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Abstract

The forward and backward shift relations are basic properties of the (basic) hyperge-
ometric orthogonal polynomials in the Askey scheme (Jacobi, Askey-Wilson, q-Racah,
big q-Jacobi etc.) and they are related to the factorization of the differential or differ-
ence operators. Based on other factorizations, we obtain another type of forward and
backward shift relations. Essentially, these shift relations shift only the parameters.

1 Introduction

The (basic) hypergeometric orthogonal polynomials in the Askey scheme satisfy second or-

der differential or difference equations and the forward and backward shift relations are

their basic properties [1, 2]. The orthogonal polynomials in the Askey scheme provide us

with exactly solvable quantum mechanical models. Conversely, we can use the quantum

mechanical formulation as a tool to investigate orthogonal polynomials [3]. For example,

the forward and backward shift relations are a consequence of the shape invariance, and the

multi-indexed orthogonal polynomials are found by using the quantum mechanical formula-

tion. The Schrödinger equation is a second order differential equation for ordinary quantum

mechanics (oQM) and a second order difference equation for discrete quantum mechanics

(dQM). There are two types of dQM, dQM with pure imaginary shifts (idQM) and dQM

with real shifts (rdQM) [3]. The coordinate x for oQM and idQM is continuous and that for

rdQM is discrete.

The forward and backward shift relations are related to the factorization of the Hamil-

tonian. Recently another factorization of the Hamiltonian was found in a study of the

state-adding Darboux transformations for the finite rdQM systems [4]. It gives another for-

ward and backward shift relations for the orthogonal polynomials appearing in the finite
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rdQM systems (q-Racah etc.), which were called the forward and backward x-shift relations

[4]. In this paper, we investigate whether such new factorization and forward and backward

shift relations exist for other orthogonal polynomials. In addition to the finite rdQM systems

(q-Racah etc.), we examine the oQM systems (Jacobi etc.), the idQM systems (Askey-Wilson

etc.), the semi-infinite rdQM systems (q-Meixner etc.) and the rdQM systems with the Jack-

son integral type measure (big q-Jacobi etc.). We call the last category rdQMJ. The quantum

mechanical formulation of the rdQMJ systems needs two component formalism [5]. We con-

sider all the polynomials in chapter 9 and 14 of [2] and the dual quantum q-Krawtchouk

polynomial.

This paper is organized as follows. The orthogonal polynomials in the Askey scheme and

their second order differential or difference equations are recalled in section 2. The forward

and backward shift relations are reviewed in section 3. Section 4 is the main part of this

paper and new factorization and another type of forward and backward shift relations are

presented. Section 5 is for a summary and comments. In AppendixA the data for § 4 are

given.

2 Orthogonal Polynomials in the Askey Scheme

In this section we fix the notation and recall the second order differential or difference

equations for the orthogonal polynomials in the Askey scheme [1, 2].

In our quantum mechanical formulation [3], the orthogonal polynomials in the Askey

scheme are expressed as

P̌n(x;λ)
def
= Pn

(
η(x;λ);λ

)
: a polynomial of degree n in η(x;λ) (2.1)

for n ∈ Z≥0 and P̌−1(x;λ)
def
= P−1(η(x;λ);λ)

def
= 0. Here x is a coordinate of quantum

mechanical system and η(x) is a sinusoidal coordinate [6], and λ = (λ1, λ2, . . .) are param-

eters, whose dependence is expressed as f = f(λ) and f(x) = f(x;λ). The parameter q is

0 < q < 1 and qλ stands for q(λ1,λ2,...) = (qλ1 , qλ2, . . .), and we omit writing q-dependence.

We consider the following orthogonal polynomials, all the polynomials in chapter 9 and

14 of [2] and the dual quantum q-Krawtchouk polynomial: Hermite (He), Laguerre (L),

Jacobi (J), Bessel (B), pseudo Jacobi (pJ), continuous Hahn (cH), Meixner-Pollaczek (MP),

Wilson (W), continuous dual Hahn (cdH), Askey-Wilson (AW), continuous dual q-Hahn

(cdqH), Al-Salam-Chihara (ASC), continuous big q-Hermite (cbqHe), continuous q-Hermite
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(cqHe), continuous q-Jacobi (cqJ), continuous q-Laguerre (cqL), continuous q-Hahn (cqH),

q-Meixner-Pollaczek (qMP), Hahn (H), Krawtchouk (K), Racah (R), dual Hahn (dH), dual

quantum q-Krawtchouk (dqqK) (which is not treated in [2]), q-Hahn (qH), q-Krawtchouk

(qK), quantum q-Krawtchouk (qqK), affine q-Krawtchouk (aqK), q-Racah (qR), dual q-Hahn

(dqH), dual q-Krawtchouk (dqK), Meixner (M), Charlier (C), little q-Jacobi (lqJ), little q-

Laguerre/Wall (lqL), q-Bessel (qB) (=alternative q-Charlier), q-Meixner (qM), Al-Salam-

Carlitz II (ASCII), q-Charlier (qC), big q-Jacobi (bqJ), big q-Laguerre (bqL), Al-Salam-

Carlitz I (ASCI), discrete q-Hermite I (dqHeI), discrete q-Hermite II (dqHeII), q-Laguerre

(qL) and Stieltjes-Wigert (SW). Explicit expressions of various quantities (P̌n(x), Pn(η),

η(x), ϕ(x), En, λ, δ, κ, fn, bn, c1(η), c2(η), cF , w(x), V (x), B(x), D(x), BJ(x), DJ(x), f J
n ,

bJn) are given in Appendix A of arXiv:2301.00678v1. These polynomials appear in quantum

mechanical systems as follows:

oQM : He, L, J, B, pJ, (2.2)

idQM : cH,MP,W, cdH,AW, cdqH,ASC, cbqHe, cqHe, cqJ, cqL, cqH, qMP, (2.3)

rdQM (finite) : H,K,R, dH, dqqK, qH, qK, qqK, aqK, qR, dqH, dqK, (2.4)

rdQM (semi-infinite) : M,C, lqJ, lqL, qB, qM,ASCII, qC, (2.5)

rdQMJ : bqJ, bqL,ASCI, dqHeI, dqHeII, qL, SW. (2.6)

We comment that the oQM systems described by the Bessel and pseudo Jacobi polynomials

are the Morse potential and the hyperbolic symmetric top II, respectively. We also comment

on an infinite sum orthogonality relations for the Stieltjes-Wigert polynomial (parameter:

c > 0),

SW :
∞∑

x=−∞

cxq
1
2
x(x+1)Pn(cq

x)Pm(cq
x) = δnm q−n(q ; q)n(q,−cq,−c−1 ; q)∞ (n,m ∈ Z≥0),

(2.7)

which are obtained from those for q-Laguerre polynomial by taking an appropriate limit.

This (2.7) is not given in [2].

The Schrödinger equations of oQM and dQM systems are second order differential and

difference equations, respectively. By the similarity transformation in terms of the ground

state wavefunction, the similarity transformed Hamiltonian H̃(λ) is a second order differen-

tial or difference operator acting on the eigenpolynomials P̌n(x;λ) [3],

oQM : H̃(λ)
def
= − d2

dx2
− 2

dw(x;λ)

dx

d

dx

(
= −4c2(η)

d2

dη2
− 4c1(η;λ)

d

dη

)
, (2.8)

3

http://arxiv.org/abs/2301.00678


idQM : H̃(λ)
def
= V (x;λ)(eγp − 1) + V ∗(x;λ)(e−γp − 1), (2.9)

rdQM : H̃(λ)
def
= B(x;λ)(1− e∂) +D(x;λ)(1− e−∂). (2.10)

For oQM, the coordinate x is a continuous variable and the Hamiltonian H(λ) is

H(λ) = − d2

dx2
+ U(x;λ), U(x;λ)

def
=

(dw(x;λ)
dx

)2

+
d2w(x;λ)

dx2
. (2.11)

While the orthogonality relations of P̌n(x) for B and pJ cases hold only for a finite number

of n, we consider all n ∈ Z≥0, because we consider only differential equations (or relations)

in this paper. For idQM, the coordinate x is a continuous variable and the momentum p is

p = −i d
dx
, and γ is a real constant (γ = 1 for non q-polynomial, γ = log q for q-polynomial).

The operator eαp (α: constant) is a shift operator, eαpf(x) = f(x− iα). The ∗-operation on

an analytic function f(x) =
∑

n anx
n (an ∈ C) is defined by f ∗(x) =

∑
n a

∗
nx

n, in which a∗n is

the complex conjugation of an. For rdQM, the Schrödinger equation is a matrix eigenvalue

problem. The similarity transformed Hamiltonian H̃ = (H̃x,y) is a matrix labeled by the

coordinate x, which takes discrete values in {0, 1, . . . , N} or Z≥0. In this paper, however,

we treat x as a continuous variable x ∈ R, because we only deal with difference equations

(or relations). The operators e±∂ are shift operators e±∂ = e±
d
dx , e±∂f(x) = f(x ± 1). We

consider P̌n(x) with all n ∈ Z≥0 even for finite systems. We remark that the polynomials

P̌n(x) in finite rdQM (2.4), whose orthogonality holds for n = 0, 1, . . . , N , are ill-defined for

n > N due to the normalization condition P̌n(0) = Pn(0) = 1. So we should replace P̌n(x)

(n > N) in finite rdQM with the monic version P̌monic
n (x;λ)

def
= cn(λ)

−1P̌n(x;λ) (cn(λ): the

coefficient of the highest degree term) in Theorem1, 2.1 and 3.3 (with the replacements

fn(λ) → fmonic
n (λ) = fn(λ)cn(λ)

−1cn−1(λ+ δ), etc.).

For rdQMJ (the rdQM system with Jackson integral type measure such as the big q-

Jacobi polynomial), its quantum mechanical formulation needs two component formalism

with two sinusoidal coordinates η(±)(x;λ) [5]. Since only difference equations (or relations)

are considered in this paper, we use η only (we do not use x) and treat η as a continuous

variable η ∈ R. The similarity transformed Hamiltonian H̃J(λ) is a second order difference

operator acting on the eigenpolynomials Pn(η;λ) [5],

rdQMJ : H̃J(λ)
def
= BJ(η;λ)(1− qη

d
dη ) +DJ(η;λ)(1− q−η d

dη ), (2.12)

where the operators q±η d
dη are q-shift operators, q±η d

dη f(η) = f(q±1η).
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The orthogonal polynomials in the Askey scheme studied in this paper have the following

property.

