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Abstract

The forward and backward shift relations are basic properties of the (basic) hy-
pergeometric orthogonal polynomials in the Askey scheme (Jacobi, Askey-Wilson, g-
Racah, big ¢-Jacobi etc.) and they are related to the factorization of the differential
or difference operators. Based on other factorizations, we obtain another type of for-
ward and backward shift relations. Essentially, these new shift relations shift only the
parameters.

1 Introduction

The (basic) hypergeometric orthogonal polynomials in the Askey scheme satisfy second or-
der differential or difference equations and the forward and backward shift relations are
their basic properties [I, 2]. The orthogonal polynomials in the Askey scheme provide us
with exactly solvable quantum mechanical models. Conversely, we can use the quantum
mechanical formulation as a tool to investigate orthogonal polynomials [3]. For example,
the forward and backward shift relations are a consequence of the shape invariance, and the
multi-indexed orthogonal polynomials are found by using the quantum mechanical formula-
tion. The Schrodinger equation is a second order differential equation for ordinary quantum
mechanics (0QM) and a second order difference equation for discrete quantum mechanics
(dQM). There are two types of dQM, dQM with pure imaginary shifts (idQM) and dQM
with real shifts (rdQM) [3]. The coordinate = for o0QM and idQM is continuous and that for
rdQM is discrete.

The forward and backward shift relations are related to the factorization of the Hamil-

tonian. Recently another factorization of the Hamiltonian was found in a study of the
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state-adding Darboux transformations for the finite rdQM systems [4]. It gives another for-
ward and backward shift relations for the orthogonal polynomials appearing in the finite
rdQM systems (g-Racah etc.), which were called the forward and backward x-shift relations
[4]. In this paper, we investigate whether such new factorization and forward and backward
shift relations exist for other orthogonal polynomials. In addition to the finite rdQM systems
(g-Racah etc.), we examine the oQM systems (Jacobi etc.), the idQM systems (Askey-Wilson
etc.), the semi-infinite rdQM systems (g-Meixner etc.) and the rdQM systems with the Jack-
son integral type measure (big g-Jacobi etc.). We call the last category rd@QMJ. The quantum
mechanical formulation of the rdQMJ systems needs two component formalism [5]. We con-
sider all the polynomials in chapter 9 and 14 of [2] and the dual quantum g¢-Krawtchouk
polynomial.

This paper is organized as follows. The orthogonal polynomials in the Askey scheme and
their second order differential or difference equations are recalled in section 2l The forward
and backward shift relations are reviewed in section [Bl Section Ml is the main part of this
paper and new factorization and new forward and backward shift relations are presented.

Section [{lis for a summary and comments. In Appendix[A] the data for § are given.

2 Orthogonal Polynomials in the Askey Scheme

In this section we fix the notation and recall the second order differential or difference
equations for the orthogonal polynomials in the Askey scheme [, 2].
In our quantum mechanical formulation [3], the orthogonal polynomials in the Askey

scheme are expressed as

P, (x; ) “p, (n(z; A); A) : a polynomial of degree n in n(z; A) (2.1)

oo P_y(n(z; X); X) &' 0. Here z is a coordinate of quantum

for n € Zso and P_y(2; )
mechanical system and 7(x) is a sinusoidal coordinate [6], and X = (A1, Ag,...) are param-
eters, whose dependence is expressed as f = f(A) and f(x) = f(z;A). The parameter ¢ is
0 < ¢ < 1 and ¢ stands for g2+ = (g™ ¢, ...), and we omit writing ¢-dependence.
We consider the following orthogonal polynomials, all the polynomials in chapter 9 and
14 of [2] and the dual quantum g¢-Krawtchouk polynomial: Hermite (He), Laguerre (L),
Jacobi (J), Bessel (B), pseudo Jacobi (pJ), continuous Hahn (cH), Meixner-Pollaczek (MP),

Wilson (W), continuous dual Hahn (cdH), Askey-Wilson (AW), continuous dual ¢-Hahn
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(cdgH), Al-Salam-Chihara (ASC), continuous big ¢-Hermite (cbgHe), continuous g-Hermite
(cqHe), continuous g-Jacobi (cqJ), continuous g-Laguerre (cqL), continuous ¢-Hahn (cgH),
g-Meixner-Pollaczek (¢MP), Hahn (H), Krawtchouk (K), Racah (R), dual Hahn (dH), dual
quantum g-Krawtchouk (dqgK) (which is not treated in [2]), ¢-Hahn (¢H), ¢-Krawtchouk
(¢K), quantum ¢-Krawtchouk (q¢K), affine ¢-Krawtchouk (agK), ¢-Racah (¢gR), dual ¢-Hahn
(dgH), dual ¢-Krawtchouk (d¢K), Meixner (M), Charlier (C), little g-Jacobi (IgJ), little ¢-
Laguerre/Wall (lgL), g-Bessel (¢B) (=alternative ¢-Charlier), g-Meixner (¢M), Al-Salam-
Carlitz II (ASCII), ¢-Charlier (¢C), big g-Jacobi (bgqJ), big ¢-Laguerre (bgL), Al-Salam-
Carlitz I (ASCI), discrete g-Hermite I (dgHel), discrete g-Hermite II (dgHelI), g-Laguerre
(gL) and Stieltjes-Wigert (SW). Explicit expressions of various quantities (P,(x), P.(n),
n(z), o(x), Ens A, 8, Ky fay buy c1(n), c2(n), ez, w(z), V(x), B(z), D(z), B'(z), D'(z), fp,
b)) are given in Appendix A of larXiv:2301.00678v1. These polynomials appear in quantum

mechanical systems as follows:

oQM : He, 1,J,B,pl, (2.2)
idQM : cH,MP, W, cdH, AW, cdgH, ASC, cbqHe, cqHe, cqJ, cqL, cqH, gMP, (2.3)
rdQM (finite) : H, K, R, dH, dq¢K, ¢H, ¢K, q¢K, a¢K, ¢R, dgH, d¢K, (2.4)
rdQM (semi-infinite) : M, C,lqJ,1¢L, ¢B, ¢M, ASCII, ¢qC, (2.5)

rdQMJ : bqJ, bgL, ASCI, dgHel, dgHell, ¢qL, SW. (2.6)

We comment that the oQM systems described by the Bessel and pseudo Jacobi polynomials
are the Morse potential and the hyperbolic symmetric top 11, respectively. We also comment
on an infinite sum orthogonality relations for the Stieltjes-Wigert polynomial (parameter:

c>0),

) ) . B
SW: > "I P(eq”) Pn(cq”) = 0um ¢ (@3 O)nld. —cq, —¢ ' @)oo (n,m € L),

(2.7)
which are obtained from those for ¢-Laguerre polynomial by taking an appropriate limit.
This (27) is not given in [2].

