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Abstract

The Hamiltonians of finite type discrete quantum mechanics with real shifts are
real symmetric matrices of order N +1. We discuss the Darboux transformations with
higher degree (> N) polynomial solutions as seed solutions. They are state-adding
and the resulting Hamiltonians after M -steps are of order N + M + 1. Based on
twelve orthogonal polynomials ((q-)Racah, (dual, q-)Hahn, Krawtchouk and five types
of q-Krawtchouk), new finite type multi-indexed orthogonal polynomials are obtained,
which satisfy second order difference equations, and all the eigenvectors of the deformed
Hamiltonian are described by them. We also present explicit forms of the Krein-Adler
type multi-indexed orthogonal polynomials and their difference equations, which are
obtained from the state-deleting Darboux transformations with lower degree (≤ N)
polynomial solutions as seed solutions.

1 Introduction

Exactly solvable quantum mechanical systems of one degree of freedom (Schrödinger equa-

tion: Hφn(x) = Enφn(x)) can be deformed keeping solvability by the Darboux transforma-

tions. By such deformations, new types of orthogonal polynomials, exceptional or multi-

indexed polynomials, are obtained [1]–[15] for the Askey-scheme of hypergeometric orthog-

onal polynomials [16, 17]. They satisfy second order differential or difference equations and

form a complete set of orthogonal basis in an appropriate Hilbert space in spite of missing

degrees, by which the restrictions of Bochner’s theorem [16] are avoided. We have stud-

ied orthogonal polynomials based on quantum mechanical formulations: ordinary quantum

mechanics (oQM) and two kinds of discrete quantum mechanics (dQM), dQM with pure

imaginary shifts (idQM) and dQM with real shifts (rdQM) [18]. The Schrödinger equation
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for oQM is a differential equation and that for dQM is a difference equation. The coordinate

x for oQM and idQM is continuous and that for rdQM is discrete.

Depending on the choice of seed solution, the Darboux transformation can be divided

into three types: isospectral, state-deleting and state-adding. When the wavefunction of the

virtual state φ̃v(x), eigenstate φn(x) and pseudo virtual state φ̃pv
v (x) is used as a seed solu-

tion, the Darboux transformation is isospectral, state-deleting and state-adding, respectively.

The wavefunctions φ̃v(x) and φ̃pv
v (x) are obtained from φn(x) by twisting parameters. For

oQM and idQM, φ̃v(x) and φ̃
pv
v (x) are solutions of the Schrödinger equation and not square

integrable [6, 8, 15, 19, 20]. On the other hand, for rdQM, they satisfy the Schrödinger

equation except for the boundary [10, 14, 21]. The Darboux transformations with φ̃v(x)

give the case-(1) multi-indexed polynomials and those with φn(x) or φ̃
pv
v (x) give the case-(2)

multi-indexed polynomials. Here, the case-(1) is the case that the set of missing degrees of

the multi-indexed polynomials is {0, 1, . . . , ℓ − 1}, and the case-(2) is otherwise. Another

type of seed solution is discussed for the oQM systems with a finite number of eigenstates

φn(x) (n = 0, 1, . . . , nmax) [22]. We call them overshoot eigenfunctions φ̃os
n (x), which have

the same form as the eigenstates φn(x) but with n > nmax and are not square integrable.

The overshoot eigenfunctions correspond to the virtual or pseudo virtual states.

The Hamiltonian of a finite type rdQM system is a real symmetric matrix of order

N + 1. The coordinate x takes a value in {0, 1, . . . , N} and the number of the eigenstates

(eigenvectors) φn(x) (n = 0, 1, . . . , N) is N + 1. By using the pseudo virtual state φ̃pv
v (x)

obtained from φn(x) by twisting parameters, the state-adding Darboux transformation and

the Casoratian identities are studied in [21]. Recently another type of seed solution that gives

the state-adding Darboux transformation was found by Miki, Tsujimoto and Vinet [23]. They

studied single-indexed exceptional Krawtchouk polynomials and one of them (their type (ii))

corresponds to the state-adding Darboux transformation. Motivated by their work, Sasaki

and the present author studied the M-step state-adding Darboux transformations, whose

seed solutions have the same form as the eigenstate φn(x) but with n > N [24]. This situation

corresponds to the overshoot eigenfunctions φ̃os
n (x) in the oQM systems with a finite number

of eigenstates. The overshoot eigenfunction has an infinite norm, but the seed solution

here has a “zero norm.” (The meaning of “zero norm” is the following. The Schrödinger

equation (with x = 0, 1, . . . , N) is a matrix eigenvalue problem, and it can be interpreted

as a difference equation with a continuous x. The function φn(x) with n > N satisfies this

2



difference equation and vanishes at x = 0, 1, . . . , N . So, φn(x) with n > N satisfies the

Schrödinger equation and it is a zero vector, namely zero norm.) After the M-step state-

adding Darboux transformations with the seed solutions φn(x) (n ∈ D = {d1, d2, . . . , dM},
dj > N), the order of the Hamiltonian becomes N +M + 1, and the coordinate x takes a

value in {−M,−M +1, . . . , N}. The deformed Hamiltonian has N +M +1 eigenvectors. It

is easy to find N + 1 eigenvectors which correspond to the original eigenvectors. They are

expressed as WC[φd1 , . . . , φdM , φn](x) × (· · · ) with n ∈ {0, 1, . . . , N}. However, it is difficult

to find extra M eigenvectors. In [24], the special case D = {N + 1, N + 2, . . . , N +M} is

studied in detail.

In this paper we study the deformations of finite type rdQM systems by the M-step

state-adding Darboux transformations with the seed solutions φn(x) (n > N) and obtain

all eigenvectors. The original systems are described by twelve orthogonal polynomials: (q-

)Racah, (dual, q-)Hahn, Krawtchouk and five types of q-Krawtchouk. In [23], which cor-

responds to M = 1 case, one extra eigenvector is derived by two methods: (1) solving the

difference equation, (2) shifting N to N + ε and taking ε→ 0 limit. For general M case, the

first method is difficult and we adopt the second method. ExtraM eigenvectors are obtained

from WC[φd1 , . . . , φdM , φn](x) × (· · · ) in the “n → di limit”, which is achieved by shifting

N to N + ε and taking ε → 0 limit. The eigenvectors are described by new multi-indexed

orthogonal polynomials Q̌D′,n(x).

This paper is organized as follows. In section 2 the finite type rdQM systems are recapit-

ulated and the multi-step Darboux transformations with seed solutions φn(x) are discussed.

In section 3 the results obtained in § 2 are applied to the case of seed solutions φn(x) with

n ≤ N , which corresponds to the state-deleting Darboux transformations. The eigenvec-

tors are described by the Krein-Adler type multi-indexed orthogonal polynomials P̌KA
D,n(x)

(n ∈ {0, 1, . . . , N}\D). This case was studied in [25], but the explicit forms of their difference

equations, orthogonal relations etc. are new results. Section 4 is the main part of the paper.

The results obtained in § 2 are applied to the case of seed solutions φn(x) with n > N , which

corresponds to the state-adding Darboux transformations. The eigenvectors are described

by new multi-indexed orthogonal polynomials Q̌D′,n(x) (n ∈ {0, 1, . . . , N} ∪ D). Section 5

is for a summary and comments. Data for the twelve orthogonal polynomials are presented

in AppendixA. Data for various other quantities and several formulas are also presented. In

AppendixB we discuss the “n→ di limit.”

3



2 Darboux Transformations

In this section, after recapitulating the finite type rdQM systems [26, 18], we discuss the

multi-step Darboux transformations with seed solutions φn(x) [25], especially their algebraic

aspects.

2.1 Original systems

We consider the finite type rdQM systems as a starting point, whose eigenvectors are de-

scribed by the following twelve orthogonal polynomials [26, 18]: Hahn (H), Krawtchouk

(K), Racah (R), dual Hahn (dH), dual quantum q-Krawtchouk (dqqK), q-Hahn (qH), q-

Krawtchouk (qK), quantum q-Krawtchouk (qqK), affine q-Krawtchouk (aqK), q-Racah (qR),

dual q-Hahn (dqH) and dual q-Krawtchouk (dqK). The data of these polynomials are pre-

sented in AppendixA.1.

Let N be a positive integer. The Hamiltonian H of a finite type rdQM is a real symmetric

(tridiagonal in this case) matrix of order N + 1,

H =(Hx,y)x,y=0,1,...,N , Hx,x = B(x) +D(x), Hx,y = 0 (|x− y| > 1),

Hx,x+1 = −
√
B(x)D(x+ 1), Hx,x−1 = −

√
B(x− 1)D(x). (2.1)

Here the potential functions B(x) and D(x) are positive but vanish at the boundary,

B(x) > 0 (x = 0, 1, . . . , N − 1), D(x) > 0 (x = 1, 2, . . . , N),

B(N) = 0, D(0) = 0. (2.2)

We write a matrix (2.1) as

H = −
√
B(x)D(x+ 1) e∂ −

√
B(x− 1)D(x) e−∂ +B(x) +D(x)

= −
√
B(x) e∂

√
D(x)−

√
D(x) e−∂

√
B(x) +B(x) +D(x), (2.3)

where e±∂ is a matrix whose (x, y)-element is δx±1,y (⇒ (e∂)† = e−∂), and A(x) means a

diagonal matrix A(x) = diag(A(0), A(1), . . . , A(N)). Note that e±∂e∓∂ 6= 1 due to the effect

of boundaries,

e∂e−∂ = diag(1, 1, . . . , 1, 0), e−∂e∂ = diag(0, 1, 1, . . . , 1). (2.4)
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We have B(x)e∂e−∂ = B(x), D(x)e−∂e∂ = D(x), etc. The Schrödinger equation of rdQM is

a matrix eigenvalue problem,

Hφn(x) = Enφn(x) (n = 0, 1, . . . , N), (2.5)

where Hφn(x)
def
=

∑N

y=0Hx,yφn(y). The Hamiltonian (2.3) can be written in a factorized

form,

H = A†A, A def
=

√
B(x)− e∂

√
D(x), A† def

=
√
B(x)−

√
D(x) e−∂ . (2.6)

The tridiagonality (2.1) and factorization (2.6) imply 0 = E0 < E1 < · · · < EN . The ground

state eigenvector φ0(x) is characterized by Aφ0(x) = 0,

√
B(x)φ0(x) =

√
D(x+ 1)φ0(x+ 1), (2.7)

and given by

φ0(x)
def
=

√√√√
x−1∏

y=0

B(y)

D(y + 1)
, (2.8)

which satisfies the normalization φ0(0) = 1 by the convention
∏n−1

j=n ∗
def
= 1. For the twelve

systems under consideration, the eigenvectors have the following form,

φn(x) = φ0(x)P̌n(x), P̌n(x)
def
= Pn

(
η(x)

)
, (2.9)

where Pn(η(x)) is a polynomial of degree n in the sinusoidal coordinate η(x) [27, 26]. We

take the normalization as

P̌n(0) = Pn(0) = 1. (2.10)

The similarity transformed Hamiltonian H̃ is defined by

H̃ def
= φ0(x)

−1 ◦ H ◦ φ0(x) = B(x)(1− e∂) +D(x)(1− e−∂) (2.11)
(
⇒ H̃x,x+1 = −B(x), H̃x,x−1 = −D(x), H̃x,x = B(x) +D(x), H̃x,y = 0 (|x− y| > 1)

)
,

and its eigenvalue problem is solved by the polynomial P̌n(x),

H̃P̌n(x) = EnP̌n(x) (n = 0, 1, . . . , N). (2.12)

The orthogonality relations of P̌n(x) are

N∑

x=0

φ0(x)
2P̌n(x)P̌m(x) =

δnm
d2n

(n,m = 0, 1, . . . , N). (2.13)
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We have five families of the sinusoidal coordinates η(x) [26],

(i) : η(x) = x : H,K

(ii) : η(x) = x(x+ d) : R, dH(d = a + b− 1)

(iii) : η(x) = 1− qx : dqqK

(iv) : η(x) = q−x − 1 : qH, qK, qqK, aqK

(v) : η(x) = (q−x − 1)(1− dqx) : qR, dqH(d = abq−1), dqK(d = −p).

(2.14)

We also have five families of the energy eigenvalues En [26],

(i)′ : En = n : dH,K

(ii)′ : En = n(n+ d̃) : R, H(d̃ = a + b− 1)

(iii)′ : En = 1− qn : qqK

(iv)′ : En = q−n − 1 : dqH, dqK, dqqK, aqK

(v)′ : En = (q−n − 1)(1− d̃qn) : qR, qH(d̃ = abq−1), qK(d̃ = −p).

(2.15)

Note that η(0) = E0 = 0. The constants ρ and κ are defined as follows,

ρ
def
=





1 : (i), (ii)
q : (iii)
q−1 : (iv), (v)

, κ
def
=





1 : (i)′, (ii)′

q : (iii)′

q−1 : (iv)′, (v)′
. (2.16)

The rdQM systems have a set of parameters λ = (λ1, λ2, . . .) including the parameter N ,

and various quantities depend on λ. Their dependence is expressed like, f = f(λ), f(x) =

f(x;λ). The parameter q is 0 < q < 1 and qλ stands for q(λ1,λ2,...) = (qλ1 , qλ2, . . .). We omit

writing q-dependence and sometimes omit writing λ-dependence, when it does not cause

confusion.

2.2 Darboux transformations

2.2.1 difference equations

The matrix eigenvalue problem (2.12) is written in components as,

B(x)
(
P̌n(x)− P̌n(x+ 1)

)
+D(x)

(
P̌n(x)− P̌n(x− 1)

)
= EnP̌n(x). (2.17)

Eq.(2.12) means that (2.17) holds for n = 0, 1, . . . , N and x = 0, 1, . . . , N . However, we

remark that this difference equation (2.17) holds for x ∈ R. Moreover (2.17) holds for

n ∈ Z≥0 (exactly speaking, we need replace P̌n(x) with P̌
monic
n (x), see § 4). We also remark

that the positive integer parameter N can be extended to a real value in (2.17). Thus the

difference equation (2.17) (with the replacement P̌n(x) → P̌monic
n (x)) holds for x ∈ R, n ∈ Z≥0
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and N ∈ R. This is an important point for the Darboux transformations in this subsection

and constructions of new multi-indexed orthogonal polynomials in § 4. The component form

of (2.5) is

−
√
B(x)D(x+ 1)φn(x+ 1)−

√
B(x− 1)D(x)φn(x− 1) +

(
B(x) +D(x)

)
φn(x) = Enφn(x).

(2.18)

Since the explicit forms of φ0(x)
2 in AppendixA.1 are expressed in terms of αx, (α)x =

Γ(α + x)/Γ(α) and (α ; q)x = (α ; q)∞/(αq
x ; q)∞, we can consider φ0(x)

2 for x ∈ R (if

needed, we shift N to a non-integer value). Let us illustrate this situation using qR case as

an example. We rewrite φ0(x)
2 in AppendixA.1.10 as follows:

φ0(x)
2 =

(a, b, c, d ; q)x

(a−1dq, b−1dq, c−1dq, q ; q)xd̃x
1− dq2x

1− d

=
(a, b, c, d ; q)∞

(aqx, bqx, cqx, dqx ; q)∞

(a−1dqx+1, b−1dqx+1, c−1dqx+1, qx+1 ; q)∞

(a−1dq, b−1dq, c−1dq, q ; q)∞d̃x
1− dq2x

1− d
.