Theorem 1 [1, 2] The polynomials in (2.2)–(2.6) satisfy the second order differential or

difference equations for n ∈ Z≥0,

oQM, idQM, rdQM : H̃(λ)P̌n(x;λ) = En(λ)P̌n(x;λ), (2.13)

rdQMJ : H̃J(λ)Pn(η;λ) = En(λ)Pn(η;λ). (2.14)

We remark that the constant terms of H̃ and H̃J are chosen such that E0 = 0. For idQM,

the relation (2.13) is invariant under the ∗-operation.

3 Forward and Backward Shift Relations

The similarity transformed Hamiltonians H̃(λ) (2.8)–(2.10) are factorized as

H̃(λ) = B(λ)F(λ), (3.1)

where the forward and backward shift operators, F(λ) and B(λ), are defined by [7, 8],

oQM : F(λ)
def
= cF

(dη(x)
dx

)−1 d

dx

(
= cF

d

dη

)
, (3.2)

B(λ) def
= −c−1

F

(dη(x)
dx

d

dx
+ 4c1

(
η(x);λ

)) (
= −4c−1

F

(
c2(η)

d

dη
+ c1(η;λ)

))
, (3.3)

idQM : F(λ)
def
= iϕ(x;λ)−1(e

γ

2
p − e−

γ

2
p), (3.4)

B(λ) def
= −i

(
V (x;λ)e

γ

2
p − V ∗(x;λ)e−

γ

2
p
)
ϕ(x;λ), (3.5)

rdQM : F(λ)
def
= B(0;λ)ϕ(x;λ)−1(1− e∂), (3.6)

B(λ) def
=

1

B(0;λ)

(
B(x;λ)−D(x;λ)e−∂

)
ϕ(x;λ). (3.7)

Since w(x), B(x), D(x) and V (x) satisfy

(dw(x;λ)
dx

)2

− d2w(x;λ)

dx2
=

(dw(x;λ+ δ)

dx

)2

+
d2w(x;λ+ δ)

dx2
+ E1(λ), (3.8)

V (x− iγ
2
;λ)

V (x;λ+ δ)
= κ

ϕ(x;λ)

ϕ(x− iγ;λ)
, (3.9)

V (x+ iγ
2
;λ) + V ∗(x− iγ

2
;λ) = κ

(
V (x;λ+ δ) + V ∗(x;λ+ δ)

)
− E1(λ), (3.10)

B(x+ 1;λ)

B(x;λ + δ)
= κ

ϕ(x;λ)

ϕ(x+ 1;λ)
,

D(x;λ)

D(x;λ+ δ)
= κ

ϕ(x;λ)

ϕ(x− 1;λ)
, (3.11)
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B(x;λ) +D(x+ 1;λ) = κ
(
B(x;λ+ δ) +D(x;λ+ δ)

)
+ E1(λ), (3.12)

we obtain

F(λ)B(λ) = κB(λ+ δ)F(λ+ δ) + E1(λ), (3.13)

which is the (similarity transformed) shape invariance condition. The constants fn and bn

satisfy

En(λ) = fn(λ)bn−1(λ) (n ∈ Z≥0), (3.14)

and the energy eigenvalues En satisfy

En+1(λ) = κEn(λ+ δ) + E1(λ) (n ∈ Z≥0). (3.15)

Note that we have fn(λ) = En(λ) and bn(λ) = 1 for rdQM due to our normalization

P̌n(0) = Pn(0) = 1. Corresponding to the factorization (3.1), the shape invariance combined

with the Crum’s theorem give the following relations [7, 8, 3].

Theorem 2.1 [2] For the polynomials in (2.2)–(2.5), the forward and backward shift rela-

tions hold:

F(λ)P̌n(x;λ) = fn(λ)P̌n−1(x;λ+ δ) (n ∈ Z≥0), (3.16)

B(λ)P̌n−1(x;λ+ δ) = bn−1(λ)P̌n(x;λ) (n ∈ Z≥1). (3.17)

For idQM, the relations (3.16)–(3.17) are invariant under the ∗-operation.

The similarity transformed Hamiltonians H̃J(λ) (2.12) are factorized as

H̃J(λ) = BJ(λ)FJ(λ). (3.18)

Here the forward and backward shift operators, FJ(λ) and BJ(λ), are defined by [5]

rdQMJ : FJ(λ)
def
= A(λ)η−1(1− q

η d
dη ), (3.19)

BJ(λ)
def
=

1

A(λ)

(
BJ(η;λ)−DJ(η;λ)q−η d

dη

)
η, (3.20)

where the constant A(λ) is given by

A(λ) =





−q−1DJ(1;λ) : bqJ, bqL, qL, SW
−aq−1 : ASCI
q−1 : dqHeI
1 : dqHeII

. (3.21)

6



We can show that BJ(η) and DJ(η) satisfy

qBJ(qr−1η;λ) = κBJ(η;λ+ δ), q−1DJ(r−1η;λ) = κDJ(η;λ+ δ), (3.22)

BJ(r−1η;λ) +DJ(qr−1η;λ) = κ
(
BJ(η;λ+ δ) +DJ(η;λ+ δ)

)
+ E1(λ), (3.23)

where r is given by

r =





q : bqJ, bqL, dqHeII, qL

1 : ASCI, dqHeI

q2 : SW

. (3.24)

Therefore we obtain

FJ(λ)BJ(λ)
∣∣∣
η→r−1η

= κBJ(λ+ δ)FJ(λ+ δ) + E1(λ), (3.25)

which is the (similarity transformed) shape invariance condition. The constants f J
n and bJn

satisfy

En(λ) = f J
n(λ)b

J
n−1(λ) (n ∈ Z≥0), (3.26)

and the energy eigenvalues En satisfy (3.15). Note that we have f J
n(λ) = En(λ) and bJn(λ) = 1

due to our normalization of Pn(η). Corresponding to the factorization (3.18), we have the

following relations [5].

Theorem 2.2 [2] For the polynomials in (2.6), the forward and backward shift relations

hold:

FJ(λ)Pn(η;λ) = f J
n(λ)Pn−1(rη;λ+ δ) (n ∈ Z≥0), (3.27)

BJ(λ)Pn−1(rη;λ+ δ) = bJn−1(λ)Pn(η;λ) (n ∈ Z≥1). (3.28)

Let us comment on the Rodrigues-type formulas [2]. The backward shift relations (3.17),

(3.28) and P̌0(x) = P0(η) = 1 give the following formulas,

oQM, idQM : P̌n(x;λ) =

n−1∏

j=0

bn−1−j(λ+ jδ)−1 ·
n−1
−→∏

j=0

B(λ+ jδ) · 1, (3.29)

rdQM : P̌n(x;λ) =

n−1
−→∏

j=0

B(λ + jδ) · 1, (3.30)

rdQMJ : Pn(η;λ) =

n−1
−→∏

j=0

BJ(λ+ jδ)
∣∣∣
η→rjη

· 1, (3.31)
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where

n
−→∏
k=1

ak
def
= a1a2 · · · an. For oQM, idQM and rdQM, the Hamiltonian H(λ) is factorized,

H(λ) = A(λ)†A(λ), and the operators A(λ) and A(λ)† are related to the operators F(λ)

and B(λ) as follows [3]:

F(λ) = φ0(x;λ+ δ)−1 ◦ A(λ) ◦ φ0(x;λ)×
{

1 : oQM, idQM√
B(0;λ) : rdQM

, (3.32)

B(λ) = φ0(x;λ)
−1 ◦ A(λ)† ◦ φ0(x;λ+ δ)×

{
1 : oQM, idQM

1√
B(0;λ)

: rdQM , (3.33)

where φ0(x;λ) is the ground state wavefunction, and φ0(x;λ)
2 is the weight function of

the orthogonal polynomials P̌n(x;λ). Explicit forms of φ0(x;λ) are found in [8] for idQM,

[7] for rdQM, and φ0(x;λ) = ew(x;λ) for oQM. By using (3.32)–(3.33) and cFφ0(x;λ) =
dη(x)
dx

φ0(x;λ − δ) for oQM, the backward shift operators (3.3), (3.5) and (3.7) are rewritten

as follows [9, 5]:

oQM : B(λ) = φ0(x;λ)
−2 ◦

(
−cF

d

dx
◦
(dη(x)

dx

)−1)
◦ φ0(x;λ+ δ)2

= −cF
(
φ0(x;λ− δ)φ0(x;λ)

)−1 ◦ d

dη
◦
(
φ0(x;λ)φ0(x;λ+ δ)

)
, (3.34)

idQM : B(λ) = φ0(x;λ)
−2 ◦ D ◦ φ0(x;λ+ δ)2, D def

= −i(e
γ

2
p − e−

γ

2
p)ϕ(x)−1, (3.35)

rdQM : B(λ) = φ0(x;λ)
−2 ◦ D(λ) ◦ φ0(x;λ+ δ)2, D(λ)

def
= (1− e−∂)ϕ(x;λ)−1. (3.36)

Although the function ϕ(x) depends on the parameters λ for cqH and qMP cases in idQM,

we suppress writing λ dependence in D (3.35), because ϕ(x;λ) is invariant under the shift

λ → λ+ δ. Then (3.29) and (3.30) become

oQM : P̌n(x;λ) = (−cF)
n

n−1∏

j=0

bn−1−j(λ+ jδ)−1 (3.37)

×
(
φ0(x;λ− δ)φ0(x;λ)

)−1
( d

dη

)n

· φ0

(
x;λ+ (n− 1)δ

)
φ0(x;λ+ nδ),

idQM : P̌n(x;λ) =
n−1∏

j=0

bn−1−j(λ+ jδ)−1 · φ0(x;λ)
−2Dn · φ0(x;λ+ nδ)2, (3.38)

rdQM : P̌n(x;λ) = φ0(x;λ)
−2

n−1
−→∏

j=0

D(λ+ jδ) · φ0(x;λ+ nδ)2. (3.39)

For rdQM, there are five sinusoidal coordinates [7]: (i) η(x) = x, (ii) η(x;λ) = x(x+ d), (iii)

η(x) = 1 − qx, (iv) η(x) = q−x − 1, (v) η(x;λ) = (q−x − 1)(1− dqx). For (i), (iii) and (iv),

8



the operator D(λ) does not depend on λ, and we have

n−1
−→∏
j=0

D(λ+ jδ) = Dn. We remark that

(3.39) can be rewritten as

P̌n(x;λ) =
( φ0(x;λ)

2

ϕ(x;λ− δ)

)−1
n−1
−→∏

j=0

ϕ
(
x;λ + (j − 1)δ

)−1
(1− e−∂) · φ0(x;λ+ nδ)2

ϕ(x;λ+ (n− 1)δ)
, (3.40)

and the expressions for the formulas (9.2.10), (14.2.11) etc. in [2] are somewhat ambiguous

