fixing a and b with c → N(1−c)c−1 (⇒ 0 < c < 1),

N → ∞,

P̌n(x, a + b, c) → P̌Mn(x, a+ b, c),

π(x,N, a+ b, c) → πM(x, a+ b, c), κ(n) → κM(n) =
(a)n

(a+ b)n
,

K(x, y) → KM(x, y, a, b, c) =

min(x,y)
∑

z=0

πM(x− z, b, c)π(z, y, a, b), (4.15)

and the relations (2.9), (2.19) and (2.21) of (H) reduce to those of (M). ThisKM is a standard

convolution of π’s of (M) and (H). Based on KM (4.15), let us rederive these results. The

symmetry condition (2.29) is satisfied for λ = (a+ b, c) and Theorem2.1 gives (2.30). The

direct calculation of the eigenvalue formula (2.31) gives

κM(n) =

∞
∑

y=0

πM(y, b, c)P̌Mn(y, a+ b, c) =
(a)n

(a+ b)n
= 2F1

(−n, b

a+ b

∣

∣

∣
1
)

. (4.16)
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It can be obtained by using a generating function [4](9.10.13) together with the self-duality

of (M). Of course, 2F1 form is also obtained from the balanced 3F2 form (4.12) by the above

limit.

Hahn→Meixner→Charlier This is achieved by a → aN , b → bN , c → c
c+N

, N → ∞,

PMn

(

x, (a + b)N, c
c+N

)

→ PCn

(

x, (a + b)c
)

,

πM

(

x, (a + b)N, c
c+N

)

→ πC

(

x, (a + b)c
)

,

κM(n) =
(aN)n

(

(a + b)N
)

n

→ κC(n) =
( a

a + b

)n

,

πM

(

x, bN, c
c+N

)

→ πC(x, bc), π(z, y, aN, bN) → πK

(

z, y, a
a+b

)

,

KM(x, y, a, b, c) → KC(x, y, a, b, c) =

min(x,y)
∑

z=0

πC(x− z, bc)πK

(

z, y, a
a+b

)

, (4.17)

and the relations (2.29), (2.30) and (2.31) of (M) reduce to those of (C). This KC agrees

with (4.8) with the replacement (a, b) → ( a
a+b

, bc).

4.1.3 q-Hahn (qH)

We believe the explicit examples of Markov chains described by the q-Hahn polynomial and

its reduction, q-Meixner are new.

By taking λ1 = (a, b) and λ2 = (b, c), the matrix K(x, y) is

K(x, y) =

min(x,y)
∑

z=0

π(x− z,N − z, b, c)π(z, y, a, b)
(

⇒ detK =
∏

n∈X

bn(a ; q)n(c ; q)n
(ab ; q)n(bc ; q)n

)

. (4.18)

For the following λ,

λ = (ab, c), (4.19)

the symmetry condition (2.9) is satisfied and Theorem2.1 gives (2.19),

∑

y∈X

K(x, y)π(y,N, ab, c)P̌n(y, ab, c) = κ(n)π(x,N, ab, c)P̌n(x, ab, c).

By evaluating the eigenvalue formula (4.1), we obtain a balanced 3φ2

κ(n) =
∑

y∈X

π(y,N, b, c)P̌n(y, ab, c) = 3φ2

(q−n, abcqn−1, b

ab, bc

∣

∣

∣
q ; q
)

=
bn(a ; q)n(c ; q)n
(ab ; q)n(bc ; q)n

. (4.20)

The last equality is due to the q-Pfaff-Saalschütz formula (3.63).
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q-Hahn→ q-Meixner This limit is achieved by fixing a, b with c → −c−1q1−N , N → ∞,

(c > 0),

P̌n(x, ab, c) → P̌qMn

(

x, abq−1, (ab)−1c
)

,

π(x,N, ab, c) → πqM

(

x, abq−1, (ab)−1c
)

, κ(n) → κqM(n) =
(a ; q)n
(ab ; q)n

, (4.21)

π(x− z,N − z, b, c)

→ π′
qM(x, z, bq

−1, b−1c) =
(−b−1c ; q)z(b ; q)x−z(b

−1c)x−z q(
x

2)−(
z

2)

(−c ; q)x(q ; q)x−z

(−c ; q)∞
(−b−1c ; q)∞

, (4.22)

K(x, y) → KqM(x, y, a, b, c) =

min(x,y)
∑

z=0

π′
qM(x, z, bq

−1, b−1c)π(z, y, a, b). (4.23)

The above KqM (4.23) is not a standard convolution of π’s of (qM) and (qH), as the form

of π′
qM (4.22) is markedly different from that of (4.21). The relations (2.9), (2.19) and

(2.21) of (qH) reduce to those of (qM). Based on KqM (4.23), let us rederive these results.

The symmetry condition (2.29) is satisfied for λ = (abq−1, (ab)−1c) and Theorem2.1 gives

(2.30). The eigenvalue formula (2.31) takes a neat form and the sum is directly evaluated

κqM(n) =

∞
∑

y=0

πqM(y, bq
−1, b−1c)P̌qMn

(

y, abq−1, (ab)−1c
)

= 2φ1

(q−n, b

ab

∣

∣

∣
q ; aqn

)

=
(a ; q)n
(ab ; q)n

. (4.24)

In the last equality (3.59) is used. The 2φ1 form is also obtained from the balanced 3φ2 form

(4.20) by the above limit.

The other set of eigenvectors is

(−1)x
√

πqM(x, abq−1, (ab)−1c)πqM(x,−cq−1, abc−1) P̌qMn(x,−cq−1, abc−1)

= (−1)x
q(

x

2)

(q; q)x
P̌qMn(x,−cq−1, abc−1)×

√

(ab,−c ; q)∞
(−abc−1,−(ab)−1c ; q)∞

, (4.25)

and the corresponding eigenvalue formula (2.31) reads

κ
(−)
qM (n) =

∞
∑

y=0

KqM(0, y)(−1)y

√

√

√

√

πqM(y,λ)π
(−)
qM (y,λ)

πqM(0,λ)π
(−)
qM (0,λ)

P̌
(−)
qMn(y,λ). (4.26)

After a few lines of direct calculation, we obtain

κ
(−)
qM (n) =

(a,−c ; q)∞
(ab,−b−1c ; q)∞

2φ1

(q−n, b

−c

∣

∣

∣
q ;−b−1cqn

)

=
(a,−c ; q)∞

(ab,−b−1c ; q)∞

(−b−1c ; q)n
(−c ; q)n

, (4.27)
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with

0 < κ
(−)
qM (n) < 1, 0 <

κ
(−)
qM (n)

κqM(n)
=

(aqn,−cqn ; q)∞
(abqn,−b−1cqn ; q)∞

< 1.

The reduction to q-Charlier is not feasible, as it requires ab → 0 in P̌n(y, ab, c), leading

(ab)−1c to diverge.

4.2 Type (ii) convolution

Since this convolution

(ii) : K(x, y)
def
=

min(x,y)
∑

z=max(0,x+y−N)

π(x− z,N − y,λ2)π(z, y,λ1)

is not of a factorised form, the determinant of K is not obtained easily. For x = 0 only one

term z = 0 contributes and the general eigenvalue formula (2.21) takes a simple form

κ(n) =
∑

y∈X

π(0, N − y,λ2)π(0, y,λ1)
π(y,N,λ)

π(0, N,λ)
P̌n(y,λ) (n ∈ X ). (4.28)

This convolution was employed for Markov chains related with the Hahn polynomial in [14],

but the use of the convolution was not stated explicitly.

