arXiv:2301.00678v3 [math.CA] 6 Jun 2024

DPSU-22-3

Another Type of Forward and Backward
Shift Relations for Orthogonal Polynomials
in the Askey Scheme

Satoru Odake

Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan

Abstract

The forward and backward shift relations are basic properties of the (basic) hyperge-
ometric orthogonal polynomials in the Askey scheme (Jacobi, Askey-Wilson, ¢-Racah,
big g-Jacobi etc.) and they are related to the factorization of the differential or differ-
ence operators. Based on other factorizations, we obtain another type of forward and
backward shift relations. Essentially, these shift relations shift only the parameters.

1 Introduction

The (basic) hypergeometric orthogonal polynomials in the Askey scheme satisfy second or-
der differential or difference equations and the forward and backward shift relations are
their basic properties [I, 2]. The orthogonal polynomials in the Askey scheme provide us
with exactly solvable quantum mechanical models. Conversely, we can use the quantum
mechanical formulation as a tool to investigate orthogonal polynomials [3]. For example,
the forward and backward shift relations are a consequence of the shape invariance, and the
multi-indexed orthogonal polynomials are found by using the quantum mechanical formula-
tion. The Schrodinger equation is a second order differential equation for ordinary quantum
mechanics (0QM) and a second order difference equation for discrete quantum mechanics
(dQM). There are two types of dQM, dQM with pure imaginary shifts (idQM) and dQM
with real shifts (rdQM) [3]. The coordinate = for QM and idQM is continuous and that for
rdQM is discrete.

The forward and backward shift relations are related to the factorization of the Hamil-
tonian. Recently another factorization of the Hamiltonian was found in a study of the
state-adding Darboux transformations for the finite rdQM systems [4]. It gives another for-

ward and backward shift relations for the orthogonal polynomials appearing in the finite
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rdQM systems (g-Racah etc.), which were called the forward and backward x-shift relations
[4]. In this paper, we investigate whether such new factorization and forward and backward
shift relations exist for other orthogonal polynomials. In addition to the finite rdQM systems
(g-Racah etc.), we examine the oQM systems (Jacobi etc.), the idQM systems (Askey-Wilson
etc.), the semi-infinite rdQM systems (g-Meixner etc.) and the rdQM systems with the Jack-
son integral type measure (big g-Jacobi etc.). We call the last category rd@QMJ. The quantum
mechanical formulation of the rdQMJ systems needs two component formalism [5]. We con-
sider all the polynomials in chapter 9 and 14 of [2] and the dual quantum g¢-Krawtchouk
polynomial.

This paper is organized as follows. The orthogonal polynomials in the Askey scheme and
their second order differential or difference equations are recalled in section 2l The forward
and backward shift relations are reviewed in section [Bl Section Ml is the main part of this
paper and new factorization and another type of forward and backward shift relations are
presented. Section [l is for a summary and comments. In Appendix[Al the data for §Hl are

given.

2 Orthogonal Polynomials in the Askey Scheme

In this section we fix the notation and recall the second order differential or difference
equations for the orthogonal polynomials in the Askey scheme [, 2].
In our quantum mechanical formulation [3], the orthogonal polynomials in the Askey

scheme are expressed as

P, (x; ) “p, (n(z; A); A) : a polynomial of degree n in n(z; A) (2.1)

oo P_y(n(z; X); X) &' 0. Here z is a coordinate of quantum

for n € Zso and P_y(2; )
mechanical system and n(x) is a sinusoidal coordinate [6], and X = (A1, Ag,...) are param-
eters, whose dependence is expressed as f = f(A) and f(x) = f(z;A). The parameter ¢ is
0 < ¢ < 1 and ¢ stands for g2+ = (g™ ¢, ...), and we omit writing ¢-dependence.
We consider the following orthogonal polynomials, all the polynomials in chapter 9 and
14 of [2] and the dual quantum g¢-Krawtchouk polynomial: Hermite (He), Laguerre (L),
Jacobi (J), Bessel (B), pseudo Jacobi (pJ), continuous Hahn (cH), Meixner-Pollaczek (MP),
Wilson (W), continuous dual Hahn (cdH), Askey-Wilson (AW), continuous dual ¢-Hahn