This is defined for generic values of x ∈ R and satisfies B(x)φ0(x)
2 = D(x + 1)φ0(x)

2

(x ∈ R). However, the factor (a ; q)∞ vanishes because of a = q−N . To avoid this, we shift

N slightly from an integer value. For φ0(x)
2 at x ∈ Z, after simplifying (a ; q)∞/(aq

x ; q)∞,

we shift N back to an integer value. For N ∈ Z>0 and x ∈ Z, φ0(x;λ)
2 is non-vanishing

only for x = 0, 1, . . . , N . If we ignore the positivity of the square root argument, the

difference equation (2.18) (with the replacement φn(x) → φmonic
n (x) = φ0(x)P̌

monic
n (x)) also

holds for x ∈ R, n ∈ Z≥0 and N ∈ R. Since these difference equations (2.17) and (2.18) are

algebraic relations, they hold for any parameter range of λ (unless they are ill-defined). The

orthogonality relations (2.13) with positive weight restrict the parameter range of λ (see the

parameter range for the positivity in AppendixA.1). If we do not require the positivity of the

weight factor, the relations (2.13) themselves are valid for any parameter range of λ (unless

they are ill-defined), because the relations (2.13) are finite sums and algebraic relations.

To write the difference equations (2.17) and (2.18) for x ∈ R compactly, let us introduce

the shift operators e±∂̂ acting on functions of x ∈ R as e±∂̂f(x)
def
= f(x± 1) (x ∈ R). They

are related as (e∂̂)† = e−∂̂ and satisfy e±∂̂e∓∂̂ = 1. By replacing e±∂ with e±∂̂ in (2.3) and

(2.11), we define the following operators acting on functions of x ∈ R,

Hop def
= −

√
B(x) e∂̂

√
D(x)−

√
D(x) e−∂̂

√
B(x) +B(x) +D(x), (2.19)

H̃op def
= φ0(x)

−1 ◦ Hop ◦ φ0(x) = B(x)(1− e∂̂) +D(x)(1− e−∂̂). (2.20)
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Then the difference equations (2.18) and (2.17) for x ∈ R are expressed as

Hopφn(x) = Enφn(x), H̃opP̌n(x) = EnP̌n(x) (n ∈ Z≥0), (2.21)

where we ignore the positivity of the square root argument, and φn(x) and P̌n(x) should be

replaced with φmonic
n (x) and P̌monic

n (x) for n > N , respectively.

2.2.2 Darboux transformations

To describe the multi-step Darboux transformations, the Casorati determinant (Casoratian)

is needed. The Casoratian for n functions fj(x) is defined as

WC[f1, f2, . . . , fn](x)
def
= det

(
fk(x+ j − 1)

)

1≤j,k≤n
, (2.22)

(for n = 0, we set WC[·](x) = 1) and the following properties are used,

WC[gf1, gf2, . . . , gfn](x) =

n−1∏

k=0

g(x+ k) ·WC[f1, f2, . . . , fn](x), (2.23)

WC

[
WC[f1, f2, . . . , fn, g],WC[f1, f2, . . . , fn, h]

]
(x)

= WC[f1, f2, . . . , fn](x+ 1)WC[f1, f2, . . . , fn, g, h](x) (n ≥ 0). (2.24)

See [28] for further properties of the Casoratian.

The Darboux transformations for rdQM with seed solutions φn(x) are studied in [25].

Since we are interested in their algebraic aspect here, we consider the Darboux transfor-

mations for Hop rather than H. The algebraic calculations are exactly the same in both

cases. In this subsection, we ignore the positivity of the square root argument and adopt the

rule
√
A2 = A (instead of

√
A2 = |A| for A ∈ R). Although φn(x) should be replaced with

φmonic
n (x) for n > N case, we write it as φn(x) in this subsection for simplicity of presentation.

We consider M-step Darboux transformations with the seed solutions φd1(x), φd2(x), . . . ,

φdM (x) satisfying (2.21). Let us denote a set of labels of seed solutions as D (exactly speaking

an ordered set)

D = {d1, d2, . . . , dM} (dj ∈ Z≥0 : mutually distinct). (2.25)

(Although this notation dj conflicts with the notation of the normalization constant dn in

(2.13), we think this does not cause any confusion because the latter appears as δnm/d
2
n.)

For later use, let us define ℓD, ℓ
KA
D and D[i] for i ≥ −minD,

ℓD
def
=

M∑

j=1

dj −
1

2
M(M − 1), ℓKA

D

def
=

M∑

j=1

dj −
1

2
M(M + 1), (2.26)
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D[i] def
= {d1 + i, d2 + i . . . , dM + i}. (2.27)

The Hamiltonian (2.19) is factorized as

Hop = Aop †Aop, Aop def
=

√
B(x)− e∂̂

√
D(x), Aop † def

=
√
B(x)−

√
D(x) e−∂̂, (2.28)

and the difference equation and its solution are

Hopφn(x) = Enφn(x) (n ∈ Z≥0). (2.29)

Let s = 0 be the quantity at this starting point, and define the quantity at the s-th step as

follows [25]:

Hop
d1...ds

def
= Âop

d1...ds
Âop †

d1...ds
+ Eds , (2.30)

Âop
d1...ds

def
=

√
B̂d1...ds(x)− e∂̂

√
D̂d1...ds(x), Âop †

d1...ds

def
=

√
B̂d1...ds(x)−

√
D̂d1...ds(x) e

−∂̂, (2.31)

B̂d1...ds(x)
def
=





√
B̂d1...ds−1(x+ 1)D̂d1...ds−1(x+ 1)

φd1...ds(x+ 1)

φd1...ds(x)
(s ≥ 1)

B(x− 1) (s = 0)
, (2.32)

D̂d1...ds(x)
def
=






√
B̂d1...ds−1(x)D̂d1...ds−1(x)

φd1...ds(x− 1)

φd1...ds(x)
(s ≥ 1)

D(x) (s = 0)
, (2.33)

φd1...ds n(x)
def
= Âop

d1...ds
φd1...ds−1 n(x). (2.34)

Note that φd1...ds n(x) is defined for n ∈ Z≥0, but we have φd1...ds n(x) = 0 for n ∈ {d1, . . . , ds}.
Then we obtain

Hop
d1...ds

φd1...ds n(x) = En φd1...ds n(x), (2.35)

φd1...ds n(x) = (−1)s

√√√√
s∏

k=1

B̂d1...dk(x)
WC[φd1 , . . . , φds, φn](x)

WC[φd1 , . . . , φds](x+ 1)

= (−1)s

√√√√
s∏

k=1

D̂d1...dk(x+ s+ 1− k)
WC[φd1 , . . . , φds , φn](x)

WC[φd1 , . . . , φds](x)
, (2.36)

φd1...ds−1 n(x) =
Aop †

d1...ds

En − Eds
φd1...ds n(x) (s ≥ 1), (2.37)

B̂d1...ds(x) = D̂d1...ds(x+ 1)
(φd1...ds(x+ 1)

φd1...ds(x)

)2

, (2.38)

B̂d1...ds(x)D̂d1...ds(x+ 1) = B̂d1...ds−1(x+ 1)D̂d1...ds−1(x+ 1) (s ≥ 1), (2.39)
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B̂d1...ds(x) + D̂d1...ds(x) + Eds =
{
B̂d1...ds−1(x) + D̂d1...ds−1(x+ 1) + Eds−1 (s ≥ 2)

B(x) +D(x) (s = 1)
, (2.40)

Hop
d1...ds

= Âop †
d1...ds+1

Âop
d1...ds+1

+ Eds+1, (2.41)

B̂d1...ds(x) =
√
B(x+ s− 1)D(x+ s)

ws−1(x)

ws−1(x+ 1)

ws(x+ 1)

ws(x)
(s ≥ 1), (2.42)

D̂d1...ds(x) =
√
B(x− 1)D(x)

ws−1(x+ 1)

ws−1(x)

ws(x− 1)

ws(x)
(s ≥ 1), (2.43)

s∏

k=1

B̂d1...dk(x) =

√√√√
s∏

k=1

B(x+ k − 1)D(x+ k)
ws(x+ 1)

ws(x)
, (2.44)

s∏

k=1

D̂d1...dk(x+ s + 1− k) =

√√√√
s∏

k=1

B(x+ k − 1)D(x+ k)
ws(x)

ws(x+ 1)
, (2.45)

φd1...ds n(x) = (−1)s
( s∏

k=1

B(x+ k − 1)D(x+ k)
) 1

4 WC[φd1 , . . . , φds, φn](x)√
ws(x)ws(x+ 1)

, (2.46)

etc. Here ws(x) is

ws(x) = WC[φd1, . . . , φds](x). (2.47)

For s = M , we write Hop
d1...dM

= Hop
D , Âop

d1...dM
= Âop

D , B̂d1...dM (x) = B̂D(x), D̂d1...dM (x) =

D̂D(x), φd1...dM n(x) = φD n(x), then we have

Hop
D = Âop

D Âop †
D + EdM , Hop

D φD n(x) = EnφD n(x). (2.48)

By expressing this Hamiltonian in the standard form, we have

Hop
D = Aop †

D Aop
D + Eµ, µ

def
= min(Z≥0\D), (2.49)

Aop
D

def
=

√
BD(x)− e∂̂

√
DD(x), Aop †

D

def
=

√
BD(x)−

√
DD(x) e

−∂̂, (2.50)

BD(x)
def
=

√
B̂D(x+ 1)D̂D(x+ 1)

φD µ(x+ 1)

φD µ(x)
, (2.51)

DD(x)
def
=

√
B̂D(x)D̂D(x)

φD µ(x− 1)

φD µ(x)
, (2.52)

φD n(x) = (−1)M
( M∏

k=1

B(x+ k − 1)D(x+ k)
) 1

4 WC[φd1 , . . . , φdM , φn](x)√
wM(x)wM(x+ 1)

, (2.53)

and

BD(x) +DD(x) + Eµ = B̂D(x) + D̂D(x+ 1) + EdM , (2.54)

BD(x) =
√
B(x+M)D(x+M + 1)

wM(x)

wM(x+ 1)

WC[φd1 , . . . , φdM , φµ](x+ 1)

WC[φd1, . . . , φdM , φµ](x)
, (2.55)
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DD(x) =
√
B(x− 1)D(x)

wM(x+ 1)

wM(x)

WC[φd1 , . . . , φdM , φµ](x− 1)

WC[φd1 , . . . , φdM , φµ](x)
. (2.56)

We remark that the results so far have used (2.29), but not (2.9). The information (2.9)

will be used in § 3 and § 4. In the following, we will denote φD n(x) in (2.53) as φgen
D n(x).

2.2.3 orthogonality relations

In § 2.2.2 we consider a continuous variable x ∈ R, and the results are valid for a discrete

variable x ∈ Z. Let us consider the case x ∈ Z. This means the embedding of the finite

system in § 2.1 into the infinite system. The matrices e±∂ satisfy e±∂e∓∂ = 1. The inner

product of vectors f and g is defined by (f, g) =
∑

x∈Z f(x)g(x). Then the formal calculation

gives

(φd1...ds n, φd1...ds m) = (Âd1...dsφd1...ds−1 n, Âd1...dsφd1...ds−1 m)

= (Â†
d1...ds

Âd1...dsφd1...ds−1 n, φd1...ds−1 m)

=
(
(Hd1...ds−1 − Eds)φd1...ds−1 n, φd1...ds−1 m

)

= (En − Eds)(φd1...ds−1 n, φd1...ds−1 m

)
(s ≥ 1), (2.57)

and this gives

(φd1...ds n, φd1...ds m) = (φn, φm)

s∏

j=1

(En − Edj). (2.58)

If everything goes well after M-steps, we obtain

∑

x∈Z

φgen
D n(x;λ)φ

gen
Dm(x;λ) =

δnm
dn(λ)2

M∏

j=1

(
En(λ)− Edj(λ)

)
. (2.59)

As discussed in § 2.2.1, φ0(x;λ)
2 for N ∈ Z>0 and x ∈ Z is non-vanishing only for x =

0, 1, . . . , N . The function φgen
D n(x;λ) contains the function “φ0(x)” as a factor. For the

original system (M = 0 case), the “φ0(x) factor” is φ0(x;λ), and the sum in (2.59) is

reduced to
∑N

x=0. In § 3 and § 4 we will see the following situations. For the systems in § 3,

the “φ0(x) factor” is φ0(x;λ+Mδ), whose parameter N is N −M , and the sum in (2.59) is

reduced to
∑N−M

x=0 . For the systems in § 4, the “φ0(x) factor” is φ0(x+M ;λ−M δ̄), whose

parameter N is N +M , and the sum in (2.59) is reduced to
∑N

x=−M .
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3 Krein-Adler Type Multi-Indexed Orthogonal Poly-

nomials From State-Deleting Darboux Transforma-

tions

The Darboux transformations with seed solutions φn(x) (n ≤ N) are studied in [25] and

we call the resulting multi-indexed polynomials Krein-Adler type (KA-type) multi-indexed

polynomials. Explicit forms of their difference equations, orthogonal relations etc. are not

given in [25], and we present them here.

The multi-index set we will consider is

D = {d1, d2, . . . , dM} (0 ≤ dj ≤ N : mutually distinct), (3.1)

and M should be M ≤ N . By using the information (2.9), the eigenfunctions φgen
D n(x) are

expressed in terms of φ0 and multi-indexed polynomials [25].

