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Abstract

The discrete orthogonality relations for the multi-indexed orthogonal polynomials
in discrete quantum mechanics with pure imaginary shifts are investigated. We show
that the discrete orthogonality relations hold for the case-(1) multi-indexed orthogonal
polynomials of continuous Hahn, Wilson and Askey-Wilson types, and for the Krein-
Adler type multi-indexed orthogonal polynomials in discrete quantum mechanics with
pure imaginary shifts, and conjecture their normalization constants. In appendix we
revisit the discrete orthogonality relations for the multi-indexed orthogonal polynomials
in ordinary quantum mechanics and conjecture their normalization constants.

1 Introduction

Ordinary orthogonal polynomials in one variable, P,(n) (n € Z>y), are characterized by the

three term recurrence relations [1],
nPa(n) = ApPrsi(n) + B Pa(n) + CoPaci(n) - (n € Zxo), (1.1)

where P,(n) is a polynomial of degree n in n and P_;(n) = 0. The hypergeometric orthogonal
polynomials of the Askey scheme satisfy the second order differential or difference equations
2]. New types of orthogonal polynomials Pp,(n) (n € Zsg), exceptional or multi-indexed
orthogonal polynomials [3]-[14], satisfy the second order differential or difference equations,
but do not satisfy the three term recurrence relations because of the missing degrees. We dis-
tinguish the following two cases; the set of missing degrees Z = Z>o\{deg Pp .(n)|n € Z>o}
is case-(1): Z = {0,1,...,¢ — 1}, or case-(2): Z # {0,1,...,¢ — 1}, where ¢ is a positive

integer. The situation of case-(1) is called stable in [5]. Our study of orthogonal polynomials



is based on the quantum mechanical formulation: ordinary quantum mechanics (oQM), dis-
crete quantum mechanics with pure imaginary shifts (idQM) [15]-[18] and discrete quantum
mechanics with real shifts (rdQM) [19]-[21]. The Schrodinger equation of 0QM is a differen-
tial equation and that of dQM is a difference equation. We deform exactly solvable quantum
mechanical systems by multi-step Darboux transformations and obtain multi-indexed poly-
nomials as eigenfunctions of the deformed systems. They are polynomials in the sinusoidal
coordinate n(z) [22, 23|, Pp,(n(z)), where x is the coordinate of the quantum system. The
case-(1) multi-indexed polynomials are obtained by taking the virtual state wavefunctions as
seed solutions of the Darboux transformations. When the eigenfunctions are taken as seed
solutions [24, 25], the resulting multi-indexed polynomials are case-(2), and we call them
Krein-Adler type multi-indexed polynomials.

Any ordinary orthogonal polynomials P,(n) satisfy the discrete orthogonal relations. Let
us fix a positive integer N and denote the zeros of Py (n) as n; (j =1,2,...,N). Then the

following discrete orthogonal relations hold [1]:
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where f'(x) = d{lm , and sgn(C)y) is inserted for the positivity of the weight factor. Since the

multi-indexed orthogonal polynomials Pp ,(n) are deformations of the ordinary orthogonal
polynomials P, (n), it is expected that the multi-indexed polynomials also satisfy the discrete

orthogonal relations. We naively expected the following:
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where N = deg Pp »(n). At first, we approached this problem by numerical calculation for
the case-(1) multi-indexed polynomials of Laguerre, Jacobi, Wilson and Askey-Wilson types.
It suggested that the discrete orthogonal relations hold for the multi-indexed polynomials,
but (1.3) does not hold, namely the weight is not given by Pp, \.(1;)/Ppx—1(n;). In a private
communication (2017), Sasaki informed the author that the weights for the multi-indexed
Laguerre (L) and Jacobi (J) (and Hermite (H)) polynomials are given by 1/c2(n;), based on

the perturbations around the zeros of orthogonal polynomials [26]. Here c3(n) is given by



(2.132) of [18]

ca(n) = (1.4)
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n fact, P,(n) = H,(n), Ln, 2" (n), Pn (n) for H, L, J cases satisfy

H: P(n) —2nP,1(n) =0,

L: nPy(n)+ (n+g— 3)Pua(n) = nPu(n),
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We verified this weight 1/cy(n;) gives the discrete orthogonality relations for the case-(1)
multi-indexed Laguerre and Jacobi polynomials by numerical calculation. For the case-(1)
multi-indexed Wilson and Askey-Wilson polynomials, however, we could not find analytical
expression of the weight at that time.

Recently Ho and Sasaki showed that the discrete orthogonality relations with the weight
1/c2(n;) hold for the multi-indexed orthogonal polynomials in oQM: the case-(1) multi-
indexed Laguerre and Jacobi polynomials, and the Krein-Adler type multi-indexed poly-
nomials based on the Hermite, Laguerre and Jacobi polynomials [27]. Motivated by the
perturbations around the zeros of orthogonal polynomials [26], they consider a matrix M
and its symmetric version M. Orthogonality of the eigenvectors of this symmetric matrix
M implies the discrete orthogonality relations for the multi-indexed polynomials.

In this paper, we consider the discrete orthogonality relations for the multi-indexed or-
thogonal polynomials in idQM. The strategy is the same as Ho-Sasaki. By considering a
matrix M and its symmetric version M, we show that the discrete orthogonality relations
hold for the case-(1) multi-indexed polynomials of continuous Hahn, Wilson and Askey-

Wilson types, and the Krein-Adler type multi-indexed polynomials.



This paper is organized as follows. In section 2 we present a general theory of the
discrete orthogonality relations for orthogonal polynomials satisfying differential or difference
equations. In section 3 the discrete orthogonality relations for the case-(1) multi-indexed
orthogonal polynomials of continuous Hahn, Wilson and Askey-Wilson types are presented.
Those for the Krein-Adler type multi-indexed orthogonal polynomials are given in section
4. Section 5 is for a summary and comments. In Appendix A Proposition 3.1 is proved. In
Appendix B we revisit the discrete orthogonality relations for the multi-indexed orthogonal

polynomials in oQM.

2 Discrete Orthogonality Relations

In this section we present a general theory of the discrete orthogonality relations for orthog-
onal polynomials satisfying differential or difference equations. The basic idea is given in
[27].

Let us consider P,(x) = P,(n(z)) (n € Zsy), where z is a coordinate of some quantum
system (physical range: z; < x < x9), n(x) is the sinusoidal coordinate [22, 23|, and P,(n)
is a polynomial in 7. We assume that P,(n)’s are orthogonal polynomials,

/ " 2 (@) By () B(2) = hadom (n,m € Zng), (2.1)
@1

and satisfy a differential or difference equation,

HP,(x) = E,Po(x) (n € Zsp). (2.2)

Here (x)? is a weight function, h,’s are normalization constants (h,, > 0), a differential or

difference operator # is a transformed Hamiltonian (‘true’ Hamiltonian is 7 = ¢ (z) o H o

P(x)™h), and &,’s are its energy eigenvalues. We assume deg P, < deg P, and &, < &, for

n < m. The degree of P, is deg P, = n for ordinary orthogonal polynomials, but deg P,, > n
for multi-indexed orthogonal polynomials.

Let us fix a non-negative integer N and set N = deg Py. We denote the zeros of Py(n)

as 7];"’]

sinusoidal coordinates considered in this paper are n(z) = z,2? and cosz (or cos2z). The

(7 =1,2,... N ), which may be complex, and assume that they are simple. The

sinusoidal coordinate n(z) and the coordinate x have a one-to-one correspondence for the

physical value of z, but this may not be the case for unphysical value of z. We fix xg-N]

uniquely, which gives UW ]

i 77<I£M)a by requiring x; < Re ZEE-N] < .
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,N) that satisfy the

Let us assume the existence of P,(z) = Pu(n(z)) (a = 1,2,...

following conditions:
i) : Pu(n) : a polynomial in 7,

(
(ii) : degP, < ./V,
(iii) ﬁﬁa(xﬂx:x;m:(i’f Pa(), 23
(iv) « EF#E (a#D).
L N=1)

The condition deg P, < deg P, for a < bis not imposed. Note that P,(n) (n =0, 1,
satisfy the conditions (2.3) with €7 = &,. Since P, is a polynomial of degP, < N, it is

expressed as
W] )

(77—771

=

&
Pa(n) = Z

N
i=1 Hl(n]M — )

#i

Pa(i), (2.4)

¥
R

vl Note that this can be rewritten as

because the both sides agree at N points 1 = 7);
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danN(??)- By replacing j with k

where Py (n) = ckn™ + (lower degree terms) and Py (1) =

in (2.4), the action of H on P,(z) is

s S v] Pa(ni”)
HPu(@) =Y H][(n(w) — ™) x - (2.6)
[T —n)

i
Els

Let us evaluate this equation at z = ZBEM. By the condition (iii) in (2.3), we obtain

b b s T Pa(ni”)
Eq Palnj) = Z Mk H(nj —n ) X ~ 5 (2.7)
= [T =)
o

~ N [v]
H l:Hl (n(x) —n™) W
My, 2 z#kﬁ — (k=1,2,...,.N) (2.8)
[T =)
%



RO
), it becomes

By dividing (2.7) by [[(n;" —n,
=
M@ = gPF@), (2.9)
where a N x A matrix M and N-dimensional column vectors 7@ are defined by
vy o Palm” Pa(n)”
M= (M), 0 = @), soe Pl ) cﬁ}—(nﬂ ), (2.10)
J J J X ] P! (n[/\f])
l_Hl(??j =) N
1]

, gx), we define

By a similarity transformation in terms of a diagonal matrix G' = diag(g;,

a matrix M and vectors v(*) as
e v e 1~ vl a I a
MY G MG, v @ 1@ (;» M = LM, 0l = —5 ) Mo@ = 5fv<a>).(2.11>
9gj 9;
We assume the existence of G such that M is symmetric,
(2.12)

Mjk; - Mkj-

Then we have the following theorem.
Theorem 2.1 For P,(x) satisfying (2.2), Pa(n) satisfying (2.3) and G giving (2.12), we

have the discrete orthogonality relations:
N [v] [v]
1 P, Py(n; -
>3 ,(njm) ,bmjw]) = kM0 (a,0=1,2,...,N), (2.13)
j=1 9; PN(UJ )PN(%‘ )
where ks are normalization constants.
Proof: Let us consider a vector space CV 3 v = (v;) and a bilinear form ( , ) : C¥ xC¥ — C,

N
(v, w) d:evajwj (v,w € CV).
j=1

Since M is symmetric, we have (Muv,w) = (v, Mw). For v(¥ and v® we have
Pa(n") Po(n,”)




and
gf<v(a)7v(b)> — <MU(“),v(b)> — (v(“),./\/lv(b)) — Sf(v(“),v(b)>,

which implies (0(®,v®) = 0 for a # b. By setting ki as kM = (¢£)~2(v(@, @), we obtain
(2.13). O

Remark 2.1 The weight 1/ gjz in (2.13) may not be positive and may be complex, and the
normalization constant k2 may not be positive.

Remark 2.2 The proof uses (2.2) but not (2.1) explicitly, and the theorem states nothing
about the properties of ng]. The theorem states nothing for N = 0,1 cases either. Let us
consider P, = P, case. By using (2.1) and (2.5), we have

N X Py By e Py(z)  Py(x)
— J n dz (z)? ) 2.14
2 Z Pl P / v n(x) — M n(z) — n _—

Since we know Theorem 2.1, we naively expect the following equation,

[ avptap O BAD 2y, (2.15)

V] (W]

o n(x) =5 n(x) =,
However, numerical calculation shows that this equation holds for ordinary orthogonal poly-
nomials, but does not for the multi-indexed orthogonal polynomials.
Remark 2.3 The Ho-Sasaki’s matrices in [27], MBS and MBS, correspond to M — Exl
and —M + Enrl, respectively. Their matrices are motivated by the perturbation around the
zeros of orthogonal polynomials [26] and the scalar matrix Ex1 is subtracted.