(about the shift of parameters). For rdQMJ, direct calculation shows that the backward

shift operators (3.20) are rewritten as follows (cf. [5]):

B(λ) = A′(λ)φJ
0(η;λ)

−2 ◦ DJ ◦ φJ
0(rη;λ+ δ)2, DJ def

= (1− q
−η d

dη )η−1, (3.41)

where the function φJ
0(η;λ) and the constant A′(λ) are given by

bqJ, bqL,ACSI, dqHeI, dqHeII : φJ
0(η;λ)

2 def
= η

∞∏

j=0

qDJ(qj+1η;λ)

BJ(qjη;λ)
, (3.42)

qL : φJ
0(η;λ)

2 def
=

ηλ1+1

cλ1+1

1

(−η; q)∞
, namely φJ

0(cq
x;λ)2 =

(aq)x

(−cqx; q)∞
, (3.43)

SW : φJ
0(η;λ)

2 def
= (c−1η)

1
2
( log η
log q

+λ1+1)
, namely φJ

0(cq
x;λ)2 = cxq

1
2
x(x+1), (3.44)

A′(λ) = A(λ)−1 ×





(−ac) : bqJ
(−ab) : bqL
(−aq−1) : ASCI
q−1 : dqHeI, dqHeII
c : qL
c2 : SW

. (3.45)

Here the parameters λ are extended to qλ = (a, c) with δ = (1, 1) for qL and qλ = c with

δ = 2 for SW. Then (3.31) becomes

Pn(η;λ) = r−(
n

2)
n−1∏

j=0

A′(λ+ jδ) · φJ
0(η;λ)

−2
(
DJ

)n · φJ
0(r

nη;λ+ nδ)2. (3.46)

We remark that

(
(1− q

−η d
dη )η−1

)n
φJ
0(q

nη;λ+ nδ)2 = (−1)nq
1
2
n(n+1)

(
(1− q

η d
dη )η−1

)n
φJ
0(η;λ+ nδ)2 (3.47)

for bqJ, bqL, dqHeII and qL, and φJ
0(q

2nη;λ+ nδ)2 = (c−1η)2nφJ
0(η;λ)

2 for SW.
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4 Another type of Forward and Backward Shift Rela-

tions

In this section, based on other factorizations of H̃ and H̃J, we present another type of forward

and backward shift relations.

4.1 Polynomials in oQM systems

For the oQM systems described by the polynomials (2.2) (except He and B), let us define

the operators F̃(λ) and B̃(λ). For J case, they are given by

(a) : F̃(λ)
def
=

1

2
tanx

d

dx
+ g − 1

2

(
= −(1− η)

d

dη
+ g − 1

2

)
, (4.1)

B̃(λ) def
= −1

2
cot x

d

dx
+ h +

1

2

(
= (1 + η)

d

dη
+ h+

1

2

)
, (4.2)

(b) : F̃(λ)
def
= −1

2
cot x

d

dx
+ h− 1

2

(
= (1 + η)

d

dη
+ h− 1

2

)
, (4.3)

B̃(λ) def
=

1

2
tanx

d

dx
+ g +

1

2

(
= −(1 − η)

d

dη
+ g +

1

2

)
, (4.4)

and the constants f̃n(λ), b̃n(λ) and δ̄ are given by

(a) : f̃n(λ) = n+ g − 1
2
, b̃n(λ) = n+ h+ 1

2
, δ̄ = (1,−1), (4.5)

(b) : f̃n(λ) = n+ h− 1
2
, b̃n(λ) = n+ g + 1

2
, δ̄ = (−1, 1). (4.6)

For L and pJ cases, see Appendix A.1.

Then we can show that

H̃(λ) = 4
(
B̃(λ)F̃(λ)− f̃0(λ)b̃0(λ)

)
, (4.7)

En(λ) = 4
(
f̃n(λ)b̃n(λ)− f̃0(λ)b̃0(λ)

)
(n ∈ Z≥0). (4.8)

Corresponding to this factorization (4.7), the following relations are obtained by direct cal-

culation.

Theorem 3.1 For the polynomials in (2.2) (except He and B), the following forward and

backward shift relations hold for n ∈ Z≥0,

F̃(λ)P̌n(x;λ) = f̃n(λ)P̌n(x;λ− δ̄), (4.9)

B̃(λ)P̌n(x;λ− δ̄) = b̃n(λ)P̌n(x;λ). (4.10)
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Remark 1.1 We think that these identities (4.9)–(4.10) may be known formulas but this

interpretation is new. For example, (4.9) for (4.1) can be obtained by differentiating the

integral formula (1.18) with µ = 1 in [10].

Remark 1.2 Two formulas with δ̄ and −δ̄ are equivalent by interchanging F̃ and B̃,
e.g. (4.9) and (4.10) for L (b) agree with (4.10) and (4.9) for L (a) with the replacement

g → g + 1, respectively. For He and B, we do not have new factorization (4.7) and another

type of forward and backward shift relations (4.9)–(4.10).

4.2 Polynomials in idQM systems

For the idQM systems described by the polynomials (2.3), let us define the operators F̃(λ)

and B̃(λ) as follows:

F̃(λ)
def
= V1(x+ iγ

2
;λ)e

γ

2
p + V ∗

1 (x− iγ
2
;λ)e−

γ

2
p, (4.11)

B̃(λ) def
= V2(x;λ)e

γ

2
p + V ∗

2 (x;λ)e
−

γ

2
p, (4.12)

where the potential functions V1(x;λ) and V2(x;λ) satisfy

V (x;λ) = V1(x;λ)V2(x;λ). (4.13)

For AW case, their explicit forms are given by

Assume {a∗j , a∗k} = {aj , ak} (as a set) and set {l, m} = {1, 2, 3, 4}\{j, k},

Vi(x;λ) = V
(j,k)
i (x;λ) (i = 1, 2),

V1(x;λ) =
(1− aje

ix)(1− ake
ix)

1− qe2ix
, V2(x;λ) =

(1− ale
ix)(1− ame

ix)

1− e2ix
, (4.14)

and the constants f̃n(λ), b̃n(λ) and δ̄ as given by

f̃n(λ) = q−
n
2 (1− ajakq

n−1), b̃n(λ) = q−
n
2 (1− alamq

n),

(δ̄)j = (δ̄)k =
1
2
, (δ̄)l = (δ̄)m = −1

2
. (4.15)

For other cases, see Appendix A.2.

Then we can show that V1(x) and V2(x) satisfy

V1(x+ iγ;λ)V ∗
2 (x;λ) + V ∗

1 (x− iγ;λ)V2(x;λ)− f̃0(λ)b̃0(λ) = −V (x;λ)− V ∗(x;λ), (4.16)

and the constants f̃n and b̃n satisfy

En(λ) = f̃n(λ)b̃n(λ)− f̃0(λ)b̃0(λ) (n ∈ Z≥0). (4.17)
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The relation (4.16) gives other factorizations of H̃(λ) (2.9),

H̃(λ) = B̃(λ)F̃(λ)− f̃0(λ)b̃0(λ). (4.18)

Corresponding to this factorization (4.18), we obtain the following relations.

Theorem 3.2 For the polynomials in (2.3), the following forward and backward shift rela-

tions hold for n ∈ Z≥0,

F̃(λ)P̌n(x;λ) = f̃n(λ)P̌n(x;λ− δ̄), (4.19)

B̃(λ)P̌n(x;λ− δ̄) = b̃n(λ)P̌n(x;λ). (4.20)

Proof: It is sufficient to show (4.19), because (2.13) and (4.17)–(4.19) imply (4.20). Taking

AW (4.14) with (j, k) = (1, 2) as an example, let us prove (4.19). It is shown by direct

calculation:

F̃(λ)P̌n(x;λ)

=
(1− a1q

− 1
2 eix)(1− a2q

− 1
2 eix)

1− e2ix
(a1a2, a1a3, a1a4 ; q)n

an1

× 4φ3

(q−n, a1a2a3a4q
n−1, a1q

1
2 eix, a1q

− 1
2 e−ix

a1a2, a1a3, a1a4

∣∣∣ q ; q
)

+
(1− a1q

− 1
2 e−ix)(1− a2q

− 1
2 e−ix)

1− e−2ix

(a1a2, a1a3, a1a4 ; q)n
an1

× 4φ3

(q−n, a1a2a3a4q
n−1, a1q

− 1
2 eix, a1q

1
2 e−ix

a1a2, a1a3, a1a4

∣∣∣ q ; q
)

=
(a1a2, a1a3, a1a4 ; q)n

an1 (1− e2ix)

n∑

k=0

(q−n, a1a2a3a4q
n−1, a1q

− 1
2 eix, a1q

− 1
2 e−ix ; q)k

(a1a2, a1a3, a1a4 ; q)k

qk

(q ; q)k

×
(
(1− a1e

ixqk−
1
2 )(1− a2q

− 1
2 eix)− e2ix(1− a1e

−ixqk−
1
2 )(1− a2q

− 1
2 e−ix)

)

=
(a1a2, a1a3, a1a4 ; q)n

an1 (1− e2ix)

n∑

k=0

(q−n, a1a2a3a4q
n−1, a1q

− 1
2 eix, a1q

− 1
2 e−ix ; q)k

(a1a2, a1a3, a1a4 ; q)k

qk

(q ; q)k

× (1− a1a2q
k−1)(1− e2ix)

=
(a1a2, a1a3, a1a4 ; q)n

an1

n∑

k=0

(1− a1a2q
−1)

(q−n, a1a2a3a4q
n−1, a1q

− 1
2 eix, a1q

− 1
2 e−ix ; q)k

(a1a2q−1, a1a3, a1a4 ; q)k

qk

(q ; q)k

= q−
n
2 (1− a1a2q

n−1)

× (a1a2q
−1, a1a3, a1a4 ; q)n

(a1q
− 1

2 )n

n∑

k=0

(q−n, a1a2a3a4q
n−1, a1q

− 1
2 eix, a1q

− 1
2 e−ix ; q)k

(a1a2q−1, a1a3, a1a4 ; q)k

qk

(q ; q)k
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= f̃n(λ)P̌n(x;λ− δ̄).

The other cases are proved in the same way.

Remark 2.1 After submitting this manuscript to arXiv (arXiv:2301.00678), when I gave

a talk at ICIAM 2023 Tokyo (August 2023), Satoshi Tsujimoto informed me of the paper

by Kalnins and Miller [12], in which the formulas (4.19)–(4.20) for Askey-Wilson case (4.14)

with (j, k) = (1, 2) are given from a different point of view. Their operators τ = τ (a,b,c,d),

τ ∗ = τ ∗(aq
1
2 ,bq

1
2 ,cq

1
2 ,dq

1
2 ), µ = µ(a,b,c,d) and µ∗ = µ(cq

1
2 ,dq

1
2 ,aq

−
1
2 ,bq

−
1
2 ) correspond to our F(λ),

B(λ), F̃(λ) and B̃(λ) with (a1, a2, a3, a4) = (a, b, c, d), respectively.

