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Abstract

A new interpretation and applications of the “Diophantine” and factorisation prop-
erties of finite orthogonal polynomials in the Askey scheme are explored. The corre-
sponding twelve polynomials are the (q-)Racah, (dual, q-)Hahn, Krawtchouk and five
types of q-Krawtchouk. These (q-)hypergeometric polynomials, defined only for the de-
grees of 0, 1, . . . , N , constitute the main part of the eigenvectors of N + 1-dimensional
tri-diagonal real symmetric matrices, which correspond to the difference equations
governing the polynomials. The monic versions of these polynomials all exhibit the
“Diophantine” and factorisation properties at higher degrees than N . This simply
means that these higher degree polynomials are zero-norm “eigenvectors” of the N+1-
dimensional tri-diagonal real symmetric matrices. A new type of multi-indexed orthog-
onal polynomials belonging to these twelve polynomials could be introduced by using
the higher degree polynomials as the seed solutions of the multiple Darboux trans-
formations for the corresponding matrix eigenvalue problems. The shape-invariance
properties of the simplest type of the multi-indexed polynomials are demonstrated.
The explicit transformation formulas are presented.

1 Introduction

It is noted for some time that some of the best known orthogonal polynomials, the Laguerre,

Jacobi, Wilson and Askey-Wilson, etc exhibit strange phenomena, called “Diophantine” and

factorisation properties [1, 2], when some parameters are tuned at values which invalidate the

orthogonality. In this paper we show that these properties are universally shared, without

tuning parameters, by a not so well known group of orthogonal polynomials, the monic

versions of finite polynomials in the Askey scheme [3, 4, 5, 6].

A simple interpretation or explanation is that the monic versions of these polynomials

satisfy the same (N +1)× (N +1) matrix eigenvalue problem (2.49) which govern the poly-

nomials (2.4)–(2.12). Therefore at higher n = N+1+m (m ∈ Z≥0) degrees, the polynomials

are zero-norm solutions, which means the “Diophantine” and factorisation properties.



This paper is organised as follows. Section two start with some typical examples of the

“Diophantine” and factorisation properties together with the background description. The

finite orthogonal polynomials in the Askey scheme, the main subject, are briefly introduced

as the solutions of certain tri-diagonal real symmetric (N + 1)× (N + 1) matrix eigenvalue

problems [7] in § 2.1. The explicit data of the twelve polynomials are displayed according

to the five families of the sinusoidal coordinates in § 2.2. In § 2.3 we present the main The-

orem2.1 stating that the “Diophantine” and factorisation is the consequence of the zero

norm nature of the higher degree N+1+m (m ∈ Z≥0) monic polynomials. Starting with the

most generic q-Racah polynomial, the explicit expressions of the “Diophantine” properties

and factorisation are displayed in § 2.3.1–§ 2.3.11. The general setting of the multi-indexed

orthogonal polynomials generated by multiple Darboux transformations by using the zero-

norm solutions is outlined in section three. The very special cases of the new multi-indexed

polynomials constructed by using M contiguous lowest degree zero-norm solutions are de-

tailed in section four. In these cases, the multi-indexed polynomials take the same form as

the original with x and some parameters shifted, displaying the so-called shape invariance.

The general transformation rules for the five families are listed in Theorem4.1 together

with the explicit forms of the transformation rules of the polynomials in Theorem4.2. Cor-

responding to the new type of shape invariance, the forward x-shift operators are introduced.

It is shown in Theorem4.3 that the multiple applications of the forward x-shift operators

reproduce the results of Theorem4.2. The explicit forms of the corresponding backward

x-shift operators are listed. The final section is for a summary and some comments.

2 “Diophantine” Properties and Factorisation

Many interesting examples of the “Diophantine” properties and factorisation of various or-

thogonal polynomials belonging to the Askey scheme are reported and explained by Calogero

and collaborators [1] (to be cited as I) and Ismail and a coauthor [2] (to be cited as II). Here

we list some typical examples, which are stated for the monic versions of the named poly-

nomials: (typos in (II.3.10) and (II.4.4) are corrected)

Racah with α = −n,

pn(x;−n, β, γ, δ) =
n−1∏
k=0

(
x− k(k + γ + δ + 1)

)
, (I.3.29a)
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Jacobi with α = −n,

pn(x;−n, β) = (x− 1)n, (I.3.153)

Laguerre with α = −n,

pn(x;−n) = xn, (I.3.162)

Wilson with t3 = 1−m− t4, 0 ≤ m ≤ n,

pn(x; t1, t2, 1−m− t4, t4) =
m−1∏
k=0

(
x+ (t4 + k)2

)
· pn−m(x; t1, t2, 1− t4, t4 +m), (II.3.10)

Askey-Wilson with t3 = q1−m/t4, x
def
= cos θ, 0 ≤ m ≤ n,

pn(x; t1, t2, q
1−m/t4, t4) = (t4e

iθ ; q)m(t4e
−iθ ; q)m pn−m(x; t1, t2, q/t4, q

mt4)

× (−1)mt−m4 q−
1
2
m(m−1)2−m. (II.4.4)

It should be stressed that in all these examples, some parameters are tuned to a degree num-

ber n, in a rather ad-hoc manner. Therefore the “Diophantine” and factorisation properties

do not belong to the polynomials in general but only to the particular degree polynomial

to which the parameters are tuned. Moreover, with those parameter assignments, the poly-

nomials are no longer orthogonal with each other. This situation makes it difficult to find

satisfactory interpretations of the “Diophantine” and factorisation properties and tends to

give a wrong impression that they are of haphazard or unsystematic origin and having rather

peripheral importance.

In this paper we present a different perspective and show that for a certain group of

orthogonal polynomials in the Askey scheme, the “Diophantine” and factorisation properties

are essential and inherent within the proper parameter ranges in which the orthogonality

holds. Let us first introduce the general features of the polynomials belonging to this group.

2.1 Finite orthogonal polynomials of a discrete variable

The polynomials {P̌n(x;N,λ)} in the group are also called finite orthogonal polynomials of a

discrete variable [8]. They are defined on a finite integer lattice X = {0, 1, . . . , N} satisfying∑
x∈X

w(x;N,λ)P̌m(x;N,λ)P̌n(x;N,λ) =
δmn

dn(N,λ)2
(m,n ∈ X ), (2.1)

with a positive weight function w(x;N,λ) > 0. Here λ stands for the set of parameters

other than the lattice size N . The group consists of five families according to the type of
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the sinusoidal coordinate η(x;λ),

P̌n(x;N,λ) = Pn

(
η(x;λ);N,λ

)
, (2.2)

in which Pn(η(x;λ);N,λ) is a degree n polynomial in η(x;λ). There are five types of the

sinusoidal coordinates for the finite polynomials in the Askey scheme [7],

(i) : η(x) = x, (ii) : η(x) = x(x+ d), (iii) : η(x) = 1− qx,

(iv) : η(x) = q−x − 1, (v) : η(x) = (q−x − 1)(1− dqx),

η(0) = 0, η(x) > 0 (x ∈ X\{0}).

In this paper we adopt the normalisation convention

P̌n(0;N,λ) = Pn(0;N,λ) = 1, (2.3)

except for the monic polynomials to be introduced shortly.

As the other orthogonal polynomials in the Askey scheme [3, 4, 5, 6], the polynomials in

this group satisfy second order difference equation

B(x;N,λ)
(
P̌n(x;N,λ)− P̌n(x+ 1;N,λ)

)
+D(x;N,λ)

(
P̌n(x;N,λ)− P̌n(x− 1;N,λ)

)
= E(n;λ)P̌n(x;N,λ) (x, n ∈ X ), (2.4)

on top of the three term recurrence relations. Here the coefficients B(x;N,λ) and D(x;N,λ)

are positive in X [7] and vanish only at the boundary of X ,

B(x;N,λ) > 0 (x ∈ X\{N}), D(x;N,λ) > 0 (x ∈ X\{0}),

B(N ;N,λ) = 0, D(0;N,λ) = 0.

As shown explicitly in [7], the difference equation (2.4) can be rewritten as a matrix eigen-

value equation in terms of an (N + 1)× (N + 1) tri-diagonal matrix
(
H̃(N,λ)x y

)
x,y∈X ,

H̃(N,λ)P̌n(x;N,λ) = E(n;λ)P̌n(x;N,λ),(
⇐⇒

∑
y∈X

H̃(N,λ)x yP̌n(y;N,λ) = E(n;λ)P̌n(x;N,λ)
)
, (2.5)

H̃(N,λ)xx+1 = −B(x;N,λ), H̃(N,λ)xx−1 = −D(x;N,λ),

H̃(N,λ)xx = B(x;N,λ) +D(x;N,λ), H̃(N,λ)x y = 0 (|x− y| ≥ 2), (2.6)
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with the eigenvalue E(n;λ). By a similarity transformation in terms of a positive diagonal

matrix Φ(x;N,λ), the matrix H̃(N,λ) is related to a real symmetric tri-diagonal matrix

H(N,λ),

H def
= ΦH̃Φ−1 ⇔ H̃ = Φ−1HΦ ⇔ Hx y = ϕ0(x)H̃x yϕ0(y)

−1, (2.7)

Φxx = ϕ0(x), Φx y = 0 (x ̸= y). (2.8)

In these formulas and hereafter the parameter dependence of H̃, H, Φ, P̌n, B, D, η, E etc is

omitted occasionally for simplicity of presentation. Here a positive function ϕ0(x) on X is

introduced by the ratios of B(x) and D(x+ 1),

ϕ0(x)
def
=

√√√√x−1∏
y=0

B(y)

D(y + 1)
⇔ ϕ0(x+ 1)

ϕ0(x)
=

√
B(x)√

D(x+ 1)
(x ∈ X\{N}), (2.9)

where
∏n−1

j=n ∗
def
= 1 (⇒ ϕ0(0) = 1). The tri-diagonal real symmetric matrix H (2.7), expressed

explicitly as

Hxx+1 = −
√
B(x)D(x+ 1), Hxx−1 = −

√
B(x− 1)D(x),

Hxx = B(x) +D(x), Hx y = 0 (|x− y| ≥ 2), (2.10)

has the following eigenvectors

ϕn(x)
def
= ϕ0(x)P̌n(x) (n ∈ X ),

(
ϕn(x)

)
x∈X ∈ RN+1, (2.11)

Hϕn(x) =
∑
y∈X

Hx yϕn(y) =
∑
y∈X

ϕ0(x)H̃x yP̌n(y) = E(n)ϕn(x) (n ∈ X ). (2.12)

The norms are all finite as w(x)
def
=

∑
x∈X ϕ0(x)

2 < ∞ for all B(x) and D(x) in the group.