We present examples of Theorem 2.1 in the following sections.

3 Multi-Indexed Orthogonal Polynomials

In this section, after recapitulating the case-(1) multi-indexed orthogonal polynomials in
discrete quantum mechanics with pure imaginary shifts, we show their discrete orthogonality
relations and conjecture the normalization constants.

The notations P, and H in § 2 correspond to Pp,, and ﬁp in this section, respectively.



3.1 Discrete quantum mechanics with pure imaginary shifts

Let us recapitulate the discrete quantum mechanics with pure imaginary shifts (idQM)
[15, 18]. The dynamical variables of idQM are the real coordinate = (z; < z < x3) and

the conjugate momentum p = — which are governed by the following factorized positive

d )
semi-definite Hamiltonian:

(s VV () PV (x) +/V*(x) e PV () = Viz (z) = ATA, (3.1)
d—efz(eﬂ’\/v* 3P /V () ), Al d:ef —i(\/V(z) e2? — \/V*(x) e’fp). (3.2)

Here the potential function V'(x) is an analytic function of x and + is a real constant. The *-

operation on an analytic function f(z) =) a,2" (a, € C) is defined by f*(z) = ara"

in which @ is the complex conjugation of a,,. Note that /  is a square root as a complex

function. The Schrédinger equation

Hon(x) = Entn(x) (1 € Zx0), (3:3)

is an analytic difference equation with pure imaginary shifts. The inner product of two
functions f(x) and g(x) is given by (f,g) & f “*dx f*(x)g(x). The hermiticity of H,
(f,Hg) = (Hf,g), depends on singularities of some functions in the rectangular domain

D, [15, 23, 9],

dEf {z € C| 21 <Rex < ap,[Imz| < 1|y} (3.4)

The eigenfunctions ¢, (z) can be chosen ‘real’, ¢ (z) = ¢, (), and the orthogonality relations
read

(Dns Om) = hnbnm (nym € Z>o), 0 < h, < 0. (3.5)

We consider the idQM systems whose eigenfunctions ¢,(x) (3.3) have the following form:

6n(2) = do(2)Po(z),  Pu(z) € P (n(z)) (n € Zso), (3.6)

where 7(z) is a sinusoidal coordinate [22, 23] and P,(n) is an orthogonal polynomial of degree
n in 1 and satisfies P*(z) = P,(x). The energy eigenvalues satisfy 0 = & < & < & <

As a polynomial P,(n), we consider the continuous Hahn (cH), Wilson (W) and Askey-
Wilson (AW) polynomials etc., which are members of the Askey-scheme of hypergeometric
orthogonal polynomials [2]. We call the idQM system by the name of the orthogonal poly-

nomial: continuous Hahn system, Wilson system, Askey-Wilson system etc. The similarity
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transformation in terms of the ground state wavefunction gives the difference operator ﬁ,

which acts on the polynomial eigenfunctions and is square root free,

HE do(2) " o Hogo(x) = V(@)(e? — 1) + V*(z)(e 7 — 1), (3.7)
HE,(z) = E,P,(x) (n € Zso). (3.8)

Concrete idQM systems have a set of parameters A = (A1, g, ...) and various quantities
depend on them. If necessary, their dependence is expressed like, f = f(X), f(x) = f(z; N).
For cH, W and AW systems, the parameters are X = (A1, A2, A3, A4) (A; € C, Re \; > 0) and
satisfy

CH @ A=\, A=A (3.9)
W, AW = {A], A5, A5 A0 = {1, A2, A3, Au ) (as a set), (3.10)

We remark that A for cH is taken as A = (A1, \2) in [14] because of (3.9). The AW system
contains the parameter ¢ (0 < ¢ < 1).

The data for V(x), &,, ¢o(z), P.(n), n(z), h, are given in §2.2 of [14] and (2.25)—(2.26)
of [28]. The parameters are A = (aq, as, as, ay) for cH and W (by = a1 + ag + az + a4), and

@ = (ay,as,a3,a4) for AW (by = ajasasay).

3.2 Darboux transformations

The exactly solvable idQM systems in §3.1 can be deformed by the multi-step Darboux
transformations. We consider the Darboux transformations with virtual state wavefunctions
as seed solutions. The M-step Darboux transformations are as follows. Take M virtual state
wave functions, ¢g, (), ¢a,(2), . . ., da,, (x) (d; : mutually distinct), which are solutions of the
Schrodinger equation,

Hoo(z) = Epy(z), & <O, (3.11)
Note that ¢*(x) = ¢y(z). In the s-step (1 < s < M), we have [9] (s =0 : H = Azllfldl +&4,.)

def 2 2 5
Ha, ... -Ad1 dsALI da + Ed 'Azll d dg+1"4d1 dsdsry T gdsﬂ, (3.12)

Adl...d d:efz 6210 ([B —€ 2p V %1 ds(x>)’
Al .= —z(\/v v () €30 — V7 (x) e73P), (3.13)




W, [0as - - ba, (@ +03) W[y, -, Ba,)(@ — i)
[¢d17"'7¢ds—1]( _Z%) 7[¢d1""7¢d5]( )

bt () E Ady a,0ar ., n() = G5 g n(2) (0 € L)

= A(@)W, by, - - -, Gas» Gul(2), (3.15)
VILZ V(@ +i(3 — )nVe(a — i3 — )v)
W, [as - - s 0a)(@ — i2)W, [bay - . ., Ga](x + L)
Sar (@) = Ay 0,00, a, (@) = By g o(x) (vE{di,. . dyP\{dy, .. d})

: (3.14)

Ax) =

(3.16)

= A(2)W,[da,, - - ., ., &) (2), (3.17)

Hay..d. Pdy...dy n(T) = Enay..a.n(x) (n € L), (3.18)
,Hdl---dsq;dl---ds v(l‘) = qu’gdl---ds V(ZE) (V S {dla s ’dM}\{dlv s ’ds})a (319>
(Pdy..dsns Pdy..dym) = H(gn —&4;) Pl (n,m € L), (3.20)

j=1
where W, [f1,..., f,] is the Casorati determinant of a set of n functions { f;(z)},
def - In(n— (n) (n) def ntl _ -
W, f1, . fal(x) =1 (n—=1) det(fk(xj )>1§j7kSn’ r; = x4 i(ty okl 5)y, (3.21)

(for n = 0, we set W, [-](z) = 1). The operators Aq,. 4, and flill._.ds have no zero modes, which
is the characterization of virtual state wavefunctions (For c¢H case, we relax this condition
because these operators may be singular in the intermediate steps.). Therefore the deformed
systems are isospectral to the original system. The deformed Hamiltonian H4, 4, can be

rewritten in the standard form:

Hay..dy = ALI a,Adydes (3.22)
-Ad1 .ds d_efl(62p\/ ‘/;ltds(m — ¢ 3P V ‘/d1 (LE )7

Al E —i(VVaya, (1) 37 — o (@)ear), (3.23)
Vay..a. () W(m — i)V (- S%)

[¢d17"" ]( +lg) W7[~ .- deslﬁbo](f_m/)'
[¢d17"'7¢ds]( Zg) W7[¢d1,--.,¢ds,¢o]($>

These formulas (3.12)—(3.24) (except for (3.20)) are derived algebraically ((3.20) is derived
only formally unless Hg,..q, (5" < s) are hermite). The hermiticity of Hg,. 4, etc. should be

(3.24)

considered in each case.



3.3 Multi-indexed orthogonal polynomials

We recapitulate the case-(1) multi-indexed orthogonal polynomials of cH, W and AW types.
There are two types of the virtual state wavefunctions, type I ¢L(z) and type II X ()
for cH, W and AW idQM systems. The deformed systems are labeled by the index set D,

D={dy,....,dy} (dj €Zsy), D=D" UD" M=M+ My,
pr & {deD|d:typel} ={d},... >d§\/11} (d; : mutually distinct), (3.25)
DY E {deD|d: type 11} = {d,...,d% } (4 : mutually distinct),

which are the degrees and types of the virtual state wavefunctions used in M-step Darboux
transformations. The Hamiltonian is deformed as H — Hq, = Haya, = -+ — Hayood. —
- = Ha, a,, = Hp by M-step Darboux transformations. Various quantities of the de-
formed systems are denoted as Hp, ¢pn, Ap, etc. Exactly speaking, D is an ordered set.
When the ordered set D is D = {d},...,d},,d}',... dy, } with 0 < d} < --- < d};, and
0 < d' <--- <djy,, we call it the standard order. Under the permutation of d;’s, the
deformed Hamiltonian Hp is invariant, but the denominator polynomial Zp(z) and the
multi-indexed polynomials Pp ,(x) may change their signs. Unless otherwise mentioned, we
do not care much about the order of D.
The denominator polynomial Zp and the multi-indexed polynomials Pp ,, are constructed
as polynomial parts of the Casoratians W, [@,, ..., ¢ay,](x) and W, [da,, . . ., day,, dnl(2),

respectively,

W, [0y, - - -, Gay ) (2) = gp(2)=p(2), Ep(z) = Ep(n(x)), (3.26)
W, [0dy, - - s Dy Bl (2) = 95 (2) Pp (@), Ppu(x) = Ppu(n(z)), (3.27)

whose concrete definitions are given by (3.18)—(3.19) of [14] and (3.37)—(3.38) of [9], and
gp(z) and g5(z) can be read from (3.25)—(3.26) of [14] and (3.50)—(3.51) of [29] with
W[y, - bay ) () =TI G0(al™) W [ 6y, v gy, )(2) and W, [Guy -, Bayy, 0l (2)
= H]Af{l gbo(xg-MH)) W vy, v e, Pa(x). We remark that gp(x) and gh(z) de-
pend on M; and My, but not on the specific values of d; and n. Note that =5 (x) = Zp(z)
and P{;n(x) = Pp,,(r). The denominator polynomial Zp(n) and the multi-indexed polyno-

mials Pp,(n) are polynomials in 7 and their degrees are ¢p and ¢p + n, respectively (we
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assume g # 0 and cp ,, # 0, see (A.1)~(A.2) of [14] and (A.40)-(A.41) of [30]). Here {p is

def

M
tp =) dj — M (M — 1) + 2M My, (3.28)
j=1

We remark that Pp and Zp are proportional, Ppo(7; A) o< Zp(z; A+6), (A.3) of [14], (3.44)
of [9], which is a consequence of the shape invariance.

The eigenfunctions of the deformed system (3.15) are expressed in terms of the ground
state wavefunction ¢o(z) with shifted parameters, the denominator polynomials Zp(z) and

the multi-indexed polynomial Pp,(z) as

¢pn(r) = () Ppn(z)  (n € L), (3:29)
vp(a: N) olgi 7o)
V/Ep(@ — i3 NEp(r +i3: M)

(3.30)

where c% and Ap (which is denoted as AMMul ) previous papers) are
cp = ol (N) 2o (X) 2 Mg e M (V=DM (3.31)
Ao N+ S+ s (3.32)

Here explicit forms of a(X) and & are given by (3.1), (3.3) of [14] and (3.25), (3.27) of [9].
The deformed Hamiltonian Hp in the standard form (3.22) is specified by the potential
function Vp (3.24) and it is expressed in terms of the potential function V' (z) with shifted

parameters and the denominator polynomial Zp(z) (with shifted parameters),

[1k

Vp(l’; )\) = V(il?, )\D)

p(x+i2; A) ED£ — A+ 0) (3.33)

Ep(z —i2; A) p(x; A+ 9)
In order for the deformed Hamiltonian Hp to be hermitian, the parameters A are restricted.