The Schrodinger equations of oQM and dQM systems are second order differential and
difference equations, respectively. By the similarity transformation in terms of the ground

state wavefunction, the similarity transformed Hamiltonian 7:2()\) is a second order differen-
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tial or difference operator acting on the eigenpolynomials P, (x; ) [3],

o AN s MEN L (o) - el ). @9
QM : HA) L V(2 A) (7 — 1) + V(2 A) (e ™ — 1), (2.9)
rdQM : H(A) Bz M) (1 — ) + D(2; A)(1 — e7?). (2.10)

For oQM, the coordinate x is a continuous variable and the Hamiltonian H(\) is

d? of fdw(z; N)N2  dPw(x; A
HN) = = + U A), Ulaid) = (%) +%.

While the orthogonality relations of P,(x) for B and pJ cases hold only for a finite number

(2.11)

of n, we consider all n € Z>, because we consider only differential equations (or relations)
in this paper. For idQM, the coordinate z is a continuous variable and the momentum p is
p= —i%, and -y is a real constant (y = 1 for non g-polynomial, 7 = log g for g-polynomial).
The operator e®? («: constant) is a shift operator, e*? f(z) = f(x —ia). The x-operation on
an analytic function f(z) =) a,2" (a, € C) is defined by f*(x) = >, alz", in which a} is
the complex conjugation of a,. For rdQM, the Schrodinger equation is a matrix eigenvalue
problem. The similarity transformed Hamiltonian H = (H,,,) is a matrix labeled by the
coordinate x, which takes discrete values in {0,1,..., N} or Zso. In this paper, however,
we treat x as a continuous variable x € R, because we only deal with difference equations
are shift operators et? = et e*9f(z) = f(z +1). We

consider P,(x) with all n € Zsq even for finite systems. We remark that the polynomials

(or relations). The operators e*?

P,(x) in finite rdQM (24)), whose orthogonality holds for n = 0,1,..., N, are ill-defined for
n > N due to the normalization condition P,(0) = P,(0) = 1. So we should replace P, (x)
(n > N) in finite rdQM with the monic version P™™¢(z; X) o cn(N) TPy (23 X) (cn(N): the
coefficient of the highest degree term) in Theorem[l] 2.1] and B.3] (with the replacements
fn(A) = fmonic(X) = £, (X)e (X)) tep_1 (A + 8), ete.).

For rdQMJ (the rdQM system with Jackson integral type measure such as the big ¢-
Jacobi polynomial), its quantum mechanical formulation needs two component formalism
with two sinusoidal coordinates 7*)(x; X) [5]. Since only difference equations (or relations)
are considered in this paper, we use 1 only (we do not use x) and treat n as a continuous

variable 7 € R. The similarity transformed Hamiltonian H”(\) is a second order difference

operator acting on the eigenpolynomials P,(n; X) [5],
rdQMI = H(A) < B A (L= ") + DY A)(1 = g "), (2.12)
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where the operators qi"div are ¢-shift operators, qi"div fn) = f(¢'n).
The orthogonal polynomials in the Askey scheme studied in this paper have the following
property.

Theorem 1 [1, [2] The polynomials in (22)—(2.0) satisfy the second order differential or

difference equations for n € Zs,

oQM, idQM, rdQM : H(A)P,(z; A)
P,

; Ea( NPy (z: N), (2.13)
rdQMJ : H (A) P (1; A) P,

En(N)P(n; A). (2.14)

We remark that the constant terms of H and H’ are chosen such that & = 0. For idQM,

the relation (2.13) is invariant under the x-operation.

3 Forward and Backward Shift Relations

The similarity transformed Hamiltonians H(\) (2:8)—(@210) are factorized as

where the forward and backward shift operators, F(X) and B(A), are defined by [7, [§],

oQM: F(A) X cf(de))_I% (= cfd%), (3.2)

B & e (UL b aan(a@in)) (=~ (el + el V). (33)

idQM : F(A) L ip(a; A) " (e2? — e 3P), (3.4)
B(A) & —i(V(2; A)e?? — V*(z; A)e” 3)p(; A), (3.5)
rdQM : F(A) € B(0; N A) (1 — €?), (3.6)
B(A) Y& L(B(x; A) — D(z; N)e ) (3 N). (3.7)

B(0; A)
Since w(z), B(x), D(x) and V(x) satisfy

(dwil:;; )\))2 o d uél(xx27 A) _ (dw(x;d;de))? N d w(:;;;\—l—é) e, (3.8)
Vie—igid) ez )

VEA+e)  “elr— i) )
V(z+i3X) + V(@ —i3;X) = c(V(g; A+ 6) + Vi(z; X+ 8)) — E1(N), (3.10)



Bz + 1L A) e A) D(z; A) ez N)

Bia+d) "o+ LA D@A+d)  ox—LA) (3:.11)
B(z;X) + D(z + 1;X) = 6(B(x; A+ 8) + D(z; X+ 8)) + E1(N), (3.12)

we obtain
FA)BA) = kBA+8)F(A+8) + E(N), (3.13)

which is the (similarity transformed) shape invariance condition. The constants f, and b,
satisfy
En(A) = fuA)bp—1(X) (n € Zsy), (3.14)

and the energy eigenvalues &, satisfy

Note that we have f,(A) = &E,(A) and b,(A) = 1 for rdQM due to our normalization
P,(0) = P,(0) = 1. Corresponding to the factorization (B.I)), the shape invariance combined

with the Crum’s theorem give the following relations |7, [8 [3].

Theorem 2.1 [2] For the polynomials in (22)—(25), the forward and backward shift rela-
tions hold:

FNP(z;X) = fuN)Poi(25 X+ 68) (n € Zsy), (3.16)
BN)P,_1((z; X+ 8) = byt (N Po(z; X)) (0 € Zy). (3.17)

For idQM, the relations (3.16)-(3.17) are invariant under the *-operation.
The similarity transformed Hamiltonians H’(A) (ZI2) are factorized as

H'(A) =B (NF (). (3.18)

Here the forward and backward shift operators, F7(A) and B?(X), are defined by [5]

HQMI s F(N) % A1 - g, (3.19)
qn
B (B 3) = D( Mg ~) 2, (320)

where the constant A is given by

—D’(1; ) :bgl,bgL, gL, SW
—a : ASCI

1 : dqHel

q : dgHell

(3.21)



We can show that B(n) and D’(n) satisfy

gB(gr7'm; A) = kB (i;; A+ 8), ¢ 'D'(r ' A) = kDY (3 A+ 6), (3.22)
Bl(r~'n; A) + DM (gr'n; A) = /@(BJ(n; A+O)+DI A+ 5)) + E1(A), (3.23)

where 7 is given by
q :bqJ,bql,dgHell, qL.

r=2< 1 :ASCI,dgHel ) (3.24)
¢ :SW
Therefore we obtain
]-"J(/\)BJ(/\) = /@BJ()\+5)}"J(A+6) + &E1(N), (3.25)
n—r=tn

which is the (similarity transformed) shape invariance condition. The constants f; and b’
satisfy
En(A) = [Nl 1 (X) (1 € Zso), (3.26)

and the energy eigenvalues &, satisfy (3.I5]). Note that we have f)(A) = &,(X) and b).(A) = 1
due to our normalization of P,(n). Corresponding to the factorization (3.I8]), we have the

following relations [5].