We arrive at the complete set of eigenvectors {ϕn(x)} (n ∈ X ), since the orthogonality of

the eigenvectors (2.1) is guaranteed by the simpleness of the eigenvalues of the tri-diagonal

matrices.

2.2 Polynomials data

Here we present the basic data of the polynomials in the group. For more details of the

polynomials, consult [3]–[6]. The parametrisations of some polynomials are different from

the conventional ones, see [7]. The polynomials are divided into five families according to the

forms of the sinusoidal coordinate η(x). It should be stressed that the explicit forms of the
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sinusoidal coordinates η(x) are determined by the difference equations governing the polyno-

mials [7]. The essential roles played by the sinusoidal coordinates η(x) for the construction

of exactly solvable matrix eigenvalue problems are explored in detail in [7]. The “Diophan-

tine” properties are identical within the same family and the factorisation is universal for

all the polynomials in this group. As mirror symmetry of the Krawtchouk polynomials is

mentioned in the final paragraph of § 5, the relationship for the families η(x) = x, x(x + d)

are explicitly displayed. The finite polynomials of the Askey scheme are, when seen from

behind the mirror (x → N − x), still exactly solvable. Therefore they are expressed by the

same or different polynomials with different parameters. As expected, mirror symmetries for

η(x) = x are simple and well known. Those for the q-polynomials are complicated and they

are irrelevant for the main topic of this paper.

(i) Family with η(x) = x

Two polynomials belong to this family, the Krawtchouk and Hahn polynomials. They are

polynomials in x.

2.2.1 Krawtchouk (K)

The polynomial depends on one positive parameter λ = p (0 < p < 1).

B(x;N, p) = p(N − x), D(x;N, p) = (1− p)x, E(n) = n, η(x) = x, (2.13)

P̌n(x;N, p) = Pn(x;N, p) = 2F1

(−n, −x
−N

∣∣∣ p−1), Pn(x;N, p) = Px(n;N, p), (2.14)

P̌n(N − x;N, p) = (−1)n(p−1 − 1)nP̌n(x;N, 1− p) (Mirror symmetry). (2.15)

2.2.2 Hahn (H)

The Hahn polynomial depends on two positive parameters λ = (a, b) (a, b > 0).

B(x;N,λ) = (x+ a)(N − x), D(x;N,λ) = x(b+N − x), (2.16)

E(n;λ) = n(n+ a+ b− 1), η(x) = x,

P̌n(x;N,λ) = Pn(x;N,λ) = 3F2

(−n, n+ a+ b− 1, −x
a, −N

∣∣∣ 1), (2.17)

P̌n(N − x;N, a, b) = (−1)n
(b)n
(a)n

P̌n(x;N, b, a) (Mirror symmetry). (2.18)
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(ii) Family with η(x) = x(x + d)

Two polynomials belong to this family, the Racah and dual Hahn polynomials. They are

polynomials in x(x+ d).

2.2.3 Racah (R)

The Racah polynomial depends on three parameters λ = (b, c, d) (0 < d < b − N , 0 < c <

1 + d) on top of the lattice size N .

B(x;N,λ) =
(x+ b)(x+ c)(x+ d)(N − x)

(2x+ d)(2x+ 1 + d)
, (2.19)

D(x;N,λ) =
(b− d− x)(x+ d− c)x(x+ d+N)

(2x− 1 + d)(2x+ d)
, (2.20)

E(n;λ) = n(n+ d̃), η(x;λ) = x(x+ d), d̃
def
= b+ c− d−N − 1,

P̌n(x;N,λ) = Pn

(
η(x;λ);N,λ

)
= 4F3

(−n, n+ d̃, −x, x+ d

b, c, −N

∣∣∣ 1), (2.21)

P̌n(N − x;N, b, c, d) =
(b′, c′)n
(b, c)n

P̌n(x;N, b
′, c′, d′) (Mirror symmetry),

b′
def
= −N − d+ b, c′

def
= −N − d+ c, d′

def
= −2N − d. (2.22)

2.2.4 dual Hahn (dH)

The dual Hahn polynomial depends on two positive parameters λ = (a, b) (a, b > 0), and

the parameter d is d = a+ b− 1.

B(x;N,λ) =
(x+ a)(x+ a+ b− 1)(N − x)

(2x− 1 + a+ b)(2x+ a+ b)
, (2.23)

D(x;N,λ) =
x(x+ b− 1)(x+ a+ b+N − 1)

(2x− 2 + a+ b)(2x− 1 + a+ b)
, (2.24)

E(n) = n, η(x;λ) = x(x+ a+ b− 1),

P̌n(x;N,λ) = Pn

(
η(x;λ);N,λ

)
= 3F2

(−n, x+ a+ b− 1, −x
a, −N

∣∣∣ 1), (2.25)

P̌n(N − x;N, a, b) =
(a′)n
(a)n

P̌n(x;N, a
′, b′) (Mirror symmetry),

a′
def
= −N − b+ 1, b′

def
= −N − a+ 1. (2.26)

The remaining three families belong to the q-hypergeometric polynomial category. The

parameter q, 0 < q < 1, dependence is not explicitly displayed.

7



(iii) Family with η(x) = 1 − qx

2.2.5 dual quantum q-Krawtchouk (dqqK)

The only polynomial belonging to this family is the dual quantum q-Krawtchouk polynomial

[7] depending on one positive parameter λ = p > q−N .

B(x;N, p) = p−1q−x−N−1(1− qN−x), D(x;N, p) = (q−x − 1)(1− p−1q−x), (2.27)

E(n) = q−n − 1, η(x) = 1− qx,

P̌n(x;N, p) = Pn

(
η(x);N, p

)
= 2ϕ1

(q−n, q−x
q−N

∣∣∣ q ; pqx+1
)
. (2.28)

(iv) Family with η(x) = q−x − 1

On top of the q-Hahn polynomial, three sibling polynomials belong to this family, the q-

Krawtchouk, quantum q-Krawtchouk and affine q-Krawtchouk polynomials, all depending

on one positive parameter λ = p > 0, but the parameter ranges are different, as shown in

each entry.

2.2.6 q-Hahn (qH)

The q-Hahn polynomial depends on two positive parameters λ = (a, b) (0 < a, b < 1).

B(x;N,λ) = (1− aqx)(qx−N − 1), D(x;N,λ) = aq−1(1− qx)(qx−N − b), (2.29)

E(n;λ) = (q−n − 1)(1− abqn−1), η(x) = q−x − 1,

P̌n(x;N,λ) = Pn

(
η(x);N,λ

)
= 3ϕ2

(q−n, abqn−1, q−x
a, q−N

∣∣∣ q ; q). (2.30)

2.2.7 q-Krawtchouk (qK)

B(x;N, p) = qx−N − 1, D(x;N, p) = p(1− qx), (2.31)

E(n; p) = (q−n − 1)(1 + pqn), η(x) = q−x − 1, p > 0,

P̌n(x;N, p) = Pn

(
η(x);N, p

)
= 3ϕ2

(q−n, q−x, −pqn
q−N , 0

∣∣∣ q ; q). (2.32)

2.2.8 quantum q-Krawtchouk (qqK)

B(x;N, p) = p−1qx(qx−N − 1), D(x;N, p) = (1− qx)(1− p−1qx−N−1), (2.33)
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E(n) = 1− qn, η(x) = q−x − 1, p > q−N ,

P̌n(x;N, p) = Pn

(
η(x);N, p

)
= 2ϕ1

(q−n, q−x
q−N

∣∣∣ q ; pqn+1
)
. (2.34)

2.2.9 affine q-Krawtchouk (aqK)

B(x;N, p) = (qx−N − 1)(1− pqx+1), D(x;N, p) = pqx−N(1− qx), (2.35)

E(n) = q−n − 1, η(x) = q−x − 1, 0 < p < q−1,

P̌n(x;N, p) = Pn

(
η(x);N, p

)
= 3ϕ2

(q−n, q−x, 0
pq, q−N

∣∣∣ q ; q). (2.36)

(v) Family with η(x) = (q−x − 1)(1 − dqx)

Three polynomials belong to this family, the q-Racah, dual q-Hahn and dual q-Krawtchouk

polynomials.

2.2.10 q-Racah (qR)

The q-Racah polynomial depends on three parameters λ = (b, c, d) (0 < bq−N < d < 1,

qd < c < 1, d̃
def
= bcd−1q−N−1).