As a sufficient condition for the hermiticity, we have the following [9, 14]:
The denominator polynomial Zp(z) has no zero in D, (3.4). (3.34)

For cH case, the degree of Zp(n), ¢p, should be even. In the following, we assume that the
range of parameters is chosen so that the deformed Hamiltonian Hp is hermitian.

The orthogonality of the eigenfunctions (3.20), namely, those of the multi-indexed poly-
nomials Pp,(z) are

/J;le‘ ¢D($)2pp,n(l‘)pp7m(l‘) = h’D,n5nm (TL, m € Zzo), (335)

1
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Mix

hp. )2y, H 5;1 T1En 5dn) (3.36)

j=1

where explicit forms of &, are given by (3.7) of [14] and (3.29) of [9]. The multi-indexed
orthogonal polynomial Pp,(n) has n zeros in the physical region Nmin < 7 < Mmax (7min def
min(n(z1), 7(x2)), Mmax of max(n(z1),n(zz2))), which interlace the n+1 zeros of Pp,11(n) in
the physical region, and ¢p zeros in the unphysical region 7 € C\(Mmin, max)-

The similarity transformed Hamiltonian in terms of ¢p(x) is square root free,

Hp € p(x) ™" o Hp o Pp ()

Vi ae) SN (Sl A0
, ED($—Zg,A) Ep(m,k—ké)
V@ Ap) 2P Y (e-w = f“”’)‘”)) (3.37)
T Eplz+idi ) Ep(z;A+6) )’

and the multi-indexed polynomials Ppm(l’) are its eigenpolynomials,
HpPp () = EPpa(z) (n € Zs). (3.38)

3.4 Some identities

For the ordered index set D = {dy,...,dy}, let us consider the following ordered index sets,
D' ={dy,...,dy,d}, D'={dy,...,dy,d"}, D" ={dy,... dy,d, d"}, (3.39)

where d',d” ¢ D and d’ # d”. From the properties of the multi-step Darboux transformations

given in § 3.2, we have the following identities:

oAl
Gprn(z) = Apn : &, ¢pr (), (3.40)

() = Apw Ap dpn (). (3.41)

By extracting the polynomial parts from these identities, we obtain the following proposition.

Proposition 3.1
(1) When the types of d' and d" are the same, (3.40) gives

(&, - sdo(“”’(‘c i), “D’((“”” i i:;)PD// (2) = (Bl + &0 — Eu — Ean) Pron(2). (3.42)
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(2) When the types of d' and d” are different, (3.41) gives

5 = 204 . - - SO
/@‘2M+%‘ /OéIOéH (’_‘ ’D(I‘ 22) —+ = ,D(:Ll + 7/2) )PD“’,n(CU> = (HD//’ =+ STL — (C/’d/ — gd”)PD,n<:C)'
Zipm (I’ — Z%) Zprn ([L‘ —|— Z%)
(3.43)

Since the proof is rather technical, we present it in Appendix A.
Remark 3.1 The identities (3.42) and (3.43) are invariant under the permutation of d;, d',
d" in D, D', D", D", namely, the order of ordered sets D, D', D" and D" is irrelevant.

Remark 3.2 For generic values of A, Pp,(z) and Zp(z £42) do not have a common root.

3.5 Discrete orthogonality relations

Let us fix a non-negative integer A" and set N’ = deg Pp = Ip +N. We denote the zeros

of Pp(n) as nj[ A (j=1,2,. N) and assume that they are simple. We define x[ ] by
requiring 7(z; b N}) = n][D M and z; < Re xg M < .
[D,~]

In the following, for simplicity in notation, we write 7;

and x[ ol

as 1; and x;,
respectively. (Although this notation x; conflicts with the end points of the physical range
of the coordinate (z; and ), we think this does not cause any confusion.) Then Pp . (7) is

expressed as

Pp(x) = cp H (3.44)

3.5.1 polynomials P,

For the index set D (3.25) in the standard order, let us define the index sets D] ;;, D5 j;, and
Dy iy, as follows [27]:

(1) Dy BPEH{0, 1. dy, )\D', dieD, E'E{ccE'le<d}, ekl

def def
Dy = (D"\{d}}) U{e}, Di, = D) uD", (3.45)
(2) Dy s ENE{0,1,....dy Z\DU, dleD, ENE{ce Elle<dl}, e Bl
DE (DN {d) u{d}, Dy, EDUDL (3.46)
(3) Dy d €D, dleD", D, (D\{d}) U (D\{d}). (3.47)

As an ordered set, we choose one order of the elements for each D ;;, Dy ; and Dj 5, e.g.

the standard order. Note that |E}| = d} — (j — 1) and |E}'| = d}} — (j — 1). The numbers of

14



these sets are

M
#{Dy 1} = Z ~(j-1) :Za@—%MI(MI—U,
j=1

MII M

1
#{ Dy jnt = Z di —(j - 1)) Zd? - §MII(MH - 1),

j=1

#{D:g,jk} = MIMHu

and the sum of these numbers is ¢p (3.28).

Let us define the polynomials P,(z) = Pu(n(z)) (a=1,...,N) as follows [27]:

The total number of these P,(z) is actually N + €p = N.

(0): Pulw) = Ppa(z) (0<n<N)

(1) : Pul) = Ppy (@) (D in (3.45)),
(2) : Pule) = Ppy  wlx) (Dhy in (3.46)),
(3) : Pul) = Py wlx) (D in (3.47)).

(3.48)

(3.49)

Let us show that the conditions in (2.3) are satisfied. The condition (i) is trivial. The

condition (ii) is satisfied, because we have

0): degP, =tlp+n, n<N,

1

(0)
(1)
(2)
(3)

3

The condition (iii) is satisfied by the following proposition.

Proposition 3.2 For P,(x) (3.49), we have

7:21)75(1< )‘ - SPP (77])7

T=Tj

where ET are given by

&P =¢,,

a

ED =+ &y —En

a

. EP EIII ‘|’ (C:IIII — EN,

a

: g’P 551 +5d11 EN-

a

15

: degP, = gDi,jk +N, gpll’jk =/{p — d; + G}C < Ip,
: deg P, = gpéﬂ,k + N, gpé,jk =/lp — dﬁl + 62 < ép,
: degPazﬁp/S’jk—i—N, gD,lS,jk :ep—d;—dg—l < Ip.

(3.50)

(3.51)

(3.52)



Proof:
(0): BEq. (3.38) gives HpPu(x) = E,Pa(x), and (3.51) is obtained by setting z = ;.
(1): Eq.(3.42) with the replacement (D', D",n,d',d") — (D} j;, D, N, €}, d}) gives

() % Pp(a) = (Hp + Ex — € — Ey)Pula),

and (3.51) is obtained by setting x = x;.
(2): Eq. (3.42) with the replacement (D', D", n,d’,d") = (D} ., D, N, €, d}') gives

(-+) X Ppp(z) = (Hp + Ex — é 5dn)75 (2),

and (3.51) is obtained by setting x = x;.
(3): Eq. (3.43) with the replacement (D, D", n,d',d") = (D} ;,, D, N, d;, d}}) gives

() x Ppp(x) = (Hp + Ey — S;I 5dn)75 (2),

and (3.51) is obtained by setting = = x;. 0O

By using (3.52) and explicit forms of &£, and &, we can show that the condition (iv) is
satisfied for generic values of X. Thus the polynomials P,(z) (3.49) (with generic values of
A) satisfy all the conditions in (2.3).

3.5.2 matrices M and M
Let us show the proposition for M.

Proposition 3.3 The matrixz elements .//\\/l/jk- (2.8) for j # k are expressed as

Mv‘ B 1 —ﬁv (U(I)PD,N@))\
T (s —iv) — ) (n(zy + i) — mi) Pp (1)

U (GAR). (359)
Proof: The similarity transformed Hamiltonian Hp (3.37) has the following form,
Hp = A(z) (e — B(z)) + A*(z) (e — B*(x)).

Recalling (3.44) and evaluating HpPp () = ExPp () at x = z;, we have

A(zy) H(n(:cj — i) — H n(z; +iy) —m) = 0. (3.54)

=1 =1
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For j # k, we have

N

(n(z; —iv) — ) (n(zj + i) — mw)

0 —A(z;)n(x; — i) f[l (n(z; —iv) —m) — A*(z;)n(z; + i) llf[l (n(z; +iv) —m)

(n(z; —iv) — ) (n(z; + iv) — nx)

(77(.75]- — i) — 77k) (77(%' +iy) — ’7k) ’

where we have used (3.54) in (i). Then the matrix elements Mvjk (2.8) for j # k become

. 1 Ao (o) 1 (1) =)
(e — i) — ) (ns + i) — i) (o5 - )

By multiply the numerator and denominator of the last factor by ¢f ., (3.53) is obtained.

Let us define F; (j =1,...,N) as

def ﬁD(U(x)PD,N(x)H

F; = — i (3.55)
’ Pl%,y\/(nj)
Then we have the following proposition.
Proposition 3.4 The number F; (3.55) is expressed as
Fj = F(x;) = F(ny). (3.56)
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Here F(z) is given by

<

[1]¢
S
+

) 1 T —1 x;
P & s (e = Vo)

[1]¢

S
SENIRS
|

~. .

o2 o2

+n(z +iv)V*(2; Ap)

[11q L1}
2
|

3 DN@y+vw). (3.57)

S

~—

&

+

. ~.
2 (o2

It is a rational function of n(x), and F(n) is given by F(n(x)) = F(x).

Proof: By (3.37), Fj becomes

—1
F

= B ) (V(%‘; Ap) = L2

m%+mﬂw@+w0,

2

namely F; = F'(z;). Let us show that F(z) is a rational function of n(z) = z,2? and cosx

for cH, W and AW cases, respectively. From (3.57) and explicit form of V(x), F(z) is a
rational function of x (cH, W) or ¢ (AW). For cH case, it is trivial that F'(x) is a rational

function of z. For W and AW cases, the potential function V'(x) satisfies
W, AW : V*(x) =V (—x). (3.58)

By using this and n(—2) = n(z), we obtain F(—z) = F(x). This means that F(z) is a
rational function of x? (W) or €™ + ™ = 2cosz (AW). 0

Remark 3.3 By (3.54), Fj can be written as

‘ S o E LAY
PO (G k€ Rl TP Wl A D RS S E )
Pp () Zp(z; — i3)

The sinusoidal coordinates have the following property.

Lemma 3.1 The sinusoidal coordinates n(x) = x,x? and cosz satisfy the following identity

for any complex numbers a,b and c:
(n(a—c) = n(b)) (n(a+c) =n(b)) = (n(b —c) = n(a)) (b +c) - n(a)). (3.60)

Proof: Direct calculation shows this lemma. 0O

By the similarity transformation (2.11), we obtain the symmetric matrix M.
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Proposition 3.5 By taking g; = /F}; in (2.11), the matriz M is symmetric, (2.12).

