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Abstract

The discrete orthogonality relations for the multi-indexed orthogonal polynomials
in discrete quantum mechanics with pure imaginary shifts are investigated. We show
that the discrete orthogonality relations hold for the case-(1) multi-indexed orthogonal
polynomials of continuous Hahn, Wilson and Askey-Wilson types, and for the Krein-
Adler type multi-indexed orthogonal polynomials in discrete quantum mechanics with
pure imaginary shifts, and conjecture their normalization constants. In appendix we
revisit the discrete orthogonality relations for the multi-indexed orthogonal polynomials
in ordinary quantum mechanics and conjecture their normalization constants.

1 Introduction

Ordinary orthogonal polynomials in one variable, Pn(η) (n ∈ Z≥0), are characterized by the

three term recurrence relations [1],

ηPn(η) = AnPn+1(η) + BnPn(η) + CnPn−1(η) (n ∈ Z≥0), (1.1)

where Pn(η) is a polynomial of degree n in η and P−1(η) = 0. The hypergeometric orthogonal

polynomials of the Askey scheme satisfy the second order differential or difference equations

[2]. New types of orthogonal polynomials PD,n(η) (n ∈ Z≥0), exceptional or multi-indexed

orthogonal polynomials [3]–[14], satisfy the second order differential or difference equations,

but do not satisfy the three term recurrence relations because of the missing degrees. We dis-

tinguish the following two cases; the set of missing degrees I = Z≥0\{degPD,n(η)|n ∈ Z≥0}
is case-(1): I = {0, 1, . . . , ℓ − 1}, or case-(2): I ̸= {0, 1, . . . , ℓ − 1}, where ℓ is a positive

integer. The situation of case-(1) is called stable in [5]. Our study of orthogonal polynomials



is based on the quantum mechanical formulation: ordinary quantum mechanics (oQM), dis-

crete quantum mechanics with pure imaginary shifts (idQM) [15]–[18] and discrete quantum

mechanics with real shifts (rdQM) [19]–[21]. The Schrödinger equation of oQM is a differen-

tial equation and that of dQM is a difference equation. We deform exactly solvable quantum

mechanical systems by multi-step Darboux transformations and obtain multi-indexed poly-

nomials as eigenfunctions of the deformed systems. They are polynomials in the sinusoidal

coordinate η(x) [22, 23], PD,n(η(x)), where x is the coordinate of the quantum system. The

case-(1) multi-indexed polynomials are obtained by taking the virtual state wavefunctions as

seed solutions of the Darboux transformations. When the eigenfunctions are taken as seed

solutions [24, 25], the resulting multi-indexed polynomials are case-(2), and we call them

Krein-Adler type multi-indexed polynomials.

Any ordinary orthogonal polynomials Pn(η) satisfy the discrete orthogonal relations. Let

us fix a positive integer N and denote the zeros of PN (η) as ηj (j = 1, 2, . . . ,N ). Then the

following discrete orthogonal relations hold [1]:

N∑
j=1

sgn(CN )
P ′
N (ηj)

PN−1(ηj)
· Pn(ηj)

P ′
N (ηj)

Pm(ηj)

P ′
N (ηj)

= |CN | hn
hN

δnm (0 ≤ n,m < N ), (1.2)

where f ′(x) = df(x)
dx

, and sgn(CN ) is inserted for the positivity of the weight factor. Since the

multi-indexed orthogonal polynomials PD,n(η) are deformations of the ordinary orthogonal

polynomials Pn(η), it is expected that the multi-indexed polynomials also satisfy the discrete

orthogonal relations. We naively expected the following:

Ñ∑
j=1

P ′
D,N (ηj)

PD,N−1(ηj)
· PD,n(ηj)

P ′
D,N (ηj)

PD,m(ηj)

P ′
D,N (ηj)

?
= 0 (n ̸= m, 0 ≤ n,m < N ), (1.3)

where Ñ = degPD,N (η). At first, we approached this problem by numerical calculation for

the case-(1) multi-indexed polynomials of Laguerre, Jacobi, Wilson and Askey-Wilson types.

It suggested that the discrete orthogonal relations hold for the multi-indexed polynomials,

but (1.3) does not hold, namely the weight is not given by P ′
D,N (ηj)/PD,N−1(ηj). In a private

communication (2017), Sasaki informed the author that the weights for the multi-indexed

Laguerre (L) and Jacobi (J) (and Hermite (H)) polynomials are given by 1/c2(ηj), based on

the perturbations around the zeros of orthogonal polynomials [26]. Here c2(η) is given by
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(2.132) of [18]

c2(η) =


1
4

: H
η : L
1− η2 : J

. (1.4)

In fact, Pn(η) = Hn(η), L
(g− 1

2
)

n (η), P
(g− 1

2
,h− 1

2
)

n (η) for H, L, J cases satisfy

H : P ′
n(η)− 2nPn−1(η) = 0,

L : ηP ′
n(η) + (n+ g − 1

2
)Pn−1(η) = nPn(η),

J : (2n+ g + h− 1)(1− η2)P ′
n(η)− 2(n+ g − 1

2
)(n+ h− 1

2
)Pn−1(η)

= −n
(
h− g + (2n+ g + h− 1)η

)
Pn(η),

and these imply

P ′
N (ηj)

PN−1(ηj)
=



1
4
× 8N : H

1

ηj
× (−1)(N + g − 1

2
) : L

1

1− η2j
×

2(N + g − 1
2
)(N + h− 1

2
)

2N + g + h− 1
: J

.

We verified this weight 1/c2(ηj) gives the discrete orthogonality relations for the case-(1)

multi-indexed Laguerre and Jacobi polynomials by numerical calculation. For the case-(1)

multi-indexed Wilson and Askey-Wilson polynomials, however, we could not find analytical

expression of the weight at that time.

Recently Ho and Sasaki showed that the discrete orthogonality relations with the weight

1/c2(ηj) hold for the multi-indexed orthogonal polynomials in oQM: the case-(1) multi-

indexed Laguerre and Jacobi polynomials, and the Krein-Adler type multi-indexed poly-

nomials based on the Hermite, Laguerre and Jacobi polynomials [27]. Motivated by the

perturbations around the zeros of orthogonal polynomials [26], they consider a matrix M̃
and its symmetric version M. Orthogonality of the eigenvectors of this symmetric matrix

M implies the discrete orthogonality relations for the multi-indexed polynomials.

In this paper, we consider the discrete orthogonality relations for the multi-indexed or-

thogonal polynomials in idQM. The strategy is the same as Ho-Sasaki. By considering a

matrix M̃ and its symmetric version M, we show that the discrete orthogonality relations

hold for the case-(1) multi-indexed polynomials of continuous Hahn, Wilson and Askey-

Wilson types, and the Krein-Adler type multi-indexed polynomials.
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This paper is organized as follows. In section 2 we present a general theory of the

discrete orthogonality relations for orthogonal polynomials satisfying differential or difference

equations. In section 3 the discrete orthogonality relations for the case-(1) multi-indexed

orthogonal polynomials of continuous Hahn, Wilson and Askey-Wilson types are presented.

Those for the Krein-Adler type multi-indexed orthogonal polynomials are given in section

4. Section 5 is for a summary and comments. In Appendix A Proposition 3.1 is proved. In

Appendix B we revisit the discrete orthogonality relations for the multi-indexed orthogonal

polynomials in oQM.

2 Discrete Orthogonality Relations

In this section we present a general theory of the discrete orthogonality relations for orthog-

onal polynomials satisfying differential or difference equations. The basic idea is given in

[27].

Let us consider P̌n(x) = Pn(η(x)) (n ∈ Z≥0), where x is a coordinate of some quantum

system (physical range: x1 ≤ x ≤ x2), η(x) is the sinusoidal coordinate [22, 23], and Pn(η)

is a polynomial in η. We assume that Pn(η)’s are orthogonal polynomials,∫ x2

x1

dxψ(x)2P̌n(x)P̌m(x) = hnδnm (n,m ∈ Z≥0), (2.1)

and satisfy a differential or difference equation,

H̃P̌n(x) = EnP̌n(x) (n ∈ Z≥0). (2.2)

Here ψ(x)2 is a weight function, hn’s are normalization constants (hn > 0), a differential or

difference operator H̃ is a transformed Hamiltonian (‘true’ Hamiltonian is H = ψ(x) ◦ H̃ ◦
ψ(x)−1), and En’s are its energy eigenvalues. We assume deg Pn < degPm and En < Em for

n < m. The degree of Pn is degPn = n for ordinary orthogonal polynomials, but deg Pn ≥ n

for multi-indexed orthogonal polynomials.

Let us fix a non-negative integer N and set Ñ = degPN . We denote the zeros of PN (η)

as η
[N ]
j (j = 1, 2, . . . , Ñ ), which may be complex, and assume that they are simple. The

sinusoidal coordinates considered in this paper are η(x) = x, x2 and cos x (or cos 2x). The

sinusoidal coordinate η(x) and the coordinate x have a one-to-one correspondence for the

physical value of x, but this may not be the case for unphysical value of x. We fix x
[N ]
j

uniquely, which gives η
[N ]
j = η(x

[N ]
j ), by requiring x1 ≤ Re x

[N ]
j ≤ x2.
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Let us assume the existence of P̌a(x) = Pa(η(x)) (a = 1, 2, . . . , Ñ ) that satisfy the

following conditions:
(i) : Pa(η) : a polynomial in η,

(ii) : degPa < Ñ ,

(iii) : H̃P̌a(x)
∣∣
x=x

[N ]
j

= EP
a Pa(η

[N ]
j ),

(iv) : EP
a ≠ EP

b (a ̸= b).

(2.3)

The condition degPa < degPb for a < b is not imposed. Note that Pn(η) (n = 0, 1, . . . ,N−1)

satisfy the conditions (2.3) with EP
a = En. Since Pa is a polynomial of degPa < Ñ , it is

expressed as

Pa(η) =
Ñ∑
j=1

Ñ∏
l=1
l ̸=j

(η − η
[N ]
l )

Ñ∏
l=1
l ̸=j

(η
[N ]
j − η

[N ]
l )

Pa(η
[N ]
j ), (2.4)

because the both sides agree at Ñ points η = η
[N ]
j . Note that this can be rewritten as

Pa(η) =
Ñ∑
j=1

cPN
Ñ∏
l=1

(η − η
[N ]
l )

(η − η
[N ]
j )cPN

Ñ∏
l=1
l ̸=j

(η
[N ]
j − η

[N ]
l )

Pa(η
[N ]
j ) =

Ñ∑
j=1

PN (η)

η − η
[N ]
j

Pa(η
[N ]
j )

P ′
N (η

[N ]
j )

, (2.5)

where PN (η) = cPNη
Ñ + (lower degree terms) and P ′

N (η) = d
dη
PN (η). By replacing j with k

in (2.4), the action of H̃ on P̌a(x) is

H̃P̌a(x) =
Ñ∑
k=1

H̃
Ñ∏
l=1
l ̸=k

(
η(x)− η

[N ]
l

)
× Pa(η

[N ]
k )

Ñ∏
l=1
l ̸=k

(η
[N ]
k − η

[N ]
l )

. (2.6)

Let us evaluate this equation at x = x
[N ]
j . By the condition (iii) in (2.3), we obtain

EP
a Pa(η

[N ]
j ) =

Ñ∑
k=1

M̃jk

Ñ∏
l=1
l ̸=j

(η
[N ]
j − η

[N ]
l )× Pa(η

[N ]
k )

Ñ∏
l=1
l ̸=k

(η
[N ]
k − η

[N ]
l )

, (2.7)

where M̃jk is defined by

M̃jk
def
=

H̃
Ñ∏
l=1
l ̸=k

(
η(x)− η

[N ]
l

)∣∣∣∣
x=x

[N ]
j

Ñ∏
l=1
l ̸=j

(η
[N ]
j − η

[N ]
l )

(j, k = 1, 2, . . . , Ñ ). (2.8)
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By dividing (2.7) by
Ñ∏
l=1
l ̸=j

(η
[N ]
j − η

[N ]
l ), it becomes

M̃ṽ(a) = EP
a ṽ

(a), (2.9)

where a Ñ × Ñ matrix M̃ and Ñ -dimensional column vectors ṽ(a) are defined by

M̃ = (M̃jk), ṽ(a) = (ṽ
(a)
j ), ṽ

(a)
j

def
=

Pa(η
[N ]
j )

Ñ∏
l=1
l ̸=j

(η
[N ]
j − η

[N ]
l )

= cPN
Pa(η

[N ]
j )

P ′
N (η

[N ]
j )

. (2.10)

By a similarity transformation in terms of a diagonal matrix G = diag(g1, . . . , gÑ ), we define

a matrix M and vectors v(a) as

M def
= G−1M̃G, v(a)

def
= G−1ṽ(a)

(
⇒ Mjk =

gk
gj
M̃jk, v

(a)
j =

1

gj
ṽ
(a)
j , Mv(a) = EP

a v
(a)
)
.(2.11)

We assume the existence of G such that M is symmetric,

Mjk = Mkj. (2.12)

Then we have the following theorem.

Theorem 2.1 For P̌n(x) satisfying (2.2), Pa(η) satisfying (2.3) and G giving (2.12), we

have the discrete orthogonality relations:

Ñ∑
j=1

1

g2j

Pa(η
[N ]
j )

P ′
N (η

[N ]
j )

Pb(η
[N ]
j )

P ′
N (η

[N ]
j )

= k[N ]
a δab (a, b = 1, 2, . . . , Ñ ), (2.13)

where k
[N ]
a ’s are normalization constants.

Proof: Let us consider a vector space CÑ ∋ v = (vj) and a bilinear form ⟨ , ⟩ : CÑ ×CÑ → C,

⟨v, w⟩ def
=

Ñ∑
j=1

vjwj (v, w ∈ CÑ ).

Since M is symmetric, we have ⟨Mv, w⟩ = ⟨v,Mw⟩. For v(a) and v(b), we have

⟨v(a), v(b)⟩ =
Ñ∑
j=1

1

g2j
ṽ
(a)
j ṽ

(b)
j = (cPN )2

Ñ∑
j=1

1

g2j

Pa(η
[N ]
j )

P ′
N (η

[N ]
j )

Pb(η
[N ]
j )

P ′
N (η

[N ]
j )

,
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and

EP
a ⟨v(a), v(b)⟩ = ⟨Mv(a), v(b)⟩ = ⟨v(a),Mv(b)⟩ = EP

b ⟨v(a), v(b)⟩,

which implies ⟨v(a), v(b)⟩ = 0 for a ̸= b. By setting k
[N ]
a as k

[N ]
a = (cPN )−2⟨v(a), v(a)⟩, we obtain

(2.13).

Remark 2.1 The weight 1/g2j in (2.13) may not be positive and may be complex, and the

normalization constant k
[N ]
a may not be positive.

Remark 2.2 The proof uses (2.2) but not (2.1) explicitly, and the theorem states nothing

about the properties of k
[N ]
a . The theorem states nothing for Ñ = 0, 1 cases either. Let us

consider Pa = Pn case. By using (2.1) and (2.5), we have∫ x2

x1

dxψ(x)2P̌n(x)P̌m(x) = hnδnm

=
Ñ∑
j=1

Ñ∑
k=1

Pn(η
[N ]
j )

P ′
N (η

[N ]
j )

Pm(η
[N ]
k )

P ′
N (η

[N ]
k )

∫ x2

x1

dxψ(x)2
P̌N (x)

η(x)− η
[N ]
j

P̌N (x)

η(x)− η
[N ]
k

. (2.14)

Since we know Theorem2.1, we naively expect the following equation,∫ x2

x1

dxψ(x)2
P̌N (x)

η(x)− η
[N ]
j

P̌N (x)

η(x)− η
[N ]
k

?
= 0 (j ̸= k). (2.15)

However, numerical calculation shows that this equation holds for ordinary orthogonal poly-

nomials, but does not for the multi-indexed orthogonal polynomials.

Remark 2.3 The Ho-Sasaki’s matrices in [27], M̃HS and MHS, correspond to M̃ − EN1

and −M+ EN1, respectively. Their matrices are motivated by the perturbation around the

zeros of orthogonal polynomials [26] and the scalar matrix EN1 is subtracted.