4.2.1 Krawtchouk (K)

By taking λ1 = a and λ2 = b, the matrix K(x, y) is

K(x, y) =

min(x,y)
∑

z=max(0,x+y−N)

π(x− z,N − y, b)π(z, y, a). (4.29)

For the following λ,

λ = p
def
=

b

1− a+ b
, (4.30)

the symmetry condition (2.9) is satisfied and Theorem 2.1 gives (2.19). By directly evalu-

ating the eigenvalue formula (4.28), we obtain

κ(n) =
∑

y∈X

π(y,N, b)P̌n(y, p) = (a− b)n = 1F0

(−n

−
∣

∣

∣
bp−1

)

. (4.31)

The use of the generating function (4.5) and the self-duality (K) leads to the above result,

too. It is interesting to note that odd eigenvalues are all negative if 0 < a < b < 1.
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Krawtchouk→Charlier This is exactly the same situation of (K)→(C) (4.8) in the type

(i) convolution.

4.2.2 Hahn (H)

By taking λ1 = (a, b) and λ2 = (b, c), the matrix K(x, y) is

K(x, y) =

min(x,y)
∑

z=max(0,x+y−N)

π(x− z,N − y, b, c)π(z, y, a, b). (4.32)

The special cases of this convolution with a = b = c = 1
2
corresponding to the discrete

Chebyshev polynomials and a = b = c = 1
2
θ are discussed in detail in [14]. For the following

λ,

λ = (a + b, b+ c), (4.33)

the symmetry condition (2.9) is satisfied and Theorem 2.1 gives (2.19). By writing down

the eigenvalue formula (4.28), we have

κ(n) =
∑

y∈X

π(y,N, b, c)P̌n(y, a+ b, b+ c) = 3F2

(−n, n + a+ 2b+ c− 1, b

a + b, b+ c

∣

∣

∣
1
)

(4.34)

=
n
∑

k=0

(

n

k

)

(−1)k
(b)k(n+ a+ 2b+ c− 1)k

(a+ b)k(b+ c)k
. (4.35)

The above explicit eigenvalue formula (4.35) reproduces the known results (5.9) in [14], which

corresponds to the special case a = b = c = 1
2
θ.

Hahn→Meixner By fixing a, b with c → N(1 − c)c−1 (⇒ 0 < c < 1) and taking the

limit N → ∞, one obtains the same Meixner limit KM(x, y) as in (4.15)

K(x, y) → KM(x, y, a, b, c) =

min(x,y)
∑

z=0

πM(x− z, b, c)π(z, y, a, b).

It is interesting to note that the q-Hahn version of this convolution does not work, due

to the presence of the extra factor aN−x in π(x,N, a, b) in (3.24).

4.3 Type (iii) convolution

Since this convolution

(iii) : K(x, y)
def
=

N
∑

z=max(x,y)

π(x, z,λ2)π(z − y,N − y,λ1),
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is of a factorised form, the first factor π(x, z,λ2) being upper triangular and the second factor

π(z − y,N − y,λ1) lower triangular, the eigenvalues can be guessed from the determinant,

∏

n∈X

κ(n) = detK =
∏

n∈X

π(n, n,λ2)π(0, n,λ1).

4.3.1 Krawtchouk (K)

By taking λ1 = a and λ2 = b, the matrix K(x, y) is

K(x, y) =

N
∑

z=max(x,y)

π(x, z, b)π(z − y,N − y, a)
(

⇒ detK =
∏

n∈X

(1− a)nbn
)

. (4.36)

For the following λ,

λ = p
def
=

ab

1− b+ ab
, (4.37)

the symmetry condition (2.9) is satisfied and Theorem2.1 gives (2.19). By evaluating the

eigenvalue formula (2.21), we have

κ(n) =

N
∑

z=0

π(z,N, a)

z
∑

y=0

π(y, z, b)P̌n(y, p) = (1− a)nbn = 1F0

(−n

−
∣

∣

∣
abp−1

)

. (4.38)

The use of the generating function (4.5) and the self-duality (K) give the same result.

Krawtchouk→Charlier This is achieved by a → aN−1, N → ∞,

P̌n(x, p) → PCn(x, p
′), p′

def
=

ab

1− b
,

π(x,N, p) → πC(x, p
′), κ(n) → κC(n) = bn,

K(x, y) → KC(x, y, a, b) =
∞
∑

z=max(x,y)

π(x, z, b)πC(z − y, a), (4.39)

and the relations (2.9), (2.19) and (2.21) of (K) reduce to those of (C). Based on KC (4.39),

let us rederive these results. The symmetry condition (2.29) is satisfied for λ = p′ and

Theorem2.1 gives (2.30). The eigenvalue formula (2.31) reads

κC(n) =

∞
∑

z=0

πC(z, a)

z
∑

y=0

π(y, z, b)P̌Cn(y, p
′) = bn = 1F0

(−n

−
∣

∣

∣
abp′ −1

)

, (4.40)

by using the generating function [4](9.14.11) and the self-duality (C).
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4.3.2 Hahn (H)

By taking λ1 = (a, b) and λ2 = (c, a), the matrix K(x, y) is

K(x, y) =

N
∑

z=max(x,y)

π(x, z, c, a)π(z−y,N−y, a, b)
(

⇒ detK =
∏

n∈X

(b)n(c)n
(a + b)n(a+ c)n

)

. (4.41)

For the following λ,

λ = (c, a+ b), (4.42)

the symmetry condition (2.9) is satisfied and Theorem2.1 gives (2.19). By evaluating the

eigenvalue formula (2.21), we obtain a balanced 3F2

κ(n) =

N
∑

z=0

π(z,N, a, b)

z
∑

y=0

π(y, z, c, a)P̌n(y, c, a+ b)

= 3F2

(−n, n + a+ b+ c− 1, a

a+ b, a+ c

∣

∣

∣
1
)

=
(b)n(c)n

(a+ b)n(a + c)n
. (4.43)

In the last equality Pfaff-Saalschütz formula (3.54) is used.

Hahn→Meixner This is achieved by fixing a and c with b → N(1−b)b−1 (⇒ 0 < b < 1),

N → ∞,

P̌n(x, c, a+ b) → P̌Mn(x, c, b),

π(x,N, c, a+ b) → πM(x, c, b), κ(n) → κM(n) =
(c)n

(a+ c)n
,

K(x, y) → KM(x, y, a, b, c) =
∞
∑

z=max(x,y)

π(x, z, c, a)πM(z − y, a, b), (4.44)

and the relations (2.9), (2.19) and (2.21) of (H) reduce to those of (M). This is a standard

convolution of π’s of (H) and (M), but the order is opposite from that of (4.15). Based

on KM (4.44), let us rederive these results. The symmetry condition (2.29) is satisfied for

λ = (c, b) and Theorem 2.1 gives (2.30). The eigenvalue formula (2.31) reads

κM(n) =

∞
∑

z=0

πM(z, a, b)

z
∑

y=0

π(y, z, c, a)P̌Mn(y, c, b) = 2F1

(−n, a

a + c

∣

∣

∣
1
)

=
(c)n

(a+ c)n
. (4.45)

Of course the 2F1 form is also obtained from the balanced 3F2 form (4.43) by the above limit.
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Hahn→Meixner→Charlier This is achieved by a → aN , c → cN , b → b
b+N

, N → ∞,

PMn

(

x, cN, b
b+N

)

→ PCn(x, bc),

πM

(

x, cN, b
b+N

)

→ πC(x, bc), κM(n) =
(cN)n

(

(a+ c)N
)

n

→ κC(n) =
( c

a + c

)n

,

π(x, z, cN, aN) → πK

(

x, z, c
a+c

)

, πM(x, aN, b
b+N

)

→ πC(x, ab),

KM(x, y, a, b, c) → KC(x, y, a, b, c) =

∞
∑

z=max(x,y)

πK(x, z, p)πC(z − y, ab), (4.46)

and the relations (2.29), (2.30) and (2.31) of (M) reduce to those of (C). This KC agrees

with (4.39) with the replacement (a, b) → (ab, p).