The denominator polynomial ΞKA
D (η) and the multi-indexed polynomial PKA

D,n(η) are de-

fined by (see AppendixA.1 for δ and AppendixA.4 for ϕM(x))

Ξ̌KA
D (x;λ)

def
= ΞKA

D

(
η(x;λ+ (M − 1)δ);λ

)

def
= CKA

D (λ)−1ϕM(x;λ)−1WC[P̌d1 , . . . , P̌dM ](x;λ), (3.2)

P̌KA
D,n(x;λ)

def
= PKA

D,n

(
η(x;λ+Mδ);λ

)
(n = 0, 1, . . . , N)

def
= CKA

D,n(λ)
−1ϕM+1(x;λ)

−1WC[P̌d1 , . . . , P̌dM , P̌n](x;λ). (3.3)

We remark that P̌KA
D,n(x;λ) = 0 for n ∈ D, and P̌KA

D,n(x) can be defined for n ∈ Z≥0 by

replacing P̌n with P̌monic
n for n > N , see § 4. They are

Ξ̌KA
D (x;λ) : a polynomial of degree ℓKA

D +M = ℓD in η(x;λ+ (M − 1)δ),

P̌KA
D,n(x;λ) : a polynomial of degree ℓKA

D + n in η(x;λ+Mδ), (3.4)

where ℓKA
D and ℓD are given by (2.26). The constants CKA

D (λ) and CKA
D,n(λ) are determined

by the following normalization conditions,

Ξ̌KA
D (0;λ) = P̌KA

D,n(0;λ) = 1. (3.5)

In contrast to the case-(1) multi-indexed polynomials in [10], the denominator polynomial

and the multi-indexed polynomial are essentially the same,

P̌KA
D,n(x;λ) = Ξ̌KA

D′ (x;λ), D′ = {d1, d2, . . . , dM , n}. (3.6)
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Thus we have

CKA
D,n(λ) = CKA

D′ (λ), D′ = {d1, d2, . . . , dM , n}. (3.7)

The constant CKA
D (λ) is given by ((A.16) of [25])

CKA
D (λ) = (−1)(

M

2 )κ−(
M

3 )
∏

1≤j<k≤M

Edk(λ)− Edj (λ)
B(0;λ+ (j − 1)δ)

, (3.8)

and (3.7) gives the constant CKA
D,n(λ),

CKA
D,n(λ) = CKA

D (λ)(−1)Mκ−(
M

2 )
M∏

j=1

En(λ)− Edj (λ)
B(0;λ+ (j − 1)δ)

. (3.9)

Let us calculate φgen
D n(x) (2.53). From the property (2.23) and the definitions (3.2)–(3.3),

we have

wM(x) = WC[φd1 , . . . , φdM ](x) =

M∏

k=1

φ0(x+ k − 1;λ) · CKA
D (λ)ϕM(x;λ)Ξ̌KA

D (x;λ), (3.10)

WC[φd1 , . . . , φdM , φn](x) =
M+1∏

k=1

φ0(x+ k − 1;λ) · CKA
D,n(λ)ϕM+1(x;λ)P̌

KA
D,n(x;λ). (3.11)

By using these and (2.7), (A.29) and (A.34), we obtain

φgen
D n(x;λ) = κ−

1
2(

M

2 )
M∏

j=1

En(λ)− Edj(λ)√
B(0;λ+ (j − 1)δ)

× φKA
D n(x;λ), (3.12)

φKA
D n(x;λ)

def
= ψKA

D (x;λ)P̌KA
D,n(x;λ), (3.13)

ψKA
D (x;λ)

def
=

φ0(x;λ+Mδ)√
Ξ̌KA
D (x;λ)Ξ̌KA

D (x+ 1;λ)
. (3.14)

Next let us calculate the potential functions (2.51)–(2.52). By using (A.29) and (A.34), we

obtain

BD(x;λ) = κMB(x;λ+Mδ)
Ξ̌KA
D (x;λ)

Ξ̌KA
D (x+ 1;λ)

P̌KA
D,µ(x+ 1;λ)

P̌KA
D,µ(x;λ)

, (3.15)

DD(x;λ) = κMD(x;λ+Mδ)
Ξ̌KA
D (x+ 1;λ)

Ξ̌KA
D (x;λ)

P̌KA
D,µ(x− 1;λ)

P̌KA
D,µ(x;λ)

. (3.16)

The deformed Hamiltonian (2.49) is similarity transformed to

H̃KAop
D (λ)

def
= ψKA

D (x;λ)−1 ◦ Hop
D (λ) ◦ ψKA

D (x;λ)
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= κMB(x;λ +Mδ)
Ξ̌KA
D (x;λ)

Ξ̌KA
D (x+ 1;λ)

( P̌KA
D,µ(x+ 1;λ)

P̌KA
D,µ(x;λ)

− e∂̂
)

+ κMD(x;λ+Mδ)
Ξ̌KA
D (x+ 1;λ)

Ξ̌KA
D (x;λ)

( P̌KA
D,µ(x− 1;λ)

P̌KA
D,µ(x;λ)

− e−∂̂
)
+ Eµ(λ). (3.17)

From the result in § 2.2.2, the multi-indexed polynomials P̌KA
D,n(x;λ) satisfy the difference

equation,

H̃KAop
D (λ)P̌KA

D,n(x;λ) = En(λ)P̌KA
D,n(x;λ), (3.18)

for x ∈ R. We remark that this difference equation holds for any λ. In the expressions

(3.14)–(3.16), they contain φ0, B and D with the parameter λ+Mδ, which means that the

parameter N is N −M . Therefore the matrix H̃KA
D (λ) is of order N −M + 1,

H̃KA
D (λ) =

(
H̃KA

D x,y(λ)
)
x,y=0,1,...,N−M

,

H̃KA
D (λ)

def
= H̃KAop

D (λ)
∣∣
∂̂→∂

. (3.19)

Since B(x;λ+Mδ) andD(x;λ+Mδ) satisfy the boundary conditions B(N−M ;λ+Mδ) = 0

at x = N −M and D(0;λ +Mδ) = 0 at x = 0, the difference equation (3.18) implies the

following. The matrix eigenvalue problem for H̃D is solved by the multi-indexed polynomials

P̌KA
D,n(x),

H̃KA
D (λ)P̌KA

D,n(x;λ) = En(λ)P̌KA
D,n(x;λ) (n ∈ {0, 1, . . . , N}\D). (3.20)

The orthogonality relations for P̌KA
D,n(x) can be read from (2.59). From (3.12)–(3.14),

φgen
D n(x;λ) contains φ0(x;λ+Mδ), which does not vanish at x = 0, 1, . . . , N −M for x ∈ Z.

So the sum in (2.59) is reduced to
∑N−M

x=0 . We obtain the orthogonality relations,

N−M∑

x=0

φ0(x;λ+Mδ)2

Ξ̌KA
D (x;λ)Ξ̌KA

D (x+ 1;λ)
P̌KA
D,n(x;λ)P̌

KA
D,m(x;λ)

=
δnm

dKA
D,n(λ)

2
(n,m ∈ {0, 1, . . . , N}\D), (3.21)

where the normalization constants dKA
D,n(λ)

2 are obtained from (2.59) and (3.12)–(3.14) as

follows,

dKA
D,n(λ)

2 = dn(λ)
2κ−(

M

2 )
M∏

j=1

En(λ)− Edj (λ)
B(0;λ+ (j − 1)δ)

. (3.22)

In order to call the relations (3.21) truly orthogonality relations, the positivity of the weight

factor is necessary. The positivity of φ0(x;λ + Mδ)2 can be easily achieved by choosing
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parameters λ so thatB(x;λ+Mδ) andD(x;λ+Mδ) are positive (except for the boundaries).

The positivity of Ξ̌KA
D (x;λ)Ξ̌KA

D (x + 1;λ) (for x = 0, 1, . . . , N − M) can be achieved by

imposing the following Krein-Adler condition on D [25],

M∏

j=1

(m− dj) ≥ 0 (∀m ∈ Z≥0). (3.23)

We remark that this condition (3.23) is rewritten as

ej − ej−1 ≡ 1 (mod 2) (j = 2, 3, . . .), (3.24)

where Z≥0\D = {e1, e2, . . .} with e1 < e2 < · · · . In this situation, the Hamiltonian of the

deformed system

HKA
D (λ) =

(
HKA

D x,y(λ)
)
x,y=0,1,...,N−M

,

HKA
D (λ)

def
= ψKA

D (x;λ) ◦ H̃KA
D (λ) ◦ ψKA

D (x;λ)−1

= −
√
BD(x;λ)DD(x+ 1;λ) e∂ −

√
BD(x− 1;λ)DD(x;λ) e

−∂

+BD(x;λ) +DD(x;λ) + Eµ(λ) (3.25)

is a real symmetric matrix, and the matrix eigenvalue problem for HKA
D is solved by φKA

D n(x)

(3.13),

HKA
D (λ)φKA

D n(x;λ) = En(λ)φKA
D n(x;λ) (n ∈ {0, 1, . . . , N}\D). (3.26)

However, we remark that the relations (3.21) hold for any λ and D, because the expressions

are algebraic and the sum in (3.21) is a finite sum.

We have shown the state-deleting property of the Darboux transformations by using the

embedding of the finite system into the infinite system. On the other hand, in [25], the

state-deleting property was shown without using such a trick. It was shown that each step

of the Darboux transformation reduces the size of the matrix (Hamiltonian) by one.

The original systems in § 2.1 have shape invariance. As its consequence, the forward and

backward shift relations hold. Here we consider the forward shift relation,

Fop(λ) = B(0;λ)ϕ(x)−1(1− e∂̂), Fop(λ)P̌n(x;λ) = En(λ)P̌n−1(x;λ+ δ). (3.27)

By using this and properties of determinant and the notation (2.27), we can show the fol-

lowing for dj ≥ 1,

P̌KA
D,0 (x;λ) = Ξ̌KA

D[−1](x;λ+ δ). (3.28)
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A slightly different but similar relation exists for the case-(1) multi-indexed polynomials in

[10]. Let us consider the case dj ≥ 1. Since this condition means µ = 0, (3.17) is expressed

as

H̃KAop
D (λ) = κMB(x;λ+Mδ)

Ξ̌KA
D (x;λ)

Ξ̌KA
D (x+ 1;λ)

( Ξ̌KA
D[−1](x+ 1;λ+ δ)

Ξ̌KA
D[−1](x;λ+ δ)

− e∂̂
)

+ κMD(x;λ+Mδ)
Ξ̌KA
D (x+ 1;λ)

Ξ̌KA
D (x;λ)

( Ξ̌KA
D[−1](x− 1;λ+ δ)

Ξ̌KA
D[−1](x;λ+ δ)

− e−∂̂
)
. (3.29)

By replacing ∂̂ with ∂, an expression of H̃KA
D (λ) is obtained. This resembles the similarity

transformed Hamiltonian for the case-(1) multi-indexed polynomials in [10].

4 New Multi-Indexed Orthogonal Polynomials From

State-Adding Darboux Transformations

In this section we consider the Darboux transformations with seed solutions φn(x) (n > N)

[24] and present new multi-indexed orthogonal polynomials Q̌D′,n(x).

The multi-index set we will consider is

D = {d1, d2, . . . , dM} (dj > N : mutually distinct), (4.1)

dj = N + 1 +mj , mj ∈ Z≥0, (4.2)

and we assume M ≤ N . In this section we use the following notations,

D′ = D[−N−1] = {m1, m2, . . . , mM}, (4.3)

λ′ = λ+ (N + 1)(δ + δ̄), (4.4)

where δ̄ is given in AppendixA.1. We remark that N is one element of λ.

The twelve polynomials P̌n(x) in AppendixA.1 with the normalization (2.10) are ill-

defined for n > N , because there is a factor 1/(−N)k or 1/(q−N ; q)k in the sum
∑n

k=0 of the

(basic) hypergeometric series expansion. To avoid this, let us consider the monic polynomial,

P̌monic
n (x;λ) = cn(λ)

−1P̌n(x;λ), (4.5)

where cn(λ) is the coefficient of the highest degree term,

P̌n(x;λ) = cn(λ)η(x;λ)
n + (lower degree terms). (4.6)
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The monic polynomial P̌monic
n (x;λ) is well-defined for n ∈ Z≥0. Explicit forms of cn(λ) are

given in AppendixA.1 and the universal expression of cn(λ) is ((A.14) in [25])

cn(λ) = (−1)nκ−(
n

2)
n∏

j=1

En(λ)− Ej−1(λ)

η(j;λ)B(0;λ+ (j − 1)δ)
. (4.7)

For the monic polynomial, the orthogonality relations (2.13) become

N∑

x=0

φ0(x;λ)
2P̌monic

n (x;λ)P̌monic
m (x;λ) =

δnm
dmonic
n (λ)2

, dmonic
n (λ) = cn(λ)dn(λ). (4.8)

The polynomials Ξ̌KA
D (x;λ) (3.2) and P̌KA

D,n(x;λ) (3.3) with the normalization conditions

(3.5) are defined for dj, n ≤ N . By replacing P̌dj and P̌n with P̌monic
dj

and P̌monic
n , their

definitions are extended to dj , n ∈ Z≥0. The monic version of these polynomials are given

by

Ξ̌KAmonic
D (x;λ) = cηD(λ)

−1ϕM(x;λ)−1WC[P̌
monic
d1

, . . . , P̌monic
dM

](x;λ), (4.9)

P̌KAmonic
D,n (x;λ) = cηD,n(λ)

−1ϕM+1(x;λ)
−1WC[P̌

monic
d1

, . . . , P̌monic
dM

, P̌monic
n ](x;λ), (4.10)

where the constants cηD(λ) and cηD,n(λ) are given by (A.9) and (A.12) respectively. These

monic polynomials and their non-monic versions are related as

cηD(λ)Ξ̌
KAmonic
D (x;λ) = CKA

D (λ)
Ξ̌KA
D (x;λ)

∏M

j=1 cdj (λ)
, (4.11)

cηD,n(λ)P̌
KAmonic
D,n (x;λ) = CKA

D,n(λ)
P̌KA
D,n(x;λ)∏M

j=1 cdj (λ) · cn(λ)
. (4.12)

This P̌KAmonic
D,n (x;λ) satisfies the difference equation (3.18) by replacing Ξ̌KA

D and P̌KA
D,n with

Ξ̌KAmonic
D and P̌KAmonic

D,n in (3.17).

For n > N , by setting n = N + 1 +m (m ∈ Z≥0), the monic polynomial P̌n(x;λ) has a

factorization property (Theorem2.1 in [24], with Q̌m(x;N,λ) ∝ P̌monic
m (x−N−1;−N−2,λ′)

(see (2.54) in [24]). This proportional constant is determined by (4.27) with M = 1),

P̌monic
n (x;λ) = Λ(x;λ)ρ(N+1)mP̌monic

m (x−N − 1;λ′), (4.13)

where Λ(x;λ) is defined by

Λ(x;λ)
def
=

N∏

k=0

(
η(x;λ)− η(k;λ)

)
, (4.14)
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and its properties are given in AppendixA.3. From (4.9) and (4.13), we have

Ξ̌KAmonic
D (x;λ)

= cηD(λ)
−1ϕM(x;λ)−1

M∏

j=1

Λ(x+ j − 1;λ) ·
M∏

k=1

ρ(N+1)mk

×WC[P̌
monic
m1

, . . . , P̌monic
mM

](x−N − 1;λ′),

=
cηD′(λ

′)

cηD(λ)

ϕM(0;λ′)

ϕM(N + 1;λ)

M∏

j=1

Λ(x+ j − 1;λ) ·
M∏

k=1

ρ(N+1)mk · Ξ̌KAmonic
D′ (x−N − 1;λ′), (4.15)

where (2.23) and (A.32) are used. So Ξ̌KAmonic
D (x;λ) is divisible by

∏M
j=1Λ(x+j−1;λ), which

is a polynomial in η(x;λ + (M − 1)δ), see (A.16) (with M → M − 1). The relation (3.28)

implies that P̌KAmonic
D,0 (x;λ) is divisible by

∏M
j=1 Λ(x + j − 1;λ + δ), which is a polynomial

in η(x;λ +Mδ) (A.17). It is expected that P̌KAmonic
D,n (x;λ) is also divisible by

∏M
j=1Λ(x +

j − 1;λ+ δ), and this is indeed the case.