We present examples of Theorem2.1 in the following sections.

3 Multi-Indexed Orthogonal Polynomials

In this section, after recapitulating the case-(1) multi-indexed orthogonal polynomials in

discrete quantum mechanics with pure imaginary shifts, we show their discrete orthogonality

relations and conjecture the normalization constants.

The notations Pn and H̃ in § 2 correspond to PD,n and H̃D in this section, respectively.
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3.1 Discrete quantum mechanics with pure imaginary shifts

Let us recapitulate the discrete quantum mechanics with pure imaginary shifts (idQM)

[15, 18]. The dynamical variables of idQM are the real coordinate x (x1 ≤ x ≤ x2) and

the conjugate momentum p = −i d
dx
, which are governed by the following factorized positive

semi-definite Hamiltonian:

H def
=

√
V (x) eγp

√
V ∗(x) +

√
V ∗(x) e−γp

√
V (x)− V (x)− V ∗(x) = A†A, (3.1)

A def
= i

(
e

γ
2
p
√
V ∗(x)− e−

γ
2
p
√
V (x)

)
, A† def

= −i
(√

V (x) e
γ
2
p −

√
V ∗(x) e−

γ
2
p
)
. (3.2)

Here the potential function V (x) is an analytic function of x and γ is a real constant. The ∗-
operation on an analytic function f(x) =

∑
n anx

n (an ∈ C) is defined by f ∗(x) =
∑

n a
∗
nx

n,

in which a∗n is the complex conjugation of an. Note that
√

is a square root as a complex

function. The Schrödinger equation

Hϕn(x) = Enϕn(x) (n ∈ Z≥0), (3.3)

is an analytic difference equation with pure imaginary shifts. The inner product of two

functions f(x) and g(x) is given by (f, g)
def
=

∫ x2

x1
dx f ∗(x)g(x). The hermiticity of H,

(f,Hg) = (Hf, g), depends on singularities of some functions in the rectangular domain

Dγ [15, 23, 9],

Dγ
def
=

{
x ∈ C

∣∣ x1 ≤ Re x ≤ x2, |Im x| ≤ 1
2
|γ|

}
. (3.4)

The eigenfunctions ϕn(x) can be chosen ‘real’, ϕ∗
n(x) = ϕn(x), and the orthogonality relations

read

(ϕn, ϕm) = hnδnm (n,m ∈ Z≥0), 0 < hn <∞. (3.5)

We consider the idQM systems whose eigenfunctions ϕn(x) (3.3) have the following form:

ϕn(x) = ϕ0(x)P̌n(x), P̌n(x)
def
= Pn

(
η(x)

)
(n ∈ Z≥0), (3.6)

where η(x) is a sinusoidal coordinate [22, 23] and Pn(η) is an orthogonal polynomial of degree

n in η and satisfies P̌ ∗
n(x) = P̌n(x). The energy eigenvalues satisfy 0 = E0 < E1 < E2 < · · · .

As a polynomial Pn(η), we consider the continuous Hahn (cH), Wilson (W) and Askey-

Wilson (AW) polynomials etc., which are members of the Askey-scheme of hypergeometric

orthogonal polynomials [2]. We call the idQM system by the name of the orthogonal poly-

nomial: continuous Hahn system, Wilson system, Askey-Wilson system etc. The similarity
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transformation in terms of the ground state wavefunction gives the difference operator H̃,

which acts on the polynomial eigenfunctions and is square root free,

H̃ def
= ϕ0(x)

−1 ◦ H ◦ ϕ0(x) = V (x)(eγp − 1) + V ∗(x)(e−γp − 1), (3.7)

H̃P̌n(x) = EnP̌n(x) (n ∈ Z≥0). (3.8)

Concrete idQM systems have a set of parameters λ = (λ1, λ2, . . .) and various quantities

depend on them. If necessary, their dependence is expressed like, f = f(λ), f(x) = f(x;λ).

For cH, W and AW systems, the parameters are λ = (λ1, λ2, λ3, λ4) (λi ∈ C, Reλi > 0) and

satisfy

cH : λ3 = λ∗1, λ4 = λ∗2, (3.9)

W, AW : {λ∗1, λ∗2, λ∗3, λ∗4} = {λ1, λ2, λ3, λ4} (as a set), (3.10)

We remark that λ for cH is taken as λ = (λ1, λ2) in [14] because of (3.9). The AW system

contains the parameter q (0 < q < 1).

The data for V (x), En, ϕ0(x), Pn(η), η(x), hn are given in § 2.2 of [14] and (2.25)–(2.26)

of [28]. The parameters are λ = (a1, a2, a3, a4) for cH and W (b1 = a1 + a2 + a3 + a4), and

qλ = (a1, a2, a3, a4) for AW (b4 = a1a2a3a4).

3.2 Darboux transformations

The exactly solvable idQM systems in § 3.1 can be deformed by the multi-step Darboux

transformations. We consider the Darboux transformations with virtual state wavefunctions

as seed solutions. TheM -step Darboux transformations are as follows. Take M virtual state

wave functions, ϕ̃d1(x), ϕ̃d2(x), . . . , ϕ̃dM (x) (dj : mutually distinct), which are solutions of the

Schrödinger equation,

Hϕ̃v(x) = Ẽvϕ̃v(x), Ẽv < 0. (3.11)

Note that ϕ̃∗
v(x) = ϕ̃v(x). In the s-step (1 ≤ s ≤M), we have [9] (s = 0 : H = Â†

d1
Âd1 + Ẽd1)

Hd1...ds
def
= Âd1...dsÂ

†
d1...ds

+ Ẽds = Â†
d1...dsds+1

Âd1...dsds+1 + Ẽds+1 , (3.12)

Âd1...ds
def
= i

(
e

γ
2
p
√
V̂ ∗
d1...ds

(x)− e−
γ
2
p

√
V̂d1...ds(x)

)
,

Â†
d1...ds

def
= −i

(√
V̂d1...ds(x) e

γ
2
p −

√
V̂ ∗
d1...ds

(x) e−
γ
2
p
)
, (3.13)

V̂d1...ds(x)
def
=

√
V (x− i s−1

2
γ)V ∗(x− i s+1

2
γ)
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×
Wγ[ϕ̃d1 , . . . , ϕ̃ds−1 ](x+ iγ

2
)

Wγ[ϕ̃d1 , . . . , ϕ̃ds−1 ](x− iγ
2
)

Wγ[ϕ̃d1 , . . . , ϕ̃ds ](x− iγ)

Wγ[ϕ̃d1 , . . . , ϕ̃ds ](x)
, (3.14)

ϕd1...ds n(x)
def
= Âd1...dsϕd1...ds−1 n(x) = ϕ∗

d1...ds n
(x) (n ∈ Z≥0)

= A(x)Wγ[ϕ̃d1 , . . . , ϕ̃ds , ϕn](x), (3.15)

A(x) =


√∏s−1

j=0 V (x+ i( s
2
− j)γ)V ∗(x− i( s

2
− j)γ)

Wγ[ϕ̃d1 , . . . , ϕ̃ds ](x− iγ
2
)Wγ[ϕ̃d1 , . . . , ϕ̃ds ](x+ iγ

2
)


1
2

, (3.16)

ϕ̃d1...ds v(x)
def
= Âd1...dsϕ̃d1...ds−1 v(x) = ϕ̃∗

d1...ds v
(x) (v ∈ {d1, . . . , dM}\{d1, . . . , ds})

= A(x)Wγ[ϕ̃d1 , . . . , ϕ̃ds , ϕ̃v](x), (3.17)

Hd1...dsϕd1...ds n(x) = Enϕd1...ds n(x) (n ∈ Z≥0), (3.18)

Hd1...dsϕ̃d1...ds v(x) = Ẽvϕ̃d1...ds v(x) (v ∈ {d1, . . . , dM}\{d1, . . . , ds}), (3.19)

(ϕd1...ds n, ϕd1...ds m) =
s∏

j=1

(En − Ẽdj) · hnδnm (n,m ∈ Z≥0), (3.20)

where Wγ[f1, . . . , fn] is the Casorati determinant of a set of n functions {fj(x)},

Wγ[f1, . . . , fn](x)
def
= i

1
2
n(n−1) det

(
fk
(
x
(n)
j

))
1≤j,k≤n

, x
(n)
j

def
= x+ i(n+1

2
− j)γ, (3.21)

(for n = 0, we set Wγ[·](x) = 1). The operators Âd1...ds and Â†
d1...ds

have no zero modes, which

is the characterization of virtual state wavefunctions (For cH case, we relax this condition

because these operators may be singular in the intermediate steps.). Therefore the deformed

systems are isospectral to the original system. The deformed Hamiltonian Hd1...ds can be

rewritten in the standard form:

Hd1...ds = A†
d1...ds

Ad1...ds , (3.22)

Ad1...ds
def
= i

(
e

γ
2
p
√
V ∗
d1...ds

(x)− e−
γ
2
p
√
Vd1...ds(x)

)
,

A†
d1...ds

def
= −i

(√
Vd1...ds(x) e

γ
2
p −

√
V ∗
d1...ds

(x) e−
γ
2
p
)
, (3.23)

Vd1...ds(x)
def
=

√
V (x− i s

2
γ)V ∗(x− i s+2

2
γ)

×
Wγ[ϕ̃d1 , . . . , ϕ̃ds ](x+ iγ

2
)

Wγ[ϕ̃d1 , . . . , ϕ̃ds ](x− iγ
2
)

Wγ[ϕ̃d1 , . . . , ϕ̃ds , ϕ0](x− iγ)

Wγ[ϕ̃d1 , . . . , ϕ̃ds , ϕ0](x)
. (3.24)

These formulas (3.12)–(3.24) (except for (3.20)) are derived algebraically ((3.20) is derived

only formally unless Hd1...ds′
(s′ ≤ s) are hermite). The hermiticity of Hd1...ds etc. should be

considered in each case.
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3.3 Multi-indexed orthogonal polynomials

We recapitulate the case-(1) multi-indexed orthogonal polynomials of cH, W and AW types.

There are two types of the virtual state wavefunctions, type I ϕ̃I
v(x) and type II ϕ̃II

v (x)

for cH, W and AW idQM systems. The deformed systems are labeled by the index set D,

D = {d1, . . . , dM} (dj ∈ Z≥0), D = DI ∪ DII, M =MI +MII,

DI def
= {d ∈ D | d : type I} = {dI1, . . . , dIMI

} (dIj : mutually distinct), (3.25)

DII def
= {d ∈ D | d : type II} = {dII1 , . . . , dIIMII

} (dIIj : mutually distinct),

which are the degrees and types of the virtual state wavefunctions used in M -step Darboux

transformations. The Hamiltonian is deformed as H → Hd1 → Hd1d2 → · · · → Hd1...ds →
· · · → Hd1...dM = HD by M -step Darboux transformations. Various quantities of the de-

formed systems are denoted as HD, ϕD n, AD, etc. Exactly speaking, D is an ordered set.

When the ordered set D is D = {dI1, . . . , dIMI
, dII1 , . . . , d

II
MII

} with 0 ≤ dI1 < · · · < dIMI
and

0 ≤ dII1 < · · · < dIIMII
, we call it the standard order. Under the permutation of dj’s, the

deformed Hamiltonian HD is invariant, but the denominator polynomial Ξ̌D(x) and the

multi-indexed polynomials P̌D,n(x) may change their signs. Unless otherwise mentioned, we

do not care much about the order of D.

The denominator polynomial ΞD and the multi-indexed polynomials PD,n are constructed

as polynomial parts of the Casoratians Wγ[ϕ̃d1 , . . . , ϕ̃dM ](x) and Wγ[ϕ̃d1 , . . . , ϕ̃dM , ϕn](x),

respectively,

Wγ[ϕ̃d1 , . . . , ϕ̃dM ](x) = gD(x)Ξ̌D(x), Ξ̌D(x)
def
= ΞD

(
η(x)

)
, (3.26)

Wγ[ϕ̃d1 , . . . , ϕ̃dM , ϕn](x) = gPD(x)P̌D,n(x), P̌D,n(x)
def
= PD,n

(
η(x)

)
, (3.27)

whose concrete definitions are given by (3.18)–(3.19) of [14] and (3.37)–(3.38) of [9], and

gD(x) and gPD(x) can be read from (3.25)–(3.26) of [14] and (3.50)–(3.51) of [29] with

Wγ[ϕ̃d1 , . . . , ϕ̃dM ](x) =
∏M

j=1 ϕ0(x
(M)
j )·Wγ[ν

−1ξ̌d1 , . . . , ν
−1ξ̌dM ](x) andWγ[ϕ̃d1 , . . . , ϕ̃dM , ϕn](x)

=
∏M+1

j=1 ϕ0(x
(M+1)
j ) · Wγ[ν

−1ξ̌d1 , . . . , ν
−1ξ̌dM , P̌n](x). We remark that gD(x) and gPD(x) de-

pend on MI and MII, but not on the specific values of dj and n. Note that Ξ̌∗
D(x) = Ξ̌D(x)

and P̌ ∗
D,n(x) = P̌D,n(x). The denominator polynomial ΞD(η) and the multi-indexed polyno-

mials PD,n(η) are polynomials in η and their degrees are ℓD and ℓD + n, respectively (we
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assume cΞD ̸= 0 and cPD,n ̸= 0, see (A.1)–(A.2) of [14] and (A.40)–(A.41) of [30]). Here ℓD is

ℓD
def
=

M∑
j=1

dj − 1
2
M(M − 1) + 2MIMII. (3.28)

We remark that PD,0 and ΞD are proportional, P̌D,0(x;λ) ∝ Ξ̌D(x;λ+δ), (A.3) of [14], (3.44)

of [9], which is a consequence of the shape invariance.

The eigenfunctions of the deformed system (3.15) are expressed in terms of the ground

state wavefunction ϕ0(x) with shifted parameters, the denominator polynomials Ξ̌D(x) and

the multi-indexed polynomial P̌D,n(x) as

ϕD n(x) = cϕDψD(x)P̌D,n(x) (n ∈ Z≥0), (3.29)

ψD(x;λ)
def
=

ϕ0(x;λD)√
Ξ̌D(x− iγ

2
;λ)Ξ̌D(x+ iγ

2
;λ)

, (3.30)

where cϕD and λD (which is denoted as λ[MI,MII] in previous papers) are

cϕD = αI(λ)
1
2
MIαII(λ)

1
2
MIIκ

1
4
M(M−1)+MIMII , (3.31)

λD
def
= λ+MIδ̃

I
+MIIδ̃

II
. (3.32)

Here explicit forms of α(λ) and δ̃ are given by (3.1), (3.3) of [14] and (3.25), (3.27) of [9].

The deformed Hamiltonian HD in the standard form (3.22) is specified by the potential

function VD (3.24) and it is expressed in terms of the potential function V (x) with shifted

parameters and the denominator polynomial Ξ̌D(x) (with shifted parameters),

VD(x;λ) = V (x;λD)
Ξ̌D(x+ iγ

2
;λ)

Ξ̌D(x− iγ
2
;λ)

Ξ̌D(x− iγ;λ+ δ)

Ξ̌D(x;λ+ δ)
. (3.33)

In order for the deformed Hamiltonian HD to be hermitian, the parameters λ are restricted.

As a sufficient condition for the hermiticity, we have the following [9, 14]:

The denominator polynomial Ξ̌D(x) has no zero in Dγ (3.4). (3.34)

For cH case, the degree of ΞD(η), ℓD, should be even. In the following, we assume that the

range of parameters is chosen so that the deformed Hamiltonian HD is hermitian.

The orthogonality of the eigenfunctions (3.20), namely, those of the multi-indexed poly-

nomials P̌D,n(x) are∫ x2

x1

dxψD(x)
2P̌D,n(x)P̌D,m(x) = hD,nδnm (n,m ∈ Z≥0), (3.35)
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hD,n = (cϕD)
−2hn

MI∏
j=1

(En − Ẽ I
dIj
) ·

MII∏
j=1

(En − Ẽ II
dIIj
), (3.36)

where explicit forms of Ẽv are given by (3.7) of [14] and (3.29) of [9]. The multi-indexed

orthogonal polynomial PD,n(η) has n zeros in the physical region ηmin < η < ηmax (ηmin
def
=

min(η(x1), η(x2)), ηmax
def
= max(η(x1), η(x2))), which interlace the n+1 zeros of PD,n+1(η) in

the physical region, and ℓD zeros in the unphysical region η ∈ C\(ηmin, ηmax).