Theorem 2.2 [2] For the polynomials in (2.6]), the forward and backward shift relations
hold:

FIXN P A) = [y (N Poa(rp; XA+ 8) (0 € Zso), (3.27)
B' MNP, 1(r; A+ 68) = b2 [(ANPu(m; ) (n € Zsy). (3.28)

4 New Forward and Backward Shift Relations

In this section, based on other factorizations of H and ?:ZJ, we present another type of forward

and backward shift relations.

4.1 Polynomials in o0QM systems

For the oQM systems described by the polynomials (22)) (except He and B), let us define
the operators F(X) and B(X). For J case, they are given by

= def 1 d 1 1 i _1
() FO) Y Jtano—+g 2(_ (1= n)g +9 2), (4.1)



1 d 1 d 1
B~ cota——+h+ (= (1+n)—n+h+§>, (4.2)

dz d
~ of 1 d 1 d 1
(b): FON) ™ S cota— +h—3 (: (1+n)d—n+h—§), (4.3)
. d d 1
B(A)d—itanx%—kg—i—Q <:—(1—n)d—n+g+§), (4.4)
and the constants f,(X), b,(A) and 8§ are given by
a): fiA)=n+g—1 b AN =n+h+3, §=(1,-1), (4.5)
) : fuAN)=n+h—1 bAN)=n+g+1 §=(-1,1) (4.6)
For L and pJ cases, see Appendix [A.T]
Then we can show that
H(¥) = 4(B > < > fo( > < >>, (4.7)

Corresponding to this factorization (4.7), the following relations are obtained by direct cal-

culation.

Theorem 3.1 For the polynomials in [22)) (except He and B), the following forward and
backward shift relations hold for n € Z>,

FN) Ba(; A) = fu(N) Baw; A = 8), (4.9)
B Py(z; X — 8) = by(X) Py ). (4.10)

We think that these identities (4.9)—(4.10) may be known formulas but this interpretation
is new.

Remark 1.1 Two formulas with § and —§ are equivalent by interchanging F and B, e.g.
(4.9) and (4.10)) for L (b) agree with (4.10) and (4.9) for L (a) with the replacement g — g+1,

respectively. For He and B, we do not have new factorization (4.7) and new forward and

backward shift relations (4.9)—-(410).

4.2 Polynomials in idQM systems

For the idQM systems described by the polynomials (2.3)), let us define the operators F(X)
and B(X) as follows:

def

FA) Z Vi(w +i2X)e? + Vi (z — id; N)e 27, (4.11)

27
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BN E Vy(2: A)e? + Vi (z; A)e 37, (4.12)
where the potential functions V;(z; X) and Va(z; A) satisfy
V(s A) = Via; M) Va(z; A). (4.13)
For AW case, their explicit forms are given by

Assume {a},a;} = {aj, a1} (as aset) and set {I,m} = {1,2,3,4}\{J, k},
Vila; A) = VI (@ 0) (i =1,2),

(1 —a;e™)(1 — ape™) (1 — @) (1 — a,,e™)

Won) = B IE )y - 20U ) g
and the constants f,(\), b,(A) and & as given by
FoX) = a2 (1 = ajarg™™"), ba(N) = ¢ % (1 — wang"),
(0); =) =73 (8)1=(0)m=—3 (4.15)

For other cases, see Appendix [A.2
Then we can show that V;(z) and Va(x) satisfy

Vi + i MV5 (23 X) + V(@ = i M Va(z3 A) = fo(A\)be(A) = =V (23 X) = V¥ (23 X), (4.16)
and the constants fn and b, satisfy
En(A) = Fa(N)ba(X) = fo(A)bo(A) (n € Zzo). (4.17)
The relation ([@I6) gives other factorizations of H(\) (2.9),
HX) = BAFQA) = fo(Mbo(A). (4.18)
Corresponding to this factorization (4.I8]), we obtain the following relations.

Theorem 3.2 For the polynomials in (23), the following forward and backward shift rela-
tions hold for n € Z>,

Ne}



Proof: It is sufficient to show (£I9), because (ZI3) and [EI7)-(@I9) imply ([E20). Taking
AW ([@TI4) with (5,k) = (1,2) as an example, let us prove ([LI9). It is shown by direct

calculation:

OVIACEDY

1 1 .
(1 —a1q72€™)(1 — azq2€™) (araz, araz, aras; q)n

1 — g2z ay
1 . 1 .
q", a1a2a3a4q" ", a1q3e”, arqTze )
X 403 q;4
a1G2, A1a3, A104
_1 _1
(1 —a1g 2e ™) (1 — asq2e™™) (araz, ara3, a1045 q)y
1 — e 2 ay
1 - 1 .
q", arasa3asq" ", arqT2e”, ajqze™ )
X 4¢3 q;q
a1G2, A1a3, A104
. n - -1 -1 -1 . k
_ (a1a9,a1a3,a104 Q) 3 (¢ a1a2a304q" ", a1q7 2, 010727 ) g
ap(l—e¥r) £ (102, 103, araq s q)i (a5 0)x
X ((1 — a1€¢"2) (1 — apq2e™) — ¥ (1 — a1e¢"2) (1 — ayq 2e ””))
. n - -1 —1 -1 . k
_ (a1a9,a1a3,a104 Q) 3 (¢ a1a2a304q" ", a1q7 2", 0107277 Q) g
ar(l — e%r) (ara2, aras, araq; q)i (45 )k

k=0
X (1 — alaqu_l)(l — 62“0)

. n - -1 -1 -1 iz k
B (a1&2,a1a3a&1a47Q)n (1 aa q_l)(q " aragazasq”T T, a1q” 2e, a1q” 2e va)k q
= g )
1 . .
ay — (a1a2g7", aras, araq s @)y, (:9)k
= ¢ 2(1 — ayasq™™Y)
—1 . - —1 1 . k
» (a1a2q7", a1a3, 4104 ; Q) (7" a102a3049" ", a1q" 7€, 0172775k ¢

alq_%)" —o (a1a2q™t, araz, araq; q)x (5 9)x

(
FaN) Po(3 X = §).