Based on P̌KAmonic
D,n (x;λ), we define new multi-indexed polynomials Q̌monic

D′,n (x;λ) for n ∈
Z≥0. First, let us define Q̌

monic
D′,n (x;λ) for n ∈ Z≥0\D as follows (see (A.17)),

Q̌monic
D′,n (x;λ)

def
= ρ(

M

2 )N
M∏

j=1

Λ(x+ j − 1;λ+ δ)−1 · P̌KAmonic
D,n (x;λ) (4.16)

= cηD,n(λ)
−1ρ(

M

2 )N
M∏

j=1

Λ(x+ j − 1;λ+ δ)−1

× ϕM+1(x;λ)
−1WC[P̌

monic
d1

, . . . , P̌monic
dM

, P̌monic
n ](x;λ). (4.17)

For n > N and n 6∈ D (we set n = N + 1 +m), by using (4.13) and (2.23), we have

Q̌monic
D′,n (x;λ)

= cηD,n(λ)
−1ρ(

M

2 )N
M∏

k=1

ρ(N+1)mk · ρ(N+1)m

∏M+1
j=1 Λ(x+ j − 1;λ)

∏M

j=1Λ(x+ j − 1;λ+ δ)

ϕM+1(x−N − 1;λ′)

ϕM+1(x;λ)

× ϕM+1(x−N − 1;λ′)−1WC[P̌
monic
m1

, . . . , P̌monic
mM

, P̌monic
m ](x−N − 1;λ′), (4.18)

which vanishes for x ∈ {−M,−M + 1, . . . , N} by (A.20) and (A.32). Next, let us define

Q̌monic
D′,n (x;λ) for n ∈ D, based on the expression (4.17). For n = di ∈ D, the Casoratian

WC[· · · ] in (4.17) vanishes, but cηD,n(λ) (A.12) also vanishes. So, by taking certain appropri-

ate “n→ di limit”, we may obtain a finite quantity. Following the prescription explained in
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AppendixB, we define Q̌monic
D′,n (x;λ) with n = di ∈ D as follows,

Q̌monic
D′,n (x;λ)

def
= ρ−nc′ ηD,n(λ)

−1ρ(
M

2 )N
M∏

j=1

Λ(x+ j − 1;λ+ δ)−1 (4.19)

× ϕM+1(x;λ)
−1

∣∣∣∣∣∣∣∣∣

P̌monic
d1

(x1;λ) · · · P̌monic
dM

(x1;λ) R1(x)

P̌monic
d1

(x2;λ) · · · P̌monic
dM

(x2;λ) R2(x)
... · · · ...

...
P̌monic
d1

(xM+1;λ) · · · P̌monic
dM

(xM+1;λ) RM+1(x)

∣∣∣∣∣∣∣∣∣

,

where xj = x+ j − 1 and Rj(x) are given by

Rj(x) = RM,j,n(x;λ) (4.20)

def
= ρ(N+1)miYM,j(x;λ)P̌

monic
mi

(xj −N − 1;λ′) + ˇ̃P (1)
n (xj ;λ) + ρ(N+1)miΛ(xj ;λ)

ˇ̃P (2)
mi

(xj ;λ),

and YM,j(x;λ),
ˇ̃P
(1)
n (x;λ), ˇ̃P

(2)
m (x;λ) and c′ ηD,n(λ) are defined by (B.10), (B.11), (B.12) and

(A.13), respectively. We remark that the contribution to Q̌monic
D′,n (x) (4.19) coming from the

third term of Rj(x) (4.20) (the term containing ˇ̃P
(2)
mi (x) : contribution (c) in AppendixB.3)

has the following form,

Λ(x+M ;λ−M δ̄)×
(
a polynomial in η(x;λ+Mδ)

)
,

which vanishes for x ∈ {−M,−M + 1, . . . , N}. So, when dealing with Q̌monic
D′,di

(x) for x ∈
{−M,−M +1, . . . , N}, we can ignore the third term of Rj(x). These Q̌

monic
D′,n (x;λ) (n ∈ Z≥0)

are

Q̌monic
D′,n (x;λ) : a monic polynomial of degree ℓD′ + n in η(x;λ+Mδ),

Q̌monic
D′,n (x;λ)

def
= Qmonic

D′,n

(
η(x;λ+Mδ);λ

)
, (4.21)

where ℓD′ is given by (2.26). We define the non-monic version Q̌D′,n(x;λ) as follows,

Q̌D′,n(x;λ)
def
=

Q̌monic
D′,n (x;λ)

Q̌monic
D′,n (−M ;λ)

(
⇒ Q̌D′,n(−M ;λ) = 1

)
. (4.22)

Let us calculate φgen
D n(x) (2.53) for n ∈ Z≥0\D. By using (3.12), (4.11)–(4.12), (4.15),

(4.16), (A.38) and (3.9), we obtain

φgen
D n(x;λ) = (−1)Mcn(λ)κ

1
2(

M

2 )ρ−(2N+1)(M2 )
M∏

j=1

√
B(0;λ+ (j − 1)δ)
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×
cηD,n(λ)

cηD′(λ
′)

ΛM(0;λ)
1
2

φ0(M ;λ−M δ̄)

ϕM(N + 1;λ)

ϕM(0;λ′)
× φQmonic

D′ n (x;λ), (4.23)

φQmonic
D′ n (x;λ)

def
= ψQmonic

D′ (x;λ)Q̌monic
D′,n (x;λ), (4.24)

ψQmonic
D′ (x;λ)

def
=

φ0(x+M ;λ −M δ̄)√
Ξ̌Qmonic
D′ (x;λ)Ξ̌Qmonic

D′ (x+ 1;λ)
. (4.25)

Here Ξ̌Qmonic
D′ (x;λ) is given by

Ξ̌Qmonic
D′ (x;λ)

def
= ρ(N+1)ℓ

D′ Ξ̌KAmonic
D′ (x−N − 1;λ′)

: a monic polynomial of degree ℓD′ in η(x;λ+ (M − 1)δ), (4.26)

which is shown by (3.4) and

η(x−N −1;λ′+(M −1)δ) = ρ−N−1
(
η(x;λ+(M −1)δ)− η(N +1;λ+(M −1)δ)

)
. (4.27)

Since the parameter N for λ+ δ is N − 1, we have

Ξ̌Qmonic
D′ (x;λ+δ) = ρNℓ

D′ Ξ̌KAmonic
D′

(
x−N ;λ+δ+N(δ+ δ̄)

)
= ρNℓ

D′ Ξ̌KAmonic
D′ (x−N ;λ′− δ̄).

(4.28)

We define the non-monic version Ξ̌Q
D′(x;λ) as follows,

Ξ̌Q
D′(x;λ)

def
=

Ξ̌Qmonic
D′ (x;λ)

Ξ̌Qmonic
D′ (−M ;λ)

(
⇒ Ξ̌Q

D′(−M ;λ) = 1
)
. (4.29)

Next let us calculate the potential functions (2.51)–(2.52). Recall (3.15)–(3.16), µ = 0 now

and (3.28). From (4.15) with the replacements D → D[−1] and λ → λ+ δ, we have

Ξ̌KAmonic
D[−1] (x;λ+ δ)

= (const)×
M∏

j=1

Λ(x+ j − 1;λ+ δ) · Ξ̌KAmonic
(D[−1])[−N]

(
x−N ;λ+ δ +N(δ + δ̄)

)

= (const)×
M∏

j=1

Λ(x+ j − 1;λ+ δ) · Ξ̌KAmonic
D[−N−1] (x−N ;λ′ − δ̄)

= (const)×
M∏

j=1

Λ(x+ j − 1;λ+ δ) · ρ−Nℓ
D′ Ξ̌Qmonic

D′ (x;λ+ δ). (4.30)

By using (4.11)–(4.12), (3.28), (4.15), (4.30) and (A.35), (3.15)–(3.16) become

BD(x;λ) = B(x+M ;λ −M δ̄)
Ξ̌Qmonic
D′ (x;λ)

Ξ̌Qmonic
D′ (x+ 1;λ)

Ξ̌Qmonic
D′ (x+ 1;λ+ δ)

Ξ̌Qmonic
D′ (x;λ+ δ)

, (4.31)
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DD(x;λ) = D(x+M ;λ−M δ̄)
Ξ̌Qmonic
D′ (x+ 1;λ)

Ξ̌Qmonic
D′ (x;λ)

Ξ̌Qmonic
D′ (x− 1;λ+ δ)

Ξ̌Qmonic
D′ (x;λ+ δ)

. (4.32)

These potential functions resemble those of the case-(1) multi-indexed polynomials in [10].

The deformed Hamiltonian (2.49) is similarity transformed to

H̃Q op
D′ (λ)

def
= ψQmonic

D′ (x;λ)−1 ◦ Hop
D (λ) ◦ ψQmonic

D′ (x;λ)

= B(x+M ;λ −M δ̄)
Ξ̌Qmonic
D′ (x;λ)

Ξ̌Qmonic
D′ (x+ 1;λ)

( Ξ̌Qmonic
D′ (x+ 1;λ+ δ)

Ξ̌Qmonic
D′ (x;λ+ δ)

− e∂̂
)

+D(x+M ;λ −M δ̄)
Ξ̌Q,monic
D′ (x+ 1;λ)

Ξ̌Qmonic
D′ (x;λ)

(Ξ̌Qmonic
D′ (x− 1;λ+ δ)

Ξ̌Qmonic
D′ (x;λ + δ)

− e−∂̂
)
. (4.33)

From the result in § 2.2.2, the multi-indexed polynomials Q̌monic
D′,n (x;λ) satisfy the difference

equation,

H̃Q op
D′ (λ)Q̌monic

D′,n (x;λ) = En(λ)Q̌monic
D′,n (x;λ), (4.34)

for x ∈ R and n ∈ Z≥0. The results (4.34) for n ∈ D are obtained from those for n ∈ Z≥0\D
by taking the “n → di limit.” Exactly speaking, the results (4.34) for n ∈ D may not

be proven, because there is ambiguity in the “n → di limit” and the prescription given in

AppendixB is one way of taking that limit. However, we can verify (4.34) for n ∈ Z≥0

by direct calculation (using Mathematica) for small N , M , dj and n. We remark that this

difference equation holds for any λ. In the expressions (4.25) and (4.31)–(4.32), they contain

φ0, B and D with the coordinate x+M and the parameter λ−M δ̄, which means that the

parameter N is N +M . Therefore the matrix H̃Q
D′(λ) is of order N +M + 1,

H̃Q
D′(λ) =

(
H̃Q

D′ x,y(λ)
)
x,y=−M,−M+1,...,N

,

H̃Q
D′(λ)

def
= H̃Q op

D′ (λ)
∣∣
∂̂→∂

. (4.35)

Since B(x +M ;λ −M δ̄) and D(x +M ;λ −M δ̄) satisfy the boundary conditions B(N +

M ;λ−M δ̄) = 0 at x = N and D(0;λ−M δ̄) = 0 at x = −M , the difference equation (4.34)

implies the following. The matrix eigenvalue problem for H̃Q
D′ is solved by the multi-indexed

polynomials Q̌monic
D′,n (x),

H̃Q
D′(λ)Q̌

monic
D′,n (x;λ) = En(λ)Q̌monic

D′,n (x;λ) (n ∈ {0, 1, . . . , N} ∪ D). (4.36)

For n > N and n 6∈ D, this equation also holds as 0 = 0, see (4.18) and its comment.

21



The orthogonality relations for Q̌monic
D′,n (x) can be read from (2.59). From (4.23)–(4.25),

φgen
D n(x;λ) contains φ0(x+M ;λ −M δ̄), which does not vanish at x = −M,−M + 1, . . . , N

for x ∈ Z. So the sum in (2.59) is reduced to
∑N

x=−M . We obtain the orthogonality relations,

N∑

x=−M

φ0(x+M ;λ−M δ̄)2

Ξ̌Qmonic
D′ (x;λ)Ξ̌Qmonic

D′ (x+ 1;λ)
Q̌monic

D′,n (x;λ)Q̌monic
D′,m (x;λ)

=
δnm

dQmonic
D′,n (λ)2

(n,m ∈ {0, 1, . . . , N} ∪ D). (4.37)

Here the normalization constants dQmonic
D′,n (λ)2 for n ∈ {0, 1, . . . , N} are obtained from (2.59)

and (4.23)–(4.25) as follows,

dQmonic
D′,n (λ)2 = dmonic

n (λ)2 κ(
M

2 )ρ−2(2N+1)(M2 )
M∏

j=1

B(0;λ+ (j − 1)δ)

En(λ)− Edj (λ)

×
cηD,n(λ)

2

cηD′(λ
′)2

ΛM(0;λ)

φ0(M ;λ −M δ̄)2
ϕM(N + 1;λ)2

ϕM(0;λ′)2
. (4.38)

For n = di ∈ D, we take the “n → di limit” of (4.38). By using (B.17), (B.21) and (B.24),

we obtain dQmonic
D′,n (λ)2 with n = di ∈ D,

dQmonic
D′,n (λ)2 = d ′monic

n (λ)2 κ(
M

2 )ρ−2(2N+1)(M2 )
∏M

j=1B(0;λ+ (j − 1)δ)
∏M

j=1
j 6=i

(En(λ)− Edj(λ))

×
c′ ηD,n(λ)

2

cηD′(λ
′)2

ΛM(0;λ)

φ0(M ;λ−M δ̄)2
ϕM(N + 1;λ)2

ϕM(0;λ′)2

× ρ2nκ−n ×





1 : (i)′, (iii)′, (iv)′

(2n+ d̃ )−1 : (ii)′

(1− d̃q2n)−1 : (v)′
. (4.39)

In order to call the relations (4.37) truly orthogonality relations, the positivity of the weight

factor is necessary. We will discuss this problem in the next subsection. If the positivity is

satisfied, the Hamiltonian of the deformed system

HQ
D′(λ) =

(
HQ

D′ x,y(λ)
)
x,y=−M,−M+1,...,N

,

HQ
D′(λ)

def
= ψQmonic

D′ (x;λ) ◦ H̃Q
D′(λ) ◦ ψQmonic

D′ (x;λ)−1

= −
√
BD(x;λ)DD(x+ 1;λ) e∂ −

√
BD(x− 1;λ)DD(x;λ) e

−∂

+BD(x;λ) +DD(x;λ) (4.40)

22



is a real symmetric matrix, and the matrix eigenvalue problem forHQ
D′ is solved by φQmonic

D′ n (x)

(4.24),

HQ
D′(λ)φ

Qmonic
D′ n (x;λ) = En(λ)φQmonic

D′ n (x;λ) (n ∈ {0, 1, . . . , N} ∪ D). (4.41)

However, we remark that the relations (4.37) hold for any λ and D, because the expressions

are algebraic and the sum in (4.37) is a finite sum. We can verify (4.37) by direct calculation

(using Mathematica) for small N , M , dj and n.

We comment on the special case D = {N + 1, N + 2, . . . , N +M} studied in [24]. In

this case we have D′ = {0, 1, . . . ,M − 1} and the denominator polynomial Ξ̌KA
D′ (x) becomes

a constant, Ξ̌KA
D′ (x) = 1 [25], namely Ξ̌Qmonic

D′ (x) = 1. So H̃Q op
D′ (λ) (4.33) becomes

H̃Q op
D′ (λ) = B(x+M ;λ−M δ̄)(1− e∂̂) +D(x+M ;λ−M δ̄)(1− e−∂̂). (4.42)

This and (4.34) imply

Q̌monic
D′,n (x;λ) = ρ−nM P̌monic

n (x+M ;λ −M δ̄) (n = 0, 1, . . . , N +M), (4.43)

which is shown by (4.21) and

η(x+M ;λ−M δ̄) = ρM
(
η(x;λ+Mδ)− η(−M ;λ+Mδ)

)
. (4.44)

We remark that verification of this relation (4.43) based on (4.17) and (4.19) is non-trivial.