(cdgH), Al-Salam-Chihara (ASC), continuous big ¢-Hermite (cbgHe), continuous g-Hermite
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(cqHe), continuous g-Jacobi (cqJ), continuous g-Laguerre (cqL), continuous ¢-Hahn (cgH),
g-Meixner-Pollaczek (¢MP), Hahn (H), Krawtchouk (K), Racah (R), dual Hahn (dH), dual
quantum g¢-Krawtchouk (dqgK) (which is not treated in [2]), ¢-Hahn (¢H), ¢-Krawtchouk
(¢K), quantum ¢-Krawtchouk (q¢K), affine ¢-Krawtchouk (agK), ¢-Racah (¢gR), dual ¢-Hahn
(dgH), dual ¢-Krawtchouk (d¢K), Meixner (M), Charlier (C), little g-Jacobi (IgJ), little ¢-
Laguerre/Wall (lgL), g-Bessel (¢B) (=alternative ¢-Charlier), g-Meixner (¢M), Al-Salam-
Carlitz II (ASCII), ¢-Charlier (¢C), big g-Jacobi (bgqJ), big ¢-Laguerre (bgL), Al-Salam-
Carlitz I (ASCI), discrete g-Hermite I (dgHel), discrete g-Hermite II (dgHelI), g-Laguerre
(gL) and Stieltjes-Wigert (SW). Explicit expressions of various quantities (P, (x), P.(n),
n(z), o(x), Ens A, 8, Ky fay buy c1(n), c2(n), ez, w(z), V(x), B(z), D(z), B'(z), D'(z), fp,
b)) are given in Appendix A of larXiv:2301.00678v1. These polynomials appear in quantum

mechanical systems as follows:
oQM : He,L,J,B,pJ, (2.2)
idQM : cH,MP, W, cdH, AW, cdqH, ASC, cbqHe, cqHe, cqJ, cqL, cqH, gMP, (2.3)
rdQM (finite) : H,K,R,dH, dqg¢K, ¢H, ¢K, q¢K, agK, ¢R, d¢H, d¢K, (2.4)
rdQM (semi-infinite) : M, C,l¢J, gL, ¢B, ¢M, ASCII, ¢C, (2.5)
rdQMJ : bqJ, bgL, ASCI, dgHel, dgHell, gL, SW. (2.6)

We comment that the oQM systems described by the Bessel and pseudo Jacobi polynomials
are the Morse potential and the hyperbolic symmetric top 11, respectively. We also comment
on an infinite sum orthogonality relations for the Stieltjes-Wigert polynomial (parameter:

c>0),

SW: Y g2 Py (eq") Pualeq®) = Gum 003 @)a(g, —ca, —¢ "1 @)oe (n,m0 € L),

(2.7)
which are obtained from those for ¢-Laguerre polynomial by taking an appropriate limit.
This (2.7) is not given in [2].

The Schrodinger equations of oQM and dQM systems are second order differential and
difference equations, respectively. By the similarity transformation in terms of the ground
state wavefunction, the similarity transformed Hamiltonian 7:2()\) is a second order differen-

tial or difference operator acting on the eigenpolynomials P, (x; ) [3],

. &2 _dw(z: ) d &> d
M : DY [ R bl vt R ) — — 4 (s X)) — 2.
0QM s HN) E =5 — 9% P (= el gy —dalr N g ). (29
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idQM : H(N) oo V(s A)(e® = 1)+ V*(z; X) (e = 1), (2.9)
rdQM : HA) € Bz A)(1 =€) + D(a; A)(1 — e?). (2.10)

For oQM, the coordinate x is a continuous variable and the Hamiltonian H(\) is

2

HA) = ——— + Ula; N), U(x;,\)d:ef(

dw(z; A) }‘))2 | Lol (2.11)

dz dx?