The similarity transformed Hamiltonian in terms of ψD(x) is square root free,

H̃D
def
= ψD(x)

−1 ◦ HD ◦ ψD(x)

= V (x;λD)
Ξ̌D(x+ iγ

2
;λ)

Ξ̌D(x− iγ
2
;λ)

(
eγp − Ξ̌D(x− iγ;λ+ δ)

Ξ̌D(x;λ+ δ)

)
+ V ∗(x;λD)

Ξ̌D(x− iγ
2
;λ)

Ξ̌D(x+ iγ
2
;λ)

(
e−γp − Ξ̌D(x+ iγ;λ+ δ)

Ξ̌D(x;λ+ δ)

)
, (3.37)

and the multi-indexed polynomials P̌D,n(x) are its eigenpolynomials,

H̃DP̌D,n(x) = EnP̌D,n(x) (n ∈ Z≥0). (3.38)

3.4 Some identities

For the ordered index set D = {d1, . . . , dM}, let us consider the following ordered index sets,

D′ = {d1, . . . , dM , d′}, D′′ = {d1, . . . , dM , d′′}, D′′′ = {d1, . . . , dM , d′, d′′}, (3.39)

where d′, d′′ ̸∈ D and d′ ̸= d′′. From the properties of the multi-step Darboux transformations

given in § 3.2, we have the following identities:

ϕD′′ n(x) = ÂD′′
Â†

D′

En − Ẽd′
ϕD′ n(x), (3.40)

ϕD′′′ n(x) = ÂD′′′ÂD′ϕD n(x). (3.41)

By extracting the polynomial parts from these identities, we obtain the following proposition.

Proposition 3.1

(1) When the types of d′ and d′′ are the same, (3.40) gives

(En − Ẽd′)
(
Ξ̌D′(x− iγ

2
)

Ξ̌D′′(x− iγ
2
)
+

Ξ̌D′(x+ iγ
2
)

Ξ̌D′′(x+ iγ
2
)

)
P̌D′′,n(x) = (H̃D′′ + En − Ẽd′ − Ẽd′′)P̌D′,n(x). (3.42)
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(2) When the types of d′ and d′′ are different, (3.41) gives

κ2M+ 3
2

√
αIαII

(
Ξ̌D(x− iγ

2
)

Ξ̌D′′′(x− iγ
2
)
+

Ξ̌D(x+ iγ
2
)

Ξ̌D′′′(x+ iγ
2
)

)
P̌D′′′,n(x) = (H̃D′′′ + En − Ẽd′ − Ẽd′′)P̌D,n(x).

(3.43)

Since the proof is rather technical, we present it in Appendix A.

Remark 3.1 The identities (3.42) and (3.43) are invariant under the permutation of dj, d
′,

d′′ in D, D′, D′′, D′′′, namely, the order of ordered sets D, D′, D′′ and D′′′ is irrelevant.

Remark 3.2 For generic values of λ, P̌D,n(x) and Ξ̌D(x± iγ
2
) do not have a common root.

3.5 Discrete orthogonality relations

Let us fix a non-negative integer N and set Ñ = degPD,N = ℓD +N . We denote the zeros

of PD,N (η) as η
[D,N ]
j (j = 1, 2, . . . , Ñ ), and assume that they are simple. We define x

[D,N ]
j by

requiring η(x
[D,N ]
j ) = η

[D,N ]
j and x1 ≤ Re x

[D,N ]
j ≤ x2.

In the following, for simplicity in notation, we write η
[D,N ]
j and x

[D,N ]
j as ηj and xj,

respectively. (Although this notation xj conflicts with the end points of the physical range

of the coordinate (x1 and x2), we think this does not cause any confusion.) Then P̌D,N (x) is

expressed as

P̌D,N (x) = cPD,N

Ñ∏
j=1

(
η(x)− ηj

)
. (3.44)

3.5.1 polynomials Pa

For the index set D (3.25) in the standard order, let us define the index sets D′
1,jk, D′

2,jk and

D′
3,jk as follows [27]:

(1) D′
1,jk : E

I def
= {0, 1, . . . , dIMI

}\DI, dIj ∈ DI, EI
j
def
= {ϵ ∈ EI | ϵ < dIj}, ϵIk ∈ EI

j,

D′ I
jk

def
=

(
DI\{dIj}

)
∪ {ϵIk}, D′

1,jk
def
= D′ I

jk ∪ DII, (3.45)

(2) D′
2,jk : E

II def
= {0, 1, . . . , dIIMII

}\DII, dIIj ∈ DII, EII
j

def
= {ϵ ∈ EII | ϵ < dIIj }, ϵIIk ∈ EII

j ,

D′ II
jk

def
=

(
DII\{dIIj }

)
∪ {ϵIIk }, D′

2,jk
def
= DI ∪ D′ II

jk , (3.46)

(3) D′
3,jk : d

I
j ∈ DI, dIIk ∈ DII, D′

3,jk
def
=

(
DI\{dIj}

)
∪
(
DII\{dIIk }

)
. (3.47)

As an ordered set, we choose one order of the elements for each D′
1,jk, D′

2,jk and D′
3,jk, e.g.

the standard order. Note that |EI
j| = dIj − (j − 1) and |EII

j | = dIIj − (j − 1). The numbers of
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these sets are

#{D′
1,jk} =

MI∑
j=1

(
dIj − (j − 1)

)
=

MI∑
j=1

dIj −
1

2
MI(MI − 1),

#{D′
2,jk} =

MII∑
j=1

(
dIIj − (j − 1)

)
=

MII∑
j=1

dIIj − 1

2
MII(MII − 1), (3.48)

#{D′
3,jk} =MIMII,

and the sum of these numbers is ℓD (3.28).

Let us define the polynomials P̌a(x) = Pa(η(x)) (a = 1, . . . , Ñ ) as follows [27]:

(0) : P̌a(x) = P̌D,n(x) (0 ≤ n < N ),

(1) : P̌a(x) = P̌D′
1,jk,N

(x) (D′
1,jk in (3.45)),

(2) : P̌a(x) = P̌D′
2,jk,N

(x) (D′
2,jk in (3.46)), (3.49)

(3) : P̌a(x) = P̌D′
3,jk,N

(x) (D′
3,jk in (3.47)).

The total number of these P̌a(x) is actually N + ℓD = Ñ .

Let us show that the conditions in (2.3) are satisfied. The condition (i) is trivial. The

condition (ii) is satisfied, because we have

(0) : degPa = ℓD + n, n < N ,

(1) : degPa = ℓD′
1,jk

+N , ℓD′
1,jk

= ℓD − dIj + ϵIk < ℓD,

(2) : degPa = ℓD′
2,jk

+N , ℓD′
2,jk

= ℓD − dIIj + ϵIIk < ℓD, (3.50)

(3) : degPa = ℓD′
3,jk

+N , ℓD′
3,jk

= ℓD − dIj − dIIk − 1 < ℓD.

The condition (iii) is satisfied by the following proposition.

Proposition 3.2 For P̌a(x) (3.49), we have

H̃DP̌a(x)
∣∣
x=xj

= EP
a Pa(ηj), (3.51)

where EP
a are given by

(0) : EP
a = En,

(1) : EP
a = Ẽ I

dIj
+ Ẽ I

ϵIk
− EN ,

(2) : EP
a = Ẽ II

dIIj
+ Ẽ II

ϵIIk
− EN , (3.52)

(3) : EP
a = Ẽ I

dIj
+ Ẽ II

dIIk
− EN .
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Proof:

(0): Eq. (3.38) gives H̃DP̌a(x) = EnP̌a(x), and (3.51) is obtained by setting x = xj.

(1): Eq. (3.42) with the replacement (D′,D′′, n, d′, d′′) → (D′
1,jk,D,N , ϵIk, d

I
j) gives

(· · · )× P̌D,N (x) = (H̃D + EN − Ẽ I
ϵIk
− Ẽ I

dIj
)P̌a(x),

and (3.51) is obtained by setting x = xj.

(2): Eq. (3.42) with the replacement (D′,D′′, n, d′, d′′) → (D′
2,jk,D,N , ϵIIk , d

II
j ) gives

(· · · )× P̌D,N (x) = (H̃D + EN − Ẽ II
ϵIIk

− Ẽ II
dIIj
)P̌a(x),

and (3.51) is obtained by setting x = xj.

(3): Eq. (3.43) with the replacement (D,D′′′, n, d′, d′′) → (D′
3,jk,D,N , dIj, d

II
k ) gives

(· · · )× P̌D,N (x) = (H̃D + EN − Ẽ I
dIj
− Ẽ II

dIIk
)P̌a(x),

and (3.51) is obtained by setting x = xj.

By using (3.52) and explicit forms of En and Ẽv, we can show that the condition (iv) is

satisfied for generic values of λ. Thus the polynomials P̌a(x) (3.49) (with generic values of

λ) satisfy all the conditions in (2.3).

3.5.2 matrices M̃ and M

Let us show the proposition for M̃.

Proposition 3.3 The matrix elements M̃jk (2.8) for j ̸= k are expressed as

M̃jk =
1(

η(xj − iγ)− ηk
)(
η(xj + iγ)− ηk

)−H̃D
(
η(x)P̌D,N (x)

)∣∣
x=xj

P ′
D,N (ηj)

(j ̸= k). (3.53)

Proof: The similarity transformed Hamiltonian H̃D (3.37) has the following form,

H̃D = A(x)
(
eγp − B(x)

)
+ A∗(x)

(
e−γp − B∗(x)

)
.

Recalling (3.44) and evaluating H̃DP̌D,N (x) = EN P̌D,N (x) at x = xj, we have

A(xj)
Ñ∏
l=1

(
η(xj − iγ)− ηl

)
+ A∗(xj)

Ñ∏
l=1

(
η(xj + iγ)− ηl

)
= 0. (3.54)
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For j ̸= k, we have

H̃D

Ñ∏
l=1
l ̸=k

(
η(x)− ηl

)∣∣∣
x=xj

= A(xj)
Ñ∏
l=1
l ̸=k

(
η(xj − iγ)− ηl

)
+ A∗(xj)

Ñ∏
l=1
l ̸=k

(
η(xj + iγ)− ηl

)

=

A(xj)
Ñ∏
l=1

(
η(xj − iγ)− ηl

)
η(xj − iγ)− ηk

+

A∗(xj)
Ñ∏
l=1

(
η(xj + iγ)− ηl

)
η(xj + iγ)− ηk

(i)
=

A(xj)
Ñ∏
l=1

(
η(xj − iγ)− ηl

)
·
(
η(xj + iγ)− η(xj − iγ)

)
(
η(xj − iγ)− ηk

)(
η(xj + iγ)− ηk

)
(i)
=

−A(xj)η(xj − iγ)
Ñ∏
l=1

(
η(xj − iγ)− ηl

)
− A∗(xj)η(xj + iγ)

Ñ∏
l=1

(
η(xj + iγ)− ηl

)
(
η(xj − iγ)− ηk

)(
η(xj + iγ)− ηk

)
=

−H̃D

(
η(x)

Ñ∏
l=1

(
η(x)− ηl

))∣∣∣
x=xj(

η(xj − iγ)− ηk
)(
η(xj + iγ)− ηk

) ,
where we have used (3.54) in (i). Then the matrix elements M̃jk (2.8) for j ̸= k become

M̃jk =
1(

η(xj − iγ)− ηk
)(
η(xj + iγ)− ηk

)−H̃D

(
η(x)

Ñ∏
l=1

(
η(x)− ηl

))∣∣∣
x=xj

Ñ∏
l=1
l ̸=j

(ηj − ηl)

.

By multiply the numerator and denominator of the last factor by cPD,N , (3.53) is obtained.

Let us define Fj (j = 1, . . . , Ñ ) as

Fj
def
= −

H̃D
(
η(x)P̌D,N (x)

)∣∣
x=xj

P ′
D,N (ηj)

. (3.55)

Then we have the following proposition.

Proposition 3.4 The number Fj (3.55) is expressed as

Fj = F̌ (xj) = F (ηj). (3.56)
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Here F̌ (x) is given by

F̌ (x)
def
=

−1

P ′
D,N (η(x))

(
η(x− iγ)V (x;λD)

Ξ̌D(x+ iγ
2
)

Ξ̌D(x− iγ
2
)
P̌D,N (x− iγ)

+ η(x+ iγ)V ∗(x;λD)
Ξ̌D(x− iγ

2
)

Ξ̌D(x+ iγ
2
)
P̌D,N (x+ iγ)

)
. (3.57)

It is a rational function of η(x), and F (η) is given by F (η(x))
def
= F̌ (x).

Proof: By (3.37), Fj becomes

Fj =
−1

P ′
D,N (ηj)

(
V (xj;λD)

Ξ̌D(xj + iγ
2
)

Ξ̌D(xj − iγ
2
)
η(xj − iγ)P̌D,N (xj − iγ)

+ V ∗(xj;λD)
Ξ̌D(xj − iγ

2
)

Ξ̌D(xj + iγ
2
)
η(xj + iγ)P̌D,N (xj + iγ)

)
,

namely Fj = F̌ (xj). Let us show that F̌ (x) is a rational function of η(x) = x, x2 and cos x

for cH, W and AW cases, respectively. From (3.57) and explicit form of V (x), F̌ (x) is a

rational function of x (cH, W) or eix (AW). For cH case, it is trivial that F̌ (x) is a rational

function of x. For W and AW cases, the potential function V (x) satisfies

W,AW : V ∗(x) = V (−x). (3.58)

By using this and η(−x) = η(x), we obtain F̌ (−x) = F̌ (x). This means that F̌ (x) is a

rational function of x2 (W) or eix + e−ix = 2 cos x (AW).

Remark 3.3 By (3.54), Fj can be written as

Fj =
η(xj + iγ)− η(xj − iγ)

P ′
D,N (ηj)

V (xj;λD)
Ξ̌D(xj + iγ

2
)

Ξ̌D(xj − iγ
2
)
P̌D,N (xj − iγ). (3.59)

The sinusoidal coordinates have the following property.

Lemma 3.1 The sinusoidal coordinates η(x) = x, x2 and cos x satisfy the following identity

for any complex numbers a, b and c:(
η(a− c)− η(b)

)(
η(a+ c)− η(b)

)
=

(
η(b− c)− η(a)

)(
η(b+ c)− η(a)

)
. (3.60)

Proof: Direct calculation shows this lemma.

By the similarity transformation (2.11), we obtain the symmetric matrix M.
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Proposition 3.5 By taking gj =
√
Fj in (2.11), the matrix M is symmetric, (2.12).

Proof: Since the matrix elements M̃jk (j ̸= k) are expressed as

M̃jk =
Fj(

η(xj − iγ)− ηk
)(
η(xj + iγ)− ηk

) (j ̸= k), (3.61)

the matrix elements Mjk (j ̸= k) become

Mjk =

√
Fj

√
Fk(

η(xj − iγ)− ηk
)(
η(xj + iγ)− ηk

) (j ̸= k). (3.62)

By Lemma3.1, Mjk are symmetric in j and k.

Remark 3.4 We have not written down the diagonal elements Mjj(= M̃jj) explicitly,

because their concrete forms are not needed to show (2.12). For the sake of completeness,

we write down the concrete form of M̃jj = Mjj ,

M̃jj =
Fj(

η(xj − iγ)− ηj
)(
η(xj + iγ)− ηj

)
− V (xj;λD)

Ξ̌D(xj + iγ
2
;λ)

Ξ̌D(xj − iγ
2
;λ)

Ξ̌D(xj − iγ;λ+ δ)

Ξ̌D(xj;λ+ δ)

− V ∗(xj;λD)
Ξ̌D(xj − iγ

2
;λ)

Ξ̌D(xj + iγ
2
;λ)

Ξ̌D(xj + iγ;λ+ δ)

Ξ̌D(xj;λ+ δ)
, (3.63)

which is derived from the definition (2.8) by using (3.54), like as (3.53) and (3.57).