Proof: Since the matrix elements Mjk (j # k) are expressed as

. F |
= (n(x; — i) —me) (n(; + i) — n) (G # k), (3.61)

the matrix elements M, (j # k) become

VEVE,
(n(z; —iv) — ) (n(z; + i) — mi)

M, = (J # k). (3.62)

By Lemma 3.1, M, are symmetric in j and k. 0

Remark 3.4 We have not written down the diagonal elements M,;(= ij) explicitly,
because their concrete forms are not needed to show (2.12). For the sake of completeness,

we write down the concrete form of M,; = M,;,

M, = F
P (s — i) = ny) (n(zy 4+ iv) — )
Ep(t; + 1% A) Eple; — i7;
V(i ap) SN Sl A L0)
En(e; —i3iA) En(eiA+o)

[1]¢

p(z; —13;A) Ep(x

p(z; +i3;A)

;i A+ 0)

(xj D) (I'j,A—f-(s)

(3.63)

—_
—
—D

[1]¢

which is derived from the definition (2.8) by using (3.54), like as (3.53) and (3.57).
3.5.3 discrete orthogonality relations
Let us present a main result of this paper.

Theorem 3.1 For the case-(1) multi-indexed orthogonal polynomials of cH, W and AW
types Pp (1), Pa(n) (3.49) and F(n) (3.56), we have the discrete orthogonality relations:

i o) Po) _yioxly (0 b= 1,2,... ) (3.64)
=1 F(n DN(T]]) Pp(1j) ¢ ’ T
where kC[LD’N] ’s are normalization constants.

Proof: Since the assumptions of Theorem 2.1 are satisfied (for generic values of A), Theo-

rem 2.1 gives this theorem. 0O
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Remark 3.5 In contrast to the weight 1/co(n) in 0QM case, this weight 1/F(n) depends on
the multi index D, see (3.57).

Remark 3.6 As in Remark 2.1, the weights 1/F(n;) may not be positive and may be com-
plex, and the normalization constants kP may not be positive. As in Remark 2.2, the
theorem states nothing about the properties of k,[ID’N], nor does it state anything for N = 0,1
cases.

Remark 3.7 The property Pp,.(n) = Pp(n) (which holds if (3.9)-(3.10) are satisfied)
implies

{n, . oomet =4{m,....,nx} (as a set). (3.65)

Base on this fact, let us define j as n; o n;. It nj = n;, we have J = j. In [27], the vector
space V = {# = (0;) € C¥|0F = 05} is considered. It is a N-dimensional vector space over
R, and (9, w) = 27:1 0;w; gives an (indefinite) inner product on V. By studying (.//\/lvﬁs)*,
it is shown that V is invariant under the action of M5 [27]. A similar analysis is possible
for our M.
Remark 3.8 The discrete orthogonality relations (3.64) are shown for the multi-indexed
orthogonal polynomials Pp,. As mentioned in Remark 2.2, the difference equations (3.38)
are used in the proof, but the orthogonality relations (3.35) are not explicitly used. In oder
for Pp, to be orthogonal polynomials, the parameters X are restricted by the conditions
such as (3.34). If the parameters A do not satisfy the conditions, the polynomials Pp,, are
no longer orthogonal polynomials, but may still satisfy the difference equations. Then, the
discrete orthogonality relations still hold in that case. Let us discuss this point. For the
parameters A satisfying (3.9)-(3.10), they have 4 real degrees of freedom, and one more
degree of freedom ¢ (0 < ¢ < 1) for AW case. Let us consider aq, as, as, as,q € C (a; is A; or
¢™) without any restriction (except for the condition ¢3, ¢ # 0). There are 8 real degrees
of freedom for cH and W, and 10 for AW. The definitions of the polynomials Pp,, (3.19) of
[14] and (3.38) of [9], are meaningful for these complex values of parameters. Note that the
property P, = Pp,, is lost and (3.65) does not hold. The difference equations (3.38) hold
by replacing V*(x; Ap) in (3.37) as follows:

(a3 —iz)(ay —iz) :cH

V*(z) — {v(_@ WA (3.66)

Then Proposition3.1, the conditions (2.3) for P,(z) (3.49), Proposition3.3-3.5 are valid.

Thus the discrete orthogonality relations (3.64) hold for any complex values of parameters
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(with the condition ¢5, ¢p, ., F(1;) # 0). We can verify this for small M, d;, N and n by

] may not be real.

numerical calculation. The normalization constants k-
Remark 3.9 The case-(1) multi-indexed orthogonal polynomials are also constructed for
the Meixner-Pollaczek (MP) polynomials [14]. In this case, there is only one type of virtual
state. Various formulas are obtained from those of two type case (cH,W,AW) given above,
by setting My = 0 and neglecting a superscript (or subscript) I. There is no D, and

3%+ S0, the polynomials Pa(z) (3.49) are only (0) and (1). The condition (iv) in (2.3)
may not be satisfied even for generic values of A. However, the case-(1) multi-indexed MP
polynomials Pp,(n) can be obtained from the case-(1) multi-indexed c¢H polynomials by
taking certain limit of parameters (with appropriate rescalings). By this limit, the discrete
orthogonality relations (3.64) for the case-(1) multi-indexed cH polynomials are inherited by
the case-(1) multi-indexed MP polynomials. As in Remark 3.8, they hold for any complex

values of parameters.

We conjecture the normalization constants kP as follows.

Conjecture 3.1 The normalization constants kP are given by
1

:cH,W
(0) Pu=Pp,,: kPN = Z:;; Aot 22@;1) : (3.67)
B s v B
(1) Pa = PD’1 oV
S L (e + Dot —at 1
a hop 2 (a1 +as—dj —1,az+as+ € )y o
1 (bt —di)a_a
x (a1 —as — d§)d§*€k (a3 — aq — dbd;*i —Y el + 1+ 2¢;
. ﬁd%—e}g M gl el 41 'ﬁd?—i—e}f—l—l b+ dl — e
o di—dy VM di+di+ 1 St d +d+ LY+ d - d
i#]
W /{:LD’N] _ hD’ij,/\/ 1 1

hD,N 2(6}94_1)5@*6}@ (a1+a2—d§-—1,a3+a4+e}c)d§,€£

y ﬁ ﬁ 1 (bll - d}f)di-—e}c
(a; — am — di»)d§_

i 3.68
gkt 1 —b) + 1+ 2 ( )

€

Xﬁdﬁ—e}g —b, +dl el + 1 ﬁdﬁ%e}ﬁl o+ d — €
=1 i=1

L dp —dy =V A d 4 df + 1 di' +di +10) +d' = di’
i#]
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hopr I_ely—
AW : EPM = wa (ara9)* %% 1<a3a4>‘<d§‘6” q2—2d‘<d‘+1>+e;<2e;+s>
DN (1 —q )(q Rl
, ) Q)dl <a1&2q a3a4q k q) j_Gk
y 1 (biq b )ai—d
_dL ’
11 mes (wantq d;. Q)dl o 1— b, JRRCES
MI dlf 1
o 1—qg% % 1— bil—lq Ttel+1 My 1— C]d1'1+6}c+1 1 b, dll—c!
, _di=d! - ' — -
e = A R T
2 = Py .
( ) Pa PD2 g
e o) P (G Dapgp 1
¢ hp 2 1T
(az +ay — dl — 1,01 + ag + ) gn_ep
1 L 11
X e -
(a2 — ay — dI-I) 11 H(a — 11 ( dk )d?_en
o J/di—e 47— a3 — d )dU—eH bl 4+ 1+ QG}CI
11
d? — el preH 11 I
% dI.I_dIICI b/cHi_Zflj__;ﬁ—i_l Hdl+€}§l+1 “V+di—q
= 2 j ) 1 I
= i frdl 1l S di+d 1 =Y d - d
W kP = ", ¢ 1 1
hon 2(e + Dan—ar (a3 + as — dit—1 T
i 4 i , a1 + as + €L )d§_1_611
XHH .(b/ d)dne
=3 mo ¢ az—am—d Dan_ar 0 +1+2¢]] (3.69)
My
dH — € b/ dH 11 M,
P+ r i
XHdH d]fIb/+dII+2];I+1'de+€}€I 1_b/+d1_6k
LT T A T
h , H—€
AW - kL[LD,N} _ ZQ,jk’N (CL3(L4) 2d; ok 1(a1a2)_(d§1_6}cl q2—2d§1(d§1+1)+6}€1(2e}3+3)
DN (1—¢*)(q%*Y I
i q —d:—1
4 2 Jar—gr (asaaq™5 ™ 01020 @)
% H 1 (b, ! _dH,q)dH
- .
et (waplg Y e 11— Vg T
M
y 11 1— quI_e}CI 1— bqu£1+e}c1+1 My 1_ dI+eII+1 i1 g
T 1= di=dl | _ gy A1 L /A
o L= g gt gt 1qdi ar
3 = Pp .
( ) Pa PD&M,N .
. o _ e (SR 1
“ how  2(d +dl + 1
! Lrd 1) (e tas—dj—1 i

_3/cH /C
(=0 = d)a (0 — df) g

(a1 —as — d a3 —ay — d}
jr 43 — 4 dj)d§.+d}g+1
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M

1
8 H (di — dj)(d} + & + 1)(=U B + dj + d} + 1) (=M + df — d}})

i=1

i3]
s (@ = d(d +dy + DO+ A+ DO+ 4 - d))
ik
1 11
W kPN — hDé,jka (_1)dj+dk ! 1
“ hn/\/ Q(di + d}fl + 1)d§' d}cl' (a1 + as — d} —1,a3+ a4 — dg — 1>d1+d}€1+1
J
(=5 — s (05— ) g
X 2 4
Il ITnes (@ — am — dﬁ‘)dﬁd}jﬂ
My ]
X 3.70
Na—maraomrarancnra—a G0
i#]
L (d = D&+ d 4 1) (V) + a4 1) (V) 4 d = d)
ik
1 11 1 11 __ o g1
AW : P — hDé,jkﬂN (=) % (a1a9)* 5 (agay) s %
: a - 1 11
o (1= ¢2)(1 =) (4; 0)ar (5 9)ap
g~ SO =2l 23—l +5) (Va5 q)ar (Boa ™5 @)
X — — —
(a1a2¢™57, agasg a1, Q>d§+d£+1 ng:1 an:{%(ala;nlq s Q)d§.+d}§+1
M bﬁlflq2(d£—i—MH)—1
X
1;[ (1= g% 5) (1 — g ) (1= 0 g O (1 — 0 gt )
i#]
M bilq2(d£1—i—M1)—1

X Y
g (1= g =) (1 = g (1 — g A (1= D )

where by = a1 + a3 — ay — ay, V) = a1 +as — a3 — ay and by = alagaglagl.

By numerical calculation, we can verify this conjecture for small M, d;, N and n.

4 Krein-Adler Type Multi-Indexed Orthogonal Poly-
nomials

In this section, after recapitulating the Krein-Adler type multi-indexed orthogonal polynomi-
als in idQM, we show their discrete orthogonality relations and conjecture the normalization

constants.
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In order to distinguish them from the quantities in § 3, we add the superscript KA to the
quantities in this section, if necessary. The notations P, and H in §2 correspond to PR

and ﬁ%A in this section, respectively.