While the orthogonality relations of P,(x) for B and pJ cases hold only for a finite number
of n, we consider all n € Z>, because we consider only differential equations (or relations)
in this paper. For idQM, the coordinate x is a continuous variable and the momentum p is
p= dx, and -y is a real constant (y = 1 for non g-polynomial, 7 = log g for g-polynomial).
The operator e®? («: constant) is a shift operator, e*? f(z) = f(x —ia). The x-operation on
an analytic function f(z) =) a,2" (a, € C) is defined by f*(x) = >, alz", in which a} is
the complex conjugation of a,. For rdQM, the Schrodinger equation is a matrix eigenvalue
problem. The similarity transformed Hamiltonian H = (H,,,) is a matrix labeled by the
coordinate x, which takes discrete values in {0,1,..., N} or Z>o. In this paper, however,
we treat x as a continuous variable x € R, because we only deal with difference equations
9 are shift operators e*? = ¢*dr, e f(2) = f(z +1). We
consider P,(x) with all n € Zsq even for finite systems. We remark that the polynomials
P,(z) in finite rdQM (Z4)), whose orthogonality holds for n = 0,1,..., N, are ill-defined for
n > N due to the normalization condition P,(0) = P,(0) = 1. So we should replace P,(x)
(n > N) in finite rdQM with the monic version Pmo™e(z; X) = o cn(N) T Py (23 X) (cn(X): the
coefficient of the highest degree term) in Theorem[] 2] and B3 (with the replacements
fa(A) = frome(A) = fu(N)en(N) " en1(X + 9), ete.).

For rdQMJ (the rdQM system with Jackson integral type measure such as the big ¢-

(or relations). The operators

Jacobi polynomial), its quantum mechanical formulation needs two component formalism
with two sinusoidal coordinates 7*)(x; X) [5]. Since only difference equations (or relations)
are considered in this paper, we use 1 only (we do not use x) and treat n as a continuous
variable 77 € R. The similarity transformed Hamiltonian H”(A) is a second order difference

operator acting on the eigenpolynomials P,(n; X) [5],
vdQMI s HIN) < B A)(1 = ") + D A) (1 — g "), (2.12)

d d
where the operators ¢ are ¢-shift operators, ¢~ f(n) = f(¢='n).



The orthogonal polynomials in the Askey scheme studied in this paper have the following
property.

Theorem 1 [1, [2] The polynomials in (22)—(2.6) satisfy the second order differential or

difference equations for n € Zs,

oQM, idQM, rdQM : H(A) P, (z; A)
P,

x; En( N Py(x5 M), (2.13)
rdQMJ : HY (AP, (1; A) P,

En(N)P,(n; A). (2.14)

We remark that the constant terms of # and H” are chosen such that & = 0. For idQM,

the relation (2.I3)) is invariant under the x-operation.

3 Forward and Backward Shift Relations

The similarity transformed Hamiltonians H(\) 2.8)—(@210) are factorized as

where the forward and backward shift operators, F(X) and B(\), are defined by [7, §],

oQM: F(A) ¥ cf(de))_I% (: cfdin), (3.2)

idQM : F(A) € ip(a; A) " (e2? — e~ 2P) (3.4)
BA) & —i(V(2; A)e?? — V(x5 X)e 2P) p(a; A), (3.5)
rdQM : F(A) & B(0; )z A) (1 — €?), (3.6)
def 1 _
B(A) = m(B(% A) = D(x; N)e %) (5 A) (3.7)
Since w(z), B(x), D(x) and V(x) satisfy
(dwgl:cx; )\))2 d u;l(xx27 A) _ (dw(x,d;\ + 6))2 N d w(:;,x)zx +9) N (3.8)
Vie—igid) el A)
V(e A+68) oz —iy )’ (3.9)
V(z+i3X) + Vi (@ —i3;X) = c(V(g; A+ 6) + V(2 X+ 8)) — E1(N), (3.10)
Bl +1;A) ez d) D(aA) _ wzd) (3.11)
B(z; A+ 9) olx+1; ) D(x; X+ 0) olx —1; A)’ '