B(x;N,λ) =
(1− bqx)(1− cqx)(1− dqx)(qx−N − 1)

(1− dq2x)(1− dq2x+1)
, (2.37)

D(x;N,λ) = d̃
(b−1dqx − 1)(1− c−1dqx)(1− qx)(1− dqx+N)

(1− dq2x−1)(1− dq2x)
, (2.38)

E(n;λ) = (q−n − 1)(1− d̃qn), η(x;λ) = (q−x − 1)(1− dqx),

P̌n(x;N,λ) = Pn

(
η(x;λ);N,λ

)
= 4ϕ3

(q−n, d̃qn, q−x, dqx
b, c, q−N

∣∣∣ q ; q). (2.39)

2.2.11 dual q-Hahn (dqH)

The dual q-Hahn polynomial depends on two parameters λ = (a, b) (0 < a, b < 1), and the

parameter d is d = abq−1.

B(x;N,λ) =
(1− aqx)(1− abqx−1)(qx−N − 1)

(1− abq2x−1)(1− abq2x)
, (2.40)

D(x;N,λ) = aqx−N−1
(1− qx)(1− bqx−1)(1− abqx+N−1)

(1− abq2x−2)(1− abq2x−1)
, (2.41)

E(n) = q−n − 1, η(x;λ) = (q−x − 1)(1− abqx−1),

P̌n(x;N,λ) = Pn

(
η(x;λ);N,λ

)
= 3ϕ2

(q−n, abqx−1, q−x
a, q−N

∣∣∣ q ; q). (2.42)

9



2.2.12 dual q-Krawtchouk (dqK)

Similar to the q-Krawtchouk, the dual q-Krawtchouk polynomial depends on one parameter

λ = p > 0, and the parameter d is d = −p.

B(x;N, p) =
(qx−N − 1)(1 + pqx)

(1 + pq2x)(1 + pq2x+1)
, D(x;N, p) = pq2x−N−1

(1− qx)(1 + pqx+N)

(1 + pq2x−1)(1 + pq2x)
, (2.43)

E(n) = q−n − 1, η(x; p) = (q−x − 1)(1 + pqx),

P̌n(x;N, p) = Pn

(
η(x; p);N, p

)
= 3ϕ2

(q−n, q−x, −pqx
q−N , 0

∣∣∣ q ; q). (2.44)

2.3 Zero norm = “Diophantine” and factorisation

The polynomials listed above § 2.2.1–§ 2.2.12 are finite polynomials, since their degree n is

limited in X ∋ n due to the presence of the lower indices −N or q−N in the (q-)hypergeometric

expressions, r+1Fr, r+1ϕr, of these polynomials, (2.14), (2.17), (2.21), (2.25), (2.28), (2.30),

(2.32), (2.34), (2.36), (2.39), (2.42) and (2.44). For non-negative integer m ≥ 0, the poly-

nomial P̌N+1+m(x;N,λ) is ill-defined due the presence of the factors (−N)N+1+k = 0 and

(q−N ; q)N+1+k = 0, 0 ≤ k ≤ m in the denominator of the (q-)hypergeometric series expan-

sion.

The situation is drastically changed by the introduction of the monic version of each

polynomial in § 2.2,

P̌monic
n (x;N,λ) =

1

cn(N,λ)
P̌n(x;N,λ), (2.45)

where cn(N,λ) is the coefficient of the highest degree term η(x;λ)n. It is well defined for all

degrees n = N +1+m (m ∈ Z≥0) and it satisfies the same difference equation as (2.4), (2.5)

B(x;N,λ)
(
P̌monic
N+1+m(x;N,λ)− P̌monic

N+1+m(x+ 1;N,λ)
)

+D(x;N,λ)
(
P̌monic
N+1+m(x;N,λ)− P̌monic

N+1+m(x− 1;N,λ)
)

= E(N + 1 +m;λ)P̌monic
N+1+m(x;N,λ) (x ∈ X ), (2.46)

=⇒ H̃(N,λ)P̌monic
N+1+m(x;N,λ) = E(N + 1 +m;λ)P̌monic

N+1+m(x;N,λ). (2.47)

This also means that the corresponding monic vector

ϕmonic
N+1+m(x)

def
= ϕ0(x)P̌

monic
N+1+m(x) (m ∈ Z≥0), (2.48)

satisfies the eigenvalue equation of the tri-diagonal real symmetric matrix H,

Hϕmonic
N+1+m(x) = E(N + 1 +m;λ)ϕmonic

N+1+m(x) (m ∈ Z≥0). (2.49)
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If P̌monic
N+1+m(x) takes a non-vanishing value at some point in X , ϕmonic

N+1+m(x) becomes an eigen-

vector of H, which contradicts the complete set of eigenvectors {ϕn(x)} (n ∈ X ), (2.12).

Thus we arrive at

Theorem 2.1 For all the finite polynomials listed in § 2.2, the “Diophantine” property and

factorisation hold,

P̌monic
N+1+m(x;N,λ) = Λ(x;N,λ)Q̌m(x;N,λ) (m ∈ Z≥0), (2.50)

Λ(x;N,λ)
def
=

N∏
k=0

(
η(x;λ)− η(k;λ)

)
, (2.51)

in which Q̌m(x;N,λ) is a monic degree m polynomial in η(x;λ).

Of course, “Diophantine” property and factorisation can be demonstrated for each poly-

nomial by direct calculation of the (q-)hypergeometric series expansion. Below we show the

explicit derivation of the “Diophantine” and factorisation property for the q-Racah polyno-

mial, the most generic member of the group.

Since the coefficient of the highest degree of P̌n(x ;N,λ) (2.39) is

cn(N,λ) =
(d̃qn ; q)n

(b, c, q−N ; q)n
, (2.52)

the monic q-Racah polynomial is

P̌monic
n (x;N,λ) =

1

cn(N,λ)
P̌n(x;N,λ) =

n∑
k=0

(bqk, cqk, qk−N ; q)n−k

(d̃qn+k ; q)n−k

(q−n, q−x, dqx ; q)k
(q ; q)k

qk.

(2.53)

At n = N+1+m (m ∈ Z≥0), (qk−N ; q)n−k vanishes for k = 0, 1, . . . , N , and the k summation

is reduced to
∑N+1+m

k=N+1 . By changing k = N + 1 + l, we obtain

P̌monic
N+1+m(x;N,λ) =

m∑
l=0

(bqN+1+l, cqN+1+l, ql+1 ; q)m−l

(d̃q2(N+1)+m+l ; q)m−l

(q−N−1−m, q−x, dqx ; q)N+1+l

(q ; q)N+1+l

qN+1+l.

From the explicit form of η(x;λ)

η(x;λ)− η(k;λ) = −q−k(1− q−x+k)(1− dqx+k),

we obtain

Λ(x;N,λ) =
N∏
k=0

(
η(x;λ)− η(k;λ)

)
= (−1)N+1q−(

N+1
2 )(q−x, dqx ; q)N+1. (2.54)
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By using the basic properties of the q-shifted factorial,

(a ; q)n+k = (a ; q)n(aq
n ; q)k, (a ; q)n = (−a)nq(

n
2)(a−1q1−n ; q)n, (2.55)

we obtain

(q−N−1−m, q−x, dqx ; q)N+1+l

(q ; q)N+1+l

=
(q−N−1−m, q−x, dqx ; q)N+1

(q ; q)l

(q−m, q−x+N+1, dqx+N+1 ; q)l
(ql+1 ; q)N+1

and

(q−N−1−m ; q)N+1

(ql+1 ; q)N+1

=
(−q−N−1−m)N+1q(

N+1
2 )(qm+1 ; q)N+1

(ql+1 ; q)N+1

= (−q−N−1−m)N+1q(
N+1

2 ) (q
N+l+2 ; q)m−l
(ql+1 ; q)m−l

.

These lead to

P̌monic
N+1+m(x;λ) = Λ(x;N,λ) · q−(N+1)m

×
m∑
l=0

(bqN+1+l, cqN+1+l, qqN+1+l ; q)m−l

(d̃q2(N+1)+m+l ; q)m−l

(q−m, q−x+N+1, dqx+N+1 ; q)l
(q ; q)l

ql

= Λ(x;N,λ) · q−(N+1)mP̌monic
m (x−N − 1;−N − 2,λ′). (2.56)

in which the shifted parameters are

λ′ = (bqN+1, cqN+1, dq2(N+1)). (2.57)

Below we show the “Diophantine” and factorisation property for the other polynomials

in the group.

(i) Family with η(x) = x

This family possesses the true Diophantine property as all the zeros of Λ(x) are inte-

gers. Miki, Tsujimoto and Vinet showed the Diophantine and factorisation property of

the Krawtchouk polynomial by explicit calculations in the seminal paper [9].

2.3.1 Krawtchouk (K)

P̌monic
N+1+m(x;N, p) = Λ(x;N)P̌monic

m (x−N − 1;−N − 2, p), cn(N, p) =
1

(−N)n pn
, (2.58)

P̌monic
m (x−N − 1;−N − 2, p) =

m∑
k=0

(N + 2 + k)m−k
(−m,−x+N + 1)k

k!
pm−k. (2.59)
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2.3.2 Hahn (H)

P̌monic
N+1+m(x;N,λ) = Λ(x;N)P̌monic

m (x−N − 1;−N − 2,λ′), (2.60)

λ′ = (a+N + 1, b+N + 1), cn(N,λ) =
(n+ a+ b− 1)n

(a,−N)n
, (2.61)

P̌monic
m (x−N − 1;−N − 2,λ′) =

m∑
k=0

(a+N + 1 + k,N + 2 + k)m−k
(m+ a+ b+ 2N + 1 + k)m−k

(−m,−x+N + 1)k
k!