In [24], where Q̌monic
D′,n (x;λ) is not given, the fact that the eigenpolynomials are given by

P̌monic
n (x+M ;λ −M δ̄) is shown based on direct calculations of Casoratians.

4.1 Positivity of the weight

Let us consider the condition for the positivity of the weight factor in (4.37). The positivity

of φ0(x+M ;λ−M δ̄)2 can be easily achieved by choosing parameters λ so that B(x+M ;λ−
M δ̄) and D(x+M ;λ −M δ̄) are positive (except for the boundaries). From the positivity

conditions for B(x;λ) and D(x;λ) given in AppendixA.1, we have

H : a, b > 0

K : 0 < p < 1

R : b > N + d, d > M, 0 < c < 1 + d−M, (d 6=M + 1)

dH : a > 0, b > M, (a + b 6=M + 1,M + 2)

dqqK : p > q−N
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qH : 0 < a, b < 1

qK : p > 0 (4.45)

qqK : p > q−N−M

aqK : 0 < p < q−1

qR : 0 < b < dqN , d < qM , dq1−M < c < 1, (d 6= qM+1)

dqH : 0 < a < 1, 0 < bq−M < 1, (ab 6= qM+1, qM+2)

dqK : p > 0.

We divide these into two classes,

(a) : H, K, dqqK, qH, qK, aqK, dqK, (b) : R, dH, qqK, qR, dqH. (4.46)

The parameter ranges (4.45) are independent of M for class (a) and dependent on M for

class (b). The positivity of Ξ̌Qmonic
D′ (x;λ)Ξ̌Qmonic

D′ (x + 1;λ) (for x = −M,−M + 1, . . . , N)

is highly non-trivial. We try this problem by numerical calculations. In the rest of this

subsection we assume d1 < d2 < · · · < dM and the parameters λ satisfying (4.45).

Based on numerical calculations, we have observed the followings. For class (a), the

condition for the positivity is given by

dj − dj−1 ≡ 1 (mod 2) (j = 1, 2, . . . ,M ; d0 = N),
(
⇔ m2k−1 : even

(
k = 1, 2, . . . , [M+1

2
]
)
, m2k : odd

(
k = 1, 2, . . . , [M

2
]
))
. (4.47)

For class (b), the situation is more complicated. For D satisfying (4.47), the positivity is

satisfied by further restricting the range of parameters (4.45). We have not yet found a

definite range, but the following ranges seem to work well: qqK: large p, dH: large b, dqH:

small b, R: large d, qR: small d. Even for D not satisfying (4.47), the positivity may be

satisfied. For example, in the case of M = 1, if the parameters are well chosen, there are no

restrictions on d1. For general M , we have not yet found the conditions for D.

5 Summary and Comments

The Hamiltonian of a finite type rdQM is a real symmetric matrix of order N + 1 (the

coordinate x ∈ {0, 1, . . . , N}) and the Schrödinger equation is a matrix eigenvalue problem,

whose eigenvectors are φn(x) with n ∈ {0, 1, . . . , N}. This eigenvector φn(x) is extended

to the function φn(x) (x ∈ R, n ∈ Z≥0) (for n > N , φn(x) is replaced with φmonic
n (x)),

which satisfy the difference equation. Based on such rdQM systems described by the twelve
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orthogonal polynomials, we have considered their deformation by the multi-step Darboux

transformations with seed solutions φn(x). The seed solution φn(x) with n > N corresponds

to the overshoot eigenfunction φ̃os
n (x) in oQM systems with a finite number of eigenstates

[22], and it is a “zero norm” eigenvector because it vanishes at x ∈ {0, 1, . . . , N} [24]. For

seed solutions φn(x) with n ≤ N (n ∈ D = {d1, d2, . . . , dM}), the Darboux transformations

are state-deleting and the deformed Hamiltonian has order N −M + 1 (x ∈ {0, 1, . . . , N −
M}) and the eigenvectors are described by the Krein-Alder type multi-indexed orthogonal

polynomials P̌KA
D,n(x) (n ∈ {0, 1, . . . , N}\D) [25]. For seed solutions φn(x) with n > N

(n ∈ D), the Darboux transformations are state-adding and the deformed Hamiltonian has

order N +M + 1 (x ∈ {−M,−M + 1, . . . , N}) and the eigenvectors are described by new

multi-indexed orthogonal polynomials Q̌D′,n(x) (n ∈ {0, 1, . . . , N} ∪ D). Explicit forms of

the difference equation and the orthogonality relations for P̌KA
D,n(x) are new results and given

in § 3. New multi-indexed orthogonal polynomials Q̌D′,n(x) are main results of this paper.

Their definitions, the difference equation and the orthogonality relations are given in § 4.

The energy eigenvalues of M added states are En (n ∈ D). This is in contrast to the case

of state-adding Darboux transformations with the pseudo virtual states as seed solutions

[21], in which the energy eigenvalues of M added states are E−n−1 (n ∈ D). The positivity

condition of the weight factor is discussed in § 4.1. Partial results are obtained, but they are

still unsatisfactory. It is an important problem to clarify the positivity condition. In § 4 the

condition M ≤ N is assumed, and it is an interesting problem to consider the case M > N .

We have shown the state-adding property of the Darboux transformations with seed

solutions φn(x) (n > N) by using the embedding of the finite system into the infinite system.

In Appendix B of [21], where the state-adding Darboux transformations with the pseudo

virtual states φ̃pv
v (x) as seed solutions are discussed, the state-adding property was shown

without using such a trick. It was shown that each step of the Darboux transformation

increases the size of the matrix (Hamiltonian) by one. We think that such a proof is possible

in the present case as well. We hope that we will be able to report on this subject in detail

elsewhere.

The multi-indexed orthogonal polynomials do not satisfy the three term recurrence rela-

tions, which characterize the ordinary orthogonal polynomials [16]. They satisfy the recur-

rence relations with more terms ([12, 13, 29, 23] for rdQM). It is an interesting problem to

study the recurrence relations for the new multi-indexed orthogonal polynomials Q̌D′,n(x).
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A Various Data And Formulas

In this appendix we present various data and formulas on orthogonal polynomials, η(x),

Λ(x), ϕM(x), B(x), D(x) and φ0(x). The Pochhammer symbol (shifted factorial), the hy-

pergeometric series and their q-versions are defined by [16, 17],

(a)n
def
=

n−1∏

j=0

(a+ j), (a1, . . . , ar)n
def
=

r∏

k=1

(ak)n, (A.1)

(a ; q)n
def
=

n−1∏

j=0

(1− aqj), (a1, . . . , ar ; q)n
def
=

r∏

k=1

(ak ; q)n, (A.2)

rFs

(a1, . . . , ar
b1, . . . , bs

∣∣∣ x
)

def
=

∞∑

k=0

(a1, . . . , ar)k
(b1, . . . , bs)k

xk

k!
, (A.3)

rφs

(a1, . . . , ar
b1, . . . , bs

∣∣∣ q ; z
)

def
=

∞∑

k=0

(a1, . . . , ar ; q)k
(b1, . . . , bs ; q)k

(−1)(1+s−r)kq(1+s−r)(k2)
zk

(q ; q)k
, (A.4)

with the conventions
∑n−1

j=n ∗ = 0 and
∏n−1

j=n ∗ = 1. The binomial coefficient and its q-version

are

(
N

n

)
=

N !

n! (N − n)!
=

(−1)n(−N)n
(1)n

, (A.5)

[
N

n

]
=

(q ; q)N
(q ; q)n (q ; q)N−n

=
(−1)n(q−N ; q)n

(q ; q)n
qNn−(n2). (A.6)

A.1 Orthogonal polynomials

We give the data for the twelve orthogonal polynomials in the order of (2.14). The pa-

rameterization of some polynomials are different from the conventional ones, see [26]. We

consider ǫ = ǫ′ = 1 cases in [26]. The universal expression of cn (4.6) is given by (4.7). The

polynomials ˇ̃P
(1)
n (x;λ) and ˇ̃P

(2)
m (x;λ) are defined by (B.11) and (B.12), respectively.
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A.1.1 Hahn (H)

Parameter range for the positivity (2.2): a, b > 0.

λ = (a, b, N), δ = (1, 1,−1), δ̄ = (0, 0,−1), κ = 1, ρ = 1,

En(λ) = n(n+ a+ b− 1), η(x;λ) = x, ϕ(x;λ) = 1,

P̌n(x;λ) = 3F2

(−n, n + a+ b− 1, −x
a, −N

∣∣∣ 1
)
, cn(λ) =

(n + a+ b− 1)n
(a,−N)n

,

P̌monic
n (x;λ) =

n∑

k=0

(a+ k,−N + k)n−k

(n + a+ b− 1 + k)n−k

(−n,−x)k
k!

,

B(x;λ) = (x+ a)(N − x), D(x;λ) = x(b+N − x),

φ0(x;λ)
2 =

(
N

x

)
(a)x

(b+N − x)x
,

dn(λ)
2 =

(
N

n

)
(a)n (2n+ a+ b− 1)(a+ b)N

(b)n (n+ a+ b− 1)N+1
× (b)N

(a+ b)N
,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(a+ k)n−k

(n + a+ b− 1 + k)n−k

(−n,−x)k
k!

×
n−k−1∑

l=0

(−N + k)l(−N + k + l + 1)n−k−1−l,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(a +N + 1 + k,N + 2 + k)m−k

(a+ b+ 2N + 1 +m+ k)m−k

(−m,−x+N + 1)k
k!

×
(m−k−1∑

l=0

( 1

a +N + 1 + k + l
+

1

N + 2 + k + l

− 2

a + b+ 2N + 1 +m+ k + l

)
+

k−1∑

l=0

1

−x+N + 1 + l

)
.

A.1.2 Krawtchouk (K)

Parameter range for the positivity (2.2): 0 < p < 1.

λ = (p,N), δ = (0,−1), δ̄ = (0,−1), κ = 1, ρ = 1

En(λ) = n, η(x;λ) = x, ϕ(x;λ) = 1,

P̌n(x;λ) = 2F1

(−n, −x
−N

∣∣∣ p−1
)
, cn(λ) =

1

(−N)n pn
,

P̌monic
n (x;λ) =

n∑

k=0

(−N + k)n−k

(−n,−x)k
k!

pn−k,
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B(x;λ) = p(N − x), D(x;λ) = (1− p)x,

φ0(x;λ) =

(
N

x

)( p

1− p

)x

, dn(λ)
2 =

(
N

n

)( p

1− p

)n

× (1− p)N ,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(−n,−x)k
k!

pn−k

n−k−1∑

l=0

(−N + k)l(−N + k + l + 1)n−k−1−l,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(N + 2 + k)m−k

(−m,−x +N + 1)k
k!

pm−k

×
(m−k−1∑

l=0

1

N + 2 + k + l
+

k−1∑

l=0

1

−x+N + 1 + l

)
.

A.1.3 Racah (R)

We take a = −N and define d̃ = a+ b+ c− d− 1.

Parameter range for the positivity (2.2): 0 < d < a + b, 0 < c < 1 + d, (d 6= 1).

λ = (a, b, c, d), δ = (1, 1, 1, 1), δ̄ = (1, 0, 0, 1), κ = 1, ρ = 1,

En(λ) = n(n+ d̃), η(x;λ) = x(x+ d), ϕ(x;λ) =
2x+ 1 + d

1 + d
,

P̌n(x;λ) = 4F3

(−n, n + d̃, −x, x+ d

a, b, c

∣∣∣ 1
)
, cn(λ) =

(d̃+ n)n
(a, b, c)n

,

P̌monic
n (x;λ) =

n∑

k=0

(a + k, b+ k, c+ k)n−k

(d̃+ n+ k)n−k

(−n,−x, x + d)k
k!

,

B(x;λ) = −(x+ a)(x+ b)(x+ c)(x+ d)

(2x+ d)(2x+ 1 + d)
,

D(x;λ) = −(x+ d− a)(x+ d− b)(x+ d− c)x

(2x− 1 + d)(2x+ d)
,

φ0(x;λ)
2 =

(a, b, c, d)x
(1 + d− a, 1 + d− b, 1 + d− c, 1)x

2x+ d

d
,

dn(λ)
2 =

(a, b, c, d̃)n

(1 + d̃− a, 1 + d̃− b, 1 + d̃− c, 1)n

2n+ d̃

d̃

× (−1)N(1 + d− a, 1 + d− b, 1 + d− c)N

(d̃+ 1)N(d+ 1)2N
,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(b+ k, c+ k)n−k

(d̃+ n + k)n−k

(−n,−x, x + d)k
k!

×
n−k−1∑

l=0

(
(−N + k)l(−N + k + l + 1)n−k−1−l −

(−N + k)n−k

d̃+ n+ k + l

)
,
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ˇ̃P (2)
m (x;λ) =

m∑

k=0

(N + 2 + k, b+N + 1 + k, c+N + 1 + k)m−k

(d̃+ 2N + 2 +m+ k)m−k

× (−m,−x +N + 1, x+N + 1 + d)k
k!

×
(m−k−1∑

l=0

( 1

N + 2 + k + l
+

1

b+N + 1 + k + l

+
1

c+N + 1 + k + l
− 1

d̃+ 2N + 2 +m+ k + l

)

+
k−1∑

l=0

( 1

−x+N + 1 + l
+

1

x+N + 1 + d+ l

))
.

A.1.4 dual Hahn (dH)

Parameter range for the positivity (2.2): a, b > 0, (a+ b 6= 1, 2).

λ = (a, b, N), δ = (1, 0,−1), δ̄ = (0, 1,−1), κ = 1, ρ = 1,

En(λ) = n, η(x;λ) = x(x+ a + b− 1), ϕ(x;λ) =
2x+ a+ b

a+ b
,

P̌n(x;λ) = 3F2

(−n, x+ a+ b− 1, −x
a, −N

∣∣∣ 1
)
, cn(λ) =

1

(a,−N)n
,

P̌monic
n (x;λ) =

n∑

k=0

(a + k,−N + k)n−k

(−n, x+ a+ b− 1,−x)k
k!

,

B(x;λ) =
(x+ a)(x+ a+ b− 1)(N − x)

(2x− 1 + a+ b)(2x+ a+ b)
,

D(x;λ) =
x(x+ b− 1)(x+ a+ b+N − 1)

(2x− 2 + a+ b)(2x− 1 + a+ b)
,

φ0(x;λ)
2 =

(
N

x

)
(a)x (2x+ a + b− 1)(a+ b)N

(b)x (x+ a+ b− 1)N+1
,

dn(λ)
2 =

(
N

n

)
(a)n

(b+N − n)n
× (b)N

(a + b)N
,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(a + k)n−k

(−n, x+ a+ b− 1,−x)k
k!