4.3.3 q-Hahn (qH)

By taking λ1 = (a, b) and λ2 = (c, a), the matrix K(x, y) is

K(x, y) =
N
∑

z=max(x,y)

π(x, z, c, a)π(z− y,N − y, a, b)
(

⇒ detK =
∏

n∈X

an(b ; q)n(c ; q)n
(ab ; q)n(ac ; q)n

)

. (4.47)

For the following λ,

λ = (c, ab), (4.48)

the symmetry condition (2.9) is satisfied and Theorem2.1 gives (2.19). By evaluating the

eigenvalue formula (2.21), we obtain a balanced 3φ2

κ(n) =

N
∑

z=0

π(z,N, a, b)

z
∑

y=0

π(y, z, c, a)P̌n(y, c, ab)

= 3φ2

(q−n, abcqn−1, a

ac, ab

∣

∣

∣
q ; q
)

=
an(b ; q)n(c ; q)n
(ab ; q)n(ac ; q)n

. (4.49)

The last equality is due to the q-Pfaff-Saalschütz formula (3.63).

q-Hahn→ q-Meixner This limit is achieved by fixing a, c with b → −b−1q1−N , N → ∞,

(b > 0),

P̌n(x, c, ab) → P̌qMn

(

x, cq−1, (ac)−1b
)

,

π(x,N, c, ab) → πqM

(

x, cq−1, (ac)−1b
)

, κ(n) → κqM(n) =
(c ; q)n
(ac ; q)n

,

π(z − y,N − y, a, b)
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→ π′
qM(z, y, aq

−1, a−1b) =
(−a−1b ; q)y(a ; q)z−y(a

−1b)z−yq(
z

2)−(
y

2)

(−b ; q)z(q ; q)z−y

(−b ; q)∞
(−a−1b ; q)∞

,

K(x, y) → KqM(x, y, a, b, c) =
∞
∑

z=max(x,y)

π(x, z, c, a)π′
qM(z, y, aq

−1, a−1b). (4.50)

This is not a standard convolution as π′
qM is not an orthogonality measure of (qM). The

relations (2.9), (2.19) and (2.21) of (qH) reduce to those of (qM). Based on KqM (4.50), let

us rederive these results. The symmetry condition (2.29) is satisfied for λ = (cq−1, (ac)−1b)

and Theorem2.1 gives (2.30). The eigenvalue formula (2.31) is written down as

κqM(n) =
∞
∑

z=0

πqM(z, aq
−1, a−1b)

z
∑

y=0

π(y, z, c, a)P̌qMn

(

y, cq−1, (ac)−1b
)

= 2φ1

(q−n, a

ac

∣

∣

∣
q ; cqn

)

=
(c ; q)n
(ac ; q)n

. (4.51)

In the last equality (3.59) is used. The 2φ1 form is also obtained from the balanced 3φ2 form

(4.49) by the above limit.

The other set of eigenvectors of KqM is

(−1)x
√

πqM(x, cq−1, (ac)−1b)πqM(x,−a−1bq−1, acb−1) P̌qMn(x,−a−1bq−1, acb−1)

= (−1)x
q(

x

2)

(q; q)x
P̌qMn(x,−a−1bq−1, acb−1)×

√

(−a−1b, c ; q)∞
(−acb−1,−(ac)−1b ; q)∞

, (4.52)

and the corresponding eigenvalue formula (2.31) takes the same form as (4.26). After a few

lines of direct calculation, we obtain

κ
(−)
qM (n) =

(c,−b ; q)∞
(ac,−a−1b ; q)∞

2φ1

(q−n, a

−b

∣

∣

∣
q ;−a−1bqn

)

=
(c,−b ; q)∞

(ac,−a−1b ; q)∞

(−a−1b ; q)n
(−b ; q)n

, (4.53)

with

0 < κ
(−)
qM (n) < 1, 0 <

κ
(−)
qM (n)

κqM(n)
=

(cqn,−bqn ; q)∞
(acqn,−a−1bqn ; q)∞

< 1.

The q-Charlier limit does not exist, as it requires c → 0. This causes κqM(n) → 1 and

π(x, z, c, a) → 0 in KqM.

4.4 Type (iv) convolution

This type of convolutions

(iv) : K(x, y)
def
=

min(x,y)
∑

z2=0

π(z2, y,λ1)
N
∑

z1=max(x,y)

π(x− z2, z1 − z2,λ3)π(z1 − y,N − y,λ2),
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was reported in [11] for (K). The eigenvalues were derived by a different method from that

given below. At x = 0 only the z2 = 0 term contributes and the eigenvalue formula becomes

a manageable double sum formula

κ(n) =

N
∑

z=0

z
∑

y=0

π(0, y,λ1)π(0, z,λ3)π(z − y,N − y,λ2)
π(y,N,λ)

π(0, N,λ)
P̌n(y,λ). (4.54)

4.4.1 Krawtchouk (K)

By taking λ1 = a, λ2 = b and λ3 = c, the matrix K(x, y) is

K(x, y) =

min(x,y)
∑

z2=0

π(z2, y, a)
N
∑

z1=max(x,y)

π(x− z2, z1 − z2, c)π(z1 − y,N − y, b). (4.55)

For the following λ,

λ = p
def
=

bc

bc+ (1− a)(1− c)
, (4.56)

the symmetry condition (2.9) is satisfied and Theorem 2.1 gives (2.19). By writing down

the eigenvalue formula (4.54), we have

κ(n) =

N
∑

z=0

π(z,N, b)

z
∑

y=0

π(y, z, c)P̌n(y, p) = 1F0

(−n

−
∣

∣

∣
bcp−1

)

= (a+ c− ac− bc)n =
(

1− bc− (1− a)(1− c)
)n
, (4.57)

by the generating function (4.5) and the self-duality (K).

Krawtchouk→Charlier This is achieved by fixing a and c with b → bN−1, N → ∞,

P̌n(x, p) → P̌Cn(x, p
′), p′

def
=

bc

(1− a)(1− c)
,

π(x,N, p) → πC(x, p
′), κ(n) → κC(n) = (a+ c− ac)n =

(

1− (1− a)(1− c)
)n
,

K(x, y) → KC(x, y, a, b, c) =

min(x,y)
∑

z2=0

π(z2, y, a)
∞
∑

z1=max(x,y)

π(x− z2, z1 − z2, c)πC(z1 − y, b), (4.58)

and the relations (2.9), (2.19) and (2.21) of (K) reduce to those of (C). Based on KC (4.58),

let us rederive these results. The symmetry condition (2.29) is satisfied for λ = p′ and

Theorem2.1 gives (2.30). The eigenvalue formula (2.31) reads

κC(n) =
∞
∑

z=0

πC(z, b)
z
∑

y=0

π(y, z, c)P̌Cn(y, p
′) = (a+ c− ac)n = 1F0

(−n

−
∣

∣

∣
bcp′ −1

)

, (4.59)

by using the generating function [4](9.14.11) and the self-duality (C).
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4.4.2 Hahn (H)

By taking λ1 = (a1, b1), λ2 = (a2, b2) and λ3 = (b1, a2), the matrix K(x, y) with four

parameters is

K(x, y) =

min(x,y)
∑

z2=0

π(z2, y, a1, b1)

N
∑

z1=max(x,y)

π(x− z2, z1 − z2, b1, a2)π(z1 − y,N − y, a2, b2). (4.60)

For the following λ,

λ = (a1 + b1, a2 + b2), (4.61)

the symmetry condition (2.9) is satisfied and Theorem2.1 gives (2.19). By evaluating the

eigenvalue formula (4.54), we obtain a balanced 4F3

κ(n) =
N
∑

z=0

π(z,N, a2, b2)
z
∑

y=0

π(y, z, b1, a2)P̌n(y, a1 + b1, a2 + b2)

= 4F3

(−n, n + a1 + b1 + a2 + b2 − 1, b1, a2
a1 + b1, b1 + a2, a2 + b2

∣

∣

∣
1
)

. (4.62)

Hahn→Meixner This is achieved by fixing a1, b1 and a2 with b2 → N(1− b2)b
−1
2 (⇒ 0 <

b2 < 1), N → ∞,

P̌n(x, a1 + b1, a2 + b2) → P̌Mn(x, a1 + b1, b2),

π(x,N, a1 + b1, a2 + b2) → πM(x, a1 + b1, b2),

K(x, y) → KM(x, y, a1, b1, a2, b2)