3.5.3 discrete orthogonality relations

Let us present a main result of this paper.

Theorem 3.1 For the case-(1) multi-indexed orthogonal polynomials of cH, W and AW

types PD,n(η), Pa(η) (3.49) and F (η) (3.56), we have the discrete orthogonality relations:

Ñ∑
j=1

1

F (ηj)

Pa(ηj)

P ′
D,N (ηj)

Pb(ηj)

P ′
D,N (ηj)

= k[D,N ]
a δab (a, b = 1, 2, . . . , Ñ ), (3.64)

where k
[D,N ]
a ’s are normalization constants.

Proof: Since the assumptions of Theorem2.1 are satisfied (for generic values of λ), Theo-

rem2.1 gives this theorem.
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Remark 3.5 In contrast to the weight 1/c2(η) in oQM case, this weight 1/F (η) depends on

the multi index D, see (3.57).

Remark 3.6 As in Remark 2.1, the weights 1/F (ηj) may not be positive and may be com-

plex, and the normalization constants k
[D,N ]
a may not be positive. As in Remark 2.2, the

theorem states nothing about the properties of k
[D,N ]
a , nor does it state anything for Ñ = 0, 1

cases.

Remark 3.7 The property P ∗
D,N (η) = PD,N (η) (which holds if (3.9)–(3.10) are satisfied)

implies

{η∗1, . . . , η∗Ñ} = {η1, . . . , ηÑ} (as a set). (3.65)

Base on this fact, let us define j̄ as ηj̄
def
= η∗j . If η∗j = ηj, we have j̄ = j. In [27], the vector

space Ṽ = {ṽ = (ṽj) ∈ CÑ | ṽ∗j = ṽj̄} is considered. It is a Ñ -dimensional vector space over

R, and (ṽ, w̃) =
∑Ñ

j=1 ṽjw̃j gives an (indefinite) inner product on Ṽ . By studying (M̃HS
jk )

∗,

it is shown that Ṽ is invariant under the action of M̃HS [27]. A similar analysis is possible

for our M̃.

Remark 3.8 The discrete orthogonality relations (3.64) are shown for the multi-indexed

orthogonal polynomials PD,n. As mentioned in Remark 2.2, the difference equations (3.38)

are used in the proof, but the orthogonality relations (3.35) are not explicitly used. In oder

for PD,n to be orthogonal polynomials, the parameters λ are restricted by the conditions

such as (3.34). If the parameters λ do not satisfy the conditions, the polynomials PD,n are

no longer orthogonal polynomials, but may still satisfy the difference equations. Then, the

discrete orthogonality relations still hold in that case. Let us discuss this point. For the

parameters λ satisfying (3.9)–(3.10), they have 4 real degrees of freedom, and one more

degree of freedom q (0 < q < 1) for AW case. Let us consider a1, a2, a3, a4, q ∈ C (ai is λi or

qλi) without any restriction (except for the condition cΞD, c
P
D,N ̸= 0). There are 8 real degrees

of freedom for cH and W, and 10 for AW. The definitions of the polynomials PD,n, (3.19) of

[14] and (3.38) of [9], are meaningful for these complex values of parameters. Note that the

property P ∗
D,n = PD,n is lost and (3.65) does not hold. The difference equations (3.38) hold

by replacing V ∗(x;λD) in (3.37) as follows:

V ∗(x) →
{

(a3 − ix)(a4 − ix) : cH

V (−x) : W,AW
. (3.66)

Then Proposition 3.1, the conditions (2.3) for P̌a(x) (3.49), Proposition 3.3–3.5 are valid.

Thus the discrete orthogonality relations (3.64) hold for any complex values of parameters
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(with the condition cΞD, c
P
D,N , F (ηj) ̸= 0). We can verify this for small M , dj, N and n by

numerical calculation. The normalization constants k
[D,N ]
a may not be real.

Remark 3.9 The case-(1) multi-indexed orthogonal polynomials are also constructed for

the Meixner-Pollaczek (MP) polynomials [14]. In this case, there is only one type of virtual

state. Various formulas are obtained from those of two type case (cH,W,AW) given above,

by setting MII = 0 and neglecting a superscript (or subscript) I. There is no D′
2,jk and

D′
3,jk. So, the polynomials P̌a(x) (3.49) are only (0) and (1). The condition (iv) in (2.3)

may not be satisfied even for generic values of λ. However, the case-(1) multi-indexed MP

polynomials PD,n(η) can be obtained from the case-(1) multi-indexed cH polynomials by

taking certain limit of parameters (with appropriate rescalings). By this limit, the discrete

orthogonality relations (3.64) for the case-(1) multi-indexed cH polynomials are inherited by

the case-(1) multi-indexed MP polynomials. As in Remark 3.8, they hold for any complex

values of parameters.

We conjecture the normalization constants k
[D,N ]
a as follows.

Conjecture 3.1 The normalization constants k
[D,N ]
a are given by

(0) Pa = PD,n : k[D,N ]
a =

hD,n

hD,N
×


1

2(b1 + 2N − 1)
: cH,W

qN+1

(1− q2)(1− b4q2N−1)
: AW

, (3.67)

(1) Pa = PD′
1,jk,N

:

cH : k[D,N ]
a =

hD′
1,jk,N

hD,N

(ϵIk + 1)dIj−ϵIk

2

1

(a1 + a3 − dIj − 1, a2 + a4 + ϵIk)dIj−ϵIk

× 1

(a1 − a2 − dIj)dIj−ϵIk
(a3 − a4 − dIj)dIj−ϵIk

(b′ cH − dIk)dIj−ϵIk

−b′ cH + 1 + 2ϵIk

×
MI∏
i=1
i ̸=j

dIi − ϵIk
dIi − dIj

−b′ cH + dIi + ϵIk + 1

−b′ cH + dIi + dIj + 1
·
MII∏
i=1

dIIi + ϵIk + 1

dIIi + dIj + 1

b′ cH + dIIi − ϵIk
b′ cH + dIIi − dIj

,

W : k[D,N ]
a =

hD′
1,jk,N

hD,N

1

2(ϵIk + 1)dIj−ϵIk

1

(a1 + a2 − dIj − 1, a3 + a4 + ϵIk)dIj−ϵIk

×
2∏

l=1

4∏
m=3

1

(al − am − dIj)dIj−ϵIk

·
(b′1 − dIk)dIj−ϵIk

−b′1 + 1 + 2ϵIk
(3.68)

×
MI∏
i=1
i ̸=j

dIi − ϵIk
dIi − dIj

−b′1 + dIi + ϵIk + 1

−b′1 + dIi + dIj + 1
·
MII∏
i=1

dIIi + ϵIk + 1

dIIi + dIj + 1

b′1 + dIIi − ϵIk
b′1 + dIIi − dIj

,
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AW : k[D,N ]
a =

hD′
1,jk,N

hD,N

(a1a2)
2(dIj−ϵIk)−1(a3a4)

−(dIj−ϵIk)

(1− q2)(qϵ
I
k+1; q)dIj−ϵIk

q2−2dIj(d
I
j+1)+ϵIk(2ϵ

I
k+3)

(a1a2q
−dIj−1, a3a4qϵ

I
k ; q)dIj−ϵIk

×
2∏

l=1

4∏
m=3

1

(ala−1
m q−dIj ; q)dIj−ϵIk

·
(b′4q

−dIk ; q)dIj−ϵIk

1− b′ −1
4 q1+2ϵIk

×
MI∏
i=1
i ̸=j

1− qd
I
i−ϵIk

1− qd
I
i−dIj

1− b′ −1
4 qd

I
i+ϵIk+1

1− b′ −1
4 qd

I
i+dIj+1

·
MII∏
i=1

1− qd
II
i +ϵIk+1

1− qd
II
i +dIj+1

1− b′4q
dIIi −ϵIk

1− b′4q
dIIi −dIj

,

(2) Pa = PD′
2,jk,N

:

cH : k[D,N ]
a =

hD′
2,jk,N

hD,N

(ϵIIk + 1)dIIj −ϵIIk

2

1

(a2 + a4 − dIIj − 1, a1 + a3 + ϵIIk )dIIj −ϵIIk

× 1

(a2 − a1 − dIIj )dIIj −ϵIIk
(a4 − a3 − dIIj )dIIj −ϵIIk

(−b′ cH − dIIk )dIIj −ϵIIk

b′ cH + 1 + 2ϵIIk

×
MII∏
i=1
i ̸=j

dIIi − ϵIIk
dIIi − dIIj

b′ cH + dIIi + ϵIIk + 1

b′ cH + dIIi + dIIj + 1
·

MI∏
i=1

dIi + ϵIIk + 1

dIi + dIIj + 1

−b′ cH + dIi − ϵIIk
−b′ cH + dIi − dIIj

,

W : k[D,N ]
a =

hD′
2,jk,N

hD,N

1

2(ϵIIk + 1)dIIj −ϵIIk

1

(a3 + a4 − dIIj − 1, a1 + a2 + ϵIIk )dIIj −ϵIIk

×
4∏

l=3

2∏
m=1

1

(al − am − dIIj )dIIj −ϵIIk

·
(−b′1 − dIIk )dIIj −ϵIIk

b′1 + 1 + 2ϵIIk
(3.69)

×
MII∏
i=1
i ̸=j

dIIi − ϵIIk
dIIi − dIIj

b′1 + dIIi + ϵIIk + 1

b′1 + dIIi + dIIj + 1
·

MI∏
i=1

dIi + ϵIIk + 1

dIi + dIIj + 1

−b′1 + dIi − ϵIIk
−b′1 + dIi − dIIj

,

AW : k[D,N ]
a =

hD′
2,jk,N

hD,N

(a3a4)
2(dIIj −ϵIIk )−1(a1a2)

−(dIIj −ϵIIk )

(1− q2)(qϵ
II
k +1; q)dIIj −ϵIIk

q2−2dIIj (dIIj +1)+ϵIIk (2ϵIIk +3)

(a3a4q
−dIIj −1, a1a2qϵ

II
k ; q)dIIj −ϵIIk

×
4∏

l=3

2∏
m=1

1

(ala−1
m q−dIIj ; q)dIIj −ϵIIk

·
(b′ −1

4 q−dIIk ; q)dIIj −ϵIIk

1− b′4q
1+2ϵIIk

×
MII∏
i=1
i ̸=j

1− qd
II
i −ϵIIk

1− qd
II
i −dIIj

1− b′4q
dIIi +ϵIIk +1

1− b′4q
dIIi +dIIj +1

·
MI∏
i=1

1− qd
I
i+ϵIIk +1

1− qd
I
i+dIIj +1

1− b′ −1
4 qd

I
i−ϵIIk

1− b′ −1
4 qd

I
i−dIIj

,

(3) Pa = PD′
3,jk,N

:

cH : k[D,N ]
a =

hD′
3,jk,N

hD,N

(−1)d
I
j+dIIk +1dIj! d

II
k !

2(dIj + dIIk + 1)

1

(a1 + a3 − dIj − 1, a2 + a4 − dIIk − 1)dIj+dIIk +1

×
(−b′ cH − dIIk )dIj(b

′ cH − dIj)dIIk
(a1 − a2 − dIj, a3 − a4 − dIj)dIj+dIIk +1
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×
MI∏
i=1
i ̸=j

1

(dIi − dIj)(d
I
i + dIIk + 1)(−b′ cH + dIi + dIj + 1)(−b′ cH + dIi − dIIk )

×
MII∏
i=1
i ̸=k

1

(dIIi − dIIk )(d
II
i + dIj + 1)(b′ cH + dIIi + dIIk + 1)(b′ cH + dIIi − dIj)

,

W : k[D,N ]
a =

hD′
3,jk,N

hD,N

(−1)d
I
j+dIIk +1

2(dIj + dIIk + 1)dIj! d
II
k !

1

(a1 + a2 − dIj − 1, a3 + a4 − dIIk − 1)dIj+dIIk +1

×
(−b′1 − dIIk )dIj(b

′
1 − dIj)dIIk∏2

l=1

∏4
m=3(al − am − dIj)dIj+dIIk +1

×
MI∏
i=1
i ̸=j

1

(dIi − dIj)(d
I
i + dIIk + 1)(−b′1 + dIi + dIj + 1)(−b′1 + dIi − dIIk )

(3.70)

×
MII∏
i=1
i ̸=k

1

(dIIi − dIIk )(d
II
i + dIj + 1)(b′1 + dIIi + dIIk + 1)(b′1 + dIIi − dIj)

,

AW : k[D,N ]
a =

hD′
3,jk,N

hD,N

(−1)d
I
j+dIIk +1(a1a2)

3dIj+2(a3a4)
dIIk −2dIj

(1− q2)(1− qd
I
j+dIIk +1)(q; q)dIj(q; q)dIIk

× q−
1
2
(5dI 2j −2dIjd

II
k +dII 2k +3dIj−dIIk +8)

(a1a2q
−dIj−1, a3a4q−dIIk −1; q)dIj+dIIk +1

(b′ −1
4 q−dIIk ; q)dIj(b

′
4q

−dIj ; q)dIIk∏2
l=1

∏4
m=3(ala

−1
m q−dIj ; q)dIj+dIIk +1

×
MI∏
i=1
i ̸=j

b′ −1
4 q2(d

I
i−i−MII)−1

(1− qd
I
i−dIj)(1− qd

I
i+dIIk +1)(1− b′ −1

4 qd
I
i+dIj+1)(1− b′ −1

4 qd
I
i−dIIk )

×
MII∏
i=1
i ̸=k

b′4q
2(dIIi −i−MI)−1

(1− qd
II
i −dIIk )(1− qd

II
i +dIj+1)(1− b′4q

dIIi +dIIk +1)(1− b′4q
dIIi −dIj)

,

where b′ cH1 = a1 + a3 − a2 − a4, b
′
1 = a1 + a2 − a3 − a4 and b′4 = a1a2a

−1
3 a−1

4 .

By numerical calculation, we can verify this conjecture for small M , dj, N and n.

4 Krein-Adler Type Multi-Indexed Orthogonal Poly-

nomials

In this section, after recapitulating the Krein-Adler type multi-indexed orthogonal polynomi-

als in idQM, we show their discrete orthogonality relations and conjecture the normalization

constants.
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In order to distinguish them from the quantities in § 3, we add the superscript KA to the

quantities in this section, if necessary. The notations Pn and H̃ in § 2 correspond to PKA
D,n

and H̃KA
D in this section, respectively.

4.1 Original idQM systems

As the original idQM systems, we consider the systems studied in [15], namely, continuous

Hahn (cH) and Meixner-Pollaczek (MP) systems with η(x) = x, Wilson (W) and continuous

dual Hahn (cdH) systems with η(x) = x2, and Askey-Wilson (AW), continuous dual q-Hahn

(cdqH), Al-Salam-Chihara (ASC), continuous big q-Hermite (cbqH), continuous q-Hermite

(cqH), continuous q-Jacobi (cqJ) and continuous q-Laguerre (cqL) systems with η(x) = cos x.