.

(2.62)

(ii) Family with η(x) = x(x + d)

2.3.3 Racah (R)

P̌monic
N+1+m(x;N,λ) = Λ(x;N,λ)P̌monic

m (x−N − 1;−N − 2,λ′), (2.63)

λ′ =
(
b+N + 1, c+N + 1, d+ 2(N + 1)

)
, cn(N,λ) =

(d̃+ n)n
(b, c,−N)n

, (2.64)

P̌monic
m (x−N − 1;−N − 2,λ′) =

m∑
k=0

(b+N + 1 + k, c+N + 1 + k,N + 2 + k)m−k

(d̃+ 2N + 2 +m+ k)m−k

× (−m,−x+N + 1, x+N + 1 + d)k
k!

. (2.65)

2.3.4 dual Hahn (dH)

P̌monic
N+1+m(x;N,λ) = Λ(x;N,λ)P̌monic

m (x−N − 1;−N − 2,λ′), (2.66)

λ′ =
(
a+N + 1, b+N + 1

)
, cn(N,λ) =

1

(a,−N)n
, (2.67)

P̌monic
m (x−N − 1;−N − 2,λ′) =

m∑
k=0

(a+N + 1 + k,N + 2 + k)m−k

× (−m,−x+N + 1, x+ a+ b+N)k
k!

. (2.68)

(iii) Family with η(x) = 1 − qx

2.3.5 dual quantum q-Krawtchouk (dqqK)

P̌monic
N+1+m(x;N, p) = Λ(x;N) q(N+1)mP̌monic

m (x−N − 1;−N − 2, p′), (2.69)
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p′ = pqN+1, cn(N, p) =
pnq−

1
2
n(n−1)

(q−N ; q)n
, (2.70)

P̌monic
m (x−N − 1;−N − 2, p′) =

m∑
k=0

(qN+2+k ; q)m−k
(q−m, q−x+N+1 ; q)k

(q ; q)k

× pk−mqkx+k+ 1
2
m(m−1)−m(N+1). (2.71)

(iv) Family with η(x) = q−x − 1

2.3.6 q-Hahn (qH)

P̌monic
N+1+m(x;N,λ) = Λ(x;N) q−(N+1)mP̌monic

m (x−N − 1;−N − 2,λ′), (2.72)

λ′ = (aqN+1, bqN+1), cn(N,λ) =
(abqn−1 ; q)n
(a, q−N ; q)n

, (2.73)

P̌monic
m (x−N − 1;−N − 2,λ′) =

m∑
k=0

(aqN+1+k, qN+2+k ; q)m−k
(abqm+2N+1+k ; q)m−k

(q−m, q−x+N+1 ; q)k
(q ; q)k

qk. (2.74)

2.3.7 q-Krawtchouk (qK)

P̌monic
N+1+m(x;N, p) = Λ(x;N) q−(N+1)mP̌monic

m (x−N − 1;−N − 2, p′), (2.75)

p′ = pq2(N+1), cn(N, p) =
(−pqn ; q)n
(q−N ; q)n

, (2.76)

P̌monic
m (x−N − 1;−N − 2, p′) =

m∑
k=0

(qN+2+k ; q)m−k
(−pq2(N+1)+m+k ; q)m−k

(q−m, q−x+N+1 ; q)k
(q ; q)k

qk. (2.77)

2.3.8 quantum q-Krawtchouk (qqK)

P̌monic
N+1+m(x;N, p) = Λ(x;N) q−(N+1)mP̌monic

m (x−N − 1;−N − 2, p′), (2.78)

p′ = pqN+1, cn(N, p) =
pnqn

2

(q−N ; q)n
, (2.79)

P̌monic
m (x−N − 1;−N − 2, p′) =

m∑
k=0

(qN+2+k ; q)m−k
(q−m, q−x+N+1 ; q)k

(q ; q)k

× pk−mq(N+m+2)k−m(m+N+1). (2.80)
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2.3.9 affine q-Krawtchouk (aqK)

P̌monic
N+1+m(x;N, p) = Λ(x;N) q−(N+1)mP̌monic

m (x−N − 1;−N − 2, p′), (2.81)

p′ = pqN+1, cn(N, p) =
1

(pq, q−N ; q)n
, (2.82)

P̌monic
m (x−N − 1;−N − 2, p′) =

m∑
k=0

(pqN+2+k, qN+2+k ; q)m−k
(q−m, q−x+N+1 ; q)k

(q ; q)k
qk. (2.83)

(v) Family with η(x) = (q−x − 1)(1 − dqx)

2.3.10 dual q-Hahn (dqH)

P̌monic
N+1+m(x;N,λ) = Λ(x;N,λ) q−(N+1)mP̌monic

m (x−N − 1;−N − 2,λ′), (2.84)

λ′ = (aqN+1, bqN+1), cn(N,λ) =
1

(a, q−N ; q)n
, (2.85)

P̌monic
m (x−N − 1;−N − 2,λ′) =

m∑
k=0

(aqN+1+k, qN+2+k ; q)m−k
(q−m, abqx+N , q−x+N+1 ; q)k

(q ; q)k
qk.

(2.86)

2.3.11 dual q-Krawtchouk (dqK)

P̌monic
N+1+m(x;N, p) = Λ(x;N, p) q−(N+1)mP̌monic

m (x−N − 1;−N − 2, p′), (2.87)

p′ = p2(N+1), cn(N, p) =
1

(q−N ; q)n
, (2.88)

P̌monic
m (x−N − 1;−N − 2, p′) =

m∑
k=0

(qN+2+k ; q)m−k
(q−m, q−x+N+1,−pqx+N+1 ; q)k

(q ; q)k
qk.

(2.89)

2.4 Factorisation of multi-indexed and Krein-Adler systems

As shown in § 2.1, the “Diophantine” property and factorisation are a consequence of a

general fact that the finite orthogonal polynomials in the Askey scheme are the eigenvectors

of certain real symmetric matrices H (2.10). Certain generalisation of the finite orthogonal

polynomials in the Askey scheme are known for some time. They are generated by multiple

Darboux transformations [10] of these polynomials by adopting certain seed solutions. When

the polynomial themselves are chosen as the seed solutions [11], the obtained polynomials

are called Krein-Adler [12, 13] polynomials. When certain virtual state vectors are used as
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the seed solutions, the new polynomials are called, for example, multi-indexed (q-)Racah

polynomials, etc [14]. By construction, i.e. by appropriate choices of the seed solutions and

the parameter ranges, these new types of orthogonal polynomials are the eigenvectors of

certain real symmetric matrices. Therefore, when P̌n(x) is changed to P̌monic
N+1+m(x) in (3.17),

the new types of orthogonal polynomials have the “Diophantine” property and factorisation.

As will be discussed in the subsequent two sections, a new type of multi-indexed poly-

nomials can be generated by using P̌monic
N+1+m(x) as seed solutions for the multiple Darboux

transformations. If the resulting orthogonality measures are positive definite, which is the

case for those introduced in § 4, such systems have also the “Diophantine” property and

factorisation.

3 New Multi-indexed Polynomials, General Setting

One possible application of the new polynomials satisfying the “Diophantine” and factori-

sation properties (2.50) is the generation of new multi-indexed orthogonal polynomials. It

is well known that certain infinite norm solutions of the Schrödinger equations with the ra-

dial oscillator and Pöschl-Teller potentials are used as seed solutions for multiple Darboux

transformations to generate multi-indexed Laguerre and Jacobi polynomials [15, 16, 17, 18].

Likewise the non-eigenvector solutions of the tri-diagonal real symmetric matrix H eigen-

value problem (2.12) are used as seed solutions to generate the multi-indexed versions of

the (q-)Racah polynomials [14] etc through the difference equation analogues of the multiple

Darboux transformations. Now we have plenty of zero norm solutions

ϕ̃m(x) = ϕmonic
N+1+m(x) = ϕ0(x)P̌

monic
N+1+m(x;N,λ) (m ∈ Z≥0) (3.1)

= ϕ0(x)Λ(x;N,λ)Q̌m(x;N,λ),
(
ϕ̃m(x)

)
x∈X ∈ RN+1, (3.2)

corresponding to (2.56), (2.58), (2.60), (2.63), (2.66), (2.69), (2.72), (2.75), (2.78), (2.81),

(2.84) and (2.87), which could be used as seed solutions to generate the multi-indexed versions

of the twelve polynomials listed in § 2.2.1–§ 2.2.12.

Let us recapitulate the basic formulas of the multiple Darboux transformation of the

original eigenvectors {ϕn(x)} (2.11) by using the zero-norm vectors {ϕ̃m(x)} (3.1) as seed

solutions. These formulas apply for each of the finite polynomials listed in § 2.2. We employ

the formulas reported in § 2.3 of [19].

16



We choose M distinct zero-norm seed solutions

{ϕ̃m1(x), ϕ̃m2(x), . . . , ϕ̃mM
(x)}, 0 ≤ m1 < m2 < · · · < mM , (3.3)

which correspond to the index set

D = {m1, . . . ,mM}. (3.4)

The deformed set of eigenvectors {ϕ̄D,n} (n ∈ X ) satisfy the difference equation

HDϕ̄D,n(x) = E(n)ϕ̄D,n(x), (3.5)

HD
def
= A†DAD, AD

def
=

√
B̄(x)− e∂

√
D̄(x), A†D

def
=

√
B̄(x)−

√
D̄(x)e−∂ , (3.6)

(ϕ̄D,n, ϕ̄D,ℓ) =
M∏
j=1

(
E(n)− E(N + 1 +mj)

)
· δn ℓ

d2n
, (3.7)

in which (·, ·) is the inner product of two eigenvectors. In this particular case, (ψ, φ) =∑N+M
x=0 ψ(x)φ(x). In these formulas e∂ (∂

def
= d

dx
) is a finite shift operator acting on smooth

functions,

e∂f(x) = f(x+ 1), (e∂)j = ej∂ , ej∂f(x) = f(x+ j) (j ∈ Z). (3.8)

As an operator it passes a smooth function g(x) as

ej∂g(x) = g(x+ j)ej∂ .