4.1 Original idQM systems

As the original idQM systems, we consider the systems studied in [15], namely, continuous
Hahn (cH) and Meixner-Pollaczek (MP) systems with n(z) = z, Wilson (W) and continuous
dual Hahn (cdH) systems with n(z) = 2%, and Askey-Wilson (AW), continuous dual g-Hahn
(cdgH), Al-Salam-Chihara (ASC), continuous big g-Hermite (cbgH), continuous ¢-Hermite
(cqH), continuous g-Jacobi (cqJ) and continuous ¢-Laguerre (cqL) systems with n(z) = cosx.
For various data of these systems, see [15]. We remark that the potential functions V' (z)

satisfy

V(z; A +6) = /ﬁl%‘/(m — i), (4.1)

which gives the shape invariance of these systems, and
V*(z) =V(-2) for n(x) = 2% cos. (4.2)

4.2 Darboux transformations

As seed solutions of the Darboux transformations, we take eigenfunctions (3.3), ¢g4 (),
Gd, (), ..., gy, (x) (dj : mutually distinct). The formulas for the M-step Darboux transfor-
mations are almost the same as in §3. In the s-step (1 < s < M), we have [17,9] (s =0:
H =AM TARN 1 €,)
def A A
HKA -Ad1 . AK T &= AK Tdds+1“4 dadosr T Ederns (4.3)

def .
(o3 VR (@) — e VR, (@),

Azi%‘..zs (VA () e3P — \/ VKA (1) e3P), (4.4)

W7[¢d1""a¢ds—1](x+i%) [¢d17---7¢d5]($_i7)
W e e @1 Woldmr - oal@) (4.5)
¢§f.ds ( ) defA ds del ds_ m(x) ﬁbKA* ($) (n € ZZO\{dla - ,ds})
AW a6 1)) (46)



N[

VIEZ V(@ +i(s — )nVe(a =il — )v)

A = .
O =N\ Wm0l D Wolbar ol iy | © 4D
MR L0 0) = Eu0iae) (0 € T\ ) (48)
(‘b .dsn ¢d1 dsm) — H(gn - gdj> . hnfsnm (n, m e ZZO\{db C. ,ds}). (49)

7=1

The operator /l?ﬁfds does not have a zero mode, but AE}IA 4, has a zero mode. Therefore some
of the spectrum of the original system are missing in the deformed system. The standard

form of HEA , is given by

Hat g, = Ag AR . + Eus (4.10)

ARA &y (e2Py/VEAS (2 —6_%10\/‘/61}1{%5(93))’
KAT def Z( /VKA (I)e%p_ lel(.é;s(x)e*%p)’ (411)

lefﬁds () < \/V(x —iy)V*(z — i%E2y)

V[¢d1a" ¢d5](x+22) Wv[¢d1a~~-7¢dsa¢u]($_i7)
. 7[¢d17"'7 ]("E—ZV) W7[¢d1v"'a¢dsv¢u](x) 7 (4'12>
where p1 is
e min{n | n € Zso\{di,...,ds}}. (4.13)

These formulas (4.3)—(4.13) (except for (4.9)) are derived algebraically ((4.9) is derived only
formally unless Hg,..q, (" < s) are hermite). If the following Krein-Adler condition [24, 25],

ﬁ(m - dj) >0 (‘v’m S Zzo), (414)

j=1

is satisfied, the deformed Hamiltonian Hg, 4, is hermite [17].

4.3 Krein-Adler type multi-indexed orthogonal polynomials

For the index set D = {dy,...,dn}, we write Ha, . a4y, = Hp, Pay...dyn(T) = dpn(x), ete. as
in §3. We call an ordered set D = {dy,...,dy} with 0 < d; < --- < dy the standard order.

As polynomial parts of the Casoratians W, [¢q,, . .., ¢q,,](z) and W, [¢a,, . .., da,,, Pul (),
the denominator polynomial ZX* and the multi-indexed polynomials PgA are constructed,

respectively. Their definitions are

= = def ~ ~ def —
W, [Pay, .o, Pay,)(2) = on(0)25%(2), 25 (2) = 25 (n(x)), (4.15)



- > = def - - def
W'Y[Pdﬂ"‘?PdA{?P”](x) = 90M+1(x)Pll)(ﬁ<$)> Pll){,ﬁ( ) Pgﬁ(ﬁ(x))a (4'16>

and

W’Y[¢d17 ) ¢dM]($) = ggA<x)E%A(x)> gD - H ¢0 7 (4'17>

M+1
W’Y[gbdN"'vqbdM?(bn]( )_ggKA( )Pgﬁ(l’), ggKA( 90M+1 H ¢ (M+1) . (418>

We call P%A the Krein-Adler type multi-indexed orthogonal polynomials. Note that, in

contrast to §3, there is no essential difference between E5* and PE%. In fact, Py =

284 4 n- The denominator polynomial Z5*(n) and the multi-indexed polynomials PSA (1)

are polynomials in 7 and their degrees are /5% + M and (K* + n, respectively (we assume
GRA # 0 and epiA #0). Here (5" is

(EA & Z dj — LM(M + 1), (4.19)

A( ) =KA

and the coefficient of the highest degree term of =X cp ™, is

M II @—-a s n(z) = x, 22

=KA 1<j<k<M
c cd; X y : (4.20)
D H | | q%(dj_dk)(l _ qdk_dj> . 2_ Zj\il dj : n(x) = COS T
1<j<k<M

(¢n is that of P,(n)) and that of PE(n) is cph* = GF% .

The eigenfunctions of the deformed system (4.6) are expressed as

B(w) = kMOIYEA @) PEA(2)  (n € Z30\D), (4.21)

A g ) GEYY (1.22)
%A(x—ﬂ )\) (:U—I—Z%;)\)

where AF* is
PUSIE N VE) (4.23)

The potential function VX* (4.12) of the deformed Hamiltonian HX* in the standard form
(4.10) is expressed as

VEAM 2 ) = V(z; ABY ;%A(x +i1; N) Pg?(x PN
D ) y AD :‘KA(:L' — 7/1)\) J2 (xA)
P 2’ Dp\Ls

(4.24)
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If the Krein-Adler condition (4.14) (with the replacement s — M) is satisfied, the deformed
Hamiltonian HXA is hermite. The orthogonality of the eigenfunctions (4.9), namely, those

of the multi-indexed polynomials Pgﬁ(m‘) are

/ 0 A ()2 PEA () BEA (1) = WA S, (n,m € Zno\D), (4.25)
' M

hih = k72O 0n TT(E, - Ea)). (4.26)
j=1

Let us write Z>o\D = {no,n1,...} (no < ny < ---). Then, for n = ny, the multi-indexed

orthogonal polynomial Pgﬁ(n) has k zeros in the physical region 7min < 7 < Mmax (Mmin def

min(n(z1), 7(2)), Mmax o max(n(z1),n(x2))), which interlace the k + 1 zeros of Pp,, ()
in the physical region, and /5* + ny — k zeros in the unphysical region 7 € C\ (Nmin, Tmax)-

The similarity transformed Hamiltonian in terms of X4 (z) is square root free,

=~ def _
Hp" = P (2) ! o H™ o p™ ()

vy B oyt
SO Po(2)
=RA (2 —42) Pp ,(z +1i7)
+VH@ AR 22 2 (e‘“’p — Df”—) + &, 4.27
@A) 2R T i) Poy(r) ) o0 (42D

and the multi-indexed polynomials P{{ﬁ(x) are its eigenpolynomials,
Hp P () = E.P5H () (n € Zx0\D). (4.28)
4.4 Some identities
For the ordered index set D = {dy,...,dy}, let us consider the following ordered index sets,
D ={d,...,dy,d}, D'"={d,...,dy,d"}, (4.29)

where d’',d” & D and d’ # d”. From the properties of the multi-step Darboux transformation

given in §4.2, we have the following identity:
o JKAT
i (0) = A 2 (o). (4.30)

By extracting the polynomial parts from this identity, we obtain the following proposition.
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Proposition 4.1

ERA(r—i2)  ZEAx+i2)\ - ~ .
(5n—5d,>( » (@ Z§)+ G 22))135,%”(95):(H%Mﬁn—gd,—gd,,)pgﬁ(x). (4.31)
2

=Mz —i2) =Kz +id)

Since this proposition can be proved in the same way as Proposition3.1 (1), we omit the
proof.

Remark 4.1 The identity (4.31) is invariant under the permutation of d;, d’, d” in D, T,
D”, namely, the order of ordered sets D, D' and D" are irrelevant.

Remark 4.2 For generic values of X, PE () and Z5* (2 +i2) do not have a common root.

4.5 Discrete orthogonality relations

Let us fix an index set D = {dy,...,dy} and a non-negative integer N & D, and set
N = deg PE% = (5% + N. We denote the zeros of PE%.(n) as nJ[.D’N] A =1,2,.. N,

and assume that they are simple. We define QZE'D’N] Ka by requiring n(xgp’N] KA) = n}D’N] KA
and 1 < Re xE-D’N] KA < z9
In the following, for simplicity in notation, we write nJ[-D’N] KA and xéD’N] KA as n; and x;,
respectively. Then Pgﬁ,(x) is expressed as
N
Ppi (@) = cpi | [ (n(z) —my). (4.32)
j=1

4.5.1 polynomials P,
For the index set D = {dy,...,dy} in the standard order, let us define the index set D;»k as
follows [27]:

def

Dy EL{0,1,....dy}\(DU{NY}), d;jeD, E;€{ccEle<d;}, e €k,
D, < (D\{d;}) U {e&}. (4.33)

As an ordered set, we choose one order of the elements for D}k, e.g. the standard order.
Let us define M max{j|d; < N} for d; < N and M <0 for di > N. Then we
have DN {0,1,...,.N =1} = {dy,...,dy}, and |E;| = d; — (j — 1) for 1 < j < M and
|Ej| =d; — (j — 1) — 1 for M +1 < j < M. The number of this set D}y is

MO =D (=G -D)+ D0 (b=-(G-1-1)=6"+M (434
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Let us define the polynomials PXA(z) = PXA(5(x)) (a = 1,...,N) as follows [27]:
(0): P (x) = Ppn(w) (n€{0,1,... . N =1}\{du,...,dy}),
(1) : PEM(z) = pK;i,N(x) (D), in (4.33)). (4.35)

The total number of these PXA(z) is actually (N — M) 4 ((KA + M) = N + (KA = N
Let us show that the conditions in (2.3) are satisfied. The condition (i) is trivial. The

condition (ii) is satisfied, because we have

(0): degPEA = (B2 4n, n< N,
(1) : degPXA = egi + N, egi = (5% —dj 4 e < 52 (4.36)

The condition (iii) is satisfied by the following proposition.

Proposition 4.2 For PX4(x) (4.35), we have

PN, = EP5APRA(y), (w7
where EPXA are given by
(0): EF¥A = ¢,
(1): EPMA =& + &, — En. (4.38)
Proof:

0): Eq. (4.28) gives HEAPKA () = £,PKA (), and (4.37) is obtained by setting z = ..
( g D a a y g 7
(1): Eq. (4.31) with the replacement (D', D", n,d',d") = (D}, D, N, e, d;) gives

() x Ppi(a) = (Hp™ + Exv — &, — E4,) PN,
and (4.37) is obtained by setting x = x;. 0O

By using (4.38) and explicit forms of &, [15], we can show that the condition (iv) is satisfied
for generic values of A for cH, W, AW and cqJ cases. For other cases, there may be a
degeneracy in EFKA even for generic values of A. Thus, for cH, W, AW and cqJ cases,
the polynomials PXA(x) (4.35) (with generic values of \) satisfy all the conditions in (2.3).
For other cases, the polynomials PXA(z) satisfy the conditions (i)-(iii) in (2.3) but not
(iv). However, we remark that the multi-indexed polynomials P’ (n) for other cases can
be obtained from those for cH, W, AW and cqJ cases by taking certain limits of parameters

(with appropriate rescalings).
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4.5.2 matrices M and M

Let us show the proposition for M.

Proposition 4.3 The matrix elements Mjk (2.8) for j # k are expressed as

o | —H* (n(2) PE ()|
T (s —iv) — ) (s + i) — mi) Pr ()

The proof is the same as in Proposition 3.3, so we omit it.