Remark 2.2 Two formulas with δ̄ and −δ̄ are equivalent by interchanging F̃ and B̃, e.g.
(4.19) and (4.20) for cH (b) agree with (4.20) and (4.19) for cH (a) with the replacements

a1 → a1 +
1
2
and a2 → a2 − 1

2
, respectively.

Remark 2.3 The relations (4.19)–(4.20) are invariant under the ∗-operation. In contrast

to the x-shift relations studied in [4] (see Theorem3.3), the coordinate x is not shifted, and

only the parameters λ are shifted. We choose the operators F̃(λ) and B̃(λ) (4.11)–(4.12) to
respect this ∗-operation invariance. See also Remark 3.3.

Remark 2.4 We can show that

V1(x+ iγ
2
;λ)V2(x− iγ

2
;λ) = V1(x;λ− δ̄)V2(x;λ− δ̄),

V1(x+ iγ
2
;λ)V ∗

2 (x− iγ
2
;λ) + V ∗

1 (x− iγ
2
;λ)V2(x+ iγ

2
;λ)− f̃0(λ)b̃0(λ) (4.21)

= V1(x+ iγ;λ− δ̄)V ∗
2 (x;λ− δ̄) + V ∗

1 (x− iγ;λ− δ̄)V2(x;λ− δ̄)− f̃0(λ− δ̄)b̃0(λ− δ̄),

which imply

F̃(λ)B̃(λ)− f̃0(λ)b̃0(λ) = B̃(λ− δ̄)F̃(λ− δ̄)− f̃0(λ− δ̄)b̃0(λ− δ̄). (4.22)

4.3 Polynomials in rdQM systems

For the rdQM systems described by the polynomials (2.4)–(2.5) (except C and qB), let us

define the operators F̃(λ) and B̃(λ) as follows:

F̃(λ)
def
= D1(x+ 1;λ) +B1(x;λ)e

∂ , (4.23)

B̃(λ) def
= B2(x;λ) +D2(x;λ)e

−∂, (4.24)

where the potential functions B1(x;λ), B2(x;λ), D1(x;λ) and D2(x;λ) satisfy

B(x;λ) = B1(x;λ)B2(x;λ), D(x;λ) = D1(x;λ)D2(x;λ). (4.25)
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For qR case, their explicit forms are given by

(a) : B1(x;λ) = − (1− qx−N)(1− dqx)

(q−N−1 − 1)(1− dq2x+1)
, B2(x;λ) =

(q−N−1 − 1)(1− bqx)(1− cqx)

1− dq2x
,

D1(x;λ) =
(1− dqx+N)(1− qx)

(1− qN+1)(1− dq2x−1)
, D2(x;λ) = −d̃

(1− qN+1)(1− b−1dqx)(1− c−1dqx)

1− dq2x
,

(4.26)

(b) : B1(x;λ) =
(1− bqx)(1− dqx)

(1− bq−1)(1− dq2x+1)
, B2(x;λ) = −(1− bq−1)(1− qx−N)(1− cqx)

1− dq2x
,

D1(x;λ) =
(1− b−1dqx)(1− qx)

(1− b−1q)(1− dq2x−1)
, D2(x;λ) = −d̃

(1− b−1q)(1− dqx+N)(1− c−1dqx)

1− dq2x
,

(4.27)

(c) : B1(x;λ) =
(1− cqx)(1− dqx)

(1− cq−1)(1− dq2x+1)
, B2(x;λ) = −(1 − cq−1)(1− qx−N)(1− bqx)

1− dq2x
,

D1(x;λ) =
(1− c−1dqx)(1− qx)

(1− c−1q)(1− dq2x−1)
, D2(x;λ) = −d̃

(1− c−1q)(1− dqx+N)(1− b−1dqx)

1− dq2x
,

(4.28)

(d) : B1(x;λ) = −(1 − c)(1− qx−N)(1− bqx)

1− dq2x+1
, B2(x;λ) =

(1− cqx)(1− dqx)

(1− c)(1− dq2x)
, (4.29)

D1(x;λ) = −d̃
(1− c−1)(1− dqx+N)(1− b−1dqx)

1− dq2x−1
, D2(x;λ) =

(1− c−1dqx)(1− qx)

(1− c−1)(1− dq2x)
,

(e) : B1(x;λ) = −(1 − b)(1− qx−N)(1− cqx)

1− dq2x+1
, B2(x;λ) =

(1− bqx)(1− dqx)

(1− b)(1 − dq2x)
, (4.30)

D1(x;λ) = −d̃
(1− b−1)(1− dqx+N)(1− c−1dqx)

1− dq2x−1
, D2(x;λ) =

(1− b−1dqx)(1− qx)

(1− b−1)(1− dq2x)
,

(f) : B1(x;λ) =
(q−N − 1)(1− bqx)(1− cqx)

1− dq2x+1
, B2(x;λ) = −(1− qx−N)(1− dqx)

(q−N − 1)(1− dq2x)
, (4.31)

D1(x;λ) = −d̃
(1− qN)(1− b−1dqx)(1− c−1dqx)

1− dq2x−1
, D2(x;λ) =

(1− dqx+N)(1− qx)

(1− qN)(1− dq2x)
,

and the constants f̃n(λ), b̃n(λ) and δ̄ are given by

(a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (1, 0, 0, 1), (4.32)

(b) : f̃n(λ) = 1, b̃n(λ) = −q−n(1− bqn−1)(1− cd−1qn−N), δ̄ = (0, 1, 0, 1), (4.33)

(c) : f̃n(λ) = 1, b̃n(λ) = −q−n(1− cqn−1)(1− bd−1qn−N), δ̄ = (0, 0, 1, 1), (4.34)

(d) : f̃n(λ) = −q−n(1− cqn)(1− bd−1qn−N−1), b̃n(λ) = 1, δ̄ = (0, 0,−1,−1), (4.35)

(e) : f̃n(λ) = −q−n(1− bqn)(1− cd−1qn−N−1), b̃n(λ) = 1, δ̄ = (0,−1, 0,−1), (4.36)

(f) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (−1, 0, 0,−1). (4.37)
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For other cases, see Appendix A.3.

Then we can show that B1(x), B2(x), D1(x) and D2(x) satisfy

B1(x− 1;λ)D2(x;λ) +D1(x+ 1;λ)B2(x;λ)− f̃0(λ)b̃0(λ) = −B(x;λ)−D(x;λ), (4.38)

and the constants f̃n and b̃n satisfy

En(λ) = f̃0(λ)b̃0(λ)− f̃n(λ)b̃n(λ) (n ∈ Z≥0). (4.39)

The relation (4.38) gives another factorization of H̃(λ) (2.10),

H̃(λ) = −B̃(λ)F̃(λ) + f̃0(λ)b̃0(λ). (4.40)

Corresponding to this factorization (4.40), we obtain the following relations.

Theorem 3.3 For the polynomials in (2.4)–(2.5) (except C and qB), the following forward

and backward shift relations hold for n ∈ Z≥0,

F̃(λ)P̌n(x;λ) = f̃n(λ)P̌n(x+ s;λ− δ̄), (4.41)

B̃(λ)P̌n(x+ s;λ− δ̄) = b̃n(λ)P̌n(x;λ), (4.42)

where s is given by

s =





1 : H (a)(b),K (a), R (a)(b)(c), dH (a)(b)(c), dqqK(a)(b), qH(a)(b),
qK(a), qqK(a)(b), aqK(a)(b), qR(a)(b)(c), dqH(a)(b)(c),
dqK(a)(b),M (a), lqJ (a), lqL (a), qM(a)(b),ASCII (a), qC(a)

0 : others

. (4.43)

Proof: It is sufficient to show (4.41), because (2.13) and (4.39)–(4.41) imply (4.42). Taking

qR (a) (4.26) as an example, let us prove (4.41). It is shown by direct calculation:

F̃(λ)P̌n(x;λ)

=
(1− a−1dqx+1)(1− qx+1)

(1− a−1q)(1− dq2x+1)
4φ3

(q−n, abcd−1qn−1, q−x, dqx

a, b, c

∣∣∣ q ; q
)

− (1− aqx)(1− dqx)

(aq−1 − 1)(1− dq2x+1)
4φ3

(q−n, abcd−1qn−1, q−x−1, dqx+1

a, b, c

∣∣∣ q ; q
)

=
1

(1− aq−1)(1− dq2x+1)

n∑

k=0

(q−n, abcd−1qn−1, q−x−1, dqx ; q)k
(a, b, c ; q)k

qk

(q ; q)k

×
(
−aq−1(1− a−1dqx+1)(−qx+1)(1− q−x+k−1) + (1− aqx)(1− dqx+k)

)
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=
1

(1− aq−1)(1− dq2x+1)

n∑

k=0

(q−n, abcd−1qn−1, q−x−1, dqx ; q)k
(a, b, c ; q)k

qk

(q ; q)k
(1− aqk−1)(1− dq2x+1)

=
n∑

k=0

(q−n, abcd−1qn−1, q−x−1, dqx ; q)k
(aq−1, b, c ; q)k

qk

(q ; q)k

= f̃n(λ)P̌n(x+ s;λ− δ̄).

The other cases are proved in the same way.

Remark 3.1 Two formulas with δ̄ and −δ̄ are equivalent by interchanging F̃ and B̃, e.g.
(4.41) and (4.42) for H (c) agree with (4.42) and (4.41) for H (b) with the replacements

a → a + 1 and b → b − 1, respectively. For C and qB, we do not have new factorization

(4.40) and another type of forward and backward shift relations (4.41)–(4.42).

Remark 3.2 The relations (4.41)–(4.42) for twelve cases ((a) of H, K, R, dH, dqqK, qH,

qK, qqK, aqK, qR, dqH, dqK, which have f̃n = 1, b̃n(λ) = EN+1(λ) − En(λ), s = 1 and

D1(0;λ) = B1(N ;λ) = 0) were given in [4] and they were called forward and backward

x-shift relations. By considering e−∂F̃(λ) and B̃(λ)e∂ , the above results (4.40) and (4.41)–

(4.42) with s = 1 are rewritten as

H̃(λ) = −
(
B̃(λ)e∂

)(
e−∂F̃(λ)

)
+ f̃0(λ)b̃0(λ), (4.44)

(
e−∂F̃(λ)

)
P̌n(x;λ) = f̃n(λ)P̌n(x;λ− δ̄), (4.45)

(
B̃(λ)e∂

)
P̌n(x;λ− δ̄) = b̃n(λ)P̌n(x;λ). (4.46)

That is, x is not shifted. As an identity of polynomial, the x-shift is not essential. How-

ever, we think that this x-shift has important implications in the state-adding Darboux

transformation for the finite rdQM systems [4, 11].