The other cases are proved in the same way. 0

Remark 2.1 Two formulas with § and —8 are equivalent by interchanging F and B, e.g.
(@19) and (£20) for cH (b) agree with (£20) and (£I9) for cH (a) with the replacements
a, — a; + % and ay —> ay — %, respectively.

Remark 2.2 The relations ([LI9)-(Z20) are invariant under the sx-operation. In contrast
to the z-shift relations studied in [4] (see Theorem[3.3]), the coordinate z is not shifted, and
only the parameters A are shifted. We choose the operators F(A) and B(X\) @II)-#I2) to
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respect this s-operation invariance. See also Remark[3.3]

Remark 2.3 We can show that

Vi(z + i3 M) Va(z —i2; X) = Va(z; A — 8)Va(z; X — 6),

Vil i3 AV (0 — i35 ) + Vi (0 — i WVale + i3 2) — Ho(Vbo(N) (4.21)

=Vi(z + iy A= OV (23 A — 8) + Vi (z — iy A — 8)Va(zs A — 8) — fo(A — 8)bo(A — 8),

which imply

FBA) = fo(Mbo(A) = B = §)F(A = 8) — fo(A = 8)bo(A - 8).  (4.22)

4.3 Polynomials in rdQM systems

For the rdQM systems described by the polynomials (2.4)—(2.5) (except C and ¢B), let us
define the operators F(A) and B(A) as follows:

FO) Y Di(z+ LX) + By (z;\)é, (4.23)
BA) X By(z; A) + Dy(z; A)e ™, (4.24)

where the potential functions By (z; A), Ba(z; X), D1(2; X) and Dy(x; A) satisfy
B(z;A) = Bi(z; A)Ba(z;A),  D(x;A) = Da(; A) Da(; A). (4.25)

For ¢R case, their explicit forms are given by

(8): BuziA) :‘<q9vlqi_1>2§1__di321>’ Balm A) =

("' = 1)1 —bg")(1 — cq”)
1 —dg** ’

Y

Y

Ly (L=dg™t)(1 - ¢%) o = g (=" —b71dg")(1 — " dg")
Di(z;A) = =g (1 — dg= 1)’ Dy(x;A) = —d 1— dg>®
(4.26)
CBie ) = (L= —dg7) oy = A=) =g M) (A —eq”)
(b) : Bl( 7A) (1 _ bq—l)(l _ dq2m+1)’ B2( 7A) 1 — dqu )
Sy (I=b71dg")(1 = ¢%) ) = g A= b —dg™ )1 — ¢ ldgT)
D1(1’7A) = (]_—b_lq)(l—dq2x_l)’ D2( 7A) =—d l_dq2x
(4.27)
_ (1—cg")(1—dg") e = L=ea ) =g M) (1 = bg)
O BN =G e —agery BN T i /
Sy (=cdg")(1 —¢") oy — g — )1 —dg™ M) (1 — bdg")
D1($7 >\) = (1 — C_lq)<1 — dq2x_1)7 D2( 7>\) = —d 1— dq2x
(4.28)

11
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@ Bl = LS, B = g (29
L s =e)(1 = dgt™N)(1 - b dg") . (=cldg") (1 - ")
D1(1’7 A) = —d 1 dq2x_1 s DQ(ZL', )\) = (1 — C_l)(l — dq2x) s

(1 —bg")(1 —dq")
(1=b)(1 —dg*)’

©: Bilasn) =~ R ) -

Dl(l’; A) _ _d~ (1 - b_1>(1 B dqx+N>(1 - C_ldqx> DQ(ZL' )\) _

(1—b~"dg")(1 -

(4.30)

q°)

1— dq2m—1

eV =D = bg") (1 — cq) e = =g~ dg?)
- 1 — dg2=t1 , Ba(w;A) = (N —1)(1 — dg?*)’

Dy(a:A) = —d U= ¢)(1 —b'dg®)(1 — c'dg”) Dy(z: ) = 8=

=1 —df)”
(4.31)

dg™™)(1 — ¢°)

1— dq2:c—1

and the constants f,(X), bo(X\) and & are given by

(@) : fu(A) =1, by(A) =Ensi(A) = Eu(N), 6 = (1 0,0,1),

(b): faA) =1, bu(A) = =g (1 —bg" )(1 —ed'q" ), §=(0,1,0,1),
(©): faA) =1, bu(A) = —¢ (1 —cq"” 1)(1—bd "), 6 =(0,0,1,1),
(d): fuA) = —¢ "1 —cg™)(1=bd " MY, by(A) =1, § =(0,0,—1,—1),
() : fu(A) = —¢ "1 = bg™)(1 —ecd g™ N Y, by(A) =1, 8 =(0,-1,0,—1),
(f) : ~n(>\):8N(>\)—8n(>\), by(A) =1, 6 = (—1,0,0,—1).

For other cases, see Appendix [A3]
Then we can show that By(x), Ba(z), Di(x) and Ds(x) satisfy

Bi(z — 1; A)Dy(z; X) + Dy (@ + 1; M) Bo(2;A) — fo(A)bo(A) = —=B(x;X) — D(x; A),
and the constants f, and b, satisfy
En(N) = JoN)bo(A) = [a(N)ba(A) (0 € Zo)-
The relation ([@38) gives another factorization of H(A) (ZI0),

H(A) = =BA)F(A) + fo(A)bo(A).

Corresponding to this factorization (4.40)), we obtain the following relations.
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Theorem 3.3 For the polynomials in (2.4)-(230) (except C and ¢B), the following forward
and backward shift relations hold for n € Z>,

FN)B,(2;A) = fo(AN)Po(z 4 s X — ), (4.41)
B P, (z+5:X = 8) = bp(N) Py (23 M), (4.42)

where s is given by

: ) )7
o) aK (@)K ()(b),agK (a)(b), aR (a)(b)(¢), dgH (a)(b)(c). )
dgK (a )( ), M(a),lqJ (a),1qL (a), ¢M (a)(b), ASCII (a),¢C (a)  ° '
0 : others

Proof: It is sufficient to show (&A1), because (ZI3) and ([A39)-(40) imply ([E42). Taking

R (a) (£20) as an example, let us prove (AA41]). It is shown by direct calculation:

F(A)Pal; A)
_ (1 _ a—ldqx+1)(1 _ qm—l—l)
(1 —a"'q)(1—dg>*)

\ ¢3(q‘", abed=tq" 1, 7", dg*

CI§Q>

a, b, c

(1 —aq”)(1—dqg") q", abed~'q"t, g7t dgt
(ag' = 1)(1 —d 2m+1)4¢3< a, b, c } 1 q)

_ 1 2":( Jabed " g dg ) ¢
(1 —ag=")(1 —dg**!) &= (a, b,c;q) (45 9)

X (—ag™' (1 — a7 dg" ) (—¢" ™) (1 = ¢ ") + (1 — ag®) (1 — dg™*"))

1 " (¢ abed g g dgT )k qF _ .
G 2 (1~ ag"™)(1 — dg**")

C (T—ag )1~ e (a,b,¢; ) (45 9)x
_ N~ (g abed g l,q‘m‘l,dqx;q)k ¢*
p (ag™',b,¢;q)k (g: )

o) Py(z 4 55X = 6).