Let us define Fj* (j =1,...,N) as

HEA (n() PEA (2)) |
P5Y (n5)

T=x;

def
FJ.KA = _

Then we have the following proposition.

Proposition 4.4 The number FF* (4.40) is expressed as

Fj% = F¥% ;) = F* ().

Here F¥A(z) is given by

=KA 2
. def —1 . = (:L‘ + Z_)
P80 s (e — )V (s ) 2o

—D 2

Ppi(x — i)
) X KA E%A(x - Z%) HKA .
+ 0z +iV)V(@;Ap") e, 5 Pov(@ +17) ).
EpM(x +i2)

It is a rational function of n(x), and F¥*(n) is given by FX*(n(x)) g FXA(z).
The proof is the same as in Proposition 3.3 (recall (4.2)), so we omit it.

Remark 4.3 As in Remark 3.3, FjKA can be written as

FRA — n(w; +i7) — nlz; = W)V \KA =5 (x5 +43)
i PKAT (- (A7) =ga, 2
DN (n5) =5

J 2

By the similarity transformation (2.11), we obtain the symmetric matrix M.

— (j #k).

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

Proposition 4.5 By taking g; = ,/FjKA in (2.11), the matriz M is symmetric, (2.12).
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The proof is the same as in Proposition 3.5, so we omit it.

Remark 4.4 The matrix elements Mvjk and M, (j # k) are given by (3.61) and (3.62)
with the replacement F; — FjKA, respectively. The diagonal elements M ;i = M;; are given
by

— FKA
M;; = : J :

(n(z; — i) — ;) (n(z; +iv) —n;)
ERA (2 + %) PRA(z; — iv)
ERA (2 — %) PEA(x))
KA("EJ ) ) Pgﬁ(% + )

HKA(% +13 ) Pgﬁ(%)

— V(z;; A5

— V¥ A5Y) = + &, (4.44)

4.5.3 discrete orthogonality relations

The discrete orthogonality relations are as follows.

Theorem 4.1 For the Krein-Adler type multi-indexed orthogonal polynomials studied in
this section Pgﬁ(:c), PEA() (4.35) and FX*(n) (4.41), we have the discrete orthogonality

relations:
i 1 PEA(nj) ,PlFA(nj) k[DN]KA(; ( h=1.2 ./'\7') (4 45>
= Ry ’ ab a,0=1,4,..., ) .
= FRMg) P (ng) P ()
where kDN] KA s are normalization constants.

Proof: For cH, W, AW and cqJ cases, since the assumptions of Theorem 2.1 are satisfied (for
generic values of A), Theorem 2.1 gives this theorem. For other cases, the condition (iv) in
(2.3) may not be satisfied. For such PX4 and PK* with EP KA = EPKA Theorem 2.1 do not
state the discrete orthogonality relations. However, the multi-indexed polynomials Pgﬁ(n)
for other cases can be obtained from those for cH, W, AW and cqJ cases by taking certain
limits of parameters (with appropriate rescalings). By these limits, the discrete orthogonality

relations (4.45) for other cases are obtained from those for cH, W, AW and cqJ cases.

Remark 4.5 We have similar remarks as in Remark 3.6, 3.7 and 3.8 (see (4.2)). Moreover
the discrete orthogonality relations (4.45) hold for the index set D without the Krein-Adler
condition (4.14).

[D,N]KA

We conjecture the normalization constants kg for cH, W, AW and cqJ cases as

follows.
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Conjecture 4.1 The normalization constants PNVIEA e given by

)
1
:cH,W
2(by + 2N — 1) “th
(0) Pyt = Pppy + KIPAMEA — Aon X 4 2QN+1 . IN—1 CAW (4.46)
’ hp (1 —=¢?)(1 = byg®N 1)
VM
2 pew T ETTVORER L
[ 1—=¢*)(1—¢ )
(1) PEA = PK;_‘:N :
CH . k,gD,N] KA — hDJk7N Ek' + '—ek H H . (bl + Ek’ - ]-)dj—Gk
hDJ\/ al + Qo + Ek) dj—eg, b1 + QEk -1

1=1,3m=2/4

M di—Ek bl+dz~—|—ek—1
di —dj by +di+dy =17
i#j
hpr 1 1 (b1 + € — 1)djfek

W - k[D,N] KA _ ik’
¢ hoa 2(ep+1)q (a1 + m + €x)d;—e, by +2¢ — 1

Tk 1<l<m<4

M di—Ek bl+di+€k_1
L di—dj by +di+d; - U

i#]

AW : EPNEKA _ hp g 1 , (bag™ ™3 4~

hD,N (1 =)@ Qe oy (@EMGH5 Daye, 1= bag?r!

1_q1 €k 1_qu+ek 1
—1

#J

WNeer—ds e
7. EDNEKA _ hps, gt rdi(g Q) dy—e

“ “ h 1—q?

DN q

(@t ) g e,

X
(1 _ q%(a+,8+1)+6k)<1 + q%(owr,B'Jrl)erj)(chrekﬂ7 giretl; q)

djfek
. 1 — q d;—eg 1— qa+ﬁ+dz+ek+1

XHq g 1 — qatBrditd1

#J

By numerical calculation, we can verify this conjecture for small M, d;, N and n. We do not
write down the normalization constants for other cases (MP, cdH, cdgH, ASC, cbgH, cqH,
cqL), but they can be obtained from the above results.
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5 Summary and Comments

Ordinary orthogonal polynomials satisfy the discrete orthogonal relations (1.2). For the
multi-indexed orthogonal polynomials in oQM, which satisfy the second order differential
equations, the discrete orthogonal relations also hold [27]. We have generalized this result to
the multi-indexed orthogonal polynomials in idQM, which satisfy the second order difference
equations. The discrete orthogonal relations hold for the case-(1) multi-indexed orthogonal
polynomials of continuous Hahn, Wilson and Askey-Wilson types, Theorem 3.1, and for the
Krein-Adler type multi-indexed orthogonal polynomials, Theorem4.1. Their normalization
constants are conjectured, Conjecture 3.1 and 4.1. The discrete orthogonal relations for the
multi-indexed orthogonal polynomials in oQM are revisited in Appendix B, and the normal-
ization constants are conjectured, Conjecture B.1 and B.2. We hope that these conjectures
will be proved.

In addition to oQM and idQM, we have another quantum mechanical system, rdQM.
Orthogonal polynomials appearing in rdQM are the g-Racah polynomial, its various limits,
and their multi-indexed versions. The discrete orthogonal relations are expected to hold for
the multi-indexed orthogonal polynomials in rdQM as well. It is an interesting problem to

study these discrete orthogonal relations concretely.
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A Proof of Proposition 3.1

In this appendix we prove Proposition 3.1. We use the following abbreviated notations:

w(x) = Wy [d,, - Pap, ] (%), u() = W5 (B, - Gay, $n) (1),

wi(z) = W, (D, - - by, G (), ur(z) = W, [Qa,, - bay» G, D) (),

wy(r) = W, [Day - - P> Gar] (), us(2) = W5 [Bays -, Gang, Gar, Gul(x), (A1)
ws(w) = Wy [ay, -, Pang Gars dar)(x), us(®) = Wa[day, -+, bayes G, G, 6] ().
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For example, we have

\/V (o — M+27) w(x +i3) wo(z — i)
3 :

VD”

Fpin(@) = (]HO V(e +i(5 =)V (e =it =) ) et
= putppn () Ppr o (2) = éputppn (2) g ()~ uz ().
A.1 Proof of Proposition 3.1 (1)
From Hpr = Apn A, + Egr and
Hir = gpu(@) 0 o © iy ()™ = gpu (@) o ()™ 0 Hapr 0 pu (@) g (@) ™

= (HV(x—i—i(@— DY)V (@ — (M — j)7) > }L\/U& (z —ig)wa(zr +i3)

M 1
1 1
OHNO Vx_i—zw_ V*x_zw_
D (Jl;[o (@ +i(%5 =)y V" (z —i(*5 ])’Y)) Vws( — i ws(z +i2)
= _ M+l * M43 w2<x+2%) ~+p
VBVt gy
M+3 . M+1 wa(r —i3) —p
+\/V (z +i25=2y) V(2 4175 7)1112(13—{-@%)
+ Z"}/) "LUQ(iE — il/)
\/ (I Z ) ( 2 ’7) w(m) w2($+i%)
_ M1\ 1wz —iy) war +i3)
\/V(erz SNV + i) e wQ(x_Z.%)Jré’d, (A.2)
we have
ﬁl - M1 % M43 U)2<LU+Z%
oot () = Ve =152 V(e —i5559) & (x—ﬂ)“l(x i)
2
—i2)
V(z + i) V= w1, W2l — i3 ,
—1-\/ (x + 5= )V (z +i75 ’Y)w2(x+i%) uy(x 4 i)
_ M-l « M+1 w(x 4 i) war —i3)
_ M1y 1wz —iy) w(r +i3) >
\/V (x + 5= V(w—l—z ) w(@) wz(x_z,%)ul(:v)—l—gd up ()

From Hp = AD/ATD, + &y and Hp ¢ n() = Enppr (), we have

w (z +1i3)

M+1 jM+3 o
Enua ( \/V VH(z —i%5=7) l(x_,ﬂ)ul(x )

[\
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+ \/V (x +ZM+3 NV*(x + ZMQJFI’)/) 0z +Z§) uy(z + i)
e MR
— \/V (z + i)V (2 + i) w(z(_x;w Z}Uigtg; ui () + Eg ur(x). (A4)

By rewriting these (A.4) and (A.3) as

(o ety (e o) = (o). x5

where

oy = \/V (z — i)V (z — iMEy), = \/V(w — My Ve (z — 1M y),
wi(zx+i%) 1 wo(r +143) 1 w(x + i)
N = C= ——

— — Qg = —————~ = —

= wi(x—1i2)  a’ wo(z —i2) a3’ w(x)

& Y7
by =&, — E + agcal + ascay, by = Hp, — g + agcay + asctag,

(ozlul(x - w)) _ ; ( al —af) <b1u1(x)) (A.6)
ajur(z + i) ajay — ajaz \—d2 a1 bour(z) ) .

By writing down the identity (3.40) and multiplying by

we obtain

(&, - édo(fw[ V(w4 i(M5E = )V (e — i — )y )W (v — i) +i3),

=0
we obtain
. wy(x +11) LWwa(r —id) ,
(En = Ex)ua(x) = Oélwl(ac——z'zy)u 1z —1y) + almul<x +i7)
wy(r —1i2) Jwox+13)

— Y Zg cuy () — ozzwl(w—_lé)c uy (). (A.7)

By substituting u;(x F i) in (A.6) into (A.7), we obtain
. 5 _qwalr —ig)  wa(z +i3) L

(a1ay—ajas)(E,—Eq)us(x) = (wl(x —53) Tt 22)> (’Hpuul( )+ (En—Ea —Ear)un ().