×
n−k−1∑

l=0

(−N + k)l(−N + k + l + 1)n−k−1−l,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(a +N + 1 + k,N + 2 + k)m−k

(−m, x+ a+ b+N,−x+N + 1)k
k!

29



×
(m−k−1∑

l=0

( 1

a+N + 1 + k + l
+

1

N + 2 + k + l

)

+
k−1∑

l=0

( 1

x+ a + b+N + l
+

1

−x +N + 1 + l

))
.

A.1.5 dual quantum q-Krawtchouk (dqqK)

Parameter range for the positivity (2.2): p > q−N .

qλ = (p, qN), δ = (0,−1), δ̄ = (1,−1), κ = q−1, ρ = q,

En(λ) = q−n − 1, η(x;λ) = 1− qx, ϕ(x;λ) = qx,

P̌n(x;λ) = 2φ1

(q−n, q−x

q−N

∣∣∣ q ; pqx+1
)
, cn(λ) =

pnq−
1
2
n(n−1)

(q−N ; q)n
,

P̌monic
n (x;λ) =

n∑

k=0

(q−N+k ; q)n−k

(q−n, q−x ; q)k
(q ; q)k

pk−nqkx+k+ 1
2
n(n−1),

B(x;λ) = p−1q−x−N−1(1− qN−x), D(x;λ) = (q−x − 1)(1− p−1q−x),

φ0(x;λ)
2 =

[
N

x

]
p−xq−Nx

(p−1q−x ; q)x
, dn(λ)

2 =

[
N

n

]
p−nqn(n−1−N)

(p−1q−N ; q)n
× (p−1q−N ; q)N ,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(q−n, q−x ; q)k
(q ; q)k

pk−nqkx+k+ 1
2
n(n−1)

×
n−k−1∑

l=0

q−N+k+l(q−N+k ; q)l(q
−N+k+l+1 ; q)n−k−1−l,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(qN+2+k ; q)m−k

(q−m, q−x+N+1 ; q)k
(q ; q)k

pk−mqk(x+1)−(N+1)m+ 1
2
m(m−1)

×
(m−k−1∑

l=0

1

1− qN+2+k+l
+

k−1∑

l=0

1

1− q−x+N+1+l

)
.

A.1.6 q-Hahn (qH)

Parameter range for the positivity (2.2): 0 < a, b < 1.

qλ = (a, b, qN), δ = (1, 1,−1), δ̄ = (0, 0,−1), κ = q−1, ρ = q−1,

En(λ) = (q−n − 1)(1− abqn−1), η(x;λ) = q−x − 1, ϕ(x;λ) = q−x,

P̌n(x;λ) = 3φ2

(q−n, abqn−1, q−x

a, q−N

∣∣∣ q ; q
)
, cn(λ) =

(abqn−1 ; q)n
(a, q−N ; q)n

,
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P̌monic
n (x;λ) =

n∑

k=0

(aqk, q−N+k ; q)n−k

(abqn−1+k ; q)n−k

(q−n, q−x ; q)k
(q ; q)k

qk,

B(x;λ) = (1− aqx)(qx−N − 1), D(x;λ) = aq−1(1− qx)(qx−N − b),

φ0(x;λ)
2 =

[
N

x

]
(a ; q)x

(bqN−x; q)x ax
,

dn(λ)
2 =

[
N

n

]
(a, abq−1; q)n
(abqN , b ; q)n an

1− abq2n−1

1− abq−1
× (b ; q)N a

N

(ab ; q)N
,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(aqk ; q)n−k

(abqn−1+k ; q)n−k

(q−n, q−x ; q)k
(q ; q)k

qk

×
n−k−1∑

l=0

q−N+k+l(q−N+k ; q)l(q
−N+k+l+1 ; q)n−k−1−l,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(aqN+1+k, qN+2+k ; q)m−k

(abq2N+1+m+k ; q)m−k

(q−m, q−x+N+1 ; q)k
(q ; q)k

qk

×
(m−k−1∑

l=0

( 1

1− aqN+1+k+l
+

1

1− qN+2+k+l
− 2

1− abq2N+1+m+k+l

)

−
k−1∑

l=0

1

1− qx−N−1−l

)
.

A.1.7 q-Krawtchouk (qK)

Parameter range for the positivity (2.2): p > 0.

qλ = (p, qN), δ = (2,−1), δ̄ = (0,−1), κ = q−1, ρ = q−1,

En(λ) = (q−n − 1)(1 + pqn), η(x;λ) = q−x − 1, ϕ(x;λ) = q−x,

P̌n(x;λ) = 3φ2

(q−n, q−x, −pqn
q−N , 0

∣∣∣ q ; q
)
, cn(λ) =

(−pqn ; q)n
(q−N ; q)n

,

P̌monic
n (x;λ) =

n∑

k=0

(q−N+k ; q)n−k

(−pqn+k ; q)n−k

(q−n, q−x ; q)k
(q ; q)k

qk,

B(x;λ) = qx−N − 1, D(x;λ) = p(1− qx),

φ0(x;λ)
2 =

[
N

x

]
p−xq

1
2
x(x−1)−xN ,

dn(λ)
2 =

[
N

n

]
(−p ; q)n

(−pqN+1 ; q)n pnq
1
2
n(n+1)

1 + pq2n

1 + p
× pNq

1
2
N(N+1)

(−pq ; q)N
,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

1

(−pqn+k ; q)n−k

(q−n, q−x ; q)k
(q ; q)k

qk
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×
n−k−1∑

l=0

q−N+k+l(q−N+k ; q)l(q
−N+k+l+1 ; q)n−k−1−l,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(qN+2+k ; q)m−k

(−pq2N+2+m+k ; q)m−k

(q−m, q−x+N+1 ; q)k
(q ; q)k

qk

×
(m−k−1∑

l=0

( 1

1− qN+2+k+l
− 1− pq2N+2+m+k+l

1 + pq2N+2+m+k+l

)
−

k−1∑

l=0

1

1− qx−N−1−l

)
.

A.1.8 quantum q-Krawtchouk (qqK)

Parameter range for the positivity (2.2): p > q−N .

qλ = (p, qN), δ = (1,−1), δ̄ = (0,−1), κ = q, ρ = q−1,

En(λ) = 1− qn, η(x;λ) = q−x − 1, ϕ(x;λ) = q−x,

P̌n(x;λ) = 2φ1

(q−n, q−x

q−N

∣∣∣ q ; pqn+1
)
, cn(λ) =

pnqn
2

(q−N ; q)n
,

P̌monic
n (x;λ) =

n∑

k=0

(q−N+k ; q)n−k

(q−n, q−x ; q)k
(q ; q)k

pk−nq(n+1)k−n2

,

B(x;λ) = p−1qx(qx−N − 1), D(x;λ) = (1− qx)(1− p−1qx−N−1),

φ0(x;λ)
2 =

[
N

x

]
p−xqx(x−1−N)

(p−1q−N ; q)x
, dn(λ)

2 =

[
N

n

]
p−nq−Nn

(p−1q−n ; q)n
× (p−1q−N ; q)N ,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(q−n, q−x ; q)k
(q ; q)k

pk−nq(n+1)k−n2

×
n−k−1∑

l=0

q−N+k+l(q−N+k ; q)l(q
−N+k+l+1 ; q)n−k−1−l,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(qN+2+k ; q)m−k

(q−m, q−x+N+1 ; q)k
(q ; q)k

(pqN+1)k−mq(m+1)k−m2

×
(m−k−1∑

l=0

1

1− qN+2+k+l
−

k−1∑

l=0

1

1− qx−N−1−l

)
.

A.1.9 affine q-Krawtchouk (aqK)

Parameter range for the positivity (2.2): 0 < p < q−1.

qλ = (p, qN), δ = (1,−1), δ̄ = (0,−1), κ = q−1, ρ = q−1,

En(λ) = q−n − 1, η(x;λ) = q−x − 1, ϕ(x;λ) = q−x,
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P̌n(x;λ) = 3φ2

(q−n, q−x, 0

pq, q−N

∣∣∣ q ; q
)
, cn(λ) =

1

(pq, q−N ; q)n
,

P̌monic
n (x;λ) =

n∑

k=0

(pq1+k, q−N+k ; q)n−k

(q−n, q−x ; q)k
(q ; q)k

qk,

B(x;λ) = (qx−N − 1)(1− pqx+1), D(x;λ) = pqx−N(1− qx),

φ0(x;λ)
2 =

[
N

x

]
(pq ; q)x
(pq)x

, dn(λ)
2 =

[
N

n

]
(pq ; q)n
(pq)n

× (pq)N ,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(pq1+k ; q)n−k

(q−n, q−x ; q)k
(q ; q)k

qk

×
n−k−1∑

l=0

q−N+k+l(q−N+k ; q)l(q
−N+k+l+1 ; q)n−k−1−l,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(pqN+2+k, qN+2+k ; q)m−k

(q−m, q−x+N+1 ; q)k
(q ; q)k

qk

×
(
k +

m−k−1∑

l=0

( 1

1− pqN+2+k+l
+

1

1− qN+2+k+l

)
+

k−1∑

l=0

1

1− q−x+N+1+l

)
.

A.1.10 q-Racah (qR)

We take a = q−N and define d̃ = abcd−1q−1.

Parameter range for the positivity (2.2): 0 < ab < d < 1, qd < c < 1, (d 6= q).

qλ = (a, b, c, d), δ = (1, 1, 1, 1), δ̄ = (1, 0, 0, 1), κ = q−1, ρ = q−1,

En(λ) = (q−n − 1)(1− d̃qn), η(x;λ) = (q−x − 1)(1− dqx), ϕ(x;λ) = q−x1− dq2x+1

1− dq
,

P̌n(x;λ) = 4φ3

(q−n, d̃qn, q−x, dqx

a, b, c

∣∣∣ q ; q
)
, cn(λ) =

(d̃qn ; q)n
(a, b, c ; q)n

,

P̌monic
n (x;λ) =

n∑

k=0

(aqk, bqk, cqk ; q)n−k

(d̃qn+k ; q)n−k

(q−n, q−x, dqx ; q)k
(q ; q)k

qk,

B(x;λ) = −(1 − aqx)(1− bqx)(1− cqx)(1− dqx)

(1− dq2x)(1− dq2x+1)
,

D(x;λ) = −d̃ (1− a−1dqx)(1− b−1dqx)(1− c−1dqx)(1− qx)

(1− dq2x−1)(1− dq2x)
,

φ0(x;λ)
2 =

(a, b, c, d ; q)x

(a−1dq, b−1dq, c−1dq, q ; q)x d̃x
1− dq2x

1− d
,

dn(λ)
2 =

(a, b, c, d̃ ; q)n

(a−1d̃q, b−1d̃q, c−1d̃q, q ; q)n dn
1− d̃q2n

1− d̃
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× (−1)N (a−1dq, b−1dq, c−1dq ; q)N d̃
Nq

1
2
N(N+1)

(d̃q ; q)N(dq ; q)2N
,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(bqk, cqk ; q)n−k

(d̃qn+k ; q)n−k

(q−n, q−x, dqx ; q)k
(q ; q)k

qk

×
n−k−1∑

l=0

(
(q−N+k ; q)l(q

−N+k+l+1 ; q)n−k−1−l −
(q−N+k ; q)n−k

1− d̃qn+k+l

)
,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(qN+2+k, bqN+1+k, cqN+1+k ; q)m−k

(d̃q2N+2+m+k ; q)m−k

(q−m, q−x+N+1, dqx+N+1 ; q)k
(q ; q)k

qk

×
(m−k−1∑

l=0

( 1

1− qN+2+k+l
+

1

1− bqN+1+k+l
+

1

1− cqN+1+k+l

− 1

1− d̃q2N+2+m+k+l

)

+

k−1∑

l=0

( 1

1− q−x+N+1+l
+

1

1− dqx+N+1+l

))
.

A.1.11 dual q-Hahn (dqH)

Parameter range for the positivity (2.2): 0 < a, b < 1, (ab 6= q, q2).

qλ = (a, b, qN), δ = (1, 0,−1), δ̄ = (0, 1,−1), κ = q−1, ρ = q−1,

En(λ) = q−n − 1, η(x;λ) = (q−x − 1)(1− abqx−1), ϕ(x;λ) = q−x1− abq2x

1− ab
,

P̌n(x;λ) = 3φ2

(q−n, abqx−1, q−x

a, q−N

∣∣∣ q ; q
)
, cn(λ) =

1

(a, q−N ; q)n
,

P̌monic
n (x;λ) =

n∑

k=0

(aqk, q−N+k ; q)n−k

(q−n, abqx−1, q−x ; q)k
(q ; q)k

qk,

B(x;λ) =
(qx−N − 1)(1− aqx)(1− abqx−1)

(1− abq2x−1)(1− abq2x)
,

D(x;λ) = aqx−N−1 (1− qx)(1− abqx+N−1)(1− bqx−1)

(1− abq2x−2)(1− abq2x−1)
,

φ0(x;λ)
2 =

[
N

x

]
(a, abq−1 ; q)x
(abqN , b ; q)x ax

1− abq2x−1

1− abq−1
,

dn(λ)
2 =

[
N

n

]
(a ; q)n

(bqN−n ; q)n an
× (b ; q)N a

N

(ab ; q)N
,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(aqk ; q)n−k

(q−n, abqx−1, q−x ; q)k
(q ; q)k

qk
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×
n−k−1∑

l=0

q−N+k+l(q−N+k ; q)l(q
−N+k+l+1 ; q)n−k−1−l,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(aqN+1+k, qN+2+k ; q)m−k

(q−m, abqx+N , q−x+N+1 ; q)k
(q ; q)k

qk

×
(m−k−1∑

l=0

( 1

1− aqN+1+k+l
+

1

1− qN+2+k+l

)

+
k−1∑

l=0

( 1

1− abqx+N+l
+

1

1− q−x+N+1+l

))
.

A.1.12 dual q-Krawtchouk (dqK)

Parameter range for the positivity (2.2): p > 0.

qλ = (p, qN), δ = (1,−1), δ̄ = (1,−1), κ = q−1, ρ = q−1,

En(λ) = q−n − 1, η(x;λ) = (q−x − 1)(1 + pqx), ϕ(x;λ) = q−x1 + pq2x+1

1 + pq
,

P̌n(x;λ) = 3φ2

(q−n, q−x, −pqx
q−N , 0

∣∣∣ q ; q
)
, cn(λ) =

1

(q−N ; q)n
,

P̌monic
n (x;λ) =

n∑

k=0

(q−N+k ; q)n−k

(q−n, q−x,−pqx ; q)k
(q ; q)k

qk,

B(x;λ) =
(qx−N − 1)(1 + pqx)

(1 + pq2x)(1 + pq2x+1)
, D(x;λ) = pq2x−N−1 (1− qx)(1 + pqx+N)

(1 + pq2x−1)(1 + pq2x)
,

φ0(x;λ)
2 =

[
N

x

]
(−p ; q)x p−xq−

1
2
x(x+1)

(−pqN+1 ; q)x

1 + pq2x

1 + p
,

dn(λ)
2 =

[
N

n

]
p−nq−Nn+ 1

2
n(n−1) × pNq

1
2
N(N+1)

(−pq ; q)N
,

ˇ̃P (1)
n (x;λ) =

n−1∑

k=0

(q−n, q−x,−pqx ; q)k
(q ; q)k

qk
n−k−1∑

l=0

q−N+k+l(q−N+k ; q)l(q
−N+k+l+1 ; q)n−k−1−l,

ˇ̃P (2)
m (x;λ) =

m∑

k=0

(qN+2+k ; q)m−k

(q−m, q−x+N+1,−pqx+N+1 ; q)k
(q ; q)k

qk

×
(m−k−1∑

l=0

1

1− qN+2+k+l
+

k−1∑

l=0

(
− 1

1 − qx−N−1−l
+

1

1 + pqx+N+1+l

))
.
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A.2 η(x)

We consider five families of the sinusoidal coordinates [26]:

(i) : η(x) = x : H,K

(ii) : η(x) = x(x+ d) : R, dH(d = a + b− 1)

(iii) : η(x) = 1− qx : dqqK

(iv) : η(x) = q−x − 1 : qH, qK, qqK, aqK

(v) : η(x) = (q−x − 1)(1− dqx) : qR, dqH(d = abq−1), dqK(d = −p).