The other cases are proved in the same way. 0

Remark 3.1 Two formulas with § and —8 are equivalent by interchanging F and B, e.g.

(@41 and (@42) for H(c) agree with (£42) and (£ZI) for H(b) with the replacements

a — a+1and b — b— 1, respectively. For C and ¢B, we do not have new factorization
(A40) and new forward and backward shift relations (Z41)—(4£.42).

Remark 3.2 The relations (L41)—(442) for twelve cases ((a) of H, K, R, dH, dq¢K, ¢H,
¢K, q¢K, agK, qR, dgH, dgK, which have f, = 1, by(A) = Ens1(A) — En(N), s = 1 and
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Di(0;A) = Bi(N;A) = 0) were given in [4] and they were called forward and backward
z-shift relations. By considering e F(A) and B(A)e?, the above results (@40) and (@EAT)-
(d42) with s = 1 are rewritten as

HA) = =(BA)e”) (€7 °F(N) + fo(N)bo(N), (4.44)
(e ?FN)Pu(z;X) = fu(A)Pa(z; X - 8), (4.45)
(BXN)?) Py X — &) = b (A) Po(x; A). (4.46)

That is, = is not shifted. As an identity of polynomial, the z-shift is not essential. However,
this z-shift has important implications in the state-adding Darboux transformation for the
finite rdQM systems [4, [9].

Remark 3.3 AW and ¢R polynomials are related as [2]

AW 1 _qR _1 _1 _1 1
e =d2q", (ay1,a9,a3,a4) = (ad”2,bd 2, cd"2,d2),

BV (@A) = d73 (a, b, 5 q)n P (@ AT, (4.47)

For the (j,k) = (1,4) case in ([@I4), the operators F and B for AW are related to those for
qR (a) @.20) as
e FANANY) = —(¢" N = FRAT),

BW(AW)em3P = (7N — 1)TIBR (AR, (4.48)
These extra factors e*z? give the property in RemarkZ2 Similarly AW with (4, k) = (2, 4),
(3,4), (1,2), (1,3) and (2,4) cases correspond to gR (b), (c), (d), (e) and (f), respectively.
Remark 3.4 We can show that
Bi(x — 5;N)Ba(x — s+ 1;X) = B(o; X —68), Di(z—s+1;X)Dy(x — 5;A) = D(z; A — 6),
Bi(x — ;M) Doz — s+ 1;A) + Dy (@ — s + 1; A) Bo(x — 53 X) — fo(AN)bo(N) (4.49)

= Bi(x — 1;A = 8)Dy(x: XA — 8) + Dy(z 4+ 1; A — 8)Ba(z; A — 8) — fo(A — 8)bo(A — 6),

which imply

FNB(X) —foN)bo(X) = B(X = 8)F(A —8) — fo(A = 8)bo(A = 8).  (4.50)
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4.4 Polynomials in rdQMJ systems

For the rdQMJ systems described by the polynomials (2.6) (except dgHel, dgHell and SW),

let us define the operators F7(X) and B’(A) as follows:

ad def a
= D{(gn; X) + B](n; A)¢",

def _md
= BJ(n; A) + DJ(m; A)g ",

where the potential functions By (1; X), By (n; X), D{(n; X) and D3 (n; ) satisfy
B’ (; X) = B{(1; \) B3 (:A), - D’ (m; A) = D (n; A) D3 (1; A).

For bqJ case, their explicit forms are given by

@ Blon) =0 Bl x) = (1 - ay (b o),
Dl A) =T D) = (0 - D ),

() BN =TT Blx) = (7~ 1 agon - o)
Dl A) =T D Dl x) = (1 ey ag — ).

@ BN = = O aatn o), By = =Y
D X) = (1= by ag =), DY X) = =0,

(@) BN = (= aan =), B x) = 20
D N) = (ag = = o), Dl ) = 0

and the constants f7(X), b () and § are given by

(@) : fiA) =1, (A =—¢"(1—ag")(1 = bg"™"), &§=(1,-1,0),
(b): i) =1, by(A) = —¢ (1 —cq")(1 —abe™'q™*), 8 =(0,0,1),
() : 1N = =" (L —eq"™) (1 —abe™'q"), BY(A) =1, §=(0,0,-1),
(d): [iA) = =¢7"(1 —ag™™)(1 = bg"), DY(A) =1, §=(~1,1,0).

For other cases, see Appendix [A4]
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Then we can show that Bj(n), By(n), Di(n) and Dj(n) satisfy
B (g~ ) D3 (n; A) + Di (am; M) By (11 A) = J§(N)B3(A) = =B (1;0) = D’ (3 A),  (4.62)
and the constants f? and b] satisfy
Ea(X) = J{NB(A) = F1NB(A) (1 € Zzo). (4.63)
The relations (62 give other factorizations of H(X) @I1Z),
HI(A) = =B (NF () + FTBN). (4.64)
Corresponding to this factorization (4.64]), we obtain the following relations.

Theorem 3.4 For the polynomials in ([2.6]) (except dgHel, dgHell and SW), the following
forward and backward shift relations hold for n € Z>y,

FY NPl X) = LA Pa(r'm; X = 5), (4.65)
B ()P, (r'm; XA = 8) = b (A) Pal(m; X), (4.66)

where 1’ is given by

o { q :bgJ(c)(d),bgL (c)(d), ASCI (a), gL (b)

1 baJ (a)(b), baL (a)(b), ASCI (b), ¢L (a) (4.67)

Proof: It is sufficient to show (A.65]), because (2.14) and (A.63)-(@.63]) imply (£.66). Taking
bqJ (a) (£54) as an example, let us prove (£.63). It is shown by direct calculation:

FHX) Pl X)

—1 -n n+1 -1 -n n+1
_n (a—mn) (q , abg ,77‘ ) n_a(l—n) (q , abg ,qn‘ )
=" 1 302 aq. cq ¢:q)+— 30 aq. cq q;q
-1 n -n n+1 k
n (", abg" 5k ¢ k
= —(a—mn)+a(l —ng
1—akzzo (aq, cq; @) (q;q)k( (a=m)+al )
! i (@ abg i 6,
l—as=  (agcq;q)c (a5
_ i (¢ " abg" " ;@) d*
—~  (a,eq;q)k  (a30)k
= 1N Pu(r'm; X = 9).
The other cases are proved in the same way. 0
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Remark 4.1 Two formulas with & and —& are equivalent by interchanging F? and B’, e.g.