(A.8)

Since uy(z) = gh, (x) Ppr (), we have
ﬁ;)uul ($> + (gn — gd’ — (cjd//)ul (ZL‘)
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— 7 5 I\
— g'g// (33) (gg//(x) 1 (6] %'D” o} gg// (1:) + gn - gd/ gd//) gD ( ) P’D/7n(l‘)

9 ()
~ ~ ) ~
= ggu (]7)(7‘[1)// + gn - gd/ gd//) gD ( ) PD/,n(ZE)
9pn ()
Therefore (A.8) gives
wi(z —i3)  wi(z+i3) ~ 9 (%) -
’ // 1" _— r i P /n 5
<w2(x—¢g) + w2(:c+¢g)>(5 = &) Porn(e) = (Mo + &0 — & = Ear) B 5P a(0)
namely,
(z — i) Bp(x —i2 (z41i2) Ep(x +i2)N -
(& sd,)(gM ) Zol i) g g2letiy) 2o 22 P ()
gD“< — 25) :DH(SL’ — Z§> gpr\ X + Za) Zpr (T -+ 25
9o () x
(HDN + &, — gd’ 5d”> Pp n(l‘) (A 9)
9pn (@)
When the types of d' and d” are the same, we have gp/(z) = gpv(x) and g5, (z) = g5, (z).
Thus (A.9) gives (3.42). 0
A.2 Proof of Proposition 3.1 (2)
Like as (A.2), Hjpw < gL, (z) 0 Hpm 0 B ()" is expressed as
/! M+2 _ s M+4 wg(ZE + Z%) YD
D///—\/v (:L‘ 1 3 'y)w3(x_2%)
wz(x —iL) _
T V 4 M+4 1+ + M+2 '2 ¥p
\/ (v + 752 y) V(2 4 i75) 3(x+z%)e
+iy) walz — 1Y)
—\/V(z —idly) V> 3 M2 i =2
V W=D ") wele 1)
_ 4 + 42 _
— \/V (z + 122 V*(z + i) wn(z = i) walx @3) + Eqn.
wi(z)  ws(xr—1i3)
Then we have
P P
P v} P(oy—1 gp(2) gp (@)
g ,I‘OH m O gpT :—OH///O
D( ) D D( ) ggm<x> D gg(x)
— \/V M+2 ({E M+4,y) wg(fl' + Z%) g/g(ﬂf) gg’” (:U B 27) eP
2 Vws(z— i) gplr —iv)  gpu(z)

ws(x —i3) gp(@) gpmlx+iy)
w3z +13) gp(x +i7)  gpm(x)

w (z + iy) ws(z —i3)

wy(z)  ws(x+ z%)

+ \/V (z + iy Ve (z + i22)

—\/V;E—z—’y )W (z — i2E2)
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wi(z — iy) wa(@ + i5)

— M+2 * — 1",
\/Vx—i-z VV*(z + i%) e wg(x—22)+gd

and obtain

(95(x) © Hpw 0 gp(w) " u(x)

wy(@ +i3)  gp(x)  gpw(r—iv) ulz — i)

= V(x — M2y M ‘ _
\/ Ve( > ) ws(x —1i3) gh(x —y)  ghm(z)

M+4 ¥ w2y W@ —05)  gp(r)  gpu(r + i) '
+\/V5’7+" NVl +i5%) ws(z +i3) gp(z + i) gpm (@) e

— V(e — i)V (z — iME2y) wl@(,i(;;w Zigl;; u()

wy (r — i) w3§x+z§; (@) + Ep ulx). (A.10)

o V M+2 V* M
\/ (x+i55= (z +i%7) (@) ws(e =i

From Hp = Al /AD’ + (de/ and Hpppn(r) = Endpa(),

Mg M2 w(z +i3) .
)= Vi = iF)Velo = i229) DE (e — i)
M+2_ 0\ % ‘M w(z —i3) -
—l—\/V:c—H 7V (x+z27)w(x+z_%)u(x+w)
B My M2 w(z +i3) wi(z — i)
YVie =iVt = id2a) T e ()
B M42, \1/+ a ) W& = i3) wiz + ) o A1l
\/Vx+z VV*(x + i ww(x%—i%) (@) () + Exu(z). ( )
By rewriting these (A.11) and (A.10) as
ajay  ajal u(z — i) byu(x)
: = A12
<Oz2agﬁ* a’ga;ﬁ) (u(m —I—w)) (bgu(a:) ’ ( )
where
alz\/V:c—z— *(z — iMF2y), ag—\/V MV (1 — M),
B (x+z2)_i _W3(I‘+Z2)_i _wl(x+w)
= w(z —il)  a}’ 2= wy(z —11)  a;  wyi(2)
P . P .
gp(@ +17) gpr (T +17) DBa
/B = T p/ N = T PP /N = 7
S £ R S R

by =&, — Ep + anaic + ajaje, by = gh(x) o Hpm o gh(x) ™ — Ep + arale + afasch,

we obtain

(u(a: — i) 1

_ asasf —ajaj byu(z)
u<x +i7)) B Oéla;alaéﬂ — : 2 ! 1> < ) . (Al?))

afasaias 5 <_052a2/8* aay bou(z)
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By using the explicit forms of gh(z) and gk, (z) (d',d" : different types), a lengthy but

straightforward calculation shows the following:
a; — a8 =0. (A.14)

By writing down the identity (3.41) and multiplying by

M4+1 N
(TL Vo022 — i)V (o =252 = )2)) ool — i st + 43),
we obtain
——wg(x+i%)ux—i _wg(x—i%)ux ;
ws(@ = Z%) T —wg(x jLZ-%)c*u T
werp) T we— (A1

By substituting u(z F 4y) in (A.13) into (A.15) and using u(x) = gh(x)Pp, (), a short

calculation gives

(yasaiasf — ajagaias S )us(x)
Lwa(r +1i3) ws(r —13)

= gp() (al wi+i3) wle—i3)

) (ﬁp/// + & —Ew — gd")PD,n(I),

where (A.14) is used. Dividing this equation by ajaf and using (A.14) and wuz(z) =
9 (2) Ppin ,(2), we obtain

q * Off * »
_ - P 111
(O[{al% a1a1a2> 1t ()
r 1 +i3) 1 — )\ s _ENE
gpm ()

oy w(r+13) af w(r—i3)

By using the explicit forms of g5 (), gh./(z), gp(x) and gpm (), alengthy but straightforward
calculation shows that (A.16) is expressed as (3.43). 0

B Discrete Orthogonality Relations in oQM

In this appendix, we revisit the discrete orthogonality relations for the multi-indexed orthog-
onal polynomials in ordinary quantum mechanics studied in [27].

For the multi-step Darboux transformations of oQM, see Appendix A in [31].
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B.1 Multi-indexed orthogonal polynomials

We consider the discrete orthogonality relations for the case-(1) multi-indexed Laguerre and
Jacobi orthogonal polynomials. The outline is the same as in § 3, and the results are described
briefly.

By the M-step Darboux transformations, the deformed Hamiltonian Hp and its eigen-

functions ¢p,n(x) are expressed as
d* 0(%)

Hp = ——— + Ulx) = 207 10g|W[da,, - 6, )(2)], Ulw) = et (B.1)
~ W[ba, s Pang bl () .
(bDn(x) W[dil’ - 7Q~§dM](x) (TL c 20),
at $0(3 Ap)

= &' Yp(2) Ppy(r),  Up(z;A) (B.2)

ED(ﬂf; A)’
where Ap is given by (3.32), ¢ is given by (2.132) in [18], ¢, (x) is given by (B.3)-(B.6) in
[31], Zp(z) and Pp,(z) are given by (B.9)-(B.10) in [31]. The functions gp(x) and gh(x)
are defined by (3.26)(3.27) with the replacement W, — W, and their explicit forms are
given in (B.7)-(B.8) in [31]. We remark that gp(z) and gk5(z) depend on My and My, but
not on the specific values of d; and n. The degrees of =p(n) and Pp,(n) are same as §3.
The orthogonality of the multi-indexed polynomials are (3.35)—(3.36) with the replacement

¢ — ¢, A direct calculation shows

W[diw R ngM](x)

= = 0. (B.3)

U(z) — U(z; Ap) — 202 log‘

The similarity transformed deformed Hamiltonian '}qp = p(x)t o Hp o p(x) is expressed

as

= —1(catm g + (a0 ro) — 2es Z20) 2
=

where ¢;(n, A) is given by (2.132) in [18].
From the identities (3.40)-(3.41) with Aq, 4 = 4 9,log|da,..q.(7)| and flzlmds =

—4 9, log |ba, .. ()], we obtain Proposition 3.1 with the following replacements,

[1]

p (1) Py n(n) = (7:21)” +& —Ey — SNd,,)PD/,n(n), (B.5)

(3.42) — Q(En — gd’) ; (77)

[1]
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(3.43) —» —22 =2 (Z;)PD,,, (n) = (Hpm + En — Ex — Ear) Ppa(n). (B.6)
‘-—"D”’

These properties (B.5)—(B.6) with n = A are given as Theorem4.3, 4.5 and 4.6 in [27],
but their reader-friendly concrete proofs are not presented. So we present them in §B.3,
in which explicit expressions of Zp and Pp,, ((B.9)-(B.10) in [31]) are not used. We have
Proposition 3.2.

Since Hp has the form Hp = —% + A(z)L + B(z), we obtain Proposition 3.3 with the

replacement,

1 —Ho(n(x)Pox())|,_,

3.53) — M.y =
( ) 7 (nj_nk>2 Pll),/\/(nj)

(U # k). (B.7)

By using the explicit form of Hp (B.4), we obtain Proposition 3.4 with the replacement
(3.57) = F(x) =21/(x)*,  F(n) = 8cs(n). (B.8)

Then we have Proposition 3.5, and (3.61)—(3.62) become

= _ B _VEVE
Mjk - (nj — nk)g’ M]k‘ - (nj — nk)g (] 7é k) (BQ)

We have Remark 3.4 with the replacement,

(3.63) > M.:4@<n.)(i;+(§: Ly B0
Y ’ m=1 (77-7 - nm)z m=1 77_7 - /r,m ED(TIJ)
Ep(ny)
+4e1(nj, Ap — 8) = (B.10)

which agrees to //\/lvgs + En in [27].
For the case-(1) multi-indexed Jacobi polynomials, the assumptions of Theorem 2.1 are

satisfied (for generic values of A). Therefore Theorem 2.1 gives the following.

Theorem B.1 For the case-(1) multi-indezed orthogonal polynomials of L and J types
Pp (1), Pa(n) (3.49) and F(n) (B.8), we have the discrete orthogonality relations:

N a(15)  Po(n;) \
Z i) W) o g =12, N, (B.11)
= DN(UJ) PDN(UJ)

D,N . .
where k‘([l ]’s are normalization constants.



Remark B.1 For L case, there may be a degeneracy in £ even for generic values of X,
namely, the condition (iv) in (2.3) may not be satisfied. Theorem2.1 can not be applied
to such cases. However, the case-(1) multi-indexed L polynomials Pp,(n) can be obtained
from those of J by taking certain limit of parameters (with appropriate rescalings). So, the
discrete orthogonality relations (B.11) for J are inherited by L. This point is not mentioned
in [27].

Remark B.2 Like as Remark 3.8, the discrete orthogonality relations (B.11) hold for any

complex values of parameters A (with the condition ¢, ¢f;  # 0).