For various data of these systems, see [15]. We remark that the potential functions V (x)

satisfy

V (x;λ+ δ) = κ−1φ(x− iγ)

φ(x)
V (x− iγ

2
;λ), (4.1)

which gives the shape invariance of these systems, and

V ∗(x) = V (−x) for η(x) = x2, cos x. (4.2)

4.2 Darboux transformations

As seed solutions of the Darboux transformations, we take eigenfunctions (3.3), ϕd1(x),

ϕd2(x), . . . , ϕdM (x) (dj : mutually distinct). The formulas for the M -step Darboux transfor-

mations are almost the same as in § 3. In the s-step (1 ≤ s ≤ M), we have [17, 9] (s = 0 :

H = ÂKA †
d1

ÂKA
d1

+ Ed1)

HKA
d1...ds

def
= ÂKA

d1...ds
ÂKA †

d1...ds
+ Eds = ÂKA †

d1...dsds+1
ÂKA

d1...dsds+1
+ Eds+1 , (4.3)

ÂKA
d1...ds

def
= i

(
e

γ
2
p
√
V̂ KA ∗
d1...ds

(x)− e−
γ
2
p
√
V̂ KA
d1...ds

(x)
)
,

ÂKA †
d1...ds

def
= −i

(√
V̂ KA
d1...ds

(x) e
γ
2
p −

√
V̂ KA ∗
d1...ds

(x) e−
γ
2
p
)
, (4.4)

V̂ KA
d1...ds

(x)
def
=

√
V (x− i s−1

2
γ)V ∗(x− i s+1

2
γ)

×
Wγ[ϕd1 , . . . , ϕds−1 ](x+ iγ

2
)

Wγ[ϕd1 , . . . , ϕds−1 ](x− iγ
2
)

Wγ[ϕd1 , . . . , ϕds ](x− iγ)

Wγ[ϕd1 , . . . , ϕds ](x)
, (4.5)

ϕKA
d1...ds n

(x)
def
= ÂKA

d1...ds
ϕKA
d1...ds−1 n

(x) = ϕKA ∗
d1...ds n

(x)
(
n ∈ Z≥0\{d1, . . . , ds}

)
= A(x)Wγ[ϕd1 , . . . , ϕds , ϕn](x), (4.6)
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A(x) =


√∏s−1

j=0 V (x+ i( s
2
− j)γ)V ∗(x− i( s

2
− j)γ)

Wγ[ϕd1 , . . . , ϕds ](x− iγ
2
)Wγ[ϕd1 , . . . , ϕds ](x+ iγ

2
)


1
2

, (4.7)

HKA
d1...ds

ϕKA
d1...ds n

(x) = EnϕKA
d1...ds n

(x) (n ∈ Z≥0\{d1, . . . , ds}), (4.8)

(ϕKA
d1...ds n

, ϕKA
d1...ds m

) =
s∏

j=1

(En − Edj) · hnδnm
(
n,m ∈ Z≥0\{d1, . . . , ds}

)
. (4.9)

The operator ÂKA †
d1...ds

does not have a zero mode, but ÂKA
d1...ds

has a zero mode. Therefore some

of the spectrum of the original system are missing in the deformed system. The standard

form of HKA
d1...ds

is given by

HKA
d1...ds

= AKA †
d1...ds

AKA
d1...ds

+ Eµ, (4.10)

AKA
d1...ds

def
= i

(
e

γ
2
p
√
V KA ∗
d1...ds

(x)− e−
γ
2
p
√
V KA
d1...ds

(x)
)
,

AKA †
d1...ds

def
= −i

(√
V KA
d1...ds

(x) e
γ
2
p −

√
V KA ∗
d1...ds

(x) e−
γ
2
p
)
, (4.11)

V KA
d1...ds

(x)
def
=

√
V (x− i s

2
γ)V ∗(x− i s+2

2
γ)

×
Wγ[ϕd1 , . . . , ϕds ](x+ iγ

2
)

Wγ[ϕd1 , . . . , ϕds ](x− iγ
2
)

Wγ[ϕd1 , . . . , ϕds , ϕµ](x− iγ)

Wγ[ϕd1 , . . . , ϕds , ϕµ](x)
, (4.12)

where µ is

µ
def
= min

{
n
∣∣ n ∈ Z≥0\{d1, . . . , ds}

}
. (4.13)

These formulas (4.3)–(4.13) (except for (4.9)) are derived algebraically ((4.9) is derived only

formally unless Hd1...ds′
(s′ ≤ s) are hermite). If the following Krein-Adler condition [24, 25],

s∏
j=1

(m− dj) ≥ 0 (∀m ∈ Z≥0), (4.14)

is satisfied, the deformed Hamiltonian Hd1...ds is hermite [17].

4.3 Krein-Adler type multi-indexed orthogonal polynomials

For the index set D = {d1, . . . , dM}, we write Hd1...dM = HD, ϕd1...dM n(x) = ϕD n(x), etc. as

in § 3. We call an ordered set D = {d1, . . . , dM} with 0 ≤ d1 < · · · < dM the standard order.

As polynomial parts of the Casoratians Wγ[ϕd1 , . . . , ϕdM ](x) and Wγ[ϕd1 , . . . , ϕdM , ϕn](x),

the denominator polynomial ΞKA
D and the multi-indexed polynomials PKA

D,n are constructed,

respectively. Their definitions are

Wγ[P̌d1 , . . . , P̌dM ](x)
def
= φM(x)Ξ̌KA

D (x), Ξ̌KA
D (x)

def
= ΞKA

D
(
η(x)

)
, (4.15)
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Wγ[P̌d1 , . . . , P̌dM , P̌n](x)
def
= φM+1(x)P̌

KA
D,n(x), P̌KA

D,n(x)
def
= PKA

D,n

(
η(x)

)
, (4.16)

and

Wγ[ϕd1 , . . . , ϕdM ](x) = gKA
D (x)Ξ̌KA

D (x), gKA
D (x) = φM(x)

M∏
j=1

ϕ0

(
x
(M)
j

)
, (4.17)

Wγ[ϕd1 , . . . , ϕdM , ϕn](x) = gP KA
D (x)P̌KA

D,n(x), gP KA
D (x) = φM+1(x)

M+1∏
j=1

ϕ0

(
x
(M+1)
j

)
. (4.18)

We call PKA
D,n the Krein-Adler type multi-indexed orthogonal polynomials. Note that, in

contrast to § 3, there is no essential difference between ΞKA
D and PKA

D,n. In fact, PKA
D,n =

ΞKA
d1...dMn. The denominator polynomial ΞKA

D (η) and the multi-indexed polynomials PKA
D,n(η)

are polynomials in η and their degrees are ℓKA
D +M and ℓKA

D + n, respectively (we assume

cΞKA
D ̸= 0 and cP KA

D,n ̸= 0). Here ℓKA
D is

ℓKA
D

def
=

M∑
j=1

dj − 1
2
M(M + 1), (4.19)

and the coefficient of the highest degree term of ΞKA
D (η), cΞKA

D , is

cΞKA
D =

M∏
j=1

cdj ×


∏

1≤j<k≤M

(dk − dj) : η(x) = x, x2∏
1≤j<k≤M

q
1
2
(dj−dk)(1− qdk−dj) · 2−

∑M
j=1 dj : η(x) = cos x

, (4.20)

(cn is that of Pn(η)) and that of PKA
D n (η) is c

P KA
D,n = cΞKA

d1...dMn.

The eigenfunctions of the deformed system (4.6) are expressed as

ϕKA
D n(x) = κ

1
4
M(M−1)ψKA

D (x)P̌KA
D,n(x) (n ∈ Z≥0\D), (4.21)

ψKA
D (x;λ)

def
=

ϕ0(x;λ
KA
D )√

Ξ̌KA
D (x− iγ

2
;λ)Ξ̌KA

D (x+ iγ
2
;λ)

, (4.22)

where λKA
D is

λKA
D

def
= λ+Mδ. (4.23)

The potential function V KA
D (4.12) of the deformed Hamiltonian HKA

D in the standard form

(4.10) is expressed as

V KA
D (x;λ) = V (x;λKA

D )
Ξ̌KA
D (x+ iγ

2
;λ)

Ξ̌KA
D (x− iγ

2
;λ)

P̌KA
D,µ(x− iγ;λ)

P̌D,µ(x;λ)
. (4.24)
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If the Krein-Adler condition (4.14) (with the replacement s→M) is satisfied, the deformed

Hamiltonian HKA
D is hermite. The orthogonality of the eigenfunctions (4.9), namely, those

of the multi-indexed polynomials P̌KA
D,n(x) are∫ x2

x1

dxψKA
D (x)2P̌KA

D,n(x)P̌
KA
D,m(x) = hKA

D,nδnm (n,m ∈ Z≥0\D), (4.25)

hKA
D,n = κ−

1
2
M(M−1)hn

M∏
j=1

(En − Edj). (4.26)

Let us write Z≥0\D = {n0, n1, . . .} (n0 < n1 < · · · ). Then, for n = nk, the multi-indexed

orthogonal polynomial PKA
D,n(η) has k zeros in the physical region ηmin < η < ηmax (ηmin

def
=

min(η(x1), η(x2)), ηmax
def
= max(η(x1), η(x2))), which interlace the k + 1 zeros of PD,nk+1

(η)

in the physical region, and ℓKA
D + nk − k zeros in the unphysical region η ∈ C\(ηmin, ηmax).

The similarity transformed Hamiltonian in terms of ψKA
D (x) is square root free,

H̃KA
D

def
= ψKA

D (x)−1 ◦ HKA
D ◦ ψKA

D (x)

= V (x;λKA
D )

Ξ̌KA
D (x+ iγ

2
)

Ξ̌KA
D (x− iγ

2
)

(
eγp − P̌D,µ(x− iγ)

P̌D,µ(x)

)
+ V ∗(x;λKA

D )
Ξ̌KA
D (x− iγ

2
)

Ξ̌KA
D (x+ iγ

2
)

(
e−γp − P̌D,µ(x+ iγ)

P̌D,µ(x)

)
+ Eµ, (4.27)

and the multi-indexed polynomials P̌KA
D,n(x) are its eigenpolynomials,

H̃KA
D P̌KA

D,n(x) = EnP̌KA
D,n(x) (n ∈ Z≥0\D). (4.28)

4.4 Some identities

For the ordered index set D = {d1, . . . , dM}, let us consider the following ordered index sets,

D′ = {d1, . . . , dM , d′}, D′′ = {d1, . . . , dM , d′′}, (4.29)

where d′, d′′ ̸∈ D and d′ ̸= d′′. From the properties of the multi-step Darboux transformation

given in § 4.2, we have the following identity:

ϕKA
D′′ n(x) = ÂKA

D′′
ÂKA †

D′

En − Ed′
ϕKA
D′ n(x). (4.30)

By extracting the polynomial parts from this identity, we obtain the following proposition.
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Proposition 4.1

(En −Ed′)
(
Ξ̌KA
D′ (x− iγ

2
)

Ξ̌KA
D′′ (x− iγ

2
)
+

Ξ̌KA
D′ (x+ iγ

2
)

Ξ̌KA
D′′ (x+ iγ

2
)

)
P̌KA
D′′,n(x) = (H̃KA

D′′ + En −Ed′ −Ed′′)P̌KA
D′,n(x). (4.31)

Since this proposition can be proved in the same way as Proposition 3.1 (1), we omit the

proof.

Remark 4.1 The identity (4.31) is invariant under the permutation of dj, d
′, d′′ in D, D′,

D′′, namely, the order of ordered sets D, D′ and D′′ are irrelevant.

Remark 4.2 For generic values of λ, P̌KA
D,n(x) and Ξ̌KA

D (x± iγ
2
) do not have a common root.

4.5 Discrete orthogonality relations

Let us fix an index set D = {d1, . . . , dM} and a non-negative integer N ̸∈ D, and set

Ñ = degPKA
D,N = ℓKA

D + N . We denote the zeros of PKA
D,N (η) as η

[D,N ] KA
j (j = 1, 2, . . . , Ñ ),

and assume that they are simple. We define x
[D,N ] KA
j by requiring η(x

[D,N ] KA
j ) = η

[D,N ] KA
j

and x1 ≤ Re x
[D,N ] KA
j ≤ x2.

In the following, for simplicity in notation, we write η
[D,N ] KA
j and x

[D,N ] KA
j as ηj and xj,

respectively. Then P̌KA
D,N (x) is expressed as

P̌KA
D,N (x) = cP KA

D,N

Ñ∏
j=1

(
η(x)− ηj

)
. (4.32)

4.5.1 polynomials Pa

For the index set D = {d1, . . . , dM} in the standard order, let us define the index set D′
jk as

follows [27]:

D′
jk : E

def
= {0, 1, . . . , dM}\

(
D ∪ {N}

)
, dj ∈ D, Ej

def
= {ϵ ∈ E | ϵ < dj}, ϵk ∈ Ej,

D′
jk

def
=

(
D\{dj}

)
∪ {ϵk}. (4.33)

As an ordered set, we choose one order of the elements for D′
jk, e.g. the standard order.

Let us define M̃
def
= max{j | dj < N} for d1 < N and M̃

def
= 0 for d1 > N . Then we

have D ∩ {0, 1, . . . ,N − 1} = {d1, . . . , dM̃}, and |Ej| = dj − (j − 1) for 1 ≤ j ≤ M̃ and

|Ej| = dj − (j − 1)− 1 for M̃ + 1 ≤ j ≤M . The number of this set D′
jk is

#{D′
jk} =

M̃∑
j=1

(
dj − (j − 1)

)
+

M∑
j=M̃+1

(
dj − (j − 1)− 1

)
= ℓKA

D + M̃. (4.34)
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Let us define the polynomials P̌KA
a (x) = PKA

a (η(x)) (a = 1, . . . , Ñ ) as follows [27]:

(0) : P̌KA
a (x) = P̌KA

D,n(x) (n ∈ {0, 1, . . . ,N − 1}\{d1, . . . , dM̃}),

(1) : P̌KA
a (x) = P̌KA

D′
jk,N

(x) (D′
jk in (4.33)). (4.35)

The total number of these P̌KA
a (x) is actually (N − M̃) + (ℓKA

D + M̃) = N + ℓKA
D = Ñ .

Let us show that the conditions in (2.3) are satisfied. The condition (i) is trivial. The

condition (ii) is satisfied, because we have

(0) : degPKA
a = ℓKA

D + n, n < N ,

(1) : degPKA
a = ℓKA

D′
jk
+N , ℓKA

D′
jk
= ℓKA

D − dj + ϵk < ℓKA
D . (4.36)

The condition (iii) is satisfied by the following proposition.

Proposition 4.2 For P̌KA
a (x) (4.35), we have

H̃KA
D P̌KA

a (x)
∣∣
x=xj

= EP KA
a PKA

a (ηj), (4.37)

where EP KA
a are given by

(0) : EP KA
a = En,

(1) : EP KA
a = Edj + Eϵk − EN . (4.38)

Proof:

(0): Eq. (4.28) gives H̃KA
D P̌KA

a (x) = EnP̌KA
a (x), and (4.37) is obtained by setting x = xj.

(1): Eq. (4.31) with the replacement (D′,D′′, n, d′, d′′) → (D′
jk,D,N , ϵk, dj) gives

(· · · )× P̌KA
D,N (x) = (H̃KA

D + EN − Eϵk − Edj)P̌KA
a (x),

and (4.37) is obtained by setting x = xj.

By using (4.38) and explicit forms of En [15], we can show that the condition (iv) is satisfied

for generic values of λ for cH, W, AW and cqJ cases. For other cases, there may be a

degeneracy in EP KA
a even for generic values of λ. Thus, for cH, W, AW and cqJ cases,

the polynomials P̌KA
a (x) (4.35) (with generic values of λ) satisfy all the conditions in (2.3).

For other cases, the polynomials P̌KA
a (x) satisfy the conditions (i)–(iii) in (2.3) but not

(iv). However, we remark that the multi-indexed polynomials PKA
D,n(η) for other cases can

be obtained from those for cH, W, AW and cqJ cases by taking certain limits of parameters

(with appropriate rescalings).
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4.5.2 matrices M̃ and M

Let us show the proposition for M̃.

Proposition 4.3 The matrix elements M̃jk (2.8) for j ̸= k are expressed as

M̃jk =
1(

η(xj − iγ)− ηk
)(
η(xj + iγ)− ηk

)−H̃KA
D

(
η(x)P̌KA

D,N (x)
)∣∣

x=xj

PKA ′
D,N (ηj)

(j ̸= k). (4.39)

The proof is the same as in Proposition 3.3, so we omit it.

Let us define FKA
j (j = 1, . . . , Ñ ) as

FKA
j

def
= −

H̃KA
D

(
η(x)P̌KA

D,N (x)
)∣∣

x=xj

PKA ′
D,N (ηj)

. (4.40)

Then we have the following proposition.

Proposition 4.4 The number FKA
j (4.40) is expressed as

FKA
j = F̌KA(xj) = FKA(ηj). (4.41)

Here F̌KA(x) is given by

F̌KA(x)
def
=

−1

PKA ′
D,N (η(x))

(
η(x− iγ)V (x;λKA

D )
Ξ̌KA
D (x+ iγ

2
)

Ξ̌KA
D (x− iγ

2
)
P̌KA
D,N (x− iγ)

+ η(x+ iγ)V ∗(x;λKA
D )

Ξ̌KA
D (x− iγ

2
)

Ξ̌KA
D (x+ iγ

2
)
P̌KA
D,N (x+ iγ)

)
. (4.42)

It is a rational function of η(x), and FKA(η) is given by FKA(η(x))
def
= F̌KA(x).