=

min(x,y)
∑

z2=0

π(z2, y, a1, b1)

∞
∑

z1=max(x,y)

π(x− z2, z1 − z2, b1, a2)πM(z1 − y, a2, b2), (4.63)

and the relations (2.9), (2.19) and (2.21) of (H) reduce to those of (M). Based on KM (4.63),

let us rederive these results. The symmetry condition (2.29) is satisfied for λ = (a1 + b1, b2)

and Theorem2.1 gives (2.30). The eigenvalue formula (2.31) is written down as

κM(n) =
∞
∑

z=0

πM(z, a2, b2)
z
∑

y=0

π(y, z, b1, a2)P̌Mn(y, a1 + b1, b2)

= 3F2

( −n, b1, a2
a1 + b1, b1 + a2

∣

∣

∣
1
)

. (4.64)
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Hahn→Meixner→Charlier This is achieved by a1 → a1N , b1 → b1N , a2 → a2N ,

b2 → b2
b2+N

, N → ∞,

P̌Mn

(

x, (a1 + b1)N, b2
b2+N

)

→ PCn

(

x, (a1 + b1)b2
)

,

πM

(

x, a2N, b2
b2+N

)

→ πC(x, a2b2),

π(z, y, a1N, b1N) → πK

(

z, y, a1
a1+b1

)

, π(x, z, b1N, a2N) → πK

(

x, z, b1
b1+a2

)

,

KM(x, y) → KC(x, y) (4.65)

=

min(x,y)
∑

z2=0

πK

(

z2, y,
a1

a1+b1

)

∞
∑

z1=max(x,y)

πK

(

x− z2, z1 − z2,
b1

b1+a2

)

πC(z1 − y, a2b2),

and the relations (2.29), (2.30) and (2.31) of (M) reduce to those of (C). This KC agrees

with (4.58) with the replacement (a, b, c) → ( a1
a1+b1

, a2b2,
b1

b1+a2
).

4.4.3 q-Hahn (qH)

This convolution for q-Hahn has almost the same structure as that for Hahn. By taking

λ1 = (a1, b1), λ2 = (a2, b2) and λ3 = (b1, a2), the matrix K(x, y) with four parameters is

K(x, y) =

min(x,y)
∑

z2=0

π(z2, y, a1, b1)
N
∑

z1=max(x,y)

π(x− z2, z1 − z2, b1, a2)π(z1 − y,N − y, a2, b2). (4.66)

For the following λ,

λ = (a1b1, a2b2), (4.67)

the symmetry condition (2.9) is satisfied and Theorem 2.1 gives (2.19). The eigenvalue

formula (4.54) takes a neat form and after a few lines of direct calculation, we obtain a

balanced 4φ3,

κ(n) =

N
∑

z=0

π(z,N, a2, b2)

z
∑

y=0

π(y, z, b1, a2)P̌n(y, a1b1, a2b2)

= 4φ3

(q−n, a1b1a2b2q
n−1, b1, a2

a1b1, b1a2, a2b2

∣

∣

∣
q ; q
)

. (4.68)

q-Hahn→ q-Meixner This limit is achieved by fixing a1, b1, a2 with b2 → −b−1
2 q1−N ,

N → ∞,

P̌n(x, a1b1, a2b2) → P̌qMn

(

x, a1b1q
−1, (a1b1a2)

−1b2
)

,
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π(x,N, a1b1, a2b2) → πqM

(

x, a1b1q
−1, (a1b1a2)

−1b2
)

,

π(z1 − y,N − y, a2, b2)

→ π′
qM(z1, y, a2q

−1, a−1
2 b2) =

(−a−1
2 b2 ; q)y(a2 ; q)z1−y(a

−1
2 b2)

z1−yq(
z1
2 )−(

y

2)

(−b2 ; q)z1(q ; q)z1−y

(−b2; q)∞

(−a−1
2 b2 ; q)∞

,

K(x, y) → KqM(x, y) =

min(x,y)
∑

z2=0

π(z2, y, a1, b1)
∞
∑

z1=max(x,y)

π(x− z2, z1 − z2, b1, a2)

× π′
qM(z1, y, a2q

−1, a−1
2 b2), (4.69)

and the relations (2.9), (2.19) and (2.21) of (qH) reduce to those of (qM). The above KqM

(4.69) is not a convolution of the orthogonality measures as π′
qM is not. Based on KqM

(4.69), let us rederive these results. The symmetry condition (2.29) is satisfied for λ =

(a1b1q
−1, (a1b1a2)

−1b2) and Theorem2.1 gives (2.30). The eigenvalue formula (2.31) takes

a neat form and several lines of direct calculation gives

κqM(n) =

∞
∑

z=0

πqM(z, a2q
−1, a−1

2 b2)

z
∑

y=0

π(y, z, b1, a2)P̌qMn

(

y, a1b1q
−1, (a1b1a2)

−1b2
)

= 3φ2

(q−n, b1, a2
a1b1, b1a2

∣

∣

∣
q ; a1b1q

n
)

. (4.70)

The 3φ2 form (4.70) is also obtained from the 4φ3 form (4.68) by the above mentioned limit.

The other set of eigenvectors of KqM is

(−1)x
√

πqM(x, a1b1q−1, (a1b1a2)−1b2)πqM(x,−a−1
2 b2q−1, a1b1a2b

−1
2 )

× P̌qMn(x,−a−1
2 b2q

−1, a1b1a2b
−1
2 )

= (−1)x
q(

x

2)

(q; q)x
P̌qMn(x,−a−1

2 b2q
−1, a1b1a2b

−1
2 )×

√

(a1b1,−a−1
2 b2 ; q)∞

(−a1b1a2b
−1
2 ,−(a1b1a2)−1b2 ; q)∞

. (4.71)

After a few pages of long calculation, we obtain the corresponding eigenvalue

κ
(−)
qM (n) =

(b1,−b2 ; q)∞

(b1a2,−a−1
2 b2 ; q)∞

∞
∑

z=0

πqM(z, a2q
−1,−b1)

z
∑

y=0

π(y, z,−a−1
2 b2, a2)π(0, y, a1, b1)

× P̌qMn(y,−a−1
2 b2q

−1, a1b1a2b
−1
2 )

=
(b1,−b2 ; q)∞

(b1a2,−a−1
2 b2 ; q)∞

n
∑

k=0

(q−n, b1, a2 ; q)k
(−b2, a1b1 ; q)k

(−a−1
2 b2q

n)k

(q ; q)k

× 3φ2

(a1, a2q
k, −a−1

2 b2q
k

−b2qk, a1b1qk

∣

∣

∣
q ; b1

)

. (4.72)

The q-Charlier limit does not exist, as it requires a1b1 → 0 in πqM(x, a1b1, a
−1
2 b2). This causes

π(z2, y, a1, b1)π(x− z2, z1 − z2, b1, a2) → 0 in KqM.
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4.5 Type (v) convolution

We find only one K(x, y) by this convolution for Krawtchouk (K). By taking λ1 = a, λ2 = b

and λ3 = c, the matrix K(x, y) is

(v) : K(x, y) =

min(x,y)
∑

z2=0

π(z2, y, a)
N
∑

z1=x+y−z2

π(x− z2, z1 − y, c)π(z1 − y,N − y, b). (4.73)

For the following λ,

λ = p
def
=

bc

1− a+ bc
, (4.74)

the symmetry condition (2.9) is satisfied and Theorem 2.1 gives (2.19). By writing down

the eigenvalue formula (2.21), in which only the z2 = 0 term contributes, we have

κ(n) =

N
∑

z=0

π(z,N, b)

z
∑

y=0

π(y, z, c)P̌n(y, p) = (a− bc)n = 1F0

(−n

−
∣

∣

∣
bcp−1

)

, (4.75)

by using the generating function (4.5) and the self-duality (K). It is interesting to note that

these expressions are all symmetric in b and c. Odd eigenvalues are negative if a < bc.