(A60) and (LG0) for bgJ (d) agree with (f66) and (A65) for bgJ (a) with the replacements
a — aq and b — bg~!, respectively. For dgHel, dgHell and SW, we do not have new

factorization (£64) and new forward and backward shift relations ([Z65)—(ZGG]).
Remark 4.2 As in Remark[32, by considering g~ F* (A) and B’ (A)q"%, the above results

(E64) and (Z.6H)-(£66) with ' = g are rewritten as

H(N) = — (B (N)"5) (7" F (X)) + fI (NN, (4.68)
("8 F (N) Pu(m A) = FLA)Pu(m; A — 8), (4.69)
(B (N)g") Pu(m; X — 8) = BL(A) Pu(n; A). (4.70)

That is, 1 is not g-shifted. As an identity of polynomial, the g-shift of 7 is not essential.
Remark 4.3 We can show that

Bl (@' 'n; N) By (qr' "'y A) = B (s A = 8), Di(qr' 'y N)Dy(r' iy X) = DY (g, A = §),
B (' “'n; N) Dy (qr' ' A) + D (gr' T N) By (r' s A) — f (A)B(A) (4.71)
= B{(g7'm A —8)Dy(n; X — 8) + Di(qn; X — 8) By (m; A — 8) — f (A — 8)by(X — 6),

which imply

FINB(N) —fiNBA) =B (A= 8)F (X =8) — [i(A = §)by(A —8).  (4.72)

n—r/ 1
5 Summary and Comments

The orthogonal polynomials in the Askey scheme satisfy second order differential or difference
equations (Theorem[I]) and we study them by using quantum mechanical formulation (0QM,
idQM, rdQM, rdQMJ). The forward and backward shift relations are their basic properties
(Theorem[ZT] 22)), in which the degree n and the parameters A are shifted. They are
based on the factorizations of the differential or difference operators 1) and H BI8).
Motivated by the recently found forward and backward z-shift relations [4], in which the
coordinate x and parameters A\ are shifted, we have tried to find new forward and backward
relations. We have found new factorizations of # (@7), (@IR), @A0) and ' @6d), and
based on them, we have obtained another type of forward and backward shift relations

(TheoremB.1] B2, B3] B4). In these new forward and backward shift relations except for
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some cases of rdQM and rdQMJ, only the parameters A are shifted. As an identity of
polynomial, the x-shift (or ¢-shift of n) is not essential (RemarkB3.2] [4.2).

The forward and backward shift relations are related to the shape invariance property
of quantum mechanical systems [7, 8, Bl [5]. It is an interesting problem to investigate the
quantum mechanical implications of the new forward and backward shift relations obtained
in this paper (cf. Remark2.3] B4 13). Especially the twelve finite rd@QM cases in Remark[3.2]
are interesting. In these cases, the z-shift has important implications related to the state-
adding Darboux transformations |4, [9]. We will report this topic elsewhere.

The case-(1) multi-indexed orthogonal polynomials are constructed for R, ¢R, W, AW,
M, lqJ, gL, cH and MP, and they have shape invariant property, namely, satisfy the forward
and backward shift relations like Theorem[2.1l It is an interesting problem to investigate
whether these multi-indexed polynomials satisfy new forward and backward shift relations

such as Theorem[3.2] and B3
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A Data for §4

We give the data for the new forward and backward shift relations in §[l

A.1 Data for §4.1

We present explicit forms of F, B, f,, b, and & in §EI1
Operators F(A) and B(A):

]l d 1 d 1\ s 114 _d
Lia): FA)=geor+9 2( e 2)’ BN =53 ( dn+1)’
(A1)
- def 11d d S oy def 1 d 1 d 1
. — T I 1(=—+ 1 = —Tr— — | =n— —
(b): F)E —5= =41 ( o ), BOVE Sot g+ ( ndn+g+2),
(A.2)
) = def 1 d L o d 1
pJ:(a): F(A) = (tanhz+coshx)%_h_§_w (— (n+z)d—n—h—§—w>,
57y def l d r ./ L d 1
B(\) = (tanhx— Coshx)%—h—irij%u (— (n—z)d—n—h+§+w), (A.3)
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1

dn 2
d

dn 2

!

We remark that the second components of § for pJ are unphysical values.

A.2 Data for §4.2

1 d
——h—§—|—iu (z(n—i)——h——+i,u

)——h+1—w (: (n+z)——h+l—w

a): fuAN) =n+g-1 b(N=1 =1,

b): fuA) =1, bu(AN)=n+g+3, &=-1,

a) : ~n()\):n—h—%—z,u, En()\):n—h—i-%ﬂLi,ua 6 =(0,4),
b) : ~n()\):n—h—%+l,u, l;n()\):n—hﬂté—w, 6 = (0. —1).

)

). (A.4)

We present explicit forms of Vi(x), fus by and & in §A2 The potential function Vo(z) can
be obtained from (£I3)).
Potential functions V;(z; A):

cH :
MP :
W

cdH :

cdgH :

ASC:

(a): Vi(z;A) =ay +iz, (b): Vi(z; A) = ag + iz,
(a): Vi(z;A) =a+iz, (b): Vi(z;A) = ei(%_d’),

(A.9)
(A.10)

Assume {a,a;} = {aj, a;} (as aset) and set {I,m} = {1,2,3,4}\{J, k},

(a; + iz)(ay + ix)
2ix +1
Assume {a,a;} = {aj,a} (as a set) and set {I} = {1,2,3}\{j, k},

Vil A) = VPP () (i=1,2),

. \y_ (a; +iz)(ay +ix) _ Ny @tz
(8): Vi(as ) = e N CRR O CE A

Assume {aj, a;} = {a;,ar} (as a set) and set {I} = {1,2,3}\{j, k},
V(s 2) = VP () (i=1.2),

)

Vilz; A) = VIR (@A) (i=1,2), Vi(z;A) =

)

)

_ ' (1 —a;e™)(1 — ape™) . ' 1 — qe®
(a): Vi(z; ) = jl e , (b): iz A) = 1— ge2ic’
Assume ay,as € R for (b) and (c),

vy L (L @em) (1 - age™) V() L@
(a): Vi(z; ) = [ , (b): Vi(zsA) = 1— geZie’