(2.14)

The polynomial in x that is invariant under x → −x − d is a polynomial in x(x + d),

and the Laurent polynomial in qx that is invariant under qx → q−xd−1 is a polynomial in

(q−x − 1)(1− dqx). Thus we have

(i) : (−x)k
(ii) : (−x, x+ d)k

(iii) : (q−x ; q)k q
kx

(iv) : (q−x ; q)k

(v) : (q−x, dqx ; q)k





= a polynomial of degree k in η(x)

= η(x)k ×
{

(−1)k : (i)–(iii)

(−1)kq(
k

2) : (iv), (v)
+ (lower degree terms).

(A.7)

For an index set D = {d1, . . . , dM} (dj ∈ Z≥0 : mutually distinct), we have

ϕM(x;λ)−1WC[η
d1 , . . . , ηdM ](x;λ)

= a polynomial of degree ℓKA
D +M = ℓD in η

(
x;λ+ (M − 1)δ

)

= cηD(λ)η
(
x;λ+ (M − 1)δ

)ℓD + (lower degree terms). (A.8)

Explicit forms of cηD(λ) are given by

(i) : cηD(λ) =
∏

1≤j<k≤M

(dk − dj),

(ii) : cηD(λ) =
∏

1≤j<k≤M

(dk − dj) ·
M−1∏

j=1

(d+ 1)j,

(iii) : cηD(λ) = q−(
M

3 )
∏

1≤j<k≤M

(qdj − qdk), (A.9)

(iv) : cηD(λ) = q(
M

3 )
∏

1≤j<k≤M

(q−dk − q−dj),

(v) : cηD(λ) = q(
M

3 )
∏

1≤j<k≤M

(q−dk − q−dj) ·
M−1∏

j=1

(dq ; q)j .
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Similarly, we define cηD,n(λ) (n ∈ Z≥0\D) as

ϕM+1(x;λ)
−1WC[η

d1 , . . . , ηdM , ηn](x;λ)

= a polynomial of degree ℓKA
D + n in η(x;λ+Mδ)

= cηD,n(λ)η(x;λ+Mδ)ℓ
KA
D

+n + (lower degree terms). (A.10)

Since they are related as

cηD,n(λ) = cηD′(λ), D′ = {d1, . . . , dM , n}, (A.11)

explicit forms of cηD(λ) are given by

(i) : cηD,n(λ) =
∏

1≤j<k≤M

(dk − dj) ·
M∏

j=1

(n− dj),

(ii) : cηD,n(λ) =
∏

1≤j<k≤M

(dk − dj) ·
M∏

j=1

(n− dj) ·
M∏

j=1

(d+ 1)j,

(iii) : cηD,n(λ) = q−(
M+1

3 )
∏

1≤j<k≤M

(qdj − qdk) ·
M∏

j=1

(qdj − qn), (A.12)

(iv) : cηD,n(λ) = q(
M+1

3 )
∏

1≤j<k≤M

(q−dk − q−dj ) ·
M∏

j=1

(q−n − q−dj ),

(v) : cηD,n(λ) = q(
M+1

3 )
∏

1≤j<k≤M

(q−dk − q−dj ) ·
M∏

j=1

(q−n − q−dj ) ·
M∏

j=1

(dq ; q)j .

For n = di ∈ D, we define c′ ηD,n(λ) as

c′ ηD,n(λ)
def
= cηD,n(λ)×






(n− di)
−1 : (i), (ii)

(qdi − qn)−1 : (iii)
(q−n − q−di)−1 : (iv), (v)

, (A.13)

namely in the products
∏M

j=1 containing n in (A.12), the j = i term is omitted.

A.3 Λ(x)

For five families of η(x) (2.14), the function Λ(x;λ) is defined by

Λ(x;λ)
def
=

N∏

k=0

(
η(x;λ)− η(k;λ)

)
. (4.14)
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We remark that the parameter N is contained in δ and the components of δ corresponding

to the parameters N and d are −1 and 1, respectively. For example, we have

Λ(x;λ+Mδ) =
N−M∏

k=0

(
η(x;λ+Mδ)− η(k;λ+Mδ)

)
(M ≤ N). (A.14)

The functions Λ(x;λ) are monic polynomials of degree N + 1 in η(x;λ) and their explicit

forms are given by

(i) : Λ(x;λ) =

N∏

k=0

(x− k) = (−1)N+1(−x)N+1,

(ii) : Λ(x;λ) =
N∏

k=0

(x− k)(x+ k + d) = (−1)N+1(−x, x+ d)N+1,

(iii) : Λ(x;λ) =

N∏

k=0

(qk − qx) = (−1)N+1(q−x ; q)N+1 q
(N+1)x, (A.15)

(iv) : Λ(x;λ) =
N∏

k=0

(q−x − q−k) = (−1)N+1q−
1
2
N(N+1)(q−x ; q)N+1,

(v) : Λ(x;λ) =

N∏

k=0

(q−x − q−k)(1− dqx+k) = (−1)N+1q−
1
2
N(N+1)(q−x, dqx ; q)N+1.

We can show that
M+1∏

j=1

Λ(x+ j − 1;λ) : a polynomial of degree (M + 1)(N + 1) in η(x;λ+Mδ), (A.16)

by showing the invariance under (ii) x → −x − (d +M) or (v) qx → q−x(dqM)−1. We also

have
M∏

j=1

Λ(x+ j − 1;λ+ δ) = a polynomial of degree MN in η(x;λ+Mδ)

= ρ(
M

2 )Nη(x;λ+Mδ)MN + (lower order terms). (A.17)

In the rest of this subsection we assume M ≤ N .

By using the explicit forms (A.15), we can show that

common factor of Λ(x+ j − 1;λ) (j = 1, 2, . . . ,M + 1) = Λ(x;λ+Mδ). (A.18)

The components of δ̄ corresponding to the parameters N and d are −1 and 1, respectively.

Explicit forms of Λ(x+M ;λ −M δ̄) are given by

(i) : Λ(x+M ;λ −M δ̄) =

N∏

k=−M

(x− k) = (−1)N+M+1(−x−M)N+M+1,
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(ii) : Λ(x+M ;λ −M δ̄) =
N∏

k=−M

(x− k) ·
N+M∏

k=0

(x+ d+ k)

= (−1)N+M+1(−x−M,x+ d)N+M+1,

(iii) : Λ(x+M ;λ −M δ̄) = qM(N+M+1)
N∏

k=−M

(qk − qx)

= (−1)N+M+1(q−x−M ; q)N+M+1 q
(N+M+1)(x+M), (A.19)

(iv) : Λ(x+M ;λ −M δ̄) = q−M(N+M+1)
N∏

k=−M

(q−x − q−k)

= (−1)N+M+1q−
1
2
(N+M)(N+M+1)(q−x−M ; q)N+M+1,

(v) : Λ(x+M ;λ −M δ̄) = q−M(N+M+1)
N∏

k=−M

(q−x − q−k) ·
N+M∏

k=0

(1− dqx+k)

= (−1)N+M+1q−
1
2
(N+M)(N+M+1)(q−x−M , dqx ; q)N+M+1,

which are polynomials of degree N +M +1 in η(x;λ+Mδ) and vanish at x ∈ {−M,−M +

1, . . . , N}. We can show that

∏M+1
j=1 Λ(x+ j − 1;λ)

∏M
j=1Λ(x+ j − 1;λ+ δ)

= Λ(x+M ;λ−M δ̄)×





1 : (i) (ii)

q−
1
2
M(M+1) : (iii)

q
1
2
M(M+1) : (iv), (v)

, (A.20)

by using explicit forms of Λ(x) and the following formulas (M ≤ N),

M+1∏

j=1

N+1−j∏

k=1−j

ak =

−1∏

k=−M

aM+1+k
k ·

N−M∏

k=0

aM+1
k ·

N∏

k=N−M+1

aN+1−k
k ,

M+1∏

j=1

N+j−1∏

k=j−1

ak =

M−1∏

k=0

ak+1
k ·

N∏

k=M

aM+1
k ·

N+M∏

k=N+1

aN+M+1−k
k . (A.21)

Let us define ΛM(x;λ) as follows,

ΛM(x;λ)
def
=

(∏M
j=1Λ(x+ j − 1;λ+ δ)
∏M+1

j=1 Λ(x+ j − 1;λ)

)2

Λ(x;λ)Λ(x+M ;λ). (A.22)

Then from (A.19)–(A.20) and (A.15), we have

(i) : ΛM(x;λ) =
1

(x+ 1, x−N)M
,

(ii) : ΛM(x;λ) =
1

(x+ 1, x−N, x+ d, x+N + 1 + d)M
,
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(iii) : ΛM(x;λ) =
q−2MN

(qx+1, qx−N ; q)M
, (A.23)

(iv) : ΛM(x;λ) =
qM(M+N)q2Mx

(qx+1, qx−N ; q)M
,

(v) : ΛM(x;λ) =
qM(M+N)q2Mx

(qx+1, qx−N , dqx, dqx+N+1 ; q)M
.

A.4 ϕM(x)

For five families of η(x) (2.14), auxiliary functions ϕ(x;λ) are defined by [26]

ϕ(x;λ)
def
=
η(x+ 1;λ)− η(x;λ)

η(1;λ)
, (A.24)

and their explicit forms are

(i) : ϕ(x;λ) = 1,

(ii) : ϕ(x;λ) =
2x+ 1 + d

1 + d
,

(iii) : ϕ(x;λ) = qx, (A.25)

(iv) : ϕ(x;λ) = q−x,

(v) : ϕ(x;λ) = q−x1− dq2x+1

1− dq
.

They satisfy
η(x+ α;λ)− η(x;λ)

η(α;λ)
= ϕ

(
x;λ+ (α− 1)δ

)
(α ∈ R). (A.26)

Auxiliary functions ϕM(x;λ) (M ∈ Z≥0) are defined by [25]

ϕM(x;λ)
def
=

∏

1≤j<k≤M

η(x+ k − 1;λ)− η(x+ j − 1;λ)

η(k − j;λ)
(A.27)

=
∏

1≤j<k≤M

ϕ
(
x+ j − 1;λ+ (k − j − 1)δ

)
, (A.28)

(ϕ0(x) = ϕ1(x) = 1). From this definition we have the following properties:

ϕM+1(x;λ)

ϕM(x;λ)
=

M∏

j=1

ϕ
(
x+ j − 1;λ+ (M − j)δ

)
,

ϕM+1(x;λ)

ϕM(x+ 1;λ)
=

M∏

k=1

ϕ
(
x;λ+ (k − 1)δ

)
, (A.29)

ϕM+1(x;λ)

ϕM(x;λ+ δ)
=

M∏

j=1

ϕ(x+ j − 1;λ).
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Explicit forms of ϕM(x;λ) are

(i) : ϕM(x;λ) = 1,

(ii) : ϕM(x;λ) =

∏[M
2
]

j=1(2x+ d+ 2j − 1)2M−4j+1∏M−1
j=1 (d+ 1)j

,

(iii) : ϕM(x;λ) = q(
M

2 )x+(
M

3 ), (A.30)

(iv) : ϕM(x;λ) = q−(
M

2 )x−(
M

3 ),

(v) : ϕM(x;λ) =

∏[M
2
]

j=1(dq
2x+2j−1 ; q)2M−4j+1∏M−1
j=1 (dq ; q)j

q−(
M

2 )x−(
M

3 ).

By using (A.25), we can show that

ϕ(x−N − 1;λ′) =
ϕ(x;λ)

ϕ(N + 1;λ)
, λ′ = λ+ (N + 1)(δ + δ̄). (A.31)

From this and (A.28), we obtain

ϕM(x−N − 1;λ′)

ϕM(0;λ′)
=

ϕM(x;λ)

ϕM(N + 1;λ)
, λ′ = λ+ (N + 1)(δ + δ̄). (A.32)

A.5 B(x) and D(x)

The potential functions B(x;λ) and D(x;λ) satisfy

B(x+ 1;λ)

B(x;λ+ δ)
= κ

ϕ(x;λ)

ϕ(x+ 1;λ)
,

D(x;λ)

D(x;λ+ δ)
= κ

ϕ(x;λ)

ϕ(x− 1;λ)
. (A.33)

By using this and induction on j (j ∈ Z≥0), we can show that

B(x+ j;λ) = B(x;λ+ jδ)

j∏

l=1

κ
ϕ(x+ l − 1;λ+ (j − l)δ)

ϕ(x+ l;λ+ (j − l)δ)
,

D(x;λ) = D(x;λ+ jδ)

j∏

l=1

κ
ϕ(x;λ+ (l − 1)δ)

ϕ(x− 1;λ+ (l − 1)δ)
. (A.34)

By using (A.15), we have

B(x+M ;λ −M δ̄) = κMB(x;λ +Mδ)
Λ(x;λ)

Λ(x+M ;λ)

Λ(x+M ;λ+ δ)

Λ(x;λ+ δ)
,

D(x+M ;λ −M δ̄) = κMD(x;λ+Mδ)
Λ(x+M ;λ)

Λ(x;λ)

Λ(x− 1;λ+ δ)

Λ(x+M − 1;λ+ δ)
. (A.35)
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A.6 φ0(x)

The ground state φ0(x) is given by (2.8). By using explicit forms of B(x), φ0(x) and ϕ(x),

we have [26]

ϕ(x;λ) =

√
B(0;λ)

B(x;λ)

φ0(x;λ+ δ)

φ0(x;λ)
. (A.36)

This property and induction on M ∈ Z≥0 give the following,

√√√√
M∏

k=1

B
(
x;λ+ (k − 1)δ

)
φ0(x;λ) =

M∏

k=1

√
B(0;λ+ (k − 1)δ)

ϕ
(
x;λ+ (k − 1)δ

) · φ0(x;λ+Mδ). (A.37)

For M ≤ N , we can show that

φ0(x;λ+Mδ)2 ΛM(x;λ) =
φ0(x+M ;λ −M δ̄)2

φ0(M ;λ −M δ̄)2
ΛM(0;λ), (A.38)

by using explicit forms of φ0(x;λ) and ΛM(x) (A.23) and the following formulas,

(α +M)x
(α−M)x+M

=
(α + x)M
(α−M)2M

,
(αqM ; q)x

(αq−M ; q)x+M

=
(αqx ; q)M

(αq−M ; q)2M
. (A.39)

The equation (A.38) is shown for x ∈ Z≥0, but the domain of φ0(x) can be extended to x ∈ R

(x ∈ Z) as mentioned in § 2.2.1. After canceling the factors in φ0(x;λ +Mδ)2 ΛM(x;λ), it

gives (const)× φ0(x+M ;λ −M δ̄)2, which is well defined for x ≥ −M .