Here B̄(x), D̄(x) and ϕ̄D,n(x) are expressed in terms of the Casoratians involving the seed

solutions {ϕ̃m}, eigenvector ϕn and the groundstate eigenvector ϕ0,

WC[f1, . . . , fn](x)
def
= det

(
fk(x+ j − 1)

)
1≤j,k≤n

, (3.9)

B̄(x) =
√
B(x+M)D(x+M + 1)

WC[ϕ̃m1 , . . . , ϕ̃mM
](x)

WC[ϕ̃m1 , . . . , ϕ̃mM
](x+ 1)

× WC[ϕ̃m1 , . . . , ϕ̃mM
, ϕ0](x+ 1)

WC[ϕ̃m1 , . . . , ϕ̃mM
, ϕ0](x)

, (3.10)

D̄(x) =
√
B(x− 1)D(x)

WC[ϕ̃m1 , . . . , ϕ̃mM
](x+ 1)

WC[ϕ̃m1 , . . . , ϕ̃mM
](x)

× WC[ϕ̃m1 , . . . , ϕ̃mM
, ϕ0](x− 1)

WC[ϕ̃m1 , . . . , ϕ̃mM
, ϕ0](x)

, (3.11)
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F (x)
def
=

√∏M
k=1B(x+ k − 1)D(x+ k)

WC[ϕ̃m1 , . . . , ϕ̃mM
](x)WC[ϕ̃m1 , . . . , ϕ̃mM

](x+ 1)
,

ϕ̄D,n(x) = (−1)M
√
F (x)WC[ϕ̃m1 , . . . , ϕ̃mM

, ϕn](x). (3.12)

By using the Casoratian identity

WC[gf1, gf2, . . . , gfn](x) =
n−1∏
k=0

g(x+ k) ·WC[f1, f2, . . . , fn](x), (3.13)

some formulas are simplified,

WC[ϕ̃m1 , . . . , ϕ̃mM
](x)

WC[ϕ̃m1 , . . . , ϕ̃mM
](x+ 1)

=
ϕ0(x)Λ(x)

ϕ0(x+M)Λ(x+M)

WC[Q̌m1 , . . . , Q̌mM
](x)

WC[Q̌m1 , . . . , Q̌mM
](x+ 1)

,

WC[ϕ̃m1 , . . . , ϕ̃mM
](x+ 1)

WC[ϕ̃m1 , . . . , ϕ̃mM
](x)

=
ϕ0(x+M)Λ(x+M)

ϕ0(x)Λ(x)

WC[Q̌m1 , . . . , Q̌mM
](x+ 1)

WC[Q̌m1 , . . . , Q̌mM
](x)

,

WC[ϕ̃m1 , . . . , ϕ̃mM
, ϕ0](x+ 1)

WC[ϕ̃m1 , . . . , ϕ̃mM
, ϕ0](x)

=
ϕ0(x+M + 1)Λ(x+M + 1)

ϕ0(x)Λ(x)

× WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x+ 1)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x)

,

WC[ϕ̃m1 , . . . , ϕ̃mM
, ϕ0](x− 1)

WC[ϕ̃m1 , . . . , ϕ̃mM
, ϕ0](x)

=
ϕ0(x− 1)Λ(x− 1)

ϕ0(x+M)Λ(x+M)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x− 1)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x)

,

WC[ϕ̃m1 , . . . , ϕ̃mM
, ϕn](x) =

M∏
k=0

ϕ0(x+ k)Λ(x+ k) ·WC[Q̌m1 , . . . , Q̌mM
,Λ−1P̌n](x).

These lead to

B̄(x) =
√
B(x+M)D(x+M + 1)

ϕ0(x+M + 1)Λ(x+M + 1)

ϕ0(x+M)Λ(x+M)

× WC[Q̌m1 , . . . , Q̌mM
](x)

WC[Q̌m1 , . . . , Q̌mM
](x+ 1)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x+ 1)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x)

= B(x+M)
Λ(x+M + 1)

Λ(x+M)

× WC[Q̌m1 , . . . , Q̌mM
](x)

WC[Q̌m1 , . . . , Q̌mM
](x+ 1)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x+ 1)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x)

, (3.14)

D̄(x) =
√
B(x− 1)D(x)

ϕ0(x− 1)Λ(x− 1)

ϕ0(x)Λ(x)

× WC[Q̌m1 , . . . , Q̌mM
](x+ 1)

WC[Q̌m1 , . . . , Q̌mM
](x)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x− 1)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x)

= D(x)
Λ(x− 1)

Λ(x)
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× WC[Q̌m1 , . . . , Q̌mM
](x+ 1)

WC[Q̌m1 , . . . , Q̌mM
](x)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x− 1)

WC[Q̌m1 , . . . , Q̌mM
,Λ−1](x)

. (3.15)

Furthermore, we have

WC[ϕ̃m1 , . . . , ϕ̃mM
](x)WC[ϕ̃m1 , . . . , ϕ̃mM

](x+ 1)

=
(
ϕ0(x)ϕ0(x+M)Λ(x)Λ(x+M)

)−1 M∏
k=0

ϕ0(x+ k)2Λ(x+ k)2

×WC[Q̌m1 , . . . , Q̌mM
](x)WC[Q̌m1 , . . . , Q̌mM

](x+ 1),√√√√ M∏
k=1

B(x+ k − 1)D(x+ k) ϕ0(x)ϕ0(x+M) = ϕ0(x)
2

M∏
k=1

B(x+ k − 1).

In terms of these we arrive at

F (x) =
M∏
k=1

B(x+ k − 1) · Λ(x+M)

Λ(x)

1∏M
k=1 ϕ0(x+ k)2Λ(x+ k)2

× 1

WC[Q̌m1 , . . . , Q̌mM
](x)WC[Q̌m1 , . . . , Q̌mM

](x+ 1)
, (3.16)

ϕ̄D,n(x) = (−1)M

√√√√ M∏
k=1

B(x+ k − 1) ϕ0(x)
√

Λ(x)Λ(x+M)

× WC[Q̌m1 , . . . , Q̌mM
,Λ−1P̌n](x)√

WC[Q̌m1 , . . . , Q̌mM
](x)WC[Q̌m1 , . . . , Q̌mM

](x+ 1)
. (3.17)

For each type of the polynomials, the multi-indexed polynomials are identified by remov-

ing various kinematical factors from ϕ̄D,n. As shown by (3.7), the orthogonality is built in.

After the identification and the orthogonality, securing the positivity of the orthogonality

measures is essential. It must be verified for each polynomial, for each choice of the set D of

the zero-norm seed solutions and for the appropriate ranges of the involved parameters. The

situation is much more complicated than the multi-indexed Laguerre and Jacobi polynomials

[18] and (q-)Racah polynomials [14], etc. In these established cases, the seed solutions can

be chosen to have a definite sign, and that is closely related to the positive definite orthog-

onality measures. We hope these detailed tasks for each type of polynomials will be carried

out in future. A few examples of single-indexed exceptional Krawtchouk polynomials are

reported in [9] and their “Diophantine” property and factorisation are discussed.
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4 Shape-invariant Cases

Here we report on multi-indexed polynomials corresponding to a very special choice of the

seed solutions, M contiguous lowest degree zero-norm solutions,

D = {0, 1, . . . ,M − 1}. (4.1)

For the Schrödinger equations, for which the Laguerre and Jacobi polynomials are the eigen

polynomials, the multiple Darboux transformations by using M contiguous lowest degree

eigenfunctions produce remarkable effects [10, 12, 13], that is, the resulting polynomial is

the same as the original with the degree decreased by M and the parameters shifted by M

multiplied by a numerical factor,

Laguerre : L(α)
n

(
η(x)

)
→ (const)× L

(α+M)
n−M

(
η(x)

)
(n ≥M),

Jacobi : P (α,β)
n

(
η(x)

)
→ (const)× P

(α+M,β+M)
n−M

(
η(x)

)
(n ≥M).

Under the transformations, the polynomials keep their identity with shifted parameters and

the positivity of the orthogonality measure unchanged. This phenomenon is called shape-

invariance [20]. Shape-invariance also holds for all the polynomials listed in § 2.2 and the

others in the Askey scheme. It is called the forward shift relation [5]. For example

Racah : P̌n(x;N, b, c, d) → (const)× P̌n−M(x;N −M, b+M, c+M,d+M) (n ≥M),

q-Racah : P̌n(x;N, b, c, d) → (const)× P̌n−M(x;N −M, bqM , cqM , dqM) (n ≥M).

For more details, see [7].

We will demonstrate similar effects for the present case of using M contiguous lowest

zero-norm states (4.1) for the finite orthogonal polynomials. The explicit formulas of the

transformation of B̄ (3.14), D̄ (3.15) and ϕ̄D,n (3.17), depend on the type of the sinusoidal

coordinates η(x). For three families (i), (iii) and (iv), in which the sinusoidal coordinate

contains no parameter other than q, (i) η(x) = x, (iii) η(x) = 1− qx and (iv) η(x) = q−x− 1.