The proof is the same as in Proposition 3.3 (recall (4.2)), so we omit it.

Remark 4.3 As in Remark 3.3, FKA
j can be written as

FKA
j =

η(xj + iγ)− η(xj − iγ)

PKA ′
D,N (ηj)

V (xj;λ
KA
D )

Ξ̌KA
D (xj + iγ

2
)

Ξ̌KA
D (xj − iγ

2
)
P̌KA
D,N (xj − iγ). (4.43)

By the similarity transformation (2.11), we obtain the symmetric matrix M.

Proposition 4.5 By taking gj =
√
FKA
j in (2.11), the matrix M is symmetric, (2.12).
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The proof is the same as in Proposition 3.5, so we omit it.

Remark 4.4 The matrix elements M̃jk and Mjk (j ≠ k) are given by (3.61) and (3.62)

with the replacement Fj → FKA
j , respectively. The diagonal elements M̃jj = Mjj are given

by

M̃jj =
FKA
j(

η(xj − iγ)− ηj
)(
η(xj + iγ)− ηj

)
− V (xj;λ

KA
D )

Ξ̌KA
D (xj + iγ

2
)

Ξ̌KA
D (xj − iγ

2
)

P̌KA
D,µ(xj − iγ)

P̌KA
D,µ(xj)

− V ∗(xj;λ
KA
D )

Ξ̌KA
D (xj − iγ

2
)

Ξ̌KA
D (xj + iγ

2
)

P̌KA
D,µ(xj + iγ)

P̌KA
D,µ(xj)

+ Eµ. (4.44)

4.5.3 discrete orthogonality relations

The discrete orthogonality relations are as follows.

Theorem 4.1 For the Krein-Adler type multi-indexed orthogonal polynomials studied in

this section P̌KA
D,n(x), PKA

a (η) (4.35) and FKA(η) (4.41), we have the discrete orthogonality

relations:

Ñ∑
j=1

1

FKA(ηj)

PKA
a (ηj)

PKA ′
N (ηj)

PKA
b (ηj)

PKA ′
N (ηj)

= k[D,N ] KA
a δab (a, b = 1, 2, . . . , Ñ ), (4.45)

where k
[D,N ] KA
a ’s are normalization constants.

Proof: For cH, W, AW and cqJ cases, since the assumptions of Theorem2.1 are satisfied (for

generic values of λ), Theorem2.1 gives this theorem. For other cases, the condition (iv) in

(2.3) may not be satisfied. For such PKA
a and PKA

b with EP KA
a = EP KA

b , Theorem2.1 do not

state the discrete orthogonality relations. However, the multi-indexed polynomials PKA
D,n(η)

for other cases can be obtained from those for cH, W, AW and cqJ cases by taking certain

limits of parameters (with appropriate rescalings). By these limits, the discrete orthogonality

relations (4.45) for other cases are obtained from those for cH, W, AW and cqJ cases.

Remark 4.5 We have similar remarks as in Remark 3.6, 3.7 and 3.8 (see (4.2)). Moreover

the discrete orthogonality relations (4.45) hold for the index set D without the Krein-Adler

condition (4.14).

We conjecture the normalization constants k
[D,N ] KA
a for cH, W, AW and cqJ cases as

follows.
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Conjecture 4.1 The normalization constants k
[D,N ] KA
a are given by

(0) PKA
a = PKA

D,n : k[D,N ] KA
a =

hD,n

hD,N
×



1

2(b1 + 2N − 1)
: cH,W

qN+1−M

(1− q2)(1− b4q2N−1)
: AW

qN+1−M

(1− q2)(1− qα+β+1+2N )
: cqJ

, (4.46)

(1) PKA
a = PKA

D′
jk,N

:

cH : k[D,N ] KA
a =

hD′
jk,N

hD,N

(ϵk + 1)dj−ϵk

2

∏
l=1,3

∏
m=2,4

1

(al + am + ϵk)dj−ϵk

·
(b1 + ϵk − 1)dj−ϵk

b1 + 2ϵk − 1

×
M∏
i=1
i ̸=j

di − ϵk
di − dj

b1 + di + ϵk − 1

b1 + di + dj − 1
,

W : k[D,N ] KA
a =

hD′
jk,N

hD,N

1

2(ϵk + 1)dj−ϵk

∏
1≤l<m≤4

1

(al + am + ϵk)dj−ϵk

·
(b1 + ϵk − 1)dj−ϵk

b1 + 2ϵk − 1

×
M∏
i=1
i ̸=j

di − ϵk
di − dj

b1 + di + ϵk − 1

b1 + di + dj − 1
,

AW : k[D,N ] KA
a =

hD′
jk,N

hD,N

qdj

(1− q2)(qϵk+1; q)dj−ϵk

∏
1≤l<m≤4

1

(alamqϵk ; q)dj−ϵk

·
(b4q

ϵk−1; q)dj−ϵk

1− b4q2ϵk−1

×
M∏
i=1
i ̸=j

q−1 1− qdi−ϵk

1− qdi−dj

1− b4q
di+ϵk−1

1− b4qdi+dj−1
, (4.47)

cqJ : k[D,N ] KA
a =

hD′
jk,N

hD,N

q(α+
1
2
)(ϵk−dj)+dj(qϵk+1; q)dj−ϵk

1− q2

×
(qα+β+ϵk+1; q)dj−ϵk

(1− q
1
2
(α+β+1)+ϵk)(1 + q

1
2
(α+β+1)+dj)(qα+ϵk+1, qβ+ϵk+1; q)dj−ϵk

×
M∏
i=1
i ̸=j

q−1 1− qdi−ϵk

1− qdi−dj

1− qα+β+di+ϵk+1

1− qα+β+di+dj+1
.

By numerical calculation, we can verify this conjecture for small M , dj, N and n. We do not

write down the normalization constants for other cases (MP, cdH, cdqH, ASC, cbqH, cqH,

cqL), but they can be obtained from the above results.
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5 Summary and Comments

Ordinary orthogonal polynomials satisfy the discrete orthogonal relations (1.2). For the

multi-indexed orthogonal polynomials in oQM, which satisfy the second order differential

equations, the discrete orthogonal relations also hold [27]. We have generalized this result to

the multi-indexed orthogonal polynomials in idQM, which satisfy the second order difference

equations. The discrete orthogonal relations hold for the case-(1) multi-indexed orthogonal

polynomials of continuous Hahn, Wilson and Askey-Wilson types, Theorem3.1, and for the

Krein-Adler type multi-indexed orthogonal polynomials, Theorem4.1. Their normalization

constants are conjectured, Conjecture 3.1 and 4.1. The discrete orthogonal relations for the

multi-indexed orthogonal polynomials in oQM are revisited in AppendixB, and the normal-

ization constants are conjectured, ConjectureB.1 and B.2. We hope that these conjectures

will be proved.

In addition to oQM and idQM, we have another quantum mechanical system, rdQM.

Orthogonal polynomials appearing in rdQM are the q-Racah polynomial, its various limits,

and their multi-indexed versions. The discrete orthogonal relations are expected to hold for

the multi-indexed orthogonal polynomials in rdQM as well. It is an interesting problem to

study these discrete orthogonal relations concretely.
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A Proof of Proposition 3.1

In this appendix we prove Proposition 3.1. We use the following abbreviated notations:

w(x) = Wγ[ϕ̃d1 , . . . , ϕ̃dM ](x), u(x) = Wγ[ϕ̃d1 , . . . , ϕ̃dM , ϕn](x),

w1(x) = Wγ[ϕ̃d1 , . . . , ϕ̃dM , ϕ̃d′ ](x), u1(x) = Wγ[ϕ̃d1 , . . . , ϕ̃dM , ϕ̃d′ , ϕn](x),

w2(x) = Wγ[ϕ̃d1 , . . . , ϕ̃dM , ϕ̃d′′ ](x), u2(x) = Wγ[ϕ̃d1 , . . . , ϕ̃dM , ϕ̃d′′ , ϕn](x), (A.1)

w3(x) = Wγ[ϕ̃d1 , . . . , ϕ̃dM , ϕ̃d′ , ϕ̃d′′ ](x), u3(x) = Wγ[ϕ̃d1 , . . . , ϕ̃dM , ϕ̃d′ , ϕ̃d′′ , ϕn](x).
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For example, we have

V̂D′′(x) =
√
V (x− iM

2
γ)V ∗(x− iM+2

2
γ)
w(x+ iγ

2
)

w(x− iγ
2
)

w2(x− iγ)

w2(x)
,

ϕD′′ n(x) =
( M∏
j=0

V
(
x+ i(M+1

2
− j)γ

)
V ∗(x− i(M+1

2
− j)γ

)) 1
4 u2(x)√

w2(x− iγ
2
)w2(x+ iγ

2
)

= cϕD′′ψD′′(x)P̌D′′,n(x) = cϕD′′ψD′′(x)gPD′′(x)−1u2(x).

A.1 Proof of Proposition 3.1 (1)

From HD′′ = ÂD′′Â†
D′′ + Ẽd′′ and

H̃′
D′′

def
= gPD′′(x) ◦ H̃D′′ ◦ gPD′′(x)−1 = gPD′′(x)ψD′′(x)−1 ◦ HD′′ ◦ ψD′′(x)gPD′′(x)−1

=
( M∏
j=0

V
(
x+ i(M+1

2
− j)γ

)
V ∗(x− i(M+1

2
− j)γ

))− 1
4
√
w2(x− iγ

2
)w2(x+ iγ

2
)

◦ HD′′ ◦
( M∏
j=0

V
(
x+ i(M+1

2
− j)γ

)
V ∗(x− i(M+1

2
− j)γ

)) 1
4 1√

w2(x− iγ
2
)w2(x+ iγ

2
)

=
√
V (x− iM+1

2
γ)V ∗(x− iM+3

2
γ)
w2(x+ iγ

2
)

w2(x− iγ
2
)
eγp

+
√
V (x+ iM+3

2
γ)V ∗(x+ iM+1

2
γ)
w2(x− iγ

2
)

w2(x+ iγ
2
)
e−γp

−
√
V (x− iM−1

2
γ)V ∗(x− iM+1

2
γ)
w(x+ iγ)

w(x)

w2(x− iγ
2
)

w2(x+ iγ
2
)

−
√
V (x+ iM+1

2
γ)V ∗(x+ iM−1

2
γ)
w(x− iγ)

w(x)

w2(x+ iγ
2
)

w2(x− iγ
2
)
+ Ẽd′′ , (A.2)

we have

H̃′
D′′u1(x) =

√
V (x− iM+1

2
γ)V ∗(x− iM+3

2
γ)
w2(x+ iγ

2
)

w2(x− iγ
2
)
u1(x− iγ)

+
√
V (x+ iM+3

2
γ)V ∗(x+ iM+1

2
γ)
w2(x− iγ

2
)

w2(x+ iγ
2
)
u1(x+ iγ)

−
√
V (x− iM−1

2
γ)V ∗(x− iM+1

2
γ)
w(x+ iγ)

w(x)

w2(x− iγ
2
)

w2(x+ iγ
2
)
u1(x) (A.3)

−
√
V (x+ iM+1

2
γ)V ∗(x+ iM−1

2
γ)
w(x− iγ)

w(x)

w2(x+ iγ
2
)

w2(x− iγ
2
)
u1(x) + Ẽd′′ u1(x).

From HD′ = ÂD′Â†
D′ + Ẽd′ and HD′ϕD′ n(x) = EnϕD′ n(x), we have

Enu1(x) =
√
V (x− iM+1

2
γ)V ∗(x− iM+3

2
γ)
w1(x+ iγ

2
)

w1(x− iγ
2
)
u1(x− iγ)
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+
√
V (x+ iM+3

2
γ)V ∗(x+ iM+1

2
γ)
w1(x− iγ

2
)

w1(x+ iγ
2
)
u1(x+ iγ)

−
√
V (x− iM−1

2
γ)V ∗(x− iM+1

2
γ)
w(x+ iγ)

w(x)

w1(x− iγ
2
)

w1(x+ iγ
2
)
u1(x)

−
√
V (x+ iM+1

2
γ)V ∗(x+ iM−1

2
γ)
w(x− iγ)

w(x)

w1(x+ iγ
2
)

w1(x− iγ
2
)
u1(x) + Ẽd′ u1(x). (A.4)

By rewriting these (A.4) and (A.3) as(
α1a1 α∗

1a
∗
1

α1a2 α∗
1a

∗
2

)(
u1(x− iγ)
u1(x+ iγ)

)
=

(
b1u1(x)
b2u1(x)

)
, (A.5)

where

α1 =
√
V (x− iM+1

2
γ)V ∗(x− iM+3

2
γ), α2 =

√
V (x− iM−1

2
γ)V ∗(x− iM+1

2
γ),

a1 =
w1(x+ iγ

2
)

w1(x− iγ
2
)
=

1

a∗1
, a2 =

w2(x+ iγ
2
)

w2(x− iγ
2
)
=

1

a∗2
, c =

w(x+ iγ)

w(x)
,

b1 = En − Ẽd′ + α2ca
∗
1 + α∗

2c
∗a1, b2 = H̃′

D′′ − Ẽd′′ + α2ca
∗
2 + α∗

2c
∗a2,

we obtain (
α1u1(x− iγ)
α∗
1u1(x+ iγ)

)
=

1

a1a∗2 − a∗1a2

(
a∗2 −a∗1
−a2 a1

)(
b1u1(x)
b2u1(x)

)
. (A.6)

By writing down the identity (3.40) and multiplying by

(En − Ẽd′)
( M∏
j=0

V
(
x+ i(M+1

2
− j)γ

)
V ∗(x− i(M+1

2
− j)γ

))− 1
4
√
w2(x− iγ

2
)w2(x+ iγ

2
),

we obtain

(En − Ẽd′)u2(x) = α1

w2(x+ iγ
2
)

w1(x− iγ
2
)
u1(x− iγ) + α∗

1

w2(x− iγ
2
)

w1(x+ iγ
2
)
u1(x+ iγ)

− α2

w2(x− iγ
2
)

w1(x+ iγ
2
)
cu1(x)− α∗

2

w2(x+ iγ
2
)

w1(x− iγ
2
)
c∗u1(x). (A.7)

By substituting u1(x∓ iγ) in (A.6) into (A.7), we obtain

(a1a
∗
2−a∗1a2)(En−Ẽd′)u2(x) =

(w2(x− iγ
2
)

w1(x− iγ
2
)
−
w2(x+ iγ

2
)

w1(x+ iγ
2
)

)(
H̃′

D′′u1(x)+(En−Ẽd′−Ẽd′′)u1(x)
)
.

(A.8)

Since u1(x) = gPD′(x)P̌D′,n(x), we have

H̃′
D′′u1(x) + (En − Ẽd′ − Ẽd′′)u1(x)

35



= gPD′′(x)
(
gPD′′(x)−1 ◦ H̃′

D′′ ◦ gPD′′(x) + En − Ẽd′ − Ẽd′′
) gPD′(x)

gPD′′(x)
P̌D′,n(x)

= gPD′′(x)(H̃D′′ + En − Ẽd′ − Ẽd′′)
gPD′(x)

gPD′′(x)
P̌D′,n(x).

Therefore (A.8) gives(w1(x− iγ
2
)

w2(x− iγ
2
)
+
w1(x+ iγ

2
)

w2(x+ iγ
2
)

)
(En − Ẽd′)P̌D′′,n(x) = (H̃D′′ + En − Ẽd′ − Ẽd′′)

gPD′(x)

gPD′′(x)
P̌D′,n(x),

namely,

(En − Ẽd′)
( gD′(x− iγ

2
)

gD′′(x− iγ
2
)

Ξ̌D′(x− iγ
2
)

Ξ̌D′′(x− iγ
2
)
+
gD′(x+ iγ

2
)

gD′′(x+ iγ
2
)

Ξ̌D′(x+ iγ
2
)

Ξ̌D′′(x+ iγ
2
)

)
P̌D′′,n(x)

= (H̃D′′ + En − Ẽd′ − Ẽd′′)
gPD′(x)

gPD′′(x)
P̌D′,n(x). (A.9)

When the types of d′ and d′′ are the same, we have gD′(x) = gD′′(x) and gPD′(x) = gPD′′(x).