1 — age™ 1
(c): Vi(z; A) = 1_7%22.967 (d): Vi(z; ) = 1_7(1621'9:7
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1 — ae™ _ 1

chqHe : (a) : Vi(x;A) = T g (b): Vi(z;A) = e (A.16)
1
(1 . q%(aﬁ-%)eim)(l . q%(a-i-%)eim)
cql :(a): Vi(z;A) = — , (A.18)
Dy (L qaPRen)(1 4 gzt Rei)
(b): Vi(:X) = T , (A.19)
. . . B (1 . q%(a+%)eix>(1 . q%(a—l—%)eix) . . B 1
CqL . (a’) . ‘/1(‘7:7 A) - 1 - qeziw 9 (b) . m(x7 A) - 1 - qeziwa
(A.20)
. _ 1 (L= ae?@e)(1 — aje'™)
cgH : (a): Vi(x; A) = | g : (A.21)
. 1 (L= age?™@e)(1 — aze™)
(b) . ‘/1(1'7 A) - 1— q62i¢62im ) (A22)
_ ' 1 (1T —ae*e™)(1 — ae™) ' L 1
Constants f,(X), bu(A) and &
cH:(a): fuAN =ay+a’+n—1, by(A\) =ay+a}+n, 8= (3,-3), (A.24)
(b): fuA) =az+al+n—1, by(A) =a;+al+n, 6= (—3.3), (A.25)
MP: (a): fu(A) =2a+n—1, b,(N) =2sing, &= (3,0), (A.26)
(b): fu(A) =2sing, by(A)=2a+mn, &§=(-3,0), (A.27)
W : ~n()\) =a;+a,+n—1, by,(X) =a+ an+n,
cdH: (a): fuN) =a;+ar+n—1, by(A) =1, §);=0)r=3, @)i=-1% (A29)
(b) ~n()\) =1, I;n()\) =a;+a,+n, (0)= %, (5)]- = (8), = —%, (A.30)
cdgH : (a) ~n(}\) = q_f(l — a;apq" Y, En()\) —q 2, (S)j = (0), = %, (8), = —%, (A.31)
(b) . ~n()‘) = q_%a Z~)n()‘) = q_%(l — a;arq )> (5)1 = %a (5)] = (S)k = _%a (A32)
ASC:(a): fuA) =g (1 —arasg"™"), bu(A)=¢72, 6=(3,3), (A.33)
(b): fuA)=q2, bu(A)=q 2, 6=(3—3), (A.34)
(c): ~n(}\) —q 2, I;n(}\) —=q 2, 6= (—%, %), (A.35)
(d): fuA) =q72, by(A) =q 2 (1 — amasq™), &= (-3%,-1), (A.36)
cbqHe : (a) : ~n()\) —q 2, I;n()\) —q¢2, 6= %, (A.37)



(b): fuN) =q7%, (X)) =q2, §=—4, (A.38)

cqgHe : fo(A) =¢"%, buy(A)=¢ %, & :none, (A.39)
cgd: (a) 0 fa(A) =1 =g, bu(A) =g (1 —¢"""), §=(1,-1) (A.40)
(b): fuA) = " (1 =¢"™), bu(A) =1—¢*"*, & =(-1,1), (A.41)

cgL: (a): fuA) =1—=¢*", by(X) =¢", d=1, (A.42)
(b)) : fu(A) =q¢" by(A) =1—¢tH §=—1, (A.43)

cqH : (a) 1 fu(N) = ¢ 72 (1 — aajq" ™), bu(A) = ¢ 72 (1 — aza3q"), & = (3, —3,0), (A.44)
(b) : fo(N) = ¢ 7 (1 = azasq" ™), ba(A) = ¢ 2 (1 — maiq"), § = (=3, 3,0), (A.45)

gMP: (a) : fu(A) =¢ 2 (1—a’¢"™"), ba(N) =¢72, §=(3,0), (A.46)
(b): fuA) =q7%, bu(N) =q 3(1—a’q"), 6 =(—3,0). (A.47)

A.3 Data for §4.3

We present explicit forms of Bi(x), Di(x), fn, b, and & in §A31 The potential functions
Bs(x) and Dy(x) can be obtained from (4.25).
Potential functions By (z; A) and Dy (z; A):

H:(a): Bi(z;A) = Nl Dl(x;A)_N+1 (A.48)
(b) : Bl(x;x)zzf“, Di(5A) = —— (A.49)
(¢): Bi(z;A) =a(N —x), Di(z;A)=—a(b+ N —z), (A.50)
(d): Bi(z;A) = N(x +a), Di(x;A)=N(b+ N —x), (A.51)

N —zx T

K:(a): Bi(z;A) = Nl Di(x;X\) = Nl (A.52)

(b): Bi(z;\) = Np, Dy(z;\) = N(1 - p), (A.53)

) - L (@=N)(z+d) oy (EFd+ N

Re@: Bileid) = ~moipmeriza 20N - mromoizag MY

: L @Fb)(z+d) N (z+d-D

by BueiN =g paerivay DN =T ymoir g A9
. Sy ([@+o(z+d) o (z+d—c)x

(©): BN = g s i gy DN = oo ira A9
. Sy = N)(z+D) o clz+d+ N)(z+d—b)

(@) Bulw:X) = —= =, Di(wA) = T , (A57)
. Sy b@ = N)(z+c) b+ d+N)(z+d—o)

() Bi(w:A) = ——5 . Difaid) = T , (A58)
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:N(:):+b)(x+c) N@+d-b(z+d—0¢)

(x+a+b—1)(N—2x) r(r+a+b+N—-1)
Bi(z; A) = Di(x; \) =
1) (N+1)(2z+a+0b) ’ 1) (N+1)(2x—2+a+b)’
(A.60)
' \_ (zF+a)(zr+a+b-1) Ny r(x+b—1)
BN = e rary 0 DN S i o@m —atas )
(A.61)
r+a+b—1 z
C BimA) = —————= Di(z: ) = A.62
X =5 DN =g (A.62)
(x +a)(N —x) (x+b—1)(z+a+b+N—-1)
: Bi(x; A) = Dy(z;A) =
oA = ey @A) 2r —2+a+b ’
(A.63)
\y (N —2x) \y_ alr+a+b+N-—-1)
Bi(:d) 2 +a+0b Du(w:A) = 20 —24+a+0b (A.64)
' \_ N(@+a) \y_ N@+b-1)
- Bi(mA) = 20 +a+0b’ Difa:2) = 20 —24+a+b’ (A.65)
—N-1 N—z —T
q l1—gq g'—1
D Bi(x;A) = q_](v_l — ), Dy(w; ) = N1 (A.66)
Bi(z;X) =q¢ !, Di(z; ) = —(¢*—1) (A.67)
(@A) =p ¢V 1= ¢"), DilmsA)=—-(1-p'¢), (A.68)
D Bi(msA) = (1—¢M)p~ g™ Di(asA) = (¢ V= 1)(1—p~'g), (A.69)
. q:c—N -1 . 1— q:c
(23 A) = p Di(z;2) = 1— s (A.70)
_ T -1 T
BN = 270 py(ray= 4 170 (A1)
1—ag™! ag~t —1
Bi(z;A) = (1 —a)(¢" ¥ = 1), Di(zsX)=(a—1)g ' (¢" " —b) (A.72)
;D Bi(w;A) = (¢ N = 1)(1 —ag”), Di(z;A) = (1—¢")ag ("N —b), (A.73)
. q:c—N -1 . 1— q:c
(7;) = pe T Di(w:X) = 1 e (A.74)
: Bi(z;A) =q N =1, Di(z;A) = (1-¢")p, (A.75)
z—N T
g =1 1—¢q
('Iu)‘): q_N_1_17 D1<Jf,)\): 1_qN+17 (A76>
: Bi(z; ) = q¢°, Di(w;A) =1—¢", (A.77)
(T A) =p ' (¢" N =1), Di(zsA)=1—p ¢, (A.78)
D Bi(asA) = (¢ = 1Dp7¢", Di(mA) = (1—¢")(1—-p~l¢" M), (A79)
CBaan= LT p e A
P BN = Sy DilmA) = e (A.80)
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1 — pg™t? p(1—q*)