For the other two families (ii) and (v), in which η(x) contains d, (ii) η(x) = x(x + d), (v)

η(x) = (q−x − 1)(1− dqx), the parameter d shifts in the formulas. They are summarised in

the following

Theorem 4.1 The results of the multiple Darboux transformation are

Family (i), (iv) : B(x;N,λ) → B(x+M ;N +M,λ), (4.2)
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D(x;N,λ) → D(x+M ;N +M,λ), (4.3)

P̌n(x;N,λ) → (const)× P̌n(x+M ;N +M,λ), (4.4)

Family (ii) : B(x;N, d, λ̄) → B(x+M ;N +M,d−M, λ̄), (4.5)

D(x;N, d, λ̄) → D(x+M ;N +M,d−M, λ̄), (4.6)

P̌n(x;N, d, λ̄) → (const)× P̌n(x+M ;N +M,d−M, λ̄), (4.7)

Family (iii) : B(x;N, p) → B(x+M ;N +M, pq−M), (4.8)

D(x;N, p) → D(x+M ;N +M, pq−M), (4.9)

P̌n(x;N, p) → (const)× P̌n(x+M ;N +M, pq−M), (4.10)

Family (v) : B(x;N, d, λ̄) → B(x+M ;N +M,dq−M , λ̄), (4.11)

D(x;N, d, λ̄) → D(x+M ;N +M,dq−M , λ̄), (4.12)

P̌n(x;N, d, λ̄) → (const)× P̌n(x+M ;N +M,dq−M , λ̄), (4.13)

in which n ∈ X and λ̄ stands for the parameters other than N and d. The positivity of the

orthogonality measures is unchanged for the formulas (4.2)–(4.4). The positivity also holds

for the formulas (4.5)–(4.13) for an appropriate range of the parameter p or d.

In the rest of this section we present the outline of the derivation of the formulas (4.2)–

(4.13).

In order to obtain the explicit forms for B̄(x) (3.14), D̄(x) (3.15) and ϕ̄D,n (3.17) we need

to evaluate only four formulas

WC[1, Q̌1, . . . , Q̌M−1](x), Λ(x)WC[1, Q̌1, . . . , Q̌M−1,Λ
−1](x),

Λ(x+M)WC[1, Q̌1, . . . , Q̌M−1,Λ
−1](x), Λ(x)WC[1, Q̌1, . . . , Q̌M−1,Λ

−1P̌n](x).

The other components are obtained by shifting x → x ± 1. As shown in Theorem2.1,

Q̌m(x;N,λ) is a monic degree m polynomial in η(x;λ). Therefore these formulas are sim-

plified by sweeping the Casoratian determinants successively,

WC[1, Q̌1, . . . , Q̌M−1](x) = WC[1, η, η
2, . . . , ηM−1](x), (4.14)

Λ(x)WC[1, Q̌1, . . . , Q̌M−1,Λ
−1](x) = Λ(x)WC[1, η, η

2, . . . , ηM−1,Λ−1](x), (4.15)

Λ(x+M)WC[1, Q̌1, . . . , Q̌M−1,Λ
−1](x) = Λ(x+M)WC[1, η, η

2, . . . , ηM−1,Λ−1](x), (4.16)

Λ(x)WC[1, Q̌1, . . . , Q̌M−1,Λ
−1P̌n](x) = Λ(x)WC[1, η, η

2, . . . , ηM−1,Λ−1P̌n](x). (4.17)
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It should be stressed that the explicit expressions of Q̌m(x) listed in § 2.2.1–§ 2.2.12 are

not necessary. Now that the r.h.s. of (4.14) is explicitly known as it is a Vandermonde

determinant. Likewise the Casoratian in (4.15) and (4.16) are easily evaluated by expanding

along theM+1-st column. The (j,M+1) components Λ(x)/Λ(x+j−1) and Λ(x+M)/Λ(x+

j − 1) have simple expressions, for example Λ(x)/Λ(x+ j − 1) = (x−N)j−1/(x+ 1)j−1 for

η(x) = x and the other factors are closely related to the Vandermonde determinant. It is

important to stress that these quantities depend on N and η(x;λ) only, except for the one

(4.17) containing P̌n.

Now we list the explicit forms of the expressions of (4.14)–(4.17) for each family (i)–(v).

By using the following constants,

c(M)
def
=

M−1∏
k=1

k!, c(N,M)
def
= (−1)M (N + 1)M c(M), (4.18)

cq(M)
def
= q−

1
6
M(M−1)(2M−1)

M−1∏
k=1

(q ; q)k, (4.19)

cq(N,M)
def
= (−1)Mq−

1
2
M(M−1)(qN+1 ; q)M cq(M), (4.20)(

M

j

)
=

M !

j! (M − j)!
,

[
M

j

]
def
=

(q ; q)M
(q ; q)j(q ; q)M−j

, (4.21)

they are given as follows.

Family (i) :

WC[1, x, x
2, . . . , xM−1](x) = c(M), (4.22)

Λ(x)WC[1, x, x
2, . . . , xM−1,Λ−1](x) =

c(N,M)

(x+ 1)M
, (4.23)

Λ(x+M)WC[1, x, x
2, . . . , xM−1,Λ−1](x) =

c(N,M)

(x−N)M
, (4.24)

Λ(x)WC[1, x, x
2, . . . , xM−1,Λ−1P̌n](x)

=
(−1)Mc(M)

(x+ 1)M

M∑
j=0

(−1)j
(
M

j

)
(x+ 1 + j)M−j(x−N)jP̌n(x+ j), (4.25)

Family (ii) :

WC[1, η, η
2, . . . , ηM−1](x) = c(M)

M−1∏
k=1

(2x+ k + d)k, (4.26)

Λ(x)WC[1, η, η
2, . . . , ηM−1,Λ−1](x) =

c(N,M)
∏M

k=1(2x+ k + d)k
(x+ 1, x+N + 1 + d)M

, (4.27)
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Λ(x+M)WC[1, η, η
2, . . . , ηM−1,Λ−1](x) =

c(N,M)
∏M

k=1(2x+ k + d)k
(x−N, x+ d)M

, (4.28)

Λ(x)WC[1, η, η
2, . . . , ηM−1,Λ−1P̌n](x)

=
(−1)Mc(M)

∏M−2
k=1 (2x+ 2 + k + d)k

(x+ 1, x+N + 1 + d)M

M∑
j=0

(−1)j
(
M

j

)
T (x,M, j, d)

× (x+ 1 + j, x+ 1 + j +N + d)M−j(x−N, x+ d)jP̌n(x+ j), (4.29)

T (x,M, j, d)
def
= (2x+M + 1 + j + d)M−j−1(2x+ 1 + d)j−1

×
{

1 : j = 0,M
(2x+ 2j + d) : otherwise

, (4.30)

Family (iii) :

WC[1, η, η
2, . . . , ηM−1](x) = cq(M) q

1
2
M(M−1)xq

1
2
M(M−1)2 , (4.31)

Λ(x)WC[1, η, η
2, . . . , ηM−1,Λ−1](x) =

cq(N,M) q
1
2
M(M+1)xq

1
2
M(M2−2N−1)

(qx+1 ; q)M
, (4.32)

Λ(x+M)WC[1, η, η
2, . . . , ηM−1,Λ−1](x) =

cq(N,M) q
1
2
M(M+1)xq

1
2
M(M2−2N−1)

(qx−N ; q)M
, (4.33)

Λ(x)WC[1, η, η
2, . . . , ηM−1,Λ−1P̌n](x)

=
(−1)Mcq(M)q

1
2
M(M−1)xq

1
2
M2(M−1)−MN

(qx+1 q)M

M∑
j=0

(−1)j
[
M

j

]
q

1
2
j(j+1)+M(N−j)

× (qx+1+j ; q)M−j(q
x−N ; q)jP̌n(x+ j), (4.34)

Family (iv) :

WC[1, η, η
2, . . . , ηM−1](x) = cq(M) q−

1
2
M(M−1)x, (4.35)

Λ(x)WC[1, η, η
2, . . . , ηM−1,Λ−1](x) =

cq(N,M) q−
1
2
M(M−1)x

(qx+1 ; q)M
, (4.36)

Λ(x+M)WC[1, η, η
2, . . . , ηM−1,Λ−1](x) =

cq(N,M) q−
1
2
M(M−1)x

qM(N+1)(qx−N ; q)M
, (4.37)

Λ(x)WC[1, η, η
2, . . . , ηM−1,Λ−1P̌n](x)

=
(−1)Mcq(M) q−

1
2
M(M−1)xq−

1
2
M(M−1)

(qx+1 ; q)M

M∑
j=0

(−1)j
[
M

j

]
q

1
2
j(j+1)+Nj

× (qx+1+j ; q)M−j(q
x−N ; q)jP̌n(x+ j), (4.38)

Family (v) :

WC[1, η, η
2, . . . , ηM−1](x) = cq(M) q−

1
2
M(M−1)x

M−1∏
k=1

(dq2x+k ; q)k, (4.39)
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Λ(x)WC[1, η, η
2, . . . , ηM−1,Λ−1](x) =

cq(N,M) q−
1
2
M(M−1)x ∏M

k=1(dq
2x+k ; q)k

(qx+1, dqx+1+N ; q)M
, (4.40)

Λ(x+M)WC[1, η, η
2, . . . , ηM−1,Λ−1](x) =

cq(N,M) q−
1
2
M(M−1)x ∏M

k=1(dq
2x+k ; q)k

qM(N+1)(qx−N , dqx ; q)M
, (4.41)

Λ(x)WC[1, η, η
2, . . . , ηM−1,Λ−1P̌n](x)

=
(−1)Mcq(M) q−

1
2
M(M−1)xq−

1
2
M(M−1) ∏M−2

k=1 (dq2x+2+k ; q)k
(qx+1, dqx+N+1 ; q)M

M∑
j=0

(−1)j
[
M

j

]
q

1
2
j(j+1)+Nj

× Tq(x,M, j, d)(qx+1+j, dqx+1+j+N ; q)M−j(q
x−N , dqx ; q)jP̌n(x+ j), (4.42)

Tq(x,M, j, d)
def
= (dq2x+M+1+j ; q)M−j−1(dq

2x+1 ; q)j−1 ×
{

1 : j = 0,M
(1− dq2x+2j) : otherwise

.