Krawtchouk→Charlier This is achieved by fixing a and c with b → bN−1, N → ∞,

P̌n(x, p) → P̌Cn(x, p
′), p′

def
=

bc

1− a
,

π(x,N, p) → πC(x, p
′), κ(n) → κC(n) = an,

K(x, y) → KC(x, y, a, b, c) =

min(x,y)
∑

z2=0

π(z2, y, a)
∞
∑

z1=x+y−z2

π(x− z2, z1 − y, c)πC(z1 − y, b), (4.76)

and the relations (2.9), (2.19) and (2.21) of (K) reduce to those of (C). Based on KC (4.76),

let us rederive these results. The symmetry condition (2.29) is satisfied for λ = p′ and

Theorem2.1 gives (2.30). The eigenvalue formula (2.31) reads

κC(n) =
∞
∑

z=0

πC(z, b)
z
∑

y=0

π(y, z, c)P̌Cn(y, p
′) = an = 1F0

(−n

−
∣

∣

∣
bcp′ −1

)

, (4.77)

by using the generating function [4](9.14.11) and the self-duality (C).

4.6 Multiple convolutions of type (i) and (iii)

For the Krawtchouk (K) case, type (i) and (iii) convolutions can be repeated indefinitely.
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Let us define π(±)(x, y,N, p) (x, y ∈ Z) as follows:

π(+)(x, y,N, p)
def
=

{

π(x− y,N − y, p) : 0 ≤ y ≤ x ≤ N
0 : otherwise

,

π(−)(x, y,N, p)
def
=

{

π(x, y, p) : 0 ≤ x ≤ y ≤ N
0 : otherwise

.

They are related by

π(−)(x, y,N, p) = π(+)(N − x,N − y,N, 1− p). (4.78)

For an integerm ≥ 2, let us defineK(x, y) = K(ǫ1,...,ǫm)(x, y,N, p1, . . . , pm) (x, y ∈ X , ǫj = ±)

by

K(x, y)
def
=

N
∑

z1,...,zm−1=0

m
∏

j=1

π(ǫj)(zj−1, zj, N, pj) (z0 = x, zm = y). (4.79)

For example,

K(+,−,+,−)(x, y,N, p1, p2, p3, p4)

=
N
∑

z2=0

min(x,z2)
∑

z1=0

min(z2,y)
∑

z3=0

π(x− z1, N − z1, p1)π(z1, z2, p2)π(z2 − z3, N − z3, p3)π(z3, y, p4).

For m = 2 case, K(+,−)(x, y,N, p1, p2) and K(−,+)(x, y,N, p1, p2) correspond to (4.2) and

(4.36) with (a, b) = (p2, p1), respectively. From (4.78), we have

K(ǫ1,...,ǫm)(x, y,N, p1, . . . , pm) = K(−ǫ1,...,−ǫm)(N − x,N − y,N, 1− p1, . . . , 1− pm), (4.80)

and (4.2) and (4.36) are connected by this relation. Since two successive π(+)π(+) and π(−)π(−)

can be reduced to one π(+) and π(−) by (3.47) and (3.46), respectively, it is sufficient to con-

sider (ǫ1, . . . , ǫm) = (+,−,+,−, . . .) or (−,+,−,+, . . .). That is, the multiple convolutions

of type (i) and (iii), respectively. Since π(+) is lower triangular and π(−) is upper triangular,

det π(+)(∗, ∗, N, p) =
∏

x∈X

π(+)(x, x,N, p) =
∏

n∈X

(1− p)n,

det π(−)(∗, ∗, N, p) =
∏

x∈X

π(−)(x, x,N, p) =
∏

n∈X

pn,

the eigenvalues are easily guessed as in the original type (i) and (iii) cases,

detK(ǫ1,...,ǫm) =
∏

n∈X

( m
∏

j=1

p
(ǫj)
j

)n

, p(+) def
= 1− p, p(−) def

= p. (4.81)
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In order to determine the parameter λ = p which satisfies the symmetry condition (2.9), we

solve the equation

K(0, N)π(N,N, p) = K(N, 0)π(0, N, p)

(

⇒ p =
1

1 +
(

K(0,N)
K(N,0)

)
1

N

)

,

which is obtained by setting x = 0 and y = N in (2.9). Among (N + 1)× (N + 1) elements

of K(x, y), K(0, N) and K(N, 0) are the easiest to evaluate, by successive applications of

the binomial theorem, for example,

K(+,−)(0, N,N, p1, p2) = (1− p1)
N(1− p2)

N , K(+,−)(N, 0, N, p1, p2) = pN1 ,

K(+,−,+)(0, N,N, p1, p2, p3) = (1− p1)
N(1− p2)

N ,

K(+,−,+)(N, 0, N, p1, p2, p3) =
(

p1 + (1− p1)p2p3
)N

,

K(+,−,+,−)(0, N,N, p1, p2, p3, p4) =
(

(1− p1)(1− p2p3 − p2p4 + p2p3p4)
)N

,

K(+,−,+,−)(N, 0, N, p1, p2, p3, p4) =
(

p1 + (1− p1)p2p3
)N

.

We obtain the following λ = p and

κ(n) =

( m
∏

j=1

p
(ǫj)
j

)n

= 1F0

(−n

−
∣

∣

∣
1− κ(1)

)

, (4.82)

(ǫ1, . . . , ǫm) = (+,−,+,−, . . .) : p =
1

1− κ(1)

[m−1

2
]

∑

k=0

2k
∏

j=1

p
(ǫj)
j · p2k+1, (4.83)

(ǫ1, . . . , ǫm) = (−,+,−,+, . . .) : p =
1

1− κ(1)

[m
2
]

∑

k=1

2k−1
∏

j=1

p
(ǫj)
j · p2k. (4.84)

These two are related by (4.80). The symmetry condition (2.9) is verified by explicit calcu-

lation for small m and N . We do not have an analytical proof of the symmetry condition

(2.9) for general m and N .

4.7 One-parameter families of commuting K’s

We have derived various K(x, y)’s satisfying

K(x, y) > 0,
∑

x∈X

K(x, y) = 1, (2.2)

∑

y∈X

K(x, y)π(y,N,λ)P̌n(y,λ) = κ(n)π(x,N,λ)P̌n(x,λ) (n ∈ X ). (2.19)
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It is trivial that the m-th power of K (m ≥ 1), Km, also satisfies

Km(x, y) > 0,
∑

x∈X

Km(x, y) = 1,

∑

y∈X

Km(x, y)π(y,N,λ)P̌n(y,λ) = κ(n)mπ(x,N,λ)P̌n(x,λ) (n ∈ X ).

Namely Km also gives an exactly solvable Markov chain.

It is interesting to note that by changing the parameters {λj} to {λ′
j(t)}, some K’s

derived in § 4.1–§ 4.5 can be deformed to create a one parameter (t) family of commuting K’s.

That is, they share the same eigenvectors but the eigenvalues are different. For examples,

the following λ
′
j(t)’s give the same λ in the symmetry condition (2.9),

(4.3) : λ
′
1(t) = at, λ

′
2(t) =

(1− at)b

1− a(1− b(1− t))
(0 < t ≤ 1) ⇒ λ =

b

1− a+ ab
,

(4.8) : λ
′
1(t) = at, λ

′
2(t) =

(1− at)b

1− a
(0 < t ≤ 1) ⇒ λ =

b

1− a
,

(4.11) : λ
′
1(t) = (a+ t, b− t), λ

′
2(t) = (b− t, c) (−a < t < b) ⇒ λ = (a + b, c),

(4.19) : λ
′
1(t) = (at, bt−1), λ

′
2(t) = (bt−1, c) (b < t < a−1) ⇒ λ = (ab, c),

(4.23) : λ
′
1(t) = (at, bt−1), λ

′
2(t) = (bt−1q−1, b−1tc) (b < t < a−1) ⇒ λ =

(

abq−1, (ab)−1c
)

.