We conjecture the normalization constants kP as follows.
Conjecture B.1 The normalization constants kP e given by
1hp, 1 - L
(O) Pa = PIDv” . kjl[l'DM\/’] — —L X { 1 SJ (B]_Q)
8 hp IN+gth -
(]-) Pa - PD’ljk/\/’
oy _ Lo (G4 Dacg thdi— o ﬁ di' + ¢, + 1
@ 8 hpx (6 +g+1)a #-df i di —dj 1di'+dj+1
( (1) L
(G +9—h+1)a a
I _ _
" (2, +g—h+1)(e, h+ )] o | (B.13)
Hdl—i-ek—i—g h+1 ﬁ‘dﬂ —gth
tdi+di+g—h+1 d! —g+h
\ Z#J
(2> Pa - P’D’2 BN
Lot _ Lo (e +Dgu_n o gt _ ﬁ A+ el 1
a 8 hD,N (GE — g+ %)di_l_e}el i d? — dy paiey d% + d;l +1
i
(1 L
(G}CI + h — g+ l)dn
2l + h — 1 h
X ( Gk; g + )( + + )dH—Ek , <B14>
ﬁd§1+e}5+h—g+1 Hdl—ek h+g
rd+d A+ h—g+ 1 d' —h+g
\ i#k
(3) Pa=Ppy , n
Lo _ L hpsgk, —16d5! d}!
‘ 8 hpx (dh+df+1)(g— -)(g +5)a (5 — g
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Mix

My
1 1
X .
H (df — d)(dj + dil 4 1) H (di' = &)} + dj 4 1)
i#] i#£k
(1 L
Mg —h)(g—h+1)g (h—g+ g
(h—35)(g—h+d; —d)(5—h)a (h+3)a

My

<11 L
(d%—d}€1+g—h)(d£+d§+g—h+l)

i=1
i#]
M1

<11 !
(df' =dj +h—g)(d' +di} +h—g+1)

i=1
. ik

By numerical calculation, we can verify this conjecture for small M, d;, N and n.

B.2 Krein-Adler type multi-indexed orthogonal polynomials

(B.15)

We consider the discrete orthogonality relations for the Krein-Adler type multi-indexed or-

thogonal polynomials of Hermite, Laguerre and Jacobi types. The outline is the same as in

§4, and the results are described briefly.

By the M-step Darboux transformations, the deformed Hamiltonian Hp, which is hermite

for (4.14) with s — M, and its eigenfunctions ¢p,(z) are expressed as

d2

Hp = o +U(z) — 28% log‘W[@l, e qﬁdM](a:)’,
KA - W[¢d17 ) (bdMa ¢n]<x)
Dn( ) a W[¢d17"‘7¢d1\/]](x) (n © ZZO\D)’
5 . ,AKA
- ORI, vl B,

where Ap is given by (4.23), and Z54(z) and ]—r’gﬁ(:c) are given by

~ def — —_ def

2 () = Ept(n(2), E5) = WP, -, Pay (),

= def def

P’gﬁ<x) = Pgﬁ(ﬁ(@), Pgﬁ(n) = W[Pd17 SR Pd]\/[7 Pn](n)'

Note that P55 (n) = 252 , .(n). By the property of the Wronskian, we have

M(M~-1)

<Z50(37)M,

N~—
I
—~
3
~
—
8
N~—
~—
ol

W(ba, - dayl(z) = 95" (2)=5" (), 95" (@

Wb - Sayes b (@) = gBEN@) PEA(2), 0B XA (@) = (o (2)) 2™ M Vg () M1,
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The degrees of Z5*(n) and P’ (n) are same as §4. The coefficient of the highest degree

term of Z54(n), GKA is

EKA HCd H (dp — d;), (B.22)
1<j<k<M

and that of P52 () is cpi* = ¢34 . The orthogonality of the multi-indexed polynomials

are (4.25)-(4.26) with the replacement = 2MM=1) 5 =2M A direct calculation shows

U(x) — U(z; A5A) — 202 log W[%; > bay|(@) | _ En. (B.23)
=KA(z)
The similarity transformed deformed Hamiltonian HEA = ¢KA(2)~ o HEA o EA(2) is ex-
pressed as
B V@ d | g ESV @) M)
Hp = ——5 =27 %x,~ 7 KA HKA =KA +Eu
dx Y (x) do do(z; Ap"~) Ep™ () =Ep(z)
d2 ._KA,(T]) d
= —4( eo(n)— + (c1(n, AEY) — 2¢4(n) =2 =
(o + (0 AN — 20 ) 5
—KAn —KA/
b D -t - 9L ) e (B2
=5 (m) =Ep(n)
From the identity (4.30) with Adl_,,ds = % — O, log |¢a,..a.(x)| and Azl.“ds = —% —
O, log |¢a,..a.(x)], we obtain Proposition 4.1 with the following replacements,
=5 (1) pa KA
(4.31) = 2(& — Ev) =R ( >P}§,, (n) = (HE» + &0 — Ea — Ear) PR (1), (B.25)
i—‘D//

which can be shown in a similar way to (B.5). We have Proposition 4.2.

Like as § B.1, we obtain Proposition 4.3 with the replacement,

1 HE (@) PR @),
(1 —me)? Fou ()

and Proposition 4.4 with the replacement

(4.39) = M, = (7 #Fk), (B.26)

(4.42) — F®%(2) = 20/ (2)?, F**(n) = 8ca(n). (B.27)

Then we have Proposition 4.5, and the matrix elements .//\-\/l—/jk; and M, (j # k) are given by
(B.9) with the replacement F; — FK*. The diagonal elements .//\-/lvjj = M; are given by

N N

N 1 1 2 KA/I(T]J)

M = 402(%‘)(2 (5 — Nm)? + <m2_:1 nj — nm> =) )
m#j m#i
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=5 (n;)
=54 ()

For the Krein-Adler type multi-indexed Jacobi polynomials, the assumptions of Theo-

+4er(nj, Ap™ — 6) +Enr. (B.28)

rem 2.1 are satisfied (for generic values of A). Therefore Theorem 2.1 gives the following.

Theorem B.2 For the Krein-Adler type multi-indexed orthogonal polynomials of H, L and J
types Pha(n), Pa™(n) (4.35) and F¥*(n) (B.27), we have the discrete orthogonality relations:

a

I
1 PEMay) P () v
a — EPMEAS o (a0 =1,2,...,N), B.29
2 TR ,) P 0 P a ) (.29

DN ..
where k([l ]’s are normalization constants.

Remark B.3 We have the same remark as Remark B.1. For L and H cases, there may be a
degeneracy in EPX¥A even for generic values of A. Since the Krein-Adler type multi-indexed
L and H polynomials Pgﬁ(n) can be obtained from those of J by taking certain limit of
parameters (with appropriate rescalings), the discrete orthogonality relations (B.29) for J
are inherited by L and H. This point is not mentioned in [27].

Remark B.4 Like as Remark 4.5, the discrete orthogonality relations (B.29) hold for any
complex values of parameters A (with the condition ¢5**, cfK* # 0), and for the index set

D without the Krein-Adler condition (4.14). For H case without (4.14), however, Py(n) may

have zero n = 0 with multiplicity. For such case, Pi*'(0) vanishes and (B.29) does not hold.
We conjecture the normalization constants k([ID’N] KA as follows.
Conjecture B.2 The normalization constants e given by
1h 2 - H
(0) PEA = PEA ¢ fPAMIRA = — 20 o £ ] L (B.30)
’ 8 h"D,N 1 -]
2N+g+h °

(1) PEA = PK;:N

M
LDNKA _ lhDE'kW di —
a 8 oy 1lq =g,

i#j
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¢ gek—d;+1
(e +1)a,—c,

(€r +1)a,—c,
(ex +g+ %)dj—ek
(@t 1)a e (€ + g+ h)a;—e . (B31)
(s + 9+ Da—e, Cer+g+h)(ex +h+1)g e

M ditetg+h

X
i1 dz+d]+g+h
\ i#j

By numerical calculation, we can verify this conjecture for small M, d;, N and n.

B.3 Proofs of (B.5) and (B.6)

In this subsection we prove (B.5) and (B.6). We use the abbreviated notations (A.1). For

example, we have

d2
Mo =~ 4 U(2) — 202 og funle)], () = 222

e = () Py ).

For simplicity in notation, we omit the argument “(x)” and write 92 log |wa(x)| as 92 log ws.

From Hpopa = Exdpa and dpy = wy/w (see Appendix A in [31]), we obtain

w1 w Wy w
Similarly we have
" !/ !/ i
e TN e O § - (B.33)
W2 w wa w

and ,HD/(bD’ 4’ = (de/rggpl d with qul dr = wg/wl giV@S

From the form of Hp, we have

d2
_Zﬁ =Hp +Hpr —2U + 2&,? lOg wiwe = Hp + Hpr — 2U + 265 lOg wws. <B35>
T

B.3.1 proof of (B.5)

Since d’ and d” are the same type, we have Ap, = Ap» and gpr = gpr, namely

[1]«

Vo Spr W (B.36)

77/JD// N D’ w1 ’

[1]¢
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Then we have

¢D” O ﬁ’D// (¢] ¢D/ = ﬂ O ﬁDN O %
Ypr Ypr Wy wy
d "
—HW—Qakg—w———EQG%>—Q&mgww-@kggz (B.37)
wy; dr  wo \w; w1

By writing down the identity (3.40) and multiplying by 2(&, — ), we have

m&—@ww
d
:( 2—+28 log— d—+28 log -0y log——28210g—>¢pf
@) d 2 W2 wq
= <7—[D, + Hpr + 20, 1og — — 2U + 20; log wwsy + 20, log — - 0, log —>¢D'n
" dx w w
( ) M+1 (8 ¢D” ~ wD/ 1 d
, 4+ = . 1o — 0 — 0y
w,D ¢D/ ”Lpr// wl wpl d]? ,lpD
— 2U + 20% log ww; + 20, log &2 0, log ﬂ)159/,71
w w
(iif) M+, (5 T Hop — ﬂ(%) 129, log -2 Yo .9, 1o g—
Wy \Wq Ypr
—2U + 202 log wws + 28@, log 2 0, log ﬂ)Pp/m
w w
1 / " / / "
w1 w w1 w wz w wWa w
@ M (€, + Hopr — Eg — En) Py, (B.38)

where we have used (i): (B.35), (ii): Hp ¢prn = Endpry and (B.2), (iii): (B.37), (iv): (B.36),
(v): (B.32) and (B.33). By dividing (B.38) by ¢¥*l4p and using (B.2) and (B.36), we
obtain (B.5).

O
B.3.2 proof of (B.6)
Since d’ and d” are different types, we have Ap = Apw and 2T lgp = gpw, namely
Yo _ iD/// _ C;QM—I%' (B.39)
¢D/// :D w
Then we have
me o j’ZfD/// @) ¢D = ﬂ @) HD/// o %
Yp D w3 w
d "
= HD/// — 26 log —_— — — ﬂ (w3> — 2836 log w'D/// . 61 log % <B40>
dr w3\ w w
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By writing down the identity (3.41) and multiplying by —2, we have

- 2¢D///n
d? d
dl' w dl’ wl w w
i d
- (HD o+ Hopw + 20, log =2 - - = 2U + 20 log wywy — 20, log — - , log E)Q%n
w dx wy w
O (5 Ypm g Up 091 wy 1 d
¥ n+_¢D oHp prm-l— 108" ¢Dodxo¢p
—2U + 202 log wiws — 20, log 2 - 9, log ﬂ)pm
wn w
iii ~ "
=2 3 p (Sn + Hpm — = (%> + 20, log E - 0y log s
Wws w wD/” w
— U + 202 log wiws + 29, log —2 - 9, log E)E;,n
w1 w1
. _ " 1ot " " o N
w Cwa(gn‘i_HD”"i‘ﬂ ¥ —U+w—+%_2ﬂ% —U—l-ﬂ)Pp,n
w1 w W1 w wWs w1y W3 wy
2 Yo (& + How — Ex — Ew) Pon, (B.41)

where we have used (i): (B.35), (ii): Hpopn = Endpy, and (B.2), (iii): (B.40), (iv): (B.39),
(v): (B.32) and (B.34). By dividing (B.41) by ¢¥4p and using (B.2) and (B.39), we obtain
(B.6). 0O
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