Remark 3.3 AW and qR polynomials are related as [2]

eix
AW

= d
1
2 qx

qR

, (a1, a2, a3, a4) = (ad−
1
2 , bd−

1
2 , cd−

1
2 , d

1
2 ),

P̌AW
n (xAW;λAW) = d−

n
2 (a, b, c ; q)nP̌

qR
n (xqR;λqR). (4.47)

For the (j, k) = (1, 4) case in (4.14), the operators F̃ and B̃ for AW are related to those for

qR (a) (4.26) as

e
γ

2
pF̃AW(λAW) = −(q−N−1 − 1)F̃ qR(λqR),

B̃AW(λAW)e−
γ

2
p = (q−N−1 − 1)−1B̃qR(λqR). (4.48)

16



These extra factors e±
γ

2
p give the property in Remark 2.3. Similarly AW with (j, k) = (2, 4),

(3, 4), (1, 2), (1, 3) and (2, 4) cases correspond to qR (b), (c), (d), (e) and (f), respectively.

Remark 3.4 We can show that

B1(x− s;λ)B2(x− s+ 1;λ) = B(x;λ − δ̄), D1(x− s+ 1;λ)D2(x− s;λ) = D(x;λ− δ̄),

B1(x− s;λ)D2(x− s+ 1;λ) +D1(x− s+ 1;λ)B2(x− s;λ)− f̃0(λ)b̃0(λ) (4.49)

= B1(x− 1;λ− δ̄)D2(x;λ− δ̄) +D1(x+ 1;λ− δ̄)B2(x;λ− δ̄)− f̃0(λ− δ̄)b̃0(λ− δ̄),

which imply

F̃(λ)B̃(λ)
∣∣∣
x→x−s

−f̃0(λ)b̃0(λ) = B̃(λ− δ̄)F̃(λ− δ̄)− f̃0(λ− δ̄)b̃0(λ− δ̄). (4.50)

4.4 Polynomials in rdQMJ systems

For the rdQMJ systems described by the polynomials (2.6) (except dqHeI, dqHeII and SW),

let us define the operators F̃J(λ) and B̃J(λ) as follows:

F̃J(λ)
def
= DJ

1(qη;λ) +BJ
1(η;λ)q

η d
dη , (4.51)

B̃J(λ)
def
= BJ

2(η;λ) +DJ
2(η;λ)q

−η d
dη , (4.52)

where the potential functions BJ
1(η;λ), B

J
2(η;λ), D

J
1(η;λ) and DJ

2(η;λ) satisfy

BJ(η;λ) = BJ
1(η;λ)B

J
2(η;λ), DJ(η;λ) = DJ

1(η;λ)D
J
2(η;λ). (4.53)

For bqJ case, their explicit forms are given by

(a) : BJ
1(η;λ) =

η−1a(1− η)

1− a
, BJ

2(η;λ) = (1− a)η−1q(bη − c),

DJ
1(η;λ) =

η−1(aq − η)

a− 1
, DJ

2(η;λ) = (a− 1)η−1(η − cq), (4.54)

(b) : BJ
1(η;λ) =

η−1(1− η)

c−1 − 1
, BJ

2(η;λ) = (c−1 − 1)η−1aq(bη − c),

DJ
1(η;λ) =

η−1(η − cq)

1− c
, DJ

2(η;λ) = (1− c)η−1(aq − η), (4.55)

(c) : BJ
1(η;λ) = (c−1q−1 − 1)η−1aq(bη − c), BJ

2(η;λ) =
η−1(1− η)

c−1q−1 − 1
,

DJ
1(η;λ) = (1− cq)η−1(aq − η), DJ

2(η;λ) =
η−1(η − cq)

1− cq
, (4.56)

(d) : BJ
1(η;λ) = (1− aq)η−1(bη − c), BJ

2(η;λ) =
η−1aq(1− η)

1− aq
,
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DJ
1(η;λ) = (aq − 1)η−1(η − cq), DJ

2(η;λ) =
η−1(aq − η)

aq − 1
, (4.57)

and the constants f̃ J
n(λ), b̃

J
n(λ) and δ̄ are given by

(a) : f̃ J
n(λ) = 1, b̃Jn(λ) = −q−n(1− aqn)(1− bqn+1), δ̄ = (1,−1, 0), (4.58)

(b) : f̃ J
n(λ) = 1, b̃Jn(λ) = −q−n(1− cqn)(1− abc−1qn+1), δ̄ = (0, 0, 1), (4.59)

(c) : f̃ J
n(λ) = −q−n(1− cqn+1)(1− abc−1qn), b̃Jn(λ) = 1, δ̄ = (0, 0,−1), (4.60)

(d) : f̃ J
n(λ) = −q−n(1− aqn+1)(1− bqn), b̃Jn(λ) = 1, δ̄ = (−1, 1, 0). (4.61)

For other cases, see Appendix A.4.

Then we can show that BJ
1(η), B

J
2(η), D

J
1(η) and DJ

2(η) satisfy

BJ
1(q

−1η;λ)DJ
2(η;λ) +DJ

1(qη;λ)B
J
2(η;λ)− f̃ J

0 (λ)b̃
J
0(λ) = −BJ(η;λ)−DJ(η;λ), (4.62)

and the constants f̃ J
n and b̃Jn satisfy

En(λ) = f̃ J
0 (λ)b̃

J
0(λ)− f̃ J

n(λ)b̃
J
n(λ) (n ∈ Z≥0). (4.63)

The relations (4.62) give other factorizations of H̃(λ) (2.12),

H̃J(λ) = −B̃J(λ)F̃J(λ) + f̃ J
0 (λ)b̃

J
0(λ). (4.64)

Corresponding to this factorization (4.64), we obtain the following relations.

Theorem 3.4 For the polynomials in (2.6) (except dqHeI, dqHeII and SW), the following

forward and backward shift relations hold for n ∈ Z≥0,

F̃J(λ)Pn(η;λ) = f̃ J
n(λ)Pn(r

′η;λ− δ̄), (4.65)

B̃J(λ)Pn(r
′η;λ− δ̄) = b̃Jn(λ)Pn(η;λ), (4.66)

where r′ is given by

r′ =

{
q : bqJ (c)(d), bqL (c)(d),ASCI (a), qL (b)

1 : bqJ (a)(b), bqL (a)(b),ASCI (b), qL (a)
. (4.67)

Proof: It is sufficient to show (4.65), because (2.14) and (4.63)–(4.65) imply (4.66). Taking

bqJ (a) (4.54) as an example, let us prove (4.65). It is shown by direct calculation:

F̃J(λ)Pn(η;λ)
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=
η−1(a− η)

a− 1
3φ2

(q−n, abqn+1, η

aq, cq

∣∣∣ q ; q
)
+

η−1a(1− η)

1− a
3φ2

(q−n, abqn+1, qη

aq, cq

∣∣∣ q ; q
)

=
η−1

1− a

n∑

k=0

(q−n, abqn+1, η ; q)k
(aq, cq ; q)k

qk

(q ; q)k

(
−(a− η) + a(1− ηqk)

)

=
η−1

1− a

n∑

k=0

(q−n, abqn+1, η ; q)k
(aq, cq ; q)k

qk

(q ; q)k
(1− aqk)η

=
n∑

k=0

(q−n, abqn+1, η ; q)k
(a, cq ; q)k

qk

(q ; q)k

= f̃ J
n(λ)Pn(r

′η;λ− δ̄).

The other cases are proved in the same way.

Remark 4.1 Two formulas with δ̄ and −δ̄ are equivalent by interchanging F̃J and B̃J, e.g.

(4.65) and (4.66) for bqJ (d) agree with (4.66) and (4.65) for bqJ (a) with the replacements

a → aq and b → bq−1, respectively. For dqHeI, dqHeII and SW, we do not have new

factorization (4.64) and another type of forward and backward shift relations (4.65)–(4.66).

Remark 4.2 As in Remark 3.2, by considering q−η d
dη F̃J(λ) and B̃J(λ)qη

d
dη , the above results

(4.64) and (4.65)–(4.66) with r′ = q are rewritten as

H̃J(λ) = −
(
B̃J(λ)qη

d
dη

)(
q−η d

dη F̃J(λ)
)
+ f̃ J

0 (λ)b̃
J
0(λ), (4.68)

(
q−η d

dη F̃J(λ)
)
Pn(η;λ) = f̃ J

n(λ)Pn(η;λ− δ̄), (4.69)
(
B̃J(λ)qη

d
dη

)
Pn(η;λ− δ̄) = b̃Jn(λ)Pn(η;λ). (4.70)

That is, η is not q-shifted. As an identity of polynomial, the q-shift of η is not essential.

Remark 4.3 We can show that

BJ
1(r

′ −1η;λ)BJ
2(qr

′−1η;λ) = BJ(η;λ− δ̄), DJ
1(qr

′−1η;λ)DJ
2(r

′−1η;λ) = DJ(η;λ− δ̄),

BJ
1(r

′ −1η;λ)DJ
2(qr

′−1η;λ) +DJ
1(qr

′−1η;λ)BJ
2(r

′−1η;λ)− f̃ J
0 (λ)b̃

J
0(λ) (4.71)

= BJ
1(q

−1η;λ− δ̄)DJ
2(η;λ− δ̄) +DJ

1(qη;λ− δ̄)BJ
2(η;λ− δ̄)− f̃ J

0 (λ− δ̄)b̃J0(λ− δ̄),

which imply

F̃J(λ)B̃J(λ)
∣∣∣
η→r′ −1η

−f̃ J
0 (λ)b̃

J
0(λ) = B̃J(λ− δ̄)F̃J(λ− δ̄)− f̃ J

0 (λ− δ̄)b̃J0(λ− δ̄). (4.72)

5 Summary and Comments

The orthogonal polynomials in the Askey scheme satisfy second order differential or differ-

ence equations (Theorem1) and we study them by using quantum mechanical formulation
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(oQM, idQM, rdQM, rdQMJ). The forward and backward shift relations are their basic prop-

erties (Theorem2.1, 2.2), in which the degree n and the parameters λ are shifted. They are

based on the factorizations of the differential or difference operators H̃ (3.1) and H̃J (3.18).

Although Theorem1, 2.1 and 2.2 are well known results, their formulas in quantum me-

chanical formulation are expressed neatly and systematically in a universal form. Motivated

by the recently found forward and backward x-shift relations [4], in which the coordinate

x and parameters λ are shifted, we have tried to find new forward and backward relations.