(4.43)

Based on these results, the transformed functions B̄ (3.14) and D̄ (3.15) are calculated for

each family:

Family (i) : B̄(x) = B(x+M)
(x−N)M

(x+ 1−N)M
= B(x+M)

N − x

N − x−M
, (4.44)

D̄(x) = D(x)
(x+ 1)M
(x)M

= D(x)
x+M

x
, (4.45)

Family (ii) : B̄(x) = B(x+M)
(N − x)(x+ d)(2x+ 2M + d)2

(N − x−M)(x+ d+M)(2x+M + d)2
, (4.46)

D̄(x) = D(x)
(x+M)(x+N +M + d)(2x− 1 + d)2

x(x+N + d)(2x− 1 +M + d)2
, (4.47)

Family (iii) : B̄(x) = B(x+M)
qM(qx−N ; q)M
(qx+1−N ; q)M

= B(x+M)
qM(1− qx−N)

1− qx+M−N , (4.48)

D̄(x) = D(x)
q−M(qx+1 ; q)M

(qx ; q)M
= D(x)

q−M(1− qx+M)

1− qx
, (4.49)

Family (iv) : B̄(x) = B(x+M)
(qx−N ; q)M
(qx+1−N ; q)M

= B(x+M)
1− qx−N

1− qx+M−N , (4.50)

D̄(x) = D(x)
(qx+1 ; q)M
(qx ; q)M

= D(x)
1− qx+M

1− qx
, (4.51)

Family (v) : B̄(x) = B(x+M)
(1− qx−N)(1− dqx)(dq2x+2M ; q)2

(1− qx+M−N)(1− dqx+M)(dq2x+M ; q)2
, (4.52)

D̄(x) = D(x)
(1− qx+M)(1− dqx+M+N)(dq2x−1 ; q)2
(1− qx)(1− dqx+N)(dq2x+M−1 ; q)2

. (4.53)

It is straightforward to verify Theorem4.1 for the transformations of B(x) and D(x) for the

families (i)–(v) by consulting the explicit expressions of B(x) and D(x) of each polynomial

listed in § 2.2. The transformation rules of the polynomials (4.4), (4.7), (4.10), and (4.13) are
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the direct consequences of those for B̄ and D̄. We list the explicit forms of the transformations

of the polynomials of degree n ∈ X in the following:

Theorem 4.2

Family (i) :
M∑
j=0

(−1)j
(
M

j

)
(x+ 1 + j)M−j(x−N)jP̌n(x+ j;N,λ)

= (N + 1)M P̌n(x+M ;N +M,λ), (4.54)

Family (ii) :
M∑
j=0

(−1)j
(
M

j

)
T (x,M, j, d)(x+ 1 + j, x+ 1 + j +N + d)M−j

× (x−N, x+ d)j P̌n(x+ j;N, d, λ̄)

= (N + 1)M(2x+ 1 + d)2M−1 P̌n(x+M ;N +M,d−M, λ̄), (4.55)

Family (iii) :
M∑
j=0

(−1)j
[
M

j

]
q

1
2
j(j+1)+M(N−j)(qx+1+j ; q)M−j(q

x−N ; q)jP̌n(x+ j;N, p)

= (qN+1 ; q)Mq
Mx P̌n(x+M ;N +M, pq−M), (4.56)

Family (iv) :
M∑
j=0

(−1)j
[
M

j

]
q

1
2
j(j+1)+Nj(qx+1+j ; q)M−j(q

x−N ; q)jP̌n(x+ j;N,λ)

= (qN+1 ; q)M P̌n(x+M ;N +M,λ), (4.57)

Family (v) :
M∑
j=0

(−1)j
[
M

j

]
q

1
2
j(j+1)+NjTq(x,M, j, d)(qx+1+j, dqx+1+j+N ; q)M−j

× (qx−N , dqx ; q)j P̌n(x+ j;N, d, λ̄)

= (qN+1 ; q)M(dq2x+1 ; q)2M−1 P̌n(x+M ;N +M,dq−M , λ̄). (4.58)

These are polynomial relations and they are valid for x ∈ C.

The summations in l.h.s. are taken from (4.25), (4.29), (4.34), (4.38) and (4.42). The factors

in r.h.s. are determined by setting n = 0. A consistency check of the formulas can be done

by setting x = −M . Again, it is straightforward to verify these transformation formulas

for the families (i)–(v) by consulting the explicit expressions of the polynomials. Since the

size parameter of the matrix is now N +M , there are additional members of the orthogonal

polynomials. They are simply {P̌N+1+m(x +M,N +M,λ)} (0 ≤ m ≤ M), for family (i),

etc. This concludes the proof of Theorem4.1.

It is interesting and instructive to scrutinise Theorem4.2 from a different perspective.

The formulas (4.54)–(4.58) contain
∑M

j=0,
(
M
j

)
or

[
M
j

]
and subscripts M − j and j, show-
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ing a semblance to binomial expansions. Let us introduce operators F̃ to realise one step

transformation for each family. Rewriting Theorem4.2 for M = 1 explicitly gives

(i) : F̃(x,N)
def
=

1

N + 1

(
x+ 1 + (N − x)e∂

)
, (4.59)

F̃(x,N)P̌n(x;N,λ) = P̌n(x+ 1;N + 1,λ),

(ii) : F̃(x,N, d)
def
=

1

(N + 1)(2x+ 1 + d)

(
(x+ 1)(x+ 1 +N + d) + (N − x)(x+ d)e∂

)
,

(4.60)

F̃(x,N, d)P̌n(x;N, d, λ̄) = P̌n(x+ 1;N + 1, d− 1, λ̄),

(iii) : F̃(x,N)
def
=

qN−x

1− qN+1

(
1− qx+1 + (qx−N − 1)e∂

)
, (4.61)

F̃(x,N)P̌n(x;N, p) = P̌n(x+ 1;N + 1, pq−1),

(iv) : F̃(x,N)
def
=

1

1− qN+1

(
1− qx+1 + qN+1(qx−N − 1)e∂

)
, (4.62)

F̃(x,N)P̌n(x;N,λ) = P̌n(x+ 1;N + 1,λ),

(v) : F̃(x,N, d)
def
=

1

(1− qN+1)(1− dq2x+1)

×
(
(1− qx+1)(1− dqx+1+N) + qN+1(qx−N − 1)(1− dqx)e∂

)
, (4.63)

F̃(x,N, d)P̌n(x;N, d, λ̄) = P̌n(x+ 1;N + 1, dq−1, λ̄).

Here e∂ is the finite shift operator (3.8). Let us tentatively call F̃ a forward x-shift operator.

Each F̃ has two terms, one is an ordinary function and the other is a function times e∂ .

Since the polynomial is mapped from P̌n(x;N,λ) to P̌n(x + 1;N + 1,λ), for family (i), the

next steps are obviously

(i) : F̃(x+ 1, N + 1)F̃(x,N)P̌n(x;N,λ) = P̌n(x+ 2;N + 2,λ),

F̃(x+ 2, N + 2)F̃(x+ 1, N + 1)F̃(x,N)P̌n(x;N,λ) = P̌n(x+ 3;N + 3,λ),
... ,

leading to

(i), (iv) :

M−1←−∏
k=0

F̃(x+ k,N + k) · P̌n(x;N,λ) = P̌n(x+M ;N +M,λ), (4.64)

(ii) :

M−1←−∏
k=0

F̃(x+ k,N + k, d− k) · P̌n(x;N, d, λ̄) = P̌n(x+M ;N +M,d−M, λ̄), (4.65)
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(iii) :

M−1←−∏
k=0

F̃(x+ k,N + k) · P̌n(x;N, p) = P̌n(x+M ;N +M, pq−M), (4.66)

(v) :

M−1←−∏
k=0

F̃(x+ k,N + k, dq−k) · P̌n(x;N, d, λ̄) = P̌n(x+M ;N +M,dq−M , λ̄). (4.67)

Here we use the convention to express the ordered product

n←−∏
j=1

aj
def
= an · · · a2a1. (4.68)

Thus we arrive at the following

Theorem 4.3 The formulas representing the special cases of the multi-indexed polynomials

(4.54)–(4.58) are factorised,

(i) :

M−1←−∏
k=0

F̃(x+ k,N + k) =
1

(N + 1)M

M∑
j=0

(−1)j
(
M

j

)
(x+ 1 + j)M−j(x−N)j e

j∂ , (4.69)

(ii) :

M−1←−∏
k=0

F̃(x+ k,N + k, d− k)

=
1

(N + 1)M(2x+ 1 + d)2M−1

M∑
j=0

(−1)j
(
M

j

)
T (x,M, j, d)

× (x+ 1 + j, x+ 1 + j +N + d)M−j(x−N, x+ d)j e
j∂ , (4.70)

(iii) :

M−1←−∏
k=0

F̃(x+ k,N + k)

=
q−Mx

(qN+1 ; q)M

M∑
j=0

(−1)j
[
M

j

]
q

1
2
j(j+1)+M(N−j)(qx+1+j ; q)M−j(q

x−N ; q)j e
j∂ , (4.71)

(iv) :

M−1←−∏
k=0

F̃(x+ k,N + k)

=
1

(qN+1 ; q)M

M∑
j=0

(−1)j
[
M

j

]
q

1
2
j(j+1)+Nj(qx+1+j ; q)M−j(q

x−N ; q)j e
j∂ , (4.72)

(v) :

M−1←−∏
k=0

F̃(x+ k,N + k, dq−k)

=
1

(qN+1 ; q)M(dq2x+1 ; q)2M−1

M∑
j=0

(−1)j
[
M

j

]
q

1
2
j(j+1)+NjTq(x,M, j, d)
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× (qx+1+j, dqx+1+j+N ; q)M−j(q
x−N , dqx ; q)j e

j∂ . (4.73)

By expanding the l.h.s and collecting terms containing ej∂ gives r.h.s.