B “n → di Limit ”

In this appendix we discuss an appropriate “n→ di limit” of Q̌monic
D′,n (x;λ) (4.17). We try to

achieve this limit by shifting N to N + ε and taking ε→ 0 limit.

The Casoratian in (4.17) is rewritten as

WC[P̌
monic
d1

, . . . , P̌monic
dM

, P̌monic
n ](x;λ)

=

∣∣∣∣∣∣∣

...
...

· · · ρ(N+1)mkΛ(xj;λ)P̌
monic
mk

(xj −N − 1;λ′) · · · P̌monic
n (xj ;λ)

...
...

∣∣∣∣∣∣∣

= Λ(x;λ+Mδ)M

∣∣∣∣∣∣∣∣

...
...

· · · ρ(N+1)mk
Λ(xj ;λ)

Λ(x;λ+Mδ)
P̌monic
mk

(xj −N − 1;λ′) · · · P̌monic
n (xj ;λ)

...
...

∣∣∣∣∣∣∣∣
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= Λ(x;λ+Mδ)M
M+1∏

j=1

Λ(xj;λ)

Λ(x;λ+Mδ)

×

∣∣∣∣∣∣∣∣

...
...

· · · ρ(N+1)mk P̌monic
mk

(xj −N − 1;λ′) · · · Λ(x;λ+Mδ)
Λ(xj ;λ)

P̌monic
n (xj ;λ)

...
...

∣∣∣∣∣∣∣∣
, (B.1)

where xj = x+ j − 1. For n = di = N + 1 +mi, the (j,M + 1)-element is expressed as

Λ(x;λ+Mδ)

Λ(xj ;λ)
P̌monic
n (xj ;λ) =

Λ(x;λ+Mδ)

Λ(xj ;λ)
Λ(xj ;λ)ρ

(N+1)mi P̌monic
mi

(xj −N − 1;λ′). (B.2)

Let us consider the contributions from the following three factors,

(a):
Λ(x;λ+Mδ)

Λ(xj ;λ)
, (b): P̌monic

n (xj ;λ), (c): P̌monic
mi

(xj −N − 1;λ′). (B.3)

In the next three subsections, we will see how these quantities change under the shift N →
N + ε.

In this appendix we assume M ≤ N and take λ′ (4.4) and set A as follows,

A =

{
ε : non q-polynomial
1− qε : q-polynomial

. (B.4)

We will use the following formulas,

(α + ε)n =
n−1∏

j=0

(α + ε+ j) =
n−1∏

j=0

(α + j)
(
1 +

ε

α + j

)
= (α)n

(
1 + ε

n−1∑

j=0

1

α + j
+O(ε2)

)
,

(αqε ; q)n =

n−1∏

j=0

(1− αqεqj) =

n−1∏

j=0

(1− αqj)
(
1 +

(1− qε)αqj

1− αqj

)

= (α ; q)n

(
1 + (1− qε)

n−1∑

j=0

αqj

1− αqj
+O(ε2)

)
, (B.5)

qαε = 1− (1− qε)α +O(ε2), 1− q−ε = −(1 − qε) +O(ε2).

B.1 (a) Contribution from Λ(x)

From (A.15) and (A.18), Λ(x+ j − 1;λ)/Λ(x;λ+Mδ) (j = 1, 2, . . . ,M + 1) are expressed

as

(i) :
Λ(x+ j − 1;λ)

Λ(x;λ+Mδ)
= (−1)M(−x− j + 1)j−1(−x+N −M + 1)M+1−j,

(ii) :
Λ(x+ j − 1;λ)

Λ(x;λ+Mδ)
= (−1)M(−x− j + 1, x+N + 1 + d)j−1
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× (−x+N −M + 1, x+ j − 1 + d)M+1−j,

(iii) :
Λ(x+ j − 1;λ)

Λ(x;λ+Mδ)
= (−1)Mq(j−1)(N+1)qMx(q−x−j+1 ; q)j−1(q

−x+N−M+1 ; q)M+1−j, (B.6)

(iv) :
Λ(x+ j − 1;λ)

Λ(x;λ+Mδ)
= (−1)Mq

1
2
M(M−1)−MN (q−x−j+1 ; q)j−1(q

−x+N−M+1 ; q)M+1−j,

(v) :
Λ(x+ j − 1;λ)

Λ(x;λ+Mδ)
= (−1)Mq

1
2
M(M−1)−MN (q−x−j+1, dqx+N+1 ; q)j−1

× (q−x+N−M+1, dqx+j−1 ; q)M+1−j.

The parameter N is a positive integer, but the expression of r.h.s. of (B.6) allow us to treat N

as a continuous real parameter. So, by shifting N by a small amount ε, we define XM,j(x;λ)

(j = 1, 2, . . . ,M + 1) as follows:

Λ(x;λ+Mδ)

Λ(x+ j − 1;λ)

∣∣∣∣
N→N+ε

(
Λ(x;λ+Mδ)

Λ(x+ j − 1;λ)

)−1

= 1− AXM,j(x;λ) +O(ε2). (B.7)

By using (B.5), explicit forms of XM,j(x;λ) are

(i) : XM,j(x;λ) =

M−j∑

l=0

1

−x+N −M + 1 + l
,

(ii) : XM,j(x;λ) =

M−j∑

l=0

1

−x+N −M + 1 + l
+

j−2∑

l=0

1

x+N + 1 + d+ l
,

(iii) : XM,j(x;λ) = 1− j −
M−j∑

l=0

1

1− qx−N+M−1−l
, (B.8)

(iv) : XM,j(x;λ) = j − 1 +

M−j∑

l=0

1

1− q−x+N−M+1+l
,

(v) : XM,j(x;λ) =

M−j∑

l=0

1

1− q−x+N−M+1+l
+

j−2∑

l=0

1

1− dqx+N+1+l
.

Moreover we define YM,j(x;λ) (j = 1, 2, . . . ,M + 1) as

YM,j(x;λ)
def
= Λ(x+ j − 1;λ)XM,j(x;λ). (B.9)

Their explicit forms are

(i) : YM,j(x;λ) = (−1)N+1

M−j∑

l=0

(−x− j + 1)N−M+j+l(−x+N −M + l + 2)M−j−l,

44



(ii) : YM,j(x;λ) = (−1)N+1
(
(x+ j − 1 + d)N+1

M−j∑

l=0

(−x− j + 1)N−M+j+l

× (−x+N −M + l + 2)M−j−l

+ (−x− j + 1)N+1

j−2∑

l=0

(x+ j − 1 + d)N−j+2+l(x+N + l + 2 + d)j−2−l

)
,

(iii) : YM,j(x;λ) = (1− j)Λ(x+ j − 1;λ)

− q
1
2
N(N+1)

M−j∑

l=0

(qx+j−1−N ; q)M−j−l(q
x−N+M−l ; q)N−M+j+l, (B.10)

(iv) : YM,j(x;λ) = (j − 1)Λ(x+ j − 1;λ)

+ (−1)N+1q−
1
2
N(N+1)

M−j∑

l=0

(q−x−j+1 ; q)N−M+j+l(q
−x+N−M+l+2 ; q)M−j−l,

(v) : YM,j(x;λ) = (−1)N+1q−
1
2
N(N+1)

(
(dqx+j−1 ; q)N+1

M−j∑

l=0

(q−x−j+1 ; q)N−M+j+l

× (q−x+N−M+l+2 ; q)M−j−l

+ (q−x−j+1 ; q)N+1

j−2∑

l=0

(dqx+j−1 ; q)N−j+2+l(dq
x+N+l+2 ; q)j−2−l

)
.

B.2 (b) Contribution from P̌monic

n (x)

In the expression of P̌monic
n (x;λ), the parameterN appears as (−N+k+α)n−k or (αq

−N+k ; q)n−k

(α: N -independent, e.g. α = 0 or α = 1), which are defined for a continuous real parameter

N . So, by shifting N by a small amount ε, we define ˇ̃P
(1)
n (x;λ) as follows:

P̌monic
n (x;λ)

∣∣
N→N+ε

= P̌monic
n (x;λ)−A ˇ̃P (1)

n (x;λ) +O(ε2). (B.11)

This ˇ̃P
(1)
n (x;λ)

def
= P̃

(1)
n (η(x;λ);λ) is a polynomial of degree n− 1 in η(x;λ) and 0 for n = 0.

By using (B.5), explicit forms of ˇ̃P
(1)
n (x;λ) are given in §A.1.

B.3 (c) Contribution from P̌monic

m (x)

Similar to (B.11), we define ˇ̃P
(2)
m (x;λ) as follows:

P̌monic
m (x−N−1;λ′)

∣∣
N→N+ε

= P̌monic
m (x−N−1;λ′)(1+AB)+A ˇ̃P (2)

m (x;λ)+O(ε2). (B.12)

Here B is introduced to simplify later equations, B = −2m for qR, dqH, aqK, B = −m for

dqK and B = 0 for otherwise. Note that the sign of the factor in front of ˇ̃P
(2)
m (x;λ) is taken
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as +A instead of −A for (B.7) and (B.11). This ˇ̃P
(2)
m (x;λ)

def
= P̃

(2)
m (η(x;λ);λ) is a polynomial

of degree m in η(x;λ). By using (B.5), explicit forms of ˇ̃P
(2)
m (x;λ) are given in §A.1.

B.4 Q̌monic

D′,n (x) with n = di

We have considered contributions from the N shift coming from three factors (B.3). These

three contributions are not independent, but overlapping. Trial-and-error calculations lead

us to the following prescription; add the contributions from (a) and (b) and subtract that of

(c). We replace the (j,M + 1)-element (B.2) with

Λ(x;λ+Mδ)

Λ(xj ;λ)

(
1− AXM,j(x;λ) +O(ε2)

)
P̌monic
n (xj ;λ)

+
Λ(x;λ+Mδ)

Λ(xj;λ)

(
P̌monic
n (xj ;λ)− A ˇ̃P (1)

n (xj ;λ) +O(ε2)
)

− Λ(x;λ+Mδ)

Λ(xj ;λ)
Λ(xj;λ)ρ

(N+1)mi
(
P̌monic
mi

(xj −N − 1;λ′)(1 + AB) + A ˇ̃P (2)
mi

(xj ;λ) +O(ε2)
)

=
Λ(x;λ+Mδ)

Λ(xj ;λ)

(
P̌monic
n (xj ;λ)(1− AB)− ARj(x) +O(ε2)

)
, (B.13)

where Rj(x) is given by

Rj(x) = RM,j,n(x;λ) (4.20)

def
= ρ(N+1)miYM,j(x;λ)P̌

monic
mi

(xj −N − 1;λ′) + ˇ̃P (1)
n (xj ;λ) + ρ(N+1)miΛ(xj ;λ)

ˇ̃P (2)
mi

(xj ;λ).

Then (B.1) becomes

Λ(x;λ+Mδ)M
M+1∏

j=1

Λ(xj;λ)

Λ(x;λ+Mδ)

×

∣∣∣∣∣∣∣∣

...
...

· · · ρ(N+1)mk P̌monic
mk

(xj −N − 1;λ′) · · · Λ(x;λ+Mδ)
Λ(xj ;λ)

(
P̌monic
n (xj ;λ)(1−AB)−ARj(x)

)

...
...

∣∣∣∣∣∣∣∣
+O(ε2)

=

∣∣∣∣∣∣∣

...
...

· · · P̌monic
dk

(xj ;λ) · · · P̌monic
n (xj ;λ)(1− AB)− ARj(x)

...
...

∣∣∣∣∣∣∣
+O(ε2)

= −A

∣∣∣∣∣∣∣

...
...

· · · P̌monic
dk

(xj ;λ) · · · Rj(x)
...

...

∣∣∣∣∣∣∣
+O(ε2). (B.14)
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The normalization constant cηD,n(λ) in (4.17) for n = di is rewritten as (A.13),

cηD,n(λ) = A′c′ ηD,n(λ), A′ =






n− di : (i), (ii)
qdi − qn : (iii)
q−n − q−di : (iv), (v)

. (B.15)

Under the shift N → N + ε in di = N + 1 + mi while keeping n = di, namely (n, di) →
(di, di + ε), A′ behaves as

A′
∣∣
N→N+ε

= −Aρdi +O(ε2). (B.16)

So cηD,n(λ) with n = di behaves as

cηD,n(λ)
∣∣
N→N+ε

= −Aρdic′ ηD,n(λ) +O(ε2), (B.17)

and this factor A cancels the factor A in (B.14). Thus we obtain (4.19) from (4.17) by taking

ε→ 0 limit.

B.5 En − Edi
and d ′monic

n (λ)2

For five families of En (2.15), we have

En(λ)− Edi(λ) = A′′ ×





1 : (i)′, (iii)′, (iv)′

n+ di + d̃ : (ii)′

1− d̃qn+di : (v)′
, (B.18)

A′′ =





n− di : (i)′, (ii)′

qdi − qn : (iii)′

q−n − q−di : (iv)′, (v)′
. (B.19)

For n = di > N , under the shift N → N +ε in di = N +1+mi while keeping n = di, namely

(n, di) → (di, di + ε), A′′ behaves as

A′′
∣∣
N→N+ε

= −Aκdi +O(ε2). (B.20)

Thus En − Edi with n = di > N behaves as

(
En(λ)− Edi(λ)

) ∣∣
N→N+ε

= −Aκdi ×






1 : (i)′, (iii)′, (iv)′

2di + d̃ : (ii)′

1− d̃q2di : (v)′
+O(ε2). (B.21)

There is a factor 1/(−N)n or 1/(q−N ; q)n in the expression dmonic
n (λ)2 = cn(λ)

2dn(λ)
2.

So 1/dmonic
n (λ)2 vanishes for n > N . For n > N (n = N + 1 +m), by shifting N to N + ε,

we have

(−N)n
∣∣
N→N+ε

= −ε(−N)N (1)m +O(ε2),
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(q−N ; q)n
∣∣
N→N+ε

= −(1− qε)(q−N ; q)N(q ; q)m +O(ε2). (B.22)

Let us define d ′monic
n (λ)2 for n > N (n = N + 1 +m) as follows,

d ′monic
n (λ)2

def
= dmonic

n (λ)2
∣∣
replacement

,

replacement :

{
(−N)n → (−N)N (1)m : non q-polynomial

(q−N ; q)n → (q−N ; q)N(q ; q)m : q-polynomial
. (B.23)

Then dmonic
n (λ)2 for n > N behaves as

dmonic
n (λ)2

∣∣
N→N+ε

=
1

−Ad
′monic
n (λ)2 ×

(
1 +O(ε)

)
. (B.24)
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