: Bi(z;A) = i Dy(z;A) = P (A.81)
Bi(z;A) = (1 —pg) ("™ = 1), Di(z;X) = (pg — 1)g" "7, (A.82)
: Bi(zs ) = (¢ = D1 —pg™™), Di(zsA) = (¢ — 1)pg”, (A.83)
, o (@Y = 1)(1 —abg") v (1 =¢")(1 = abg*tN 1)
B e MM (e ()

(A.84)
(1 —¢")(1 —bg"")

: Bi(z;A) = = . , Di(z;A) =

(1 —ag™*)(1 — abg®) (1 —atq)(1 — abg*2)’
(A.85)
gy L—abg" 3y _ ba%aq"(1—q7)
Bi(z; ) = b Di(z; M) = b (A.86)
, (¢ " =11 —aq) Sy V(= abg" (1 = bg" )
Bilw; A) = 1 — abg® » Dil@A) = b(1 — abg?*—2) ’
(A.87)
, (1-a)(¢ -1 yy _ (a=1Dg" V(1 — abg" N
BilzA) = 1 — abg® o Dil@s ) = 1 — abg?*—2
(A.88)
_ (¢ =1~ ag”) o (T=¢M)ag" N1 = bg" )
Bl (1’7 A) - 1— aquI ) Dl (1’7 A) - 1— abq2x_2 )
(A.89)
(¢ =1 +pg”) (1-¢")( +pg")
L By(z;A) = Di(z;A) =
N = ey DN T @y
(A.90)
: N . b= q")
. Bl(x? A) - 1 +pq2x+1? Dl(x7 A) - 1 _l_qux_l ) (Ag]‘)
z—N z—N-1 z+N
. gy N (1 +pg™*)
. Bl(xa )‘) - 1 +pq2x+1> Dl(xa )‘) - 1 _l_pqu_l (A92)
-N N\, 22—N—1
, g™ -1 v (1—=¢")pg
Bl(x7 )\) 1+ pq2x+1 Dl (':U7 A) - 1+ pq2x_1 ) (A93>
N T+ N\ T
Bi(z; ) EESE Dy(x;A) = - (A.94)
Sy Be o B
Bl(l',)\) 1—0’ Dl(va)_ 1—0’ (A95)
1/ —x —z
. IR U ) _ -1
: Bi(m;A) = = Di(z; ) e (A.96)
c Bi(z;A) = (1 —b)ag™, Di(z;A)=0b—1 (A.97)
C Bz A) =q¢ " Di(mA) =—(¢" = 1) (A.98)
C Bi(z;A) =aq, Di(x; ) = -1 (A.99)
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() : fu(A) ==(n+8), by(A)=1, §=(-1,0) (A.155)

lgJ: (a) 1 fu(A) =1, by(A) = —¢ (1 —ag™)(1 —bg""Y), &= (-1,1) (A.156)
(b): fuA) = —¢ (1 —ag" (1= bg"), bu(A) =1, 6= (1,-1) (A.157)

gL : (a) : fu(A) =1, by(A) = —¢ (1 —aq"), & =—1, (A.158)
(b): fulA) = —¢ (1 —ag™™), ba(A)=1, d=1 (A.159)
gM: (a): fuA) =1, b,(A) =¢"+¢¢7L, 6 =1(0,1), (A.160)
(b): fu(A) =1, by(A\) = —b"'(1—bg"), &=(1,0) (A.161)

(©): fu(A) = =b71g7 11— bg™™), by(X) =1, & =(—1,0) (A.162)
d): fuAN) =¢"+¢, b,(A)=1, §=(0,-1), (A.163)
ASCIT: (a): fu(A) =1, by(A)=¢", =1 (A.164)
(b): fuA) =¢", by(A)=1, §=—1 (A.165)
q@C:(a): LN =1, byAN) =¢"+aq, 6=1 (A.166)
b): fulN) =q¢"+a, by(A) =1, §=—1 (A.167)

A.4 Data for §4.4

We present explicit forms of B} (n), Dj(n), fu, by and & in §A4A The potential functions
B3j(n) and D3(n) can be obtained from (£53)).
Potential functions Bj(n; A) and Dj(n; A):

bal: () Bl &) = T2 pigyeny = ), (A.168)
) Bl = T gy = =0 (2169
(c): Bi(m;A) = (bg = 1)n~"a, Di(mg;A) = (1 —bg)n~"(ag —n), (A.170)
(d) = Bi(m;A) = (ag = 1)n~'b, Di(m;A) = (ag — 1)n~"(n — bg) (A.171)
ASCL: (a): BIpA) ='a™, DIn:A) = —n7'(1— 1) (A172)
(b) : B{(;;A) = —n"tag™", D{(n;A) = —n"'(n—a), (A.173)
gL (a): Bi(mA) =n"'(1+n), Di(mA)=-n""q (A.174)
(b): Bi(;;A) =1, Di(p;A) = —a”" (A.175)
Constants f?(X), b} (X) and &:
bal: (a) : fI(A) =1, b(A) =—¢"(1—aq"), &=(1,0), (A.176)



(b): fIAN) =1, B(A) =—¢"(1—bg"), 6=1(0,1), (A.177)

(@ R =", BN =1, 5=(0,-1) (A.178)

ASCI: (a): fI(A) = B;{(A) ——q ", b= (A.180)

(b): fIN) ==¢", BN =1, §=1, (A.181)

gL:(a): fiN) =1, BN =—a'¢ " (1—ag"™), §=-1, (A.182)

b): N =—=at1—ag"), BEA) =1, d=1. (A.183)
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