Thus (A.9) gives (3.42).

A.2 Proof of Proposition 3.1 (2)

Like as (A.2), H̃′
D′′′

def
= gPD′′′(x) ◦ H̃D′′′ ◦ gPD′′′(x)−1 is expressed as

H̃′
D′′′ =

√
V (x− iM+2

2
γ)V ∗(x− iM+4

2
γ)
w3(x+ iγ

2
)

w3(x− iγ
2
)
eγp

+
√
V (x+ iM+4

2
γ)V ∗(x+ iM+2

2
γ)
w3(x− iγ

2
)

w3(x+ iγ
2
)
e−γp

−
√
V (x− iM

2
γ)V ∗(x− iM+2

2
γ)
w1(x+ iγ)

w1(x)

w3(x− iγ
2
)

w3(x+ iγ
2
)

−
√
V (x+ iM+2

2
γ)V ∗(x+ iM

2
γ)
w1(x− iγ)

w1(x)

w3(x+ iγ
2
)

w3(x− iγ
2
)
+ Ẽd′′ .

Then we have

gPD(x) ◦ H̃D′′′ ◦ gPD(x)−1 =
gPD(x)

gPD′′′(x)
◦ H̃′

D′′′ ◦
gPD′′′(x)

gPD(x)

=
√
V (x− iM+2

2
γ)V ∗(x− iM+4

2
γ)
w3(x+ iγ

2
)

w3(x− iγ
2
)

gPD(x)

gPD(x− iγ)

gPD′′′(x− iγ)

gPD′′′(x)
eγp

+
√
V (x+ iM+4

2
γ)V ∗(x+ iM+2

2
γ)
w3(x− iγ

2
)

w3(x+ iγ
2
)

gPD(x)

gPD(x+ iγ)

gPD′′′(x+ iγ)

gPD′′′(x)
e−γp

−
√
V (x− iM

2
γ)V ∗(x− iM+2

2
γ)
w1(x+ iγ)

w1(x)

w3(x− iγ
2
)

w3(x+ iγ
2
)
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−
√
V (x+ iM+2

2
γ)V ∗(x+ iM

2
γ)
w1(x− iγ)

w1(x)

w3(x+ iγ
2
)

w3(x− iγ
2
)
+ Ẽd′′ ,

and obtain(
gPD(x) ◦ H̃D′′′ ◦ gPD(x)−1

)
u(x)

=
√
V (x− iM+2

2
γ)V ∗(x− iM+4

2
γ)
w3(x+ iγ

2
)

w3(x− iγ
2
)

gPD(x)

gPD(x− iγ)

gPD′′′(x− iγ)

gPD′′′(x)
u(x− iγ)

+
√
V (x+ iM+4

2
γ)V ∗(x+ iM+2

2
γ)
w3(x− iγ

2
)

w3(x+ iγ
2
)

gPD(x)

gPD(x+ iγ)

gPD′′′(x+ iγ)

gPD′′′(x)
u(x+ iγ)

−
√
V (x− iM

2
γ)V ∗(x− iM+2

2
γ)
w1(x+ iγ)

w1(x)

w3(x− iγ
2
)

w3(x+ iγ
2
)
u(x)

−
√
V (x+ iM+2

2
γ)V ∗(x+ iM

2
γ)
w1(x− iγ)

w1(x)

w3(x+ iγ
2
)

w3(x− iγ
2
)
u(x) + Ẽd′′ u(x). (A.10)

From HD = Â†
D′ÂD′ + Ẽd′ and HDϕD n(x) = EnϕD n(x), we have

Enu(x) =
√
V (x− iM

2
γ)V ∗(x− iM+2

2
γ)
w(x+ iγ

2
)

w(x− iγ
2
)
u(x− iγ)

+
√
V (x+ iM+2

2
γ)V ∗(x+ iM

2
γ)
w(x− iγ

2
)

w(x+ iγ
2
)
u(x+ iγ)

−
√
V (x− iM

2
γ)V ∗(x− iM+2

2
γ)
w(x+ iγ

2
)

w(x− iγ
2
)

w1(x− iγ)

w1(x)
u(x)

−
√
V (x+ iM+2

2
γ)V ∗(x+ iM

2
γ)
w(x− iγ

2
)

w(x+ iγ
2
)

w1(x+ iγ)

w1(x)
u(x) + Ẽd′ u(x). (A.11)

By rewriting these (A.11) and (A.10) as(
α1a1 α∗

1a
∗
1

α2a2β
∗ α∗

2a
∗
2β

)(
u(x− iγ)
u(x+ iγ)

)
=

(
b1u(x)
b2u(x)

)
, (A.12)

where

α1 =
√
V (x− iM

2
γ)V ∗(x− iM+2

2
γ), α2 =

√
V (x− iM+2

2
γ)V ∗(x− iM+4

2
γ),

a1 =
w(x+ iγ

2
)

w(x− iγ
2
)
=

1

a∗1
, a2 =

w3(x+ iγ
2
)

w3(x− iγ
2
)
=

1

a∗2
, c =

w1(x+ iγ)

w1(x)
,

β1 =
gPD(x+ iγ)

gPD(x)
, β2 =

gPD′′′(x+ iγ)

gPD′′′(x)
, β =

β2
β1
,

b1 = En − Ẽd′ + α1a1c
∗ + α∗

1a
∗
1c, b2 = gPD(x) ◦ H̃D′′′ ◦ gPD(x)−1 − Ẽd′′ + α1a

∗
2c+ α∗

1a2c
∗,

we obtain(
u(x− iγ)
u(x+ iγ)

)
=

1

α1α∗
2a1a

∗
2β − α∗

1α2a∗1a2β
∗

(
α∗
2a

∗
2β −α∗

1a
∗
1

−α2a2β
∗ α1a1

)(
b1u(x)
b2u(x)

)
. (A.13)
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By using the explicit forms of gPD(x) and gPD′′′(x) (d′, d′′ : different types), a lengthy but

straightforward calculation shows the following:

α1 − α∗
2β = 0. (A.14)

By writing down the identity (3.41) and multiplying by

(M+1∏
j=0

V
(
x+ i(M+2

2
− j)γ

)
V ∗(x− i(M+2

2
− j)γ

))− 1
4
√
w3(x− iγ

2
)w3(x+ iγ

2
),

we obtain

u3(x) = −
w3(x+ iγ

2
)

w(x− iγ
2
)
u(x− iγ)−

w3(x− iγ
2
)

w(x+ iγ
2
)
u(x+ iγ)

+
w3(x− iγ

2
)

w(x+ iγ
2
)
cu(x) +

w3(x+ iγ
2
)

w(x− iγ
2
)
c∗u(x). (A.15)

By substituting u(x ∓ iγ) in (A.13) into (A.15) and using u(x) = gPD(x)P̌D,n(x), a short

calculation gives

(α1α
∗
2a1a

∗
2β − α∗

1α2a
∗
1a2β

∗)u3(x)

= gPD(x)
(
α∗
1

w3(x+ iγ
2
)

w(x+ iγ
2
)
− α1

w3(x− iγ
2
)

w(x− iγ
2
)

)(
H̃D′′′ + En − Ẽd′ − Ẽd′′

)
P̌D,n(x),

where (A.14) is used. Dividing this equation by α1α
∗
1 and using (A.14) and u3(x) =

gPD′′′(x)P̌D′′′,n(x), we obtain(α1

α∗
1

a1a
∗
2 −

α∗
1

α1

a∗1a2

)
P̌D′′′,n(x)

=
gPD(x)

gPD′′′(x)

( 1

α1

w3(x+ iγ
2
)

w(x+ iγ
2
)
− 1

α∗
1

w3(x− iγ
2
)

w(x− iγ
2
)

)(
H̃D′′′ + En − Ẽd′ − Ẽd′′

)
P̌D,n(x). (A.16)

By using the explicit forms of gPD(x), g
P
D′′′(x), gD(x) and gD′′′(x), a lengthy but straightforward

calculation shows that (A.16) is expressed as (3.43).

B Discrete Orthogonality Relations in oQM

In this appendix, we revisit the discrete orthogonality relations for the multi-indexed orthog-

onal polynomials in ordinary quantum mechanics studied in [27].

For the multi-step Darboux transformations of oQM, see Appendix A in [31].
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B.1 Multi-indexed orthogonal polynomials

We consider the discrete orthogonality relations for the case-(1) multi-indexed Laguerre and

Jacobi orthogonal polynomials. The outline is the same as in § 3, and the results are described

briefly.

By the M -step Darboux transformations, the deformed Hamiltonian HD and its eigen-

functions ϕD nn(x) are expressed as

HD = − d2

dx2
+ U(x)− 2∂2x log

∣∣W[ϕ̃d1 , . . . , ϕ̃dM ](x)
∣∣, U(x) =

ϕ′′
0(x)

ϕ0(x)
, (B.1)

ϕD n(x) =
W[ϕ̃d1 , . . . , ϕ̃dM , ϕn](x)

W[ϕ̃d1 , . . . , ϕ̃dM ](x)
(n ∈ Z≥0),

= cMF ψD(x)P̌D,n(x), ψD(x;λ)
def
=
ϕ0(x;λD)

Ξ̌D(x;λ)
, (B.2)

where λD is given by (3.32), cF is given by (2.132) in [18], ϕ̃v(x) is given by (B.3)–(B.6) in

[31], Ξ̌D(x) and P̌D,n(x) are given by (B.9)–(B.10) in [31]. The functions gD(x) and gPD(x)

are defined by (3.26)–(3.27) with the replacement Wγ → W, and their explicit forms are

given in (B.7)–(B.8) in [31]. We remark that gD(x) and g
P
D(x) depend on MI and MII, but

not on the specific values of dj and n. The degrees of ΞD(η) and PD,n(η) are same as § 3.

The orthogonality of the multi-indexed polynomials are (3.35)–(3.36) with the replacement

cϕD → cMF . A direct calculation shows

U(x)− U(x;λD)− 2∂2x log

∣∣∣∣W[ϕ̃d1 , . . . , ϕ̃dM ](x)

Ξ̌D(x)

∣∣∣∣ = 0. (B.3)

The similarity transformed deformed Hamiltonian H̃D = ψD(x)
−1 ◦HD ◦ ψD(x) is expressed

as

H̃D = − d2

dx2
− 2

ψ′
D(x)

ψD(x)

d

dx
+ 2

ϕ′
0(x;λD)

ϕ0(x;λD)

Ξ̌′
D(x)

Ξ̌D(x)
− Ξ̌′′

D(x)

Ξ̌D(x)

= −4

(
c2(η)

d2

dη2
+
(
c1(η,λD)− 2c2(η)

Ξ′
D(η)

ΞD(η)

) d

dη

+ c2(η)
Ξ′′
D(η)

ΞD(η)
− c1(η,λD − δ)

Ξ′
D(η)

ΞD(η)

)
, (B.4)

where c1(η,λ) is given by (2.132) in [18].

From the identities (3.40)–(3.41) with Âd1...ds = d
dx

− ∂x log |ϕ̃d1...ds(x)| and Â†
d1...ds

=

− d
dx

− ∂x log |ϕ̃d1...ds(x)|, we obtain Proposition 3.1 with the following replacements,

(3.42) → 2(En − Ẽd′)
ΞD′(η)

ΞD′′(η)
PD′′,n(η) = (H̃D′′ + En − Ẽd′ − Ẽd′′)PD′,n(η), (B.5)
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(3.43) → −2c2F
ΞD(η)

ΞD′′′(η)
PD′′′,n(η) = (H̃D′′′ + En − Ẽd′ − Ẽd′′)PD,n(η). (B.6)

These properties (B.5)–(B.6) with n = N are given as Theorem4.3, 4.5 and 4.6 in [27],

but their reader-friendly concrete proofs are not presented. So we present them in §B.3,

in which explicit expressions of ΞD and PD,n ((B.9)–(B.10) in [31]) are not used. We have

Proposition 3.2.

Since H̃D has the form H̃D = − d2

dx2 +A(x) d
dx

+B(x), we obtain Proposition 3.3 with the

replacement,

(3.53) → M̃jk =
1

(ηj − ηk)2

−H̃D
(
η(x)P̌D,N (x)

)∣∣
x=xj

P ′
D,N (ηj)

(j ̸= k). (B.7)

By using the explicit form of H̃D (B.4), we obtain Proposition 3.4 with the replacement

(3.57) → F̌ (x) = 2η′(x)2, F (η) = 8c2(η). (B.8)

Then we have Proposition 3.5, and (3.61)–(3.62) become

M̃jk =
Fj

(ηj − ηk)2
, Mjk =

√
Fj

√
Fk

(ηj − ηk)2
(j ̸= k). (B.9)

We have Remark 3.4 with the replacement,

(3.63) → M̃jj = 4c2(ηj)

( Ñ∑
m=1
m ̸=j

1

(ηj − ηm)2
+
( Ñ∑

m=1
m ̸=j

1

ηj − ηm

)2

− Ξ′′
D(ηj)

ΞD(ηj)

)

+ 4c1(ηj,λD − δ)
Ξ′
D(ηj)

ΞD(ηj)
, (B.10)

which agrees to M̃HS
jj + EN in [27].

For the case-(1) multi-indexed Jacobi polynomials, the assumptions of Theorem2.1 are

satisfied (for generic values of λ). Therefore Theorem2.1 gives the following.

Theorem B.1 For the case-(1) multi-indexed orthogonal polynomials of L and J types

PD,n(η), Pa(η) (3.49) and F (η) (B.8), we have the discrete orthogonality relations:

Ñ∑
j=1

1

F (ηj)

Pa(ηj)

P ′
D,N (ηj)

Pb(ηj)

P ′
D,N (ηj)

= k[D,N ]
a δab (a, b = 1, 2, . . . , Ñ ), (B.11)

where k
[D,N ]
a ’s are normalization constants.
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Remark B.1 For L case, there may be a degeneracy in EP
a even for generic values of λ,

namely, the condition (iv) in (2.3) may not be satisfied. Theorem2.1 can not be applied

to such cases. However, the case-(1) multi-indexed L polynomials PD,n(η) can be obtained

from those of J by taking certain limit of parameters (with appropriate rescalings). So, the

discrete orthogonality relations (B.11) for J are inherited by L. This point is not mentioned

in [27].

Remark B.2 Like as Remark 3.8, the discrete orthogonality relations (B.11) hold for any

complex values of parameters λ (with the condition cΞD, c
P
D,N ̸= 0).

We conjecture the normalization constants k
[D,N ]
a as follows.

Conjecture B.1 The normalization constants k
[D,N ]
a are given by

(0) Pa = PD,n : k[D,N ]
a =

1

8

hD,n

hD,N
×
{

1 : L
1

2N+g+h
: J

, (B.12)

(1) Pa = PD′
1,jk,N

:

k[D,N ]
a =

1

8

hD′
1,jk,N

hD,N

(ϵIk + 1)dIj−ϵIk

(ϵIk + g + 1
2
)dIj−ϵIk

MI∏
i=1
i ̸=j

dIi − ϵIk
dIi − dIj

·
MII∏
i=1

dIIi + ϵIk + 1

dIIi + dIj + 1

×



(−1) : L
(ϵIk + g − h+ 1)dIj−ϵIk

(2ϵIk + g − h+ 1)(ϵIk − h+ 3
2
)dIj−ϵIk

×
MI∏
i=1
i ̸=j

dIi + ϵIk + g − h+ 1

dIi + dIj + g − h+ 1
·
MII∏
i=1

dIIi − ϵIk − g + h

dIIi − dIj − g + h
: J

, (B.13)

(2) Pa = PD′
2,jk,N

:

k[D,N ]
a =

1

8

hD′
2,jk,N

hD,N

(ϵIIk + 1)dIIj −ϵIIk

(ϵIIk − g + 3
2
)dIIj −ϵIIk

MII∏
i=1
i ̸=j

dIIi − ϵIIk
dIIi − dIIj

·
MI∏
i=1

dIi + ϵIIk + 1

dIi + dIIj + 1

×



1 : L
(ϵIIk + h− g + 1)dIIj −ϵIIk

(2ϵIIk + h− g + 1)(ϵIIk + h+ 1
2
)dIIj −ϵIIk

×
MII∏
i=1
i ̸=k

dIIi + ϵIIk + h− g + 1

dIIi + dIIj + h− g + 1
·

MI∏
i=1

dIi − ϵIIk − h+ g

dIi − dIIj − h+ g
: J

, (B.14)

(3) Pa = PD′
3,jk,N

:

k[D,N ]
a =

1

8

hD′
3,jk,N

hD,N

−16dIj! d
II
k !