These formulas can be demonstrated by straightforward induction. For example, for (i),

M←−∏
k=0

F̃(x+ k,N + k) = F̃(x+M,N +M)

M−1←−∏
k=0

F̃(x+ k,N + k)

=
1

(N + 1)M+1

M∑
j=0

(
(−1)j

(
M

j

)
(x+ 1 + j)M+1−j(x−N)j e

j∂

− (−1)j
(
M

j

)
(x+ 2 + j)M−j(x−N)j+1 e

(j+1)∂
)

=
1

(N + 1)M+1

M+1∑
j=0

(−1)j
(
M + 1

j

)
(x+ 1 + j)M+1−j(x−N)j e

j∂ .

Here we used Pascal’ triangle relation(
M

j

)
+

(
M

j − 1

)
=

(
M + 1

j

)
. (4.74)

The q-analogues of the above relation[
M

j

]
qj +

[
M

j − 1

]
=

[
M + 1

j

]
,

[
M

j

]
+

[
M

j − 1

]
qM+1−j =

[
M + 1

j

]
(4.75)

are used in the inductions for (iii)–(v) and the relations

j

(
M

j

)
− (M + 1− j)

(
M

j − 1

)
= 0, (1− qj)

[
M

j

]
− (1− qM+1−j)

[
M

j − 1

]
= 0 (4.76)

are used for (ii) and (v).

It is well known that the difference operator H̃ (2.5), (2.6) is factorised into the forward

F and backward B shift operators [5, 7],

H̃(N,λ) = B(x;N,λ)(1− e∂) +D(x;N,λ)(1− e−∂) = B(N,λ)F(N,λ), (4.77)

which is an expression of the shape invariance. For example, for the Racah,

Racah : F(N,λ) =
Nbc

2x+ d+ 1
(1− e∂),

B(N,λ) = 1

Nbc

(
B(x;N,λ)−D(x;N,λ)e−∂

)
(2x+ d+ 1), (4.78)
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F(N,λ)P̌n(x;N, b, c, d) = E(n;λ)P̌n−1(x;N − 1, b+ 1, c+ 1, d+ 1),

B(N,λ)P̌n−1(x;N − 1, b+ 1, c+ 1, d+ 1) = P̌n(x;N, b, c, d). (4.79)

These F and B change the degree n but keep x unchanged, in contrast with F̃ , which changes

x and keeps the degree n unchanged. In a similar fashion as above (4.77), reflecting the new

type of shape invariance, H̃ − E(N + 1) is factorised by the forward and backward x-shift

operators,

H̃(N,λ)− E(N + 1;λ) = −B̃(x,N,λ)F̃(x,N,λ), (4.80)

as the zero norm solutions start at degree N + 1. The explicit forms of the operator B̃ are

K : B̃(x,N, p) def
= (N + 1)

(
p+ (1− p)e−∂

)
, (4.81)

H : B̃(x,N,λ) def
= (N + 1)

(
x+ a+ (b+N − x)e−∂

)
, (4.82)

R : B̃(x,N,λ) def
= (N + 1)

((x+ b)(x+ c)

2x+ d
+

(b− d− x)(x+ d− c)

2x+ d
e−∂

)
, (4.83)

dH : B̃(x,N,λ) def
= (N + 1)

( x+ a

2x− 1 + a+ b
+

x+ b− 1

2x− 1 + a+ b
e−∂

)
, (4.84)

dqqK : B̃(x,N, p) def
= (1− qN+1)

(
p−1q−x−N−1 + q−N−1(1− p−1q−x)e−∂

)
, (4.85)

qH : B̃(x,N,λ) def
= (1− qN+1)

(
q−N−1(1− aqx) + aq−1(qx−N − b)e−∂

)
, (4.86)

qK : B̃(x,N, p) def
= (1− qN+1)

(
q−N−1 + p e−∂

)
, (4.87)

qqK : B̃(x,N, p) def
= (1− qN+1)

(
p−1qx−N−1 + (1− p−1qx−N−1)e−∂

)
, (4.88)

aqK : B̃(x,N, p) def
= (1− qN+1)

(
q−N−1(1− pqx+1) + pqx−Ne−∂

)
, (4.89)

qR : B̃(x,N,λ) def
= (1− qN+1)

(q−N−1(1− bqx)(1− cqx)

1− dq2x

+ d̃
(b−1dqx − 1)(1− c−1dqx)

1− dq2x
e−∂

)
, (4.90)

dqH : B̃(x,N,λ) def
= (1− qN+1)

(q−N−1(1− aqx)

1− abq2x−1
+
aqx−N−1(1− bqx−1)

1− abq2x−1
e−∂

)
, (4.91)

dqK : B̃(x,N, p) def
= (1− qN+1)

( q−N−1

1 + pq2x
+
pq2x−N−1

1 + pq2x
e−∂

)
. (4.92)

The action of these operators on the polynomials is as follows:

(i), (iv) : B̃(x,N)P̌n(x+ 1;N + 1,λ) =
(
E(N + 1;λ)− E(n;λ)

)
P̌n(x;N,λ), (4.93)

(ii) : B̃(x,N, d, λ̄)P̌n(x+ 1;N + 1, d− 1, λ̄) =
(
E(N + 1;λ)− E(n;λ)

)
P̌n(x;N, d, λ̄),(4.94)

(iii) : B̃(x,N, p)P̌n(x+ 1;N + 1, pq−1) =
(
E(N + 1)− E(n)

)
P̌n(x;N, p), (4.95)

(v) : B̃(x,N, d, λ̄)P̌n(x+ 1;N + 1, dq−1, λ̄) =
(
E(N + 1;λ)− E(n;λ)

)
P̌n(x;N, d, λ̄).(4.96)
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5 Summary and Comments

The reported “Diophantine” and factorisation properties of the Jacobi, Laguerre etc [1],

Wilson and Askey-Wilson polynomials etc [2] are very interesting but rather puzzling, as

these properties require the parameter ranges in which the orthogonality does not hold.

In this paper we show, after the seminal work of [9], that these properties are shared by

all the finite polynomials in the Askey scheme in the conventional orthogonality parameter

ranges. All the monic higher degree polynomials {P̌monic
N+1+m(x)} (m ∈ Z≥0) in this group

show the “Diophantine” and factorisation properties Theorem2.1 (2.50), (2.51). Here N

is the maximal degree of the corresponding non-monic orthogonal polynomials. A simple

and intuitive explanation is that these higher degree monic polynomials are the zero-norm

solution of certain tri-diagonal real symmetric matrix H (2.10). The explicit expressions of

the “Diophantine” and factorisation for the twelve polynomials are presented in § 2.3. These

higher degree monic polynomials can be used as seed solutions for generating new types

multi-indexed polynomials based on the twelve finite orthogonal polynomials. In order to

obtain genuine multi-indexed orthogonal polynomials, correct choices of the seed solutions

and the parameter ranges are essential. A simplest choice of M contiguous lowest degree

{P̌monic
N+1+m(x)} (m = 0, 1, . . . ,M − 1) generate proper multi-indexed orthogonal polynomials

as shown in § 4 for each of the twelve polynomials listed in § 2.2.

In paper I [1] Calogero and coauthors reported “Diophantine” and factorisation proper-

ties of some finite polynomials, the Racah, Hahn, dual Hahn and Krawtchouk. In these

cases, the phenomena occur only at the particular degree with which the parameters are

tuned. In ‘Remarks’ of paper II [2], Chen and Ismail mentioned a possible explanation of

the “Diophantine” and factorisation properties of the Wilson polynomial as the occurrence

of certain discrete masses in the orthogonality measure when some of the parameters are

negative. It is a good challenge to provide a perspective in which their explanation and ours

could be unified, since the Wilson and Askey-Wilson polynomials are the most general ones

in the Askey scheme.

A few remarks on the results of Miki-Tsujimoto-Vinet paper [9]. They reported four

types of single-indexed exceptional Krawtchouk polynomials. Among them, the first one,

using the polynomial itself as the seed solution, is the well-known one called Krein-Adler

polynomials, as briefly mentioned in § 2.4. The second type is the M = 1 case of the
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multi-indexed polynomials discussed in § 3. The remaining two types exist only for the

Krawtchouk polynomials. They are obtained from the first and second types by using the

mirror symmetry (2.15) of the Krawtchouk. Another polynomial in the same η(x) = x

family, the Hahn polynomial, has similar mirror symmetry (2.18).
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