The two matrices K(x, y, {λj}) and K(x, y, {λ′
j(t)}) have the common eigenvectors π(x,λ)

P̌n(x,λ) and they commute as is clear from the spectral representation Theorem 2.3. But

the eigenvalues are different, κ(n, {λj}) 6= κ(n, {λ′
j(t)}). Let λ

′
j(t

[i]) (i = 1, 2, . . .) be

the parameters giving the same λ, and set K [i](x, y) = K(x, y, {λ′
j(t

[i])}) and κ[i](n) =

κ(n, {λ′
j(t

[i])}). For m such K [i]’s, let us consider their matrix product (the order is irrele-

vant),

K(m) def
= K [m] · · ·K [2]K [1], κ(m)(n)

def
= κ[m](n) · · ·κ[2](n)κ[1](n). (4.85)

Then we have

K(m)(x, y) > 0,
∑

x∈X

K(m)(x, y) = 1,

∑

y∈X

K(m)(x, y)π(y,N,λ)P̌n(y,λ) = κ(m)(n)π(x,N,λ)P̌n(x,λ) (n ∈ X ). (4.86)

Namely K(m) also gives an exactly solvable Markov chain.

5 Other Topics

Here we discuss two related topics.
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5.1 Dual Markov chains

For a Markov chain K(x, y) on a finite one dimensional integer lattice X , its ‘dual’ Markov

chainKd(x, y) is defined by the similarity transformation in terms of the anti-diagonal matrix

J , J(x, y)
def
= δx,N−y,

Kd(x, y)
def
= (JKJ)(x, y) = K(N − x,N − y), (5.1)

∑

y∈X

K(x, y)vn(y) = κ(n)vn(x) ⇒
∑

y∈X

Kd(x, y)vdn(y) = κ(n)vdn(x), vdn(x)
def
= vn(N − x). (5.2)

The concept of duality was reported in [12].

For K(x, y) constructed by convolutions listed in § 3.1, the dual Markov chains take the

following forms,

(di) : Kd(x, y)
def
=

N
∑

z=max(x,y)

π(z − x, z,λ2)π(N − z,N − y,λ1), (5.3)

(dii) : Kd(x, y)
def
=

min(x+y,N)
∑

z=max(x,y)

π(z − x, y,λ2)π(N − z,N − y,λ1), (5.4)

(diii) : Kd(x, y)
def
=

min(x,y)
∑

z=0

π(N − x,N − z,λ2)π(y − z, y,λ1), (5.5)

(div) : Kd(x, y)
def
=

N
∑

z2=max(x,y)

π(N − z2, N − y,λ1)

min(x,y)
∑

z1=0

π(z2 − x, z2 − z1,λ3)π(y − z1, y,λ2),

(5.6)

(dv) : Kd(x, y)
def
=

N
∑

z2=max(x,y)

π(N − z2, N − y,λ1)

x+y−z2
∑

z1=0

π(z2 − x, y − z1,λ3)π(y − z1, y,λ2),

(5.7)

Kd(x, y)π(N − y,N,λ) = Kd(y, x)π(N − x,N,λ). (5.8)

For (K) and (H), the dual eigenvectors take the standard forms with flipped λ, see (3.7),

(3.11) for (K) and (3.16), (3.20) for (H),

πK(N − x,N, p) = πK(x,N, 1− p), P̌Kn(N − x, p) ∝ P̌Kn(x, 1− p),

πH(N − x,N, a, b) = πH(x,N, b, a), P̌Hn(N − x, a, b) ∝ P̌Hn(x, b, a),

and the limiting procedure for N → ∞ with fixed x goes in a similar way as before. However,

for (qH) the situation is different, see (3.29),

πqH(N − x,N, a, b) 6∝ πqH(x,N, b, a), P̌qHn(N − x,N, a, b) 6∝ P̌qHn(x,N, b, a), (5.9)
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and the reductions to (qM) cannot be carried out.

5.1.1 reduction to little q-Jacobi

It is known [9] (§V.C.1) that the q-Hahn polynomial with the replacement x → N − x is

another polynomial in η(x) = 1 − qx called the alternative q-Hahn (aqH) polynomial. The

basic data of (aqH) with λ = (a, b) (0 < a < 1, b < 1) are

π(x,N, a, b) =

[

N

x

]

(a ; q)N−x (b ; q)x a
x

(ab ; q)N
, (5.10)

d2n =

[

N

n

]

(b, abq−1 ; q)n a
nqn(n−1)

(a, abqN ; q)n

1− abq2n−1

1− abq−1
, (5.11)

s1η(x)π(x,N, a, b) = −π(x− 1, N − 1, a, bq), s1
def
= − 1− ab

a(1− b)(1− qN)
, (5.12)

η(z)π(z, x, a, b) =
a(1− b)

1− ab
η(x)π(z − 1, x− 1, a, bq), η(x) = 1− qx, (5.13)

P̌n(x, a, b) = Pn

(

η(x), a, b
)

= 3φ2

(q−n, abqn−1, q−x

b, q−N

∣

∣

∣
q ; a−1qx+1−N

)

. (5.14)

The above non-proportionality relation (5.9) is rewritten as the equalities between the q-

Hahn (qH) and the alternative q-Hahn (aqH) polynomials

πqH(N − x,N, a, b) = πaqH(x,N, a, b), (5.15)

P̌qHn(N − x, a, b) = (−a)nq(
n

2)
(b ; q)n
(a ; q)n

P̌aqHn(x, a, b). (5.16)

The transition matrices K of (aqH) are expressed by the duals of those of (qH), see (5.3)–

(5.7),

K
(i)
aqH(x, y,λ1,λ2) = K

(diii)
qH (x, y,λ1,λ2), (5.17)

K
(iii)
aqH(x, y,λ1,λ2) = K

(di)
qH (x, y,λ1,λ2), (5.18)

K
(iv)
aqH(x, y,λ1,λ2,λ3) = K

(div)
qH (x, y,λ2,λ1,λ3), (5.19)

independently of the choice of parameters λ1 and λ2 (and λ3). Therefore the results of (qH)

in § 4.1.3, § 4.3.3 and § 4.4.3 are translated to those of (aqH). This is merely rewriting, but

their N → ∞ limits give new results. By the limit N → ∞ with fixed a and b, (aqH) goes

to the little q-Jacobi (lqJ) polynomial,

lim
N→∞

πaqH(x,N, a, b) = πlqJ(x, a, b), lim
N→∞

P̌aqHn(x,N, a, b) = P̌lqJn(x, a, b). (5.20)
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The basic data of (lqJ) with λ = (a, b) (0 < a < 1, b < 1) is

π(x, a, b) =
(b ; q)x a

x

(q ; q)x

(a ; q)∞
(ab ; q)∞

, d2n =
(b, abq−1 ; q)n a

nqn(n−1)

(q, a ; q)n

1− abq2n−1

1− abq−1
, (5.21)

s1η(x)π(x, a, b) = −π(x− 1, a, bq), η(x) = 1− qx, s1
def
= −1− abq−1

a(1− b)
, (5.22)

P̌n(x, a, b) = Pn

(

η(x), a, b
)

= 3φ1

(q−n, abqn−1, q−x

b

∣

∣

∣
q ; a−1qx+1

)

(5.23)

= (−a)−nq−(
n

2)
(a ; q)n
(b ; q)n

2φ1

(q−n, abqn−1

a

∣

∣

∣
q ; qx+1

)

. (5.24)

The conventional little q-Jacobi polynomial is pn(q
x; a, b|q) = 2φ1

(

q−n, abqn+1

aq

∣

∣q ; qx+1
)

and

our parametrisation is slightly different from the standard one (a, b)standard = (aq−1, bq−1).