(dIj + dIIk + 1)(g − 1
2
)(g + 1

2
)dIj(

3
2
− g)dIIk
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×
MI∏
i=1
i ̸=j

1

(dIi − dIj)(d
I
i + dIIk + 1)

·
MII∏
i=1
i ̸=k

1

(dIIi − dIIk )(d
II
i + dIj + 1)

×



1 : L

42M−1(g − h)(g − h+ 1)dIj (h− g + 1)dIIk
(h− 1

2
)(g − h+ dIj − dIIk )(

3
2
− h)dIj (h+ 1

2
)dIIk

×
MI∏
i=1
i ̸=j

1

(dIi − dIIk + g − h)(dIi + dIj + g − h+ 1)

×
MII∏
i=1
i ̸=k

1

(dIIi − dIj + h− g)(dIIi + dIIk + h− g + 1)
: J

. (B.15)

By numerical calculation, we can verify this conjecture for small M , dj, N and n.

B.2 Krein-Adler type multi-indexed orthogonal polynomials

We consider the discrete orthogonality relations for the Krein-Adler type multi-indexed or-

thogonal polynomials of Hermite, Laguerre and Jacobi types. The outline is the same as in

§ 4, and the results are described briefly.

By theM -step Darboux transformations, the deformed Hamiltonian HD, which is hermite

for (4.14) with s→M , and its eigenfunctions ϕD n(x) are expressed as

HD = − d2

dx2
+ U(x)− 2∂2x log

∣∣W[ϕd1 , . . . , ϕdM ](x)
∣∣, (B.16)

ϕKA
D n(x) =

W[ϕd1 , . . . , ϕdM , ϕn](x)

W[ϕd1 , . . . , ϕdM ](x)
(n ∈ Z≥0\D),

= cMF ψ
KA
D (x)P̌KA

D,n(x), ψKA
D (x;λ)

def
=
ϕ0(x;λ

KA
D )

Ξ̌KA
D (x;λ)

, (B.17)

where λD is given by (4.23), and Ξ̌KA
D (x) and P̌KA

D,n(x) are given by

Ξ̌KA
D (x)

def
= ΞKA

D
(
η(x)

)
, ΞKA

D (η)
def
= W[Pd1 , . . . , PdM ](η), (B.18)

P̌KA
D,n(x)

def
= PKA

D,n

(
η(x)

)
, PKA

D,n(η)
def
= W[Pd1 , . . . , PdM , Pn](η). (B.19)

Note that PKA
D,n(η) = ΞKA

d1,...dMn(η). By the property of the Wronskian, we have

W[ϕd1 , . . . , ϕdM ](x) = gKA
D (x)Ξ̌KA

D (x), gKA
D (x) =

(
η′(x)

) 1
2
M(M−1)

ϕ0(x)
M , (B.20)

W[ϕd1 , . . . , ϕdM , ϕn](x) = gP KA
D (x)P̌KA

D,n(x), gP KA
D (x) =

(
η′(x)

) 1
2
M(M+1)

ϕ0(x)
M+1. (B.21)
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The degrees of ΞKA
D (η) and PKA

D,n(η) are same as § 4. The coefficient of the highest degree

term of ΞKA
D (η), cΞKA

D , is

cΞKA
D =

M∏
j=1

cdj ·
∏

1≤j<k≤M

(dk − dj), (B.22)

and that of PKA
D n (η) is c

P KA
D,n = cΞKA

d1...dMn. The orthogonality of the multi-indexed polynomials

are (4.25)–(4.26) with the replacement κ−
1
2
M(M−1) → c−2M

F . A direct calculation shows

U(x)− U(x;λKA
D )− 2∂2x log

∣∣∣∣W[ϕd1 , . . . , ϕdM ](x)

Ξ̌KA
D (x)

∣∣∣∣ = EM . (B.23)

The similarity transformed deformed Hamiltonian H̃KA
D = ψKA

D (x)−1 ◦ HKA
D ◦ ψKA

D (x) is ex-

pressed as

H̃KA
D = − d2

dx2
− 2

ψKA ′
D (x)

ψKA
D (x)

d

dx
+ 2

ϕ′
0(x;λ

KA
D )

ϕ0(x;λ
KA
D )

Ξ̌KA ′
D (x)

Ξ̌KA
D (x)

− Ξ̌KA ′′
D (x)

Ξ̌KA
D (x)

+ EM

= −4

(
c2(η)

d2

dη2
+
(
c1(η,λ

KA
D )− 2c2(η)

ΞKA ′
D (η)

ΞKA
D (η)

) d

dη

+ c2(η)
ΞKA ′′
D (η)

ΞKA
D (η)

− c1(η,λ
KA
D − δ)

ΞKA ′
D (η)

ΞKA
D (η)

)
+ EM . (B.24)

From the identity (4.30) with Âd1...ds = d
dx

− ∂x log |ϕd1...ds(x)| and Â†
d1...ds

= − d
dx

−
∂x log |ϕd1...ds(x)|, we obtain Proposition 4.1 with the following replacements,

(4.31) → 2(En − Ed′)
ΞKA
D′ (η)

ΞKA
D′′ (η)

PKA
D′′,n(η) = (H̃KA

D′′ + En − Ed′ − Ed′′)PKA
D′,n(η), (B.25)

which can be shown in a similar way to (B.5). We have Proposition 4.2.

Like as §B.1, we obtain Proposition 4.3 with the replacement,

(4.39) → M̃jk =
1

(ηj − ηk)2

−H̃KA
D

(
η(x)P̌KA

D,N (x)
)∣∣

x=xj

PKA ′
D,N (ηj)

(j ̸= k), (B.26)

and Proposition 4.4 with the replacement

(4.42) → F̌KA(x) = 2η′(x)2, FKA(η) = 8c2(η). (B.27)

Then we have Proposition 4.5, and the matrix elements M̃jk and Mjk (j ̸= k) are given by

(B.9) with the replacement Fj → FKA
j . The diagonal elements M̃jj = Mjj are given by

M̃jj = 4c2(ηj)

( Ñ∑
m=1
m ̸=j

1

(ηj − ηm)2
+
( Ñ∑

m=1
m ̸=j

1

ηj − ηm

)2

− ΞKA ′′
D (ηj)

ΞKA
D (ηj)

)
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+ 4c1(ηj,λ
KA
D − δ)

ΞKA ′
D (ηj)

ΞKA
D (ηj)

+ EM . (B.28)

For the Krein-Adler type multi-indexed Jacobi polynomials, the assumptions of Theo-

rem2.1 are satisfied (for generic values of λ). Therefore Theorem2.1 gives the following.

Theorem B.2 For the Krein-Adler type multi-indexed orthogonal polynomials of H, L and J

types PKA
D,n(η), PKA

a (η) (4.35) and FKA(η) (B.27), we have the discrete orthogonality relations:

Ñ∑
j=1

1

FKA(ηj)

PKA
a (ηj)

PKA ′
N (ηj)

PKA
b (ηj)

PKA ′
N (ηj)

= k[D,N ] KA
a δab (a, b = 1, 2, . . . , Ñ ), (B.29)

where k
[D,N ]
a ’s are normalization constants.

Remark B.3 We have the same remark as RemarkB.1. For L and H cases, there may be a

degeneracy in EP KA
a even for generic values of λ. Since the Krein-Adler type multi-indexed

L and H polynomials PKA
D,n(η) can be obtained from those of J by taking certain limit of

parameters (with appropriate rescalings), the discrete orthogonality relations (B.29) for J

are inherited by L and H. This point is not mentioned in [27].

Remark B.4 Like as Remark 4.5, the discrete orthogonality relations (B.29) hold for any

complex values of parameters λ (with the condition cΞKA
D , cP KA

D,N ̸= 0), and for the index set

D without the Krein-Adler condition (4.14). For H case without (4.14), however, PN (η) may

have zero η = 0 with multiplicity. For such case, PKA ′
N (0) vanishes and (B.29) does not hold.

We conjecture the normalization constants k
[D,N ] KA
a as follows.

Conjecture B.2 The normalization constants k
[D,N ] KA
a are given by

(0) PKA
a = PKA

D,n : k[D,N ] KA
a =

1

8

hD,n

hD,N
×


2 : H
1 : L

1
2N+g+h

: J
, (B.30)

(1) PKA
a = PKA

D′
jk,N

:

k[D,N ] KA
a =

1

8

hD′
jk,N

hD,N

M∏
i=1
i ̸=j

di − ϵk
di − dj
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×



2ϵk−dj+1

(ϵk + 1)dj−ϵk

: H

(ϵk + 1)dj−ϵk

(ϵk + g + 1
2
)dj−ϵk

: L

(ϵk + 1)dj−ϵk

(ϵk + g + 1
2
)dj−ϵk

(ϵk + g + h)dj−ϵk

(2ϵk + g + h)(ϵk + h+ 1
2
)dj−ϵk

×
M∏
i=1
i ̸=j

di + ϵk + g + h

di + dj + g + h
: J

. (B.31)

By numerical calculation, we can verify this conjecture for small M , dj, N and n.

B.3 Proofs of (B.5) and (B.6)

In this subsection we prove (B.5) and (B.6). We use the abbreviated notations (A.1). For

example, we have

HD′′ = − d2

dx2
+ U(x)− 2∂2x log |w2(x)|, ϕD′′ n(x) =

u2(x)

w2(x)
= cM+1

F ψD′′(x)P̌D′′,n(x).

For simplicity in notation, we omit the argument “(x)” and write ∂2x log |w2(x)| as ∂2x logw2.

From HDϕ̃D d′ = Ẽd′ϕ̃D d′ and ϕ̃D d′ = w1/w (see Appendix A in [31]), we obtain

−w
′′
1

w1

+ 2
w′

w

w′
1

w1

+ U − w′′

w
= Ẽd′ . (B.32)

Similarly we have

−w
′′
2

w2

+ 2
w′

w

w′
2

w2

+ U − w′′

w
= Ẽd′′ , (B.33)

and HD′ϕ̃D′ d′′ = Ẽd′′ϕ̃D′ d′′ with ϕ̃D′ d′′ = w3/w1 gives

−w
′′
3

w3

+ 2
w′

1

w1

w′
3

w3

+ U − w′′
1

w1

= Ẽd′′ . (B.34)

From the form of HD, we have

−2
d2

dx2
= HD′ +HD′′ − 2U + 2∂2x logw1w2 = HD +HD′′′ − 2U + 2∂2x logww3. (B.35)

B.3.1 proof of (B.5)

Since d′ and d′′ are the same type, we have λD′ = λD′′ and gD′ = gD′′ , namely

ψD′

ψD′′
=

Ξ̌D′′

Ξ̌D′
=
w2

w1

. (B.36)
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Then we have

ψD′′

ψD′
◦ H̃D′′ ◦ ψD′

ψD′′
=
w1

w2

◦ H̃D′′ ◦ w2

w1

= H̃D′′ − 2∂x log
w2

w1

· d
dx

− w1

w2

(w2

w1

)′′
− 2∂x logψD′′ · ∂x log

w2

w1

. (B.37)

By writing down the identity (3.40) and multiplying by 2(En − Ẽd′), we have

2(En − Ẽd′)ϕD′′ n

=
(
−2

d2

dx2
+ 2∂x log

w2

w1

· d
dx

+ 2∂x log
w2

w
· ∂x log

w1

w
− 2∂2x log

w1

w

)
ϕD′ n

(i)
=

(
HD′ +HD′′ + 2∂x log

w2

w1

· d
dx

− 2U + 2∂2x logww2 + 2∂x log
w2

w
· ∂x log

w1

w

)
ϕD′ n

(ii)
= cM+1

F ψD′

(
En +

ψD′′

ψD′
◦ H̃D′′ ◦ ψD′

ψD′′
+ 2∂x log

w2

w1

· 1

ψD′
◦ d

dx
◦ ψD′

− 2U + 2∂2x logww2 + 2∂x log
w2

w
· ∂x log

w1

w

)
P̌D′,n

(iii)
= cM+1

F ψD′

(
En + H̃D′′ − w1

w2

(w2

w1

)′′
+ 2∂x log

ψD′

ψD′′
· ∂x log

w2

w1

− 2U + 2∂2x logww2 + 2∂x log
w2

w
· ∂x log

w1

w

)
P̌D′,n

(iv)
= cM+1

F ψD′

(
En + H̃D′′ +

w′′
1

w1

− 2
w′

w

w′
1

w1

− U +
w′′

w
+
w′′

2

w2

− 2
w′

w

w′
2

w2

− U +
w′′

w

)
P̌D′,n

(v)
= cM+1

F ψD′
(
En + H̃D′′ − Ẽd′ − Ẽd′′

)
P̌D′,n, (B.38)

where we have used (i): (B.35), (ii): HD′ϕD′ n = EnϕD′ n and (B.2), (iii): (B.37), (iv): (B.36),

(v): (B.32) and (B.33). By dividing (B.38) by cM+1
F ψD′ and using (B.2) and (B.36), we

obtain (B.5).

B.3.2 proof of (B.6)

Since d′ and d′′ are different types, we have λD = λD′′′ and c2M+1
F gD = gD′′′ , namely

ψD

ψD′′′
=

Ξ̌D′′′

Ξ̌D
= c−2M−1

F

w3

w
. (B.39)

Then we have

ψD′′′

ψD
◦ H̃D′′′ ◦ ψD

ψD′′′
=

w

w3

◦ H̃D′′′ ◦ w3

w

= H̃D′′′ − 2∂x log
w3

w
· d
dx

− w

w3

(w3

w

)′′
− 2∂x logψD′′′ · ∂x log

w3

w
. (B.40)
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By writing down the identity (3.41) and multiplying by −2, we have

− 2ϕD′′′ n

=
(
−2

d2

dx2
+ 2∂x log

w3

w
· d
dx

− 2∂x log
w3

w1

· ∂x log
w1

w
+ 2∂2x log

w1

w

)
ϕD n

(i)
=

(
HD +HD′′′ + 2∂x log

w3

w
· d
dx

− 2U + 2∂2x logw1w3 − 2∂x log
w3

w1

· ∂x log
w1

w

)
ϕD n

(ii)
= cMF ψD

(
En +

ψD′′′

ψD
◦ H̃D′′′ ◦ ψD

ψD′′′
+ 2∂x log

w3

w
· 1

ψD
◦ d

dx
◦ ψD

− 2U + 2∂2x logw1w3 − 2∂x log
w3

w1

· ∂x log
w1

w

)
P̌D,n

(iii)
= cMF ψD

(
En + H̃D′′′ − w

w3

(w3

w

)′′
+ 2∂x log

ψD

ψD′′′
· ∂x log

w3

w

− 2U + 2∂2x logw1w3 + 2∂x log
w3

w1

· ∂x log
w

w1

)
P̌D,n

(iv)
= cMF ψD

(
En + H̃D′′′ +

w′′
1

w1

− 2
w′

w

w′
1

w1

− U +
w′′

w
+
w′′

3

w3

− 2
w′

1

w1

w′
3

w3

− U +
w′′

1

w1

)
P̌D,n

(v)
= cMF ψD

(
En + H̃D′′′ − Ẽd′ − Ẽd′′

)
P̌D,n, (B.41)

where we have used (i): (B.35), (ii): HDϕD n = EnϕD n and (B.2), (iii): (B.40), (iv): (B.39),

(v): (B.32) and (B.34). By dividing (B.41) by cMF ψD and using (B.2) and (B.39), we obtain

(B.6).
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