bt



B(z;A) + D(z + 1;X) = (B(z; A+ 6) + D(z; X+ 8)) + E(N), (3.12)

we obtain

FNBA) = kB + 8)F(A+8) + E(N), (3.13)

which is the (similarity transformed) shape invariance condition. The constants f,, and b,
satisfy

and the energy eigenvalues &, satisfy

Note that we have f,(A) = &,(A) and b,(A) = 1 for rdQM due to our normalization
P,(0) = P,(0) = 1. Corresponding to the factorization (B.1)), the shape invariance combined

with the Crum’s theorem give the following relations [7, 8 [3].

Theorem 2.1 [2] For the polynomials in (2.2)—(21), the forward and backward shift rela-
tions hold:

FNP(z;X) = fuN)Poi(z X+ 68) (n € Zsy), (3.16)
B Py 1(x; X+ 8) = byt (N Po(z; X)) (0 € Zy). (3.17)

For idQM, the relations (3.I16)—(B3.I7) are invariant under the x-operation.

The similarity transformed Hamiltonians H?(X) (ZI2) are factorized as
H'(A) =B (ANF (). (3.18)

Here the forward and backward shift operators, F7(A) and B?(X), are defined by [f]

rdQMJ : FIA) AN (1 — "), (3.19)
BN s (B0 0) = D A "), (3.20)

where the constant A(A) is given by

—q tD’(1; ) :bgl,bgL, qL,SW
-1
) —aq : ASCI
AA) = ! - dgHel . (3.21)

1 : dgHell



We can show that B(n) and D’(n) satisfy

gB' (qr 'm;A) = kB (; A+ 68), ¢ 'D’'(r"'m; A) = D’ (;; A+ 6), (3.22)
BJ(T_ln; A)+ DJ(qr_ln; A) = H(BJ(’/]; A+6)+ DJ(n; A+ 6)) + &1(N), (3.23)

where r is given by
q :bqJ,bql,dgHell, qL.

r=<¢ 1 :ASCI,dgHel ) (3.24)
¢ SW
Therefore we obtain
FINB(N) = kB A+ 8)F A+ 8) +&E(N), (3.25)
n—r=1n

which is the (similarity transformed) shape invariance condition. The constants f; and b’

satisfy
EaX) = FaN)b1(A) (0 € Zxo), (3.26)

and the energy eigenvalues &, satisfy ([3.15). Note that we have f)(A) = £,(X) and b (A) = 1
due to our normalization of P,(n). Corresponding to the factorization (B.I8]), we have the

following relations [5].

Theorem 2.2 [2] For the polynomials in (2.6), the forward and backward shift relations
hold:

FI NP X) = f[i(N)Puca(rs X +8) (n € L), (3.27)
BYA)Paca (r X+ 8) = by (N Pu(m A) (n € Zz). (3.28)

Let us comment on the Rodrigues-type formulas [2]. The backward shift relations (3:17),
[B28) and Py(z) = Py(n) = 1 give the following formulas,

n—1 et
0QM,idQM : Py (2;A) = [[ buciy(A +56) 7" - [ BA+jd) - 1, (3.29)
=0 =0

n_—}

rdQM: Py(z;A) = [[B(A+j6) - 1, (3.30)
=0

rdQMJ : P(m; A) = [[ B’ (A +j6)

J=0

1, (3.31)

n—rin



n

_>
where [] ax o ajas - - - a,. For oQM, idQM and rdQM, the Hamiltonian H () is factorized,
k=1

H(A) = AXN)TA(N), and the operators A(X) and A(X)T are related to the operators F(\)
and B(A) as follows [3]:

F = tnlaiA+8) 0 AN oan(aid) x { | s oI o
B T 1 - 0QM, idQM
B(A) = ¢o(z; A)™" 0 A(A)" 0 go(a; A + §) X % - rdQM , (3.33)

where ¢g(x;A) is the ground state wavefunction, and ¢g(z; A)? is the weight function of

the orthogonal polynomials P, (x; X). Explicit forms of ¢g(z; A) are found in [8] for idQM,
[7] for rdQM, and ¢o(z; ) = €@ for oQM. By using (3.32)-[3.33) and cr¢o(z;A) =
dZ—(f)gbo(:E; A — 9) for oQM, the backward shift operators (3.3]), (8.5) and ([B.7) are rewritten
as follows [9, [5]:

oQM : B(A) = ¢p(z; ) %0 (—cf d o (dn(x)>—1> o go(m; A+ 8)?

dr dzx
= —c, ((j)o(:c; A —90)opo(x; )\))_1 o d%] o (¢0(x; A)do(z; X+ 5)), (3.34)
idQM : B(A) = ¢o(z;A) 20 Do do(z: A+ 06)2, DL —i(ed? — e 3P)p(z) ", (3.35)
rdQM : B(A) = ¢o(2;X) 20 D(A) o do(z; A+ 8)%, D) L (1= e )p(z;A)"L. (3.36)

Although the function ¢(x) depends on the parameters A for cqH and gMP cases in idQM,
we suppress writing A dependence in D (B3.35]), because (z;A) is invariant under the shift
A= A+ 6. Then (3.29) and (B3.30) become

n—1
0QM : Po(z;A) = (—c2)" [ [ baci—i(A + i)~ (3.37)
§=0
X (¢o(z; A — 8)o(x; )\))_1 (%)n “go(T; A+ (n — 1)8) go(; A + nd),
n—1
idQM : Py(2; A) = [ [ bacis(X +38) ™" - doa; A) 2 D" - do(; A + nd)?, (3.38)
§=0
rdQM : Py(w;A) = ¢o(2; A) 72 [ DA+ 8) - do(a; A+ nd)>. (3.39)
=0

For rdQM, there are five sinusoidal coordinates [7]: (i) n(z) = =, (i) n(z; A) = z(xz +d), (iii)
n(x) =1=4g" (i) n(z) = ¢ =1, (v) n(z; A) = (¢~ = 1)(1 = dg"). For (i), (iii) and (iv),
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the operator D(A) does not depend on A, and we have [[ D(A+jd) = D". We remark that
5=0
(3:39) can be rewritten as

pn(:)s;)\):< q;o %A ) ]:[ Zi A+ ( ]—1)5)‘1(1_6—8).Spgf(;\“j‘(;ﬁ‘?)é), (3.40)

and the expressions for the formulas (9.2.10), (14.2.11) etc. in [2] are somewhat ambiguous
(about the shift of parameters). For rdQMJ, direct calculation shows that the backward
shift operators ([B.20)) are rewritten as follows (cf. [5]):

BA) = AN} m: N) 20D o g(r; A+ 68)°, D' (1 — gy, (3.41)

where the function ¢(n; A) and the constant A’(X) are given by

qDJ(qJ“n A)

2 def
A1+1 T
of 7] ! 1 J T 2 (a’q)
qL: & 2 df , namel gt AN = ——, 3.43
0(77 ) C>‘1+1 ( n; q) y ¢0( ) (_qu q) ( )
SW i gh(n A)? & ()2 5D, namely ¢ (cg”s A)? = cfg @D, (3.44)
( (—ac)  :bq)
(—ab) : bqLL
-1
Fxy 1 (—aq™) : ASCI
A = AN % q! : dgHel, dgHell - (3.45)
c :qL
c? i SW

Here the parameters X are extended to ¢* = (a,c) with § = (1,1) for gL and ¢* = ¢ with
6 = 2 for SW. Then (B.31]) becomes

P,y A) = () ﬂ AN+ j8) - QY N 2D - Q)" A+ nd)’. (3.46)

j=0

We remark that

(1= g7 )y )" 63 (q"m A+ nb)> = (=1)"g2" ™D (1= ¢"8)p ') "8 (m; A + nd)*  (3.47)

for bqJ, bgL, dgHell and gL, and &3(q*"n; X +nd)? = (c7n)?"¢3 (n; A)? for SW.