Similarly to those examples in §3.3, this π keeps its form under the following convolutions:

x
∑

z=0

π(x− z, a1, b1)π(z, a1b1, b2) = π(x, a1, b1b2), (5.25)

x
∑

z=y

π(x− z, a1, b1)π(z − y, a1b1, b2) = π(x− y, a1, b1b2). (5.26)

These are obtained by the sum formula for πqH (3.58).

alternative q-Hahn→ little q-Jacobi From the type (i), (iii), (iv) transition matrices

KaqH, we obtain KlqJ whose eigenvectors are described by the little q-Jacobi polynomial,

(i) : KlqJ(x, y) =

min(x,y)
∑

z=0

πlqJ(x− z, c, a)πaqH(z, y, a, b), (5.27)

eigenvector : πlqJ(x, c, ab)P̌lqJn(x, c, ab), κ(n) : (4.49), (5.28)

(iii) : KlqJ(x, y) =
∞
∑

z=max(x,y)

πaqH(x, z, b, c)πlqJ(z − y, a, b), (5.29)

eigenvector : πlqJ(x, ab, c)P̌lqJn(x, ab, c), κ(n) : (4.20), (5.30)

(iv) : KlqJ(x, y) =

min(x,y)
∑

z2=0

πaqH(z2, y, a2, b2)
∞
∑

z1=max(x,y)

πaqH(x− z2, z1 − z2, b1, a2)

× πlqJ(z1 − y, a1, b1), (5.31)

eigenvector : πlqJ(x, a1b1, a2b2)P̌lqJn(x, a1b1, a2b2), κ(n) : (4.68). (5.32)
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5.2 Repeated discrete time Birth and Death processes

Exactly solvable discrete time Birth and Death (BD) processes KBD are constructed [8] based

on exactly solvable continuous time BD on a one dimensional integer lattice X ,

KBD = I + tS LBD, i.e. KBD(x, y) = δx y + tS LBD(x, y), (5.33)

LBD(x+ 1, x) = B(x), LBD(x− 1, x) = D(x), LBD(x, x) = −B(x)−D(x),

LBD(x, y) = 0 (|x− y| ≥ 2),
∑

x∈X

LBD(x, y) = 0, (5.34)

in which B(x) and D(x) are the birth and death rates at point x and they are chosen to

be the coefficient functions of the difference equations governing the orthogonal polynomials

{P̌n(x)} belonging to Askey scheme [6, 2, 4, 9],

B(x)
(

P̌n(x)− P̌n(x+ 1)
)

+D(x)
(

P̌n(x)− P̌n(x− 1)
)

= E(n)P̌n(x) (n ∈ X ), (5.35)

and the time scale parameter tS must satisfy the upper bound condition

tS ·max
(

B(x) +D(x)
)

< 1. (5.36)

The eigenvectors of KBD are {π(x)P̌n(x)} (n ∈ X ) and π(x) is the normalised orthogonality

measure of the polynomial = the stationary probability distribution and

∑

y∈X

KBD(x, y)π(y)P̌n(y) = κ(n)π(x)P̌n(x), κ(n)
def
= 1− tS E(n) (n ∈ X ). (5.37)

This applies to a good part of the orthogonal polynomials of a discrete variable in Askey

scheme, including the Hahn, q-Hahn and Racah and q-Racah [8].

From the definition (5.34), it is shown that the m-th power of LBD (m ≥ 1), Lm
BD, has

the following form of the matrix elements,

Lm
BD(x+ k, x) = (−1)m−ka

(m)
k (x) (−m ≤ k ≤ m), Lm

BD(x, y) = 0 (|x− y| > m),

where a
(m)
k (x) > 0. Let us consider the following matrix X ,

X =

m−1
∑

j=0

cjL
m−j
BD , c0 = 1

(

⇒
∑

x∈X

X(x, y) = 0, X(x, y) = 0 (|x− y| > m)
)

, (5.38)

where cj are constants. Its non zero matrix elements are

X
(

x± (m− k), x
)

=

k
∑

j=0

cj(−1)k−ja
(m−j)
±(m−k)(x) (0 ≤ k ≤ m− 1),
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X(x, x) =
m−1
∑

j=0

cj(−1)m−ja
(m−j)
0 (x).

Starting from X(x ±m, x) = a
(m)
±m(x) > 0, we can tune ck (k = 1, . . . , m − 2 in turn) such

that X(x± (m− k), x) > 0, and tune cm−1 such that X(x± 1, x) > 0 and X(x, x) < 0. For

such chosen weights {cj}, we define a matrix K
(m)
BD ,

K
(m)
BD

def
= Id + tS X, tS ·max

(

−X(x, x)
)

< 1, (5.39)

which satisfies

K
(m)
BD (x, y) ≥ 0,

∑

x∈X

K
(m)
BD (x, y) = 1, K

(m)
BD (x, y) = 0 (|x− y| > m).

This gives an exactly solvable Markov chain and the matrices K
(m)
BD ’s have common eigen-

vectors

∑

y∈X

K
(m)
BD (x, y)π(y)P̌n(y) = κ(m)(n)π(x)P̌n(x),

κ(m)(n)
def
= 1 + tS

m−1
∑

j=0

(−1)m−jcjE(n)m−j (n ∈ X ). (5.40)

Before closing this section a few remarks on possible applications are in order. As is well

known the birth and death processes are recognised to be related to diffusion processes [15].

In other words, the equations for BD processes are space discretisation of 1-d Fokker-Planck

equations. Discrete time BD processes are further discretisation in time. As illustrated by

the famous Ehrenfest urn model, Markov chains are also related to diffusion processes as

well as to the familiar random walks. Various examples in this and preceding sections are

multi-parameter generalisations of known Markov chains and BD processes. It is expected

that they would find diverse applications in physics, chemistry, etc. in particular, diffusions

and random walks.

6 Summary and Comments

Based on the fact that many examples of exactly solvable BD processes/chains [6, 8], typical

cases of Markov processes/chains, have been constructed in terms of orthogonal polynomials

of a discrete variable [1]–[5], we establish a wide range of generalisations of various Markov
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chains/processes [11]–[14] using solvability as a guide. Adopting the convolutions of the

orthogonality measures is a new input of the present research. It is an interesting challenge

to formulate probabilistic procedures/interpretations like “cumulative Bernoulli trials” for

these new examples.

Except for those corresponding to the extra eigenvectors for the q-Meixner (qM) in § 4.1.3,

§ 4.3.3, § 4.4.3, the eigenvalues of the K’s derived in this paper share many remarkable

properties;

1. κ(n) has a neat sum formula of one or two π’s and P̌n, for example

κ(n) =
∑

y∈X

π(y,N,λ′)P̌n(y,λ).

2. κ(n) is independent of N , the size of the lattice. This reminds us of the similar

situation of the exactly solvable BD processes [6, 7, 8], which is due to the fact that the

eigenvalues of the difference equations governing these polynomials are N independent

[9].

3. κ(n) has an expression of a terminating (q)-hypergeometric series, for example,

κ(n) = 3φ2

(q−n, b1, a2
a1b1, b1a2

∣

∣

∣
q ; a1b1q

n
)

.

We do not know how the bounds −1 < κ(n) ≤ 1 are ingrained in the hypergeometric

expressions, in particular, in 3F2, 4F3, 3φ2 and 4φ3.

Deciphering these curious facts, we believe, would lead to a deeper understanding of the

subject.
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Appendix

Here we provide the proof of triangularity Lemma

∑

y∈X

K(y, x)η(y)n =
n
∑

m=0

anmη(x)
m (n ∈ X )

(

anm = 0 for n < m
)

, (2.10)
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η(x) =

{

x : (i)–(v)
q−x − 1 : (i), (iii), (iv)

. (2.11)

The proof depends on a universal property of the normalised orthogonality measure π(x,N,λ)

(or π(x,λ)) of all the polynomials of a discrete variable in Askey scheme [9], except for those

having the Jackson integral measures:

finite : s1η(x,λ)π(x,N,λ) = −π(x− 1, N − 1,λ′), (A.1)

semi-infinite : s1η(x,λ)π(x,λ) = −π(x− 1,λ′), (A.2)

in which s1 is the coefficient of η(x,λ) in P1(η(x,λ),λ),

P1

(

η(x,λ),λ
)

= 1 + s1η(x,λ).