We have found new factorizations of H̃ (4.7), (4.18), (4.40) and H̃J (4.64), and based on

them, we have obtained another type of forward and backward shift relations (Theorem3.1,

3.2, 3.3, 3.4). While some of these results may be found in the literature, this is the first

comprehensive study. In these forward and backward shift relations except for some cases

of rdQM and rdQMJ, only the parameters λ are shifted. As an identity of polynomial, the

x-shift (or q-shift of η) is not essential (Remark 3.2, 4.2).

The forward and backward shift relations are related to the shape invariance property

of quantum mechanical systems [7, 8, 3, 5]. It is an interesting problem to investigate the

quantum mechanical implications of the another type of forward and backward shift relations

obtained in this paper (cf. Remark 2.4, 3.4, 4.3). Especially the twelve finite rdQM cases

in Remark 3.2 are interesting. In these cases, we think that the x-shift has important im-

plications related to the state-adding Darboux transformations. The state-adding Darboux

transformations for finite rdQM systems were studied in [4, 11]. For one-step transforma-

tion, the range of x, {0, 1, . . . , N}, is extended to {−1, 0, 1, . . . , N}, and the parameter N

(= (size of the Hamiltonian)− 1) is shifted to N + 1, and the deformed potential functions

contain the factors B(x+1;λ− δ̄) and D(x+1;λ− δ̄), where δ̄ is certain shift of parameters

(the component of δ̄ corresponding to N is −1). The boundary conditions B(x) = 0 for

x = xmax = N and D(x) = 0 for x = xmin = 0 are inherited by the deformed system, because

we have B(x+ 1;λ− δ̄) = 0 for x = xmax = N and D(x+ 1;λ− δ̄) = 0 for x = xmin = −1.

Thus the x-shift, x → x + 1, is important. The M added eigenvectors of the deformed sys-

tems by M-step state-adding Darboux transformations are obtained explicitly in [11]. But

they were found through a very technical trial and error process, and a better derivation is

desired. For the state-adding Darboux transformations in oQM, the added eigenfunctions

are expressed neatly in terms of the Wronskian and seed solutions. We believe that this is

also the case for finite rdQM, namely, the added eigenvectors are expressed neatly in terms
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of the Casoratian and seed solutions, and that the x-shift relations in Remark 3.2 play an

important role. We hope this topic will be successfully solved and we will be able to report

the results somewhere.

The case-(1) multi-indexed orthogonal polynomials are constructed for R, qR, W, AW,

M, lqJ, lqL, cH and MP, and they have shape invariant property, namely, satisfy the forward

and backward shift relations like Theorem2.1. It is an interesting problem to investigate

whether these multi-indexed polynomials satisfy another type of forward and backward shift

relations such as Theorem3.2 and 3.3.
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A Data for § 4

We give the data for the another type of forward and backward shift relations in § 4.

A.1 Data for § 4.1

We present explicit forms of F̃ , B̃, f̃n, b̃n and δ̄ in § 4.1.

Operators F̃(λ) and B̃(λ):

L : (a) : F̃(λ)
def
=

1

2
x
d

dx
+ g − 1

2

(
= η

d

dη
+ g − 1

2

)
, B̃(λ) def

= −1

2

1

x

d

dx
+ 1

(
= − d

dη
+ 1

)
,

(A.1)

(b) : F̃(λ)
def
= −1

2

1

x

d

dx
+ 1

(
= − d

dη
+ 1

)
, B̃(λ) def

=
1

2
x
d

dx
+ g +

1

2

(
= η

d

dη
+ g +

1

2

)
,

(A.2)

pJ : (a) : F̃(λ)
def
=

(
tanh x+

i

cosh x

) d

dx
− h− 1

2
− iµ

(
= (η + i)

d

dη
− h− 1

2
− iµ

)
,

B̃(λ) def
=

(
tanhx− i

cosh x

) d

dx
− h+

1

2
+ iµ

(
= (η − i)

d

dη
− h+

1

2
+ iµ

)
, (A.3)

(b) : F̃(λ)
def
=

(
tanhx− i

cosh x

) d

dx
− h− 1

2
+ iµ

(
= (η − i)

d

dη
− h− 1

2
+ iµ

)
,

B̃(λ) def
=

(
tanh x+

i

cosh x

) d

dx
− h +

1

2
− iµ

(
= (η + i)

d

dη
− h+

1

2
− iµ

)
. (A.4)

21



Constants f̃n(λ), b̃n(λ) and δ̄:

L : (a) : f̃n(λ) = n + g − 1
2
, b̃n(λ) = 1, δ̄ = 1, (A.5)

(b) : f̃n(λ) = 1, b̃n(λ) = n+ g + 1
2
, δ̄ = −1, (A.6)

pJ : (a) : f̃n(λ) = n− h− 1
2
− iµ, b̃n(λ) = n− h + 1

2
+ iµ, δ̄ = (0, i), (A.7)

(b) : f̃n(λ) = n− h− 1
2
+ iµ, b̃n(λ) = n− h + 1

2
− iµ, δ̄ = (0.− i). (A.8)

We remark that the second components of δ̄ for pJ are unphysical values.

A.2 Data for § 4.2

We present explicit forms of V1(x), f̃n, b̃n and δ̄ in § 4.2. The potential function V2(x) can

be obtained from (4.13).

Potential functions V1(x;λ):

cH : (a) : V1(x;λ) = a1 + ix, (b) : V1(x;λ) = a2 + ix, (A.9)

MP : (a) : V1(x;λ) = a+ ix, (b) : V1(x;λ) = ei(
π
2
−φ), (A.10)

W : Assume {a∗j , a∗k} = {aj, ak} (as a set) and set {l, m} = {1, 2, 3, 4}\{j, k},

Vi(x;λ) = V
(j,k)
i (x;λ) (i = 1, 2), V1(x;λ) =

(aj + ix)(ak + ix)

2ix+ 1
, (A.11)

cdH : Assume {a∗j , a∗k} = {aj, ak} (as a set) and set {l} = {1, 2, 3}\{j, k},

Vi(x;λ) = V
(j,k)
i (x;λ) (i = 1, 2),

(a) : V1(x;λ) =
(aj + ix)(ak + ix)

2ix+ 1
, (b) : V1(x;λ) =

al + ix

2ix+ 1
, (A.12)

cdqH : Assume {a∗j , a∗k} = {aj, ak} (as a set) and set {l} = {1, 2, 3}\{j, k},

Vi(x;λ) = V
(j,k)
i (x;λ) (i = 1, 2),

(a) : V1(x;λ) =
(1− aje

ix)(1− ake
ix)

1− qe2ix
, (b) : V1(x;λ) =

1− ale
ix

1− qe2ix
, (A.13)

ASC : Assume a1, a2 ∈ R for (b) and (c),

(a) : V1(x;λ) =
(1− a1e

ix)(1− a2e
ix)

1− qe2ix
, (b) : V1(x;λ) =

1− a1e
ix

1− qe2ix
, (A.14)

(c) : V1(x;λ) =
1− a2e

ix

1 − qe2ix
, (d) : V1(x;λ) =

1

1− qe2ix
, (A.15)

cbqHe : (a) : V1(x;λ) =
1− aeix

1− qe2ix
, (b) : V1(x;λ) =

1

1− qe2ix
, (A.16)

cqHe : V1(x;λ) =
1

1− qe2ix
, (A.17)
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cqJ : (a) : V1(x;λ) =
(1− q

1
2
(α+ 1

2
)eix)(1− q

1
2
(α+ 3

2
)eix)

1− qe2ix
, (A.18)

(b) : V1(x;λ) =
(1 + q

1
2
(β+ 1

2
)eix)(1 + q

1
2
(β+ 3

2
)eix)

1− qe2ix
, (A.19)

cqL : (a) : V1(x;λ) =
(1− q

1
2
(α+ 1

2
)eix)(1− q

1
2
(α+ 3

2
)eix)

1− qe2ix
, (b) : V1(x;λ) =

1

1− qe2ix
,

(A.20)

cqH : (a) : V1(x;λ) =
(1− a1e

2iφeix)(1− a∗1e
ix)

1− qe2iφe2ix
, (A.21)

(b) : V1(x;λ) =
(1− a2e

2iφeix)(1− a∗2e
ix)

1− qe2iφe2ix
, (A.22)

qMP : (a) : V1(x;λ) =
(1− ae2iφeix)(1− aeix)

1− qe2iφe2ix
, (b) : V1(x;λ) =

1

1− qe2iφe2ix
. (A.23)

Constants f̃n(λ), b̃n(λ) and δ̄:

cH : (a) : f̃n(λ) = a1 + a∗1 + n− 1, b̃n(λ) = a2 + a∗2 + n, δ̄ = (1
2
,−1

2
), (A.24)

(b) : f̃n(λ) = a2 + a∗2 + n− 1, b̃n(λ) = a1 + a∗1 + n, δ̄ = (−1
2
, 1
2
), (A.25)

MP : (a) : f̃n(λ) = 2a + n− 1, b̃n(λ) = 2 sinφ, δ̄ = (1
2
, 0), (A.26)

(b) : f̃n(λ) = 2 sinφ, b̃n(λ) = 2a+ n, δ̄ = (−1
2
, 0), (A.27)

W : f̃n(λ) = aj + ak + n− 1, b̃n(λ) = al + am + n,

(δ̄)j = (δ̄)k =
1
2
, (δ̄)l = (δ̄)m = −1

2
, (A.28)

cdH : (a) : f̃n(λ) = aj + ak + n− 1, b̃n(λ) = 1, (δ̄)j = (δ̄)k =
1
2
, (δ̄)l = −1

2
, (A.29)

(b) : f̃n(λ) = 1, b̃n(λ) = aj + ak + n, (δ̄)l =
1
2
, (δ̄)j = (δ̄)k = −1

2
, (A.30)

cdqH : (a) : f̃n(λ) = q−
n
2 (1− ajakq

n−1), b̃n(λ) = q−
n
2 , (δ̄)j = (δ̄)k = 1

2
, (δ̄)l = −1

2
, (A.31)

(b) : f̃n(λ) = q−
n
2 , b̃n(λ) = q−

n
2 (1− ajakq

n), (δ̄)l =
1
2
, (δ̄)j = (δ̄)k = −1

2
, (A.32)

ASC : (a) : f̃n(λ) = q−
n
2 (1− a1a2q

n−1), b̃n(λ) = q−
n
2 , δ̄ = (1

2
, 1
2
), (A.33)

(b) : f̃n(λ) = q−
n
2 , b̃n(λ) = q−

n
2 , δ̄ = (1

2
,−1

2
), (A.34)

(c) : f̃n(λ) = q−
n
2 , b̃n(λ) = q−

n
2 , δ̄ = (−1

2
, 1
2
), (A.35)

(d) : f̃n(λ) = q−
n
2 , b̃n(λ) = q−

n
2 (1− a1a2q

n), δ̄ = (−1
2
,−1

2
), (A.36)

cbqHe : (a) : f̃n(λ) = q−
n
2 , b̃n(λ) = q−

n
2 , δ̄ = 1

2
, (A.37)

(b) : f̃n(λ) = q−
n
2 , b̃n(λ) = q−

n
2 , δ̄ = −1

2
, (A.38)

cqHe : f̃n(λ) = q−
n
2 , b̃n(λ) = q−

n
2 , δ̄ : none, (A.39)
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cqJ : (a) : f̃n(λ) = 1− qα+n, b̃n(λ) = q−n(1− qβ+n+1), δ̄ = (1,−1), (A.40)

(b) : f̃n(λ) = q−n(1− qβ+n), b̃n(λ) = 1− qα+n+1, δ̄ = (−1, 1), (A.41)

cqL : (a) : f̃n(λ) = 1− qα+n, b̃n(λ) = q−n, δ̄ = 1, (A.42)

(b) : f̃n(λ) = q−n, b̃n(λ) = 1− qα+n+1, δ̄ = −1, (A.43)

cqH : (a) : f̃n(λ) = q−
n
2 (1− a1a

∗
1q

n−1), b̃n(λ) = q−
n
2 (1− a2a

∗
2q

n), δ̄ = (1
2
,−1

2
, 0), (A.44)

(b) : f̃n(λ) = q−
n
2 (1− a2a

∗
2q

n−1), b̃n(λ) = q−
n
2 (1− a1a

∗
1q

n), δ̄ = (−1
2
, 1
2
, 0), (A.45)

qMP : (a) : f̃n(λ) = q−
n
2 (1− a2qn−1), b̃n(λ) = q−

n
2 , δ̄ = (1

2
, 0), (A.46)

(b) : f̃n(λ) = q−
n
2 , b̃n(λ) = q−

n
2 (1− a2qn), δ̄ = (−1

2
, 0). (A.47)

A.3 Data for § 4.3

We present explicit forms of B1(x), D1(x), f̃n, b̃n and δ̄ in § 4.3. The potential functions

B2(x) and D2(x) can be obtained from (4.25).

Potential functions B1(x;λ) and D1(x;λ):

H : (a) : B1(x;λ) =
N − x

N + 1
, D1(x;λ) =

x

N + 1
, (A.48)

(b) : B1(x;λ) =
x+ a

a− 1
, D1(x;λ) =

x

1− a
, (A.49)

(c) : B1(x;λ) = a(N − x), D1(x;λ) = −a(b+N − x), (A.50)

(d) : B1(x;λ) = N(x+ a), D1(x;λ) = N(b+N − x), (A.51)

K : (a) : B1(x;λ) =
N − x

N + 1
, D1(x;λ) =

x

N + 1
, (A.52)

(b) : B1(x;λ) = Np, D1(x;λ) = N(1 − p), (A.53)

R : (a) : B1(x;λ) = − (x−N)(x+ d)

(N + 1)(2x+ 1 + d)
, D1(x;λ) =

(x+ d+N)x

(N + 1)(2x− 1 + d)
, (A.54)

(b) : B1(x;λ) =
(x+ b)(x+ d)

(b− 1)(2x+ 1 + d)
, D1(x;λ) = − (x+ d− b)x

(b− 1)(2x− 1 + d)
, (A.55)

(c) : B1(x;λ) =
(x+ c)(x+ d)

(c− 1)(2x+ 1 + d)
, D1(x;λ) = − (x+ d− c)x

(c− 1)(2x− 1 + d)
, (A.56)

(d) : B1(x;λ) = −c(x−N)(x+ b)

2x+ 1 + d
, D1(x;λ) =

c(x+ d+N)(x+ d− b)

2x− 1 + d
, (A.57)

(e) : B1(x;λ) = −b(x−N)(x+ c)

2x+ 1 + d
, D1(x;λ) =

b(x+ d+N)(x+ d− c)

2x− 1 + d
, (A.58)

(f) : B1(x;λ) =
N(x+ b)(x+ c)

2x+ 1 + d
, D1(x;λ) = −N(x + d− b)(x+ d− c)

2x− 1 + d
, (A.59)
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dH : (a) : B1(x;λ) =
(x+ a + b− 1)(N − x)

(N + 1)(2x+ a+ b)
, D1(x;λ) =

x(x+ a + b+N − 1)

(N + 1)(2x− 2 + a+ b)
,

(A.60)

(b) : B1(x;λ) =
(x+ a)(x+ a+ b− 1)

(a− 1)(2x+ a+ b)
, D1(x;λ) =

x(x+ b− 1)

(1− a)(2x− 2 + a+ b)
,

(A.61)

(c) : B1(x;λ) =
x+ a + b− 1

2x+ a+ b
, D1(x;λ) =

x

2x− 2 + a+ b
, (A.62)

(d) : B1(x;λ) =
(x+ a)(N − x)

2x+ a + b
, D1(x;λ) =

(x+ b− 1)(x+ a+ b+N − 1)

2x− 2 + a + b
,

(A.63)

(e) : B1(x;λ) =
a(N − x)

2x+ a+ b
, D1(x;λ) = −a(x+ a + b+N − 1)

2x− 2 + a+ b
, (A.64)

(f) : B1(x;λ) =
N(x+ a)

2x+ a + b
, D1(x;λ) =

N(x+ b− 1)

2x− 2 + a + b
, (A.65)

dqqK : (a) : B1(x;λ) =
q−N−1(1− qN−x)

q−N−1 − 1
, D1(x;λ) =

q−x − 1

q−N−1 − 1
, (A.66)

(b) : B1(x;λ) = q−x−1, D1(x;λ) = −(q−x − 1), (A.67)

(c) : B1(x;λ) = p−1q−N−1(1− qN−x), D1(x;λ) = −(1 − p−1q−x), (A.68)

(d) : B1(x;λ) = (1− qN)p−1q−x−N−1, D1(x;λ) = (q−N − 1)(1− p−1q−x), (A.69)

qH : (a) : B1(x;λ) =
qx−N − 1

q−N−1 − 1
, D1(x;λ) =

1− qx

1− qN+1
, (A.70)

(b) : B1(x;λ) =
1− aqx

1− aq−1
, D1(x;λ) =

aq−1(1− qx)

aq−1 − 1
, (A.71)

(c) : B1(x;λ) = (1− a)(qx−N − 1), D1(x;λ) = (a− 1)q−1(qx−N − b), (A.72)

(d) : B1(x;λ) = (q−N − 1)(1− aqx), D1(x;λ) = (1− qN)aq−1(qx−N − b), (A.73)

qK : (a) : B1(x;λ) =
qx−N − 1

q−N−1 − 1
, D1(x;λ) =

1− qx

1− qN+1
, (A.74)

(b) : B1(x;λ) = q−N − 1, D1(x;λ) = (1− qN)p, (A.75)

qqK : (a) : B1(x;λ) =
qx−N − 1

q−N−1 − 1
, D1(x;λ) =

1− qx

1− qN+1
, (A.76)

(b) : B1(x;λ) = qqx, D1(x;λ) = 1− qx, (A.77)

(c) : B1(x;λ) = p−1(qx−N − 1), D1(x;λ) = 1− p−1qx−N−1, (A.78)

(d) : B1(x;λ) = (q−N − 1)p−1qx, D1(x;λ) = (1− qN)(1− p−1qx−N−1), (A.79)

aqK : (a) : B1(x;λ) =
qx−N − 1

q−N−1 − 1
, D1(x;λ) =

1− qx

1− qN+1
, (A.80)

(b) : B1(x;λ) =
1− pqx+1

1− p
, D1(x;λ) =

p(1− qx)

p− 1
, (A.81)
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(c) : B1(x;λ) = (1− pq)(qx−N − 1), D1(x;λ) = (pq − 1)qx−N−1, (A.82)

(d) : B1(x;λ) = (q−N − 1)(1− pqx+1), D1(x;λ) = (q−N − 1)pqx, (A.83)

dqH : (a) : B1(x;λ) =
(qx−N − 1)(1− abqx−1)

(q−N−1 − 1)(1− abq2x)
, D1(x;λ) =

(1− qx)(1− abqx+N−1)

(1− qN+1)(1− abq2x−2)
,

(A.84)

(b) : B1(x;λ) =
(1− aqx)(1− abqx−1)

(1− aq−1)(1− abq2x)
, D1(x;λ) =

(1− qx)(1− bqx−1)

(1− a−1q)(1− abq2x−2)
,

(A.85)

(c) : B1(x;λ) =
1− abqx−1

1− abq2x
, D1(x;λ) =

bq−2aqx(1− qx)

1− abq2x−2
, (A.86)

(d) : B1(x;λ) =
(qx−N − 1)(1− aqx)

1− abq2x
, D1(x;λ) =

q−N(1− abqx+N−1)(1− bqx−1)

b(1− abq2x−2)
,

(A.87)

(e) : B1(x;λ) =
(1− a)(qx−N − 1)

1− abq2x
, D1(x;λ) =

(a− 1)qx−N−1(1− abqx+N−1)

1− abq2x−2
,

(A.88)

(f) : B1(x;λ) =
(q−N − 1)(1− aqx)

1− abq2x
, D1(x;λ) =

(1− qN)aqx−N−1(1− bqx−1)

1− abq2x−2
,

(A.89)

dqK : (a) : B1(x;λ) =
(qx−N − 1)(1 + pqx)

(q−N−1 − 1)(1 + pq2x+1)
, D1(x;λ) =

(1− qx)(1 + pqx+N)

(1− qN+1)(1 + pq2x−1)
,

(A.90)

(b) : B1(x;λ) =
1 + pqx

1 + pq2x+1
, D1(x;λ) = −pqx−1(1− qx)

1 + pq2x−1
, (A.91)

(c) : B1(x;λ) =
qx−N − 1

1 + pq2x+1
, D1(x;λ) = −qx−N−1(1 + pqx+N)

1 + pq2x−1
, (A.92)

(d) : B1(x;λ) =
q−N − 1

1 + pq2x+1
, D1(x;λ) =

(1− qN)pq2x−N−1

1 + pq2x−1
, (A.93)

M : (a) : B1(x;λ) =
x+ β

β − 1
, D1(x;λ) =

x

1− β
, (A.94)

(b) : B1(x;λ) =
βc

1− c
, D1(x;λ) = − β

1 − c
, (A.95)

lqJ : (a) : B1(x;λ) =
q−1(q−x − b)

1− bq−1
, D1(x;λ) =

q−x − 1

bq−1 − 1
, (A.96)

(b) : B1(x;λ) = (1− b)aq−1, D1(x;λ) = b− 1, (A.97)

lqL : (a) : B1(x;λ) = q−x−1, D1(x;λ) = −(q−x − 1), (A.98)

(b) : B1(x;λ) = aq−1, D1(x;λ) = −1, (A.99)

qM : (a) : B1(x;λ) = qx+1, D1(x;λ) = 1− qx, (A.100)
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(b) : B1(x;λ) =
1− bqx+1

1− b
, D1(x;λ) =

1− qx

1− b−1
, (A.101)

(c) : B1(x;λ) = (1− bq)cqx, D1(x;λ) = (1− b−1q−1)(1 + bcqx), (A.102)

(d) : B1(x;λ) = c(1− bqx+1), D1(x;λ) = 1 + bcqx, (A.103)

ASCII : (a) : B1(x;λ) = qx+1, D1(x;λ) = 1− qx, (A.104)

(b) : B1(x;λ) = aqx+1, D1(x;λ) = 1− aqx, (A.105)

qC : (a) : B1(x;λ) = qx+1, D1(x;λ) = 1− qx, (A.106)

(b) : B1(x;λ) = a, D1(x;λ) = 1. (A.107)

Constants f̃n(λ), b̃n(λ) and δ̄:

H : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (0, 0,−1), (A.108)

(b) : f̃n(λ) = 1, b̃n(λ) = −(n + a− 1)(n+ b), δ̄ = (1,−1, 0), (A.109)

(c) : f̃n(λ) = −(n + a)(n+ b− 1), b̃n(λ) = 1, δ̄ = (−1, 1, 0), (A.110)

(d) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (0, 0, 1), (A.111)

K : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (0,−1), (A.112)

(b) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (0, 1), (A.113)

R : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (1, 0, 0, 1), (A.114)

(b) : f̃n(λ) = 1, b̃n(λ) = −(n + b− 1)(n+ c− d−N), δ̄ = (0, 1, 0, 1), (A.115)

(c) : f̃n(λ) = 1, b̃n(λ) = −(n + c− 1)(n+ b− d−N), δ̄ = (0, 0, 1, 1), (A.116)

(d) : f̃n(λ) = −(n + c)(n+ b− d−N − 1), b̃n(λ) = 1, δ̄ = (0, 0,−1,−1), (A.117)

(e) : f̃n(λ) = −(n + b)(n + c− d−N − 1), b̃n(λ) = 1, δ̄ = (0,−1, 0,−1), (A.118)

(f) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (−1, 0, 0,−1), (A.119)

dH : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (0, 1,−1), (A.120)

(b) : f̃n(λ) = 1, b̃n(λ) = −(n + a− 1), δ̄ = (1, 0, 0), (A.121)

(c) : f̃n(λ) = 1, b̃n(λ) = −(n− b−N + 1), δ̄ = (0, 1, 0), (A.122)

(d) : f̃n(λ) = −(n− b−N), b̃n(λ) = 1, δ̄ = (0,−1, 0), (A.123)

(e) : f̃n(λ) = −(n + a), b̃n(λ) = 1, δ̄ = (−1, 0, 0), (A.124)

(f) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (0,−1, 1), (A.125)

dqqK : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (1,−1), (A.126)

(b) : f̃n(λ) = 1, b̃n(λ) = −q−n(1− p−1qn−N), δ̄ = (1, 0), (A.127)
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(c) : f̃n(λ) = −q−n(1− p−1qn−N−1), b̃n(λ) = 1, δ̄ = (−1, 0), (A.128)

(d) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (−1, 1), (A.129)

qH : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (0, 0,−1), (A.130)

(b) : f̃n(λ) = 1, b̃n(λ) = −q−n(1− aqn−1)(1− bqn), δ̄ = (1,−1, 0), (A.131)

(c) : f̃n(λ) = −q−n(1− aqn)(1− bqn−1), b̃n(λ) = 1, δ̄ = (−1, 1, 0), (A.132)

(d) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (0, 0, 1), (A.133)

qK : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (0,−1), (A.134)

(b) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (0, 1), (A.135)

qqK : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (0,−1), (A.136)

(b) : f̃n(λ) = 1, b̃n(λ) = −p−1q−1(1− pqn+1), δ̄ = (−1, 0), (A.137)

(c) : f̃n(λ) = −p−1(1− pqn) b̃n(λ) = 1, δ̄ = (1, 0), (A.138)

(d) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (0, 1), (A.139)

aqK : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (0,−1), (A.140)

(b) : f̃n(λ) = 1, b̃n(λ) = −q−n(1− pqn), δ̄ = (1, 0), (A.141)

(c) : f̃n(λ) = −q−n(1− pqn+1), b̃n(λ) = 1, δ̄ = (−1, 0), (A.142)

(d) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (0, 1), (A.143)

dqH : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (0, 1,−1), (A.144)

(b) : f̃n(λ) = 1, b̃n(λ) = −q−n(1− aqn−1), δ̄ = (1, 0, 0), (A.145)

(c) : f̃n(λ) = 1, b̃n(λ) = −q−n(1− b−1qn−N+1), δ̄ = (0, 1, 0), (A.146)

(d) : f̃n(λ) = −q−n(1− b−1qn−N), b̃n(λ) = 1, δ̄ = (0,−1, 0), (A.147)

(e) : f̃n(λ) = −q−n(1− aqn), b̃n(λ) = 1, δ̄ = (−1, 0, 0), (A.148)

(f) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (0,−1, 1), (A.149)

dqK : (a) : f̃n(λ) = 1, b̃n(λ) = EN+1(λ)− En(λ), δ̄ = (1,−1), (A.150)

(b) : f̃n(λ) = 1, b̃n(λ) = −q−n, δ̄ = (1, 0), (A.151)

(c) : f̃n(λ) = −q−n, b̃n(λ) = 1, δ̄ = (−1, 0), (A.152)

(d) : f̃n(λ) = EN(λ)− En(λ), b̃n(λ) = 1, δ̄ = (−1, 1), (A.153)

M : (a) : f̃n(λ) = 1, b̃n(λ) = −(n + β − 1), δ̄ = (1, 0), (A.154)

(b) : f̃n(λ) = −(n + β), b̃n(λ) = 1, δ̄ = (−1, 0), (A.155)

28



lqJ : (a) : f̃n(λ) = 1, b̃n(λ) = −q−n(1− aqn)(1− bqn−1), δ̄ = (−1, 1), (A.156)

(b) : f̃n(λ) = −q−n(1− aqn−1)(1− bqn), b̃n(λ) = 1, δ̄ = (1,−1), (A.157)

lqL : (a) : f̃n(λ) = 1, b̃n(λ) = −q−n(1− aqn), δ̄ = −1, (A.158)

(b) : f̃n(λ) = −q−n(1− aqn−1), b̃n(λ) = 1, δ̄ = 1, (A.159)

qM : (a) : f̃n(λ) = 1, b̃n(λ) = qn + cq−1, δ̄ = (0, 1), (A.160)

(b) : f̃n(λ) = 1, b̃n(λ) = −b−1(1− bqn), δ̄ = (1, 0), (A.161)

(c) : f̃n(λ) = −b−1q−1(1− bqn+1), b̃n(λ) = 1, δ̄ = (−1, 0), (A.162)

(d) : f̃n(λ) = qn + c, b̃n(λ) = 1, δ̄ = (0,−1), (A.163)

ASCII : (a) : f̃n(λ) = 1, b̃n(λ) = qn, δ̄ = 1, (A.164)

(b) : f̃n(λ) = qn, b̃n(λ) = 1, δ̄ = −1, (A.165)

qC : (a) : f̃n(λ) = 1, b̃n(λ) = qn + aq−1, δ̄ = 1, (A.166)

(b) : f̃n(λ) = qn + a, b̃n(λ) = 1, δ̄ = −1. (A.167)

A.4 Data for § 4.4

We present explicit forms of BJ
1(η), D

J
1(η), f̃n, b̃n and δ̄ in § 4.4. The potential functions

BJ
2(η) and DJ

2(η) can be obtained from (4.53).

Potential functions BJ
1(η;λ) and DJ

1(η;λ):

bqL : (a) : BJ
1(η;λ) =

η−1a(1− η)

1− a
, DJ

1(η;λ) =
η−1(aq − η)

a− 1
, (A.168)

(b) : BJ
1(η;λ) =

η−1b(1 − η)

1− b
, DJ

1(η;λ) =
η−1(η − bq)

1− b
, (A.169)

(c) : BJ
1(η;λ) = (bq − 1)η−1a, DJ

1(η;λ) = (1− bq)η−1(aq − η), (A.170)

(d) : BJ
1(η;λ) = (aq − 1)η−1b, DJ

1(η;λ) = (aq − 1)η−1(η − bq), (A.171)

ASCI : (a) : BJ
1(η;λ) = η−1q−1, DJ

1(η;λ) = −η−1(1− η), (A.172)

(b) : BJ
1(η;λ) = −η−1aq−1, DJ

1(η;λ) = −η−1(η − a), (A.173)

qL : (a) : BJ
1(η;λ) = η−1(1 + η), DJ

1(η;λ) = −η−1q, (A.174)

(b) : BJ
1(η;λ) = 1, DJ

1(η;λ) = −a−1. (A.175)

Constants f̃ J
n(λ), b̃

J
n(λ) and δ̄:

bqL : (a) : f̃ J
n(λ) = 1, b̃Jn(λ) = −q−n(1− aqn), δ̄ = (1, 0), (A.176)

29



(b) : f̃ J
n(λ) = 1, b̃Jn(λ) = −q−n(1− bqn), δ̄ = (0, 1), (A.177)

(c) : f̃ J
n(λ) = −q−n(1− bqn+1), b̃Jn(λ) = 1, δ̄ = (0,−1), (A.178)

(d) : f̃ J
n(λ) = −q−n(1− aqn+1), b̃Jn(λ) = 1, δ̄ = (−1, 0), (A.179)

ASCI : (a) : f̃ J
n(λ) = 1, b̃Jn(λ) = −q−n, δ̄ = −1, (A.180)

(b) : f̃ J
n(λ) = −q−n, b̃Jn(λ) = 1, δ̄ = 1, (A.181)

qL : (a) : f̃ J
n(λ) = 1, b̃Jn(λ) = −a−1q−1(1− aqn+1), δ̄ = −1, (A.182)

(b) : f̃ J
n(λ) = −a−1(1− aqn), b̃Jn(λ) = 1, δ̄ = 1. (A.183)
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