4 Another type of Forward and Backward Shift Rela-
tions

In this section, based on other factorizations of H and H’ , we present another type of forward
and backward shift relations.
4.1 Polynomials in oQM systems

For the oQM systems described by the polynomials (2:2)) (except He and B), let us define
the operators F(X) and B(X). For J case, they are given by

CEog et 4 v o yd L
(a): F(A) = 2tanxdx—l—g 5 (— (1 n)dn—l—g 2), (4.1)
S ony def 1 d 1 d 1
BO) & S ot 4 bt 5 (= (1+n)dn+h+§>, (4.2)
R T N L R 4,1
(b): FOX) ™~ coto— +h 2(_(1+n)dn+h 2), (4.3)
e d 1, . d 1
B(A) = itan$%+g+§ (— (1 n)dn+g+ 2), (4.4)
and the constants f,(X), bo(X\) and & are given by
(@): fuXM)=n+g—3 b(A)=n+h+j &§=(L-1) (4.5)
®B): oA =n+h—-1 b AN =n+g+i §=(-1,1). (4.6)
For L and pJ cases, see Appendix [A.T]
Then we can show that
H(A) = 4(BO)F(N) - fo() 0(N)), (4.7)
E.N) = 4(Fu(NB(X) — HVE(N) (0 € Zoo). (1)

Corresponding to this factorization (41), the following relations are obtained by direct cal-

culation.

Theorem 3.1 For the polynomials in [2.2)) (except He and B), the following forward and
backward shift relations hold for n € Z>,
BA)Py(z; X — 8) = by(A) Py ). (4.10)



Remark 1.1 We think that these identities ({.9)—(I0) may be known formulas but this
interpretation is new. For example, (49]) for (@I]) can be obtained by differentiating the
integral formula (1.18) with p = 1 in [10].

Remark 1.2 Two formulas with § and —& are equivalent by interchanging F and B,

e.g. (£9) and (ZI0) for L(b) agree with (£I0) and (£9) for L (a) with the replacement
g — g+ 1, respectively. For He and B, we do not have new factorization (A7) and another

type of forward and backward shift relations (&9)—(EI0).

4.2 Polynomials in idQM systems

For the idQM systems described by the polynomials (2.3)), let us define the operators F(X)
and B(X) as follows:

~

FO) E Vi@ + i3 A)e?? + Vi (x — id; N)e 37, (4.11)
B\) € Vy(a; N)e2? + Vi (23 N)e 27, (4.12)

where the potential functions V;(z; X) and Va(z; A) satisfy
V(z; A) = Vi(z; A)Va(z; A). (4.13)

For AW case, their explicit forms are given by

Assume {aj,a;} = {aj, a1} (as aset) and set {I,m} = {1,2,3,4}\{J, k},
Vile; A) = VI (@ 0) (i=1,2),

(1 —a;e™)(1 — age™) (1 — @) (1 — a,,e™)

Vi(z; X) = T , Va(z A) = T , (4.14)
and the constants f,(\), b,(A) and & as given by
fn()‘) = q_%(l - a]akqn_1)> Bn()‘) = q_%(l — wamq"),
(8); = (O = 5, (8)1=(8)m = —3. (4.15)

For other cases, see Appendix [A.2
Then we can show that Vi(z) and Va(x) satisfy

Vi + iy AV (23 X) + Vi (@ — i A)Va(z; A) = fo(Abo(A) = =V (2; ) = V(23 ), (4.16)
and the constants fn and Bn satisfy

En(A) = JaN)a(X) = fo(N)bo(A) (1 € Zso). (4.17)



The relation (EI6) gives other factorizations of () (23),

H(A) = BA)FA) = fo(A)bo(N). (4.18)
Corresponding to this factorization (4.I8]