Note that the Racah, dual Hahn etc. [2, 3] are polynomials in η(x,λ), depending on param-

eters λ. It is easy to verify these formulas one by one. In § 3.2 the explicit expressions of s1

and λ
′ are given in (3.8), (3.13), (3.17), (3.22), (3.26), (3.31), (3.35) for (K), (C), (H), (M),

(qH) and (qM), and (5.22) for (lqJ). Among them, the formulas (A.1) for (K), (H) and (qH)

can be rewritten as

η(z)π(z, x,λ) = β η(x)π(z − 1, x− 1,λ′), (A.3)

in which β is a constant independent of N . See (3.9), (3.18) and (3.27) for the explicit forms

for (K), (H) and (qH). To the best of our knowledge, the formulas (A.1)–(A.3) have not been

reported yet.

The general strategy is as follows. Apply formulas (A.1)–(A.3) with various arguments,

e.g. η(y − z), η(z), etc. repeatedly to K(y, x) and reduce η(y)n to a degree n polynomial

in η(x) through various intermediaries including z (z1 and z2). This is guaranteed as the

formulas (A.1)–(A.3) do not increase the powers of η. After the reduction, the remaining π’s

are evaluated to 1 by the summation in y and z (z1 and z2). For each type of convolutions

K, the structure of the reduction η(y) → η(x) is the same for the group having η(x) = x

i.e. (K), (C), (M) and (H). It is more involved for those having η(x) = q−x− 1 i.e. (qH) and

(qM). It is important to stress that K’s for the semi-infinite Markov chains given in § 4 have

at least one π belonging to (K), (H) or (qH), so that (A.3) can be applied to extract η(x).

The triangularity also holds for these semi-infinite Markov chains.

Below we demonstrate the first step reduction η(y) → η(x) for type (i) convolution

K(y, x) =

min(x,y)
∑

z=0

π(y − z,N − z,λ2)π(z, x,λ1). (A.4)
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For η(x) = q−x − 1, by using η(y) = q−zη(y − z) + η(z) and q−zη(N − z) = η(N)− η(z), we

obtain

K(y, x)η(y) =

min(x,y)
∑

z=0

q−zη(y − z)π(y − z,N − z,λ2)π(z, x,λ1)

+

min(x,y)
∑

z=0

π(y − z,N − z,λ2)η(z)π(z, x,λ1)

=

min(x,y−1)
∑

z=0

β2q
−zη(N − z)π(y − z − 1, N − z − 1,λ′

2)π(z, x,λ1)

+

min(x,y)
∑

z=1

π(y − z,N − z,λ2)β1η(x)π(z − 1, x− 1,λ′
1)

= β2η(N)

min(x,y−1)
∑

z=0

π(y − z − 1, N − z − 1,λ′
2)π(z, x,λ1)

− β2β1η(x)

min(x,y−1)
∑

z=1

π(y − z − 1, N − z − 1,λ′
2)π(z − 1, x− 1,λ′

1)

+ β1η(x)

min(x,y)
∑

z=1

π(y − z,N − z,λ2)π(z − 1, x− 1,λ′
1). (A.5)

For η(x) = x, by using η(y) = η(y − z) + η(z) and η(N − z) = η(N)− η(z), the same result

is obtained similarly. Summing (A.5) over y, we obtain

∑

y∈X

K(y, x)η(y) = β2η(N) + β1(1− β2)η(x),

which is (2.10) for n = 1.

By a similar calculation, we obtain

(ii) η(x) = x :

K(y, x)η(y) = β2η(N)

min(x,y−1)
∑

z=max(0,x+y−N)

π(y − z − 1, N − x− 1,λ′
2)π(z, x,λ1)

+ η(x)
(

−β2

min(x,y−1)
∑

z=max(0,x+y−N)

π(y − z − 1, N − x− 1,λ′
2)π(z, x,λ1)

+ β1

min(x,y)
∑

z=max(1,x+y−N)

π(y − z,N − x,λ2)π(z − 1, x− 1,λ′
1)
)

, (A.6)
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(iii) η(x) = x, q−x − 1 :

K(y, x)η(y) = β1β2η(N)

N
∑

z=max(x+1,y)

π(y − 1, z − 1,λ′
2)π(z − x− 1, N − x− 1,λ′

1)

+ β2η(x)
(

−β1

N
∑

z=max(x+1,y)

π(y − 1, z − 1,λ′
2)π(z − x− 1, N − x− 1,λ′

1)

+
N
∑

z=max(1,x,y)

π(y − 1, z − 1,λ′
2)π(z − x,N − x,λ1)

)

, (A.7)

(iv) η(x) = x, q−x − 1 :

K(y, x)η(y)

= β2β3η(N)

min(x,y−1)
∑

z2=0

π(z2, x,λ1)
N
∑

z1=max(x+1,y)

π(y − z2 − 1, z1 − z2 − 1,λ′
3)

× π(z1 − x− 1, N − x− 1,λ′
2)

+ η(x)
(

−β2β3

min(x,y−1)
∑

z2=0

π(z2, x,λ1)
N
∑

z1=max(x+1,y)

π(y − z2 −1, z1 − z2 −1,λ′
3)

× π(z1 − x−1, N−x−1,λ′
2)

+ β1

min(x,y)
∑

z2=1

π(z2 − 1, x− 1,λ′
1)

N
∑

z1=max(x,y)

π(y − z2, z1 − z2,λ3)π(z1 − x,N − x,λ2)

+ β3

min(x,y−1)
∑

z2=0

π(z2, x,λ1)

N−1
∑

z1=max(x−1,y−1)

π(y − 1− z2, z1 − z2,λ
′
3)π(z1 + 1− x,N − x,λ2)

− β1β3

min(x−1,y−2)
∑

z2=0

π(z2, x− 1,λ′
1)

N−2
∑

z1=max(x−2,y−2)

π(y − 2− z2, z1 − z2,λ
′
3)

× π(z1 + 2− x,N − x,λ2)
)

, (A.8)

(v) η(x) = x :

K(y, x)η(y)

= β2β3η(N)

min(x,y−1)
∑

z2=0

π(z2, x,λ1)
N
∑

z1=x+y−z2

π(y − z2 − 1, z1 − x− 1,λ′
3)

× π(z1 − x− 1, N − x−1,λ′
2)

+ η(x)
(

−β2β3

min(x,y−1)
∑

z2=0

π(z2, x,λ1)

N
∑

z1=x+y−z2

π(y − z2 − 1, z1 − x− 1,λ′
3)
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× π(z1 − x− 1, N − x−1,λ′
2) (A.9)

+ β1

min(x,y)
∑

z2=1

π(z2 − 1, x− 1,λ′
1)

N
∑

z1=x+y−z2

π(y − z2, z1 − x,λ3)π(z1 − x,N − x,λ2)
)

.

Since each summation in (A.5)–(A.9) has the same structure as the original K(y, x)

with shifted arguments and parameters, the next step (K(y, x)η(y)2) and further steps

(K(y, x)η(y)3, . . .) go almost parallel with the help of formulas, like

η(x) = x : η(y) = η(y − i) + η(i), η(x− j) = η(x) + η(−j),

η(x) = q−x − 1 : η(y) = q−iη(y − i) + η(i), η(x− j) = qjη(x) + η(−j),

and summation over y gives (2.10).

For type (ii) and (v) with η(x) = q−x − 1, we obtain
∑

y∈X K(y, x)η(y) = α1 + α2η(x) +

α3η(N − x) (αi : constant), and the triangularity (2.10) does not hold for these cases.

For the semi-infinite Markov chains given in § 4 and the examples with η(x) = 1− qx in

§ 5.1.1, similar proof of triangularity holds. Obtaining the explicit form of the coefficients

{anm} in (2.10) is not necessary. One only has to convince oneself that the triangularity

holds. The eigenvalues are easily obtained by the formula (2.21) in Theorem 2.2. Since

triangularity is the consequence of (A.1)–(A.3), it is quite natural to expect that it also holds

for convolutions other than type (i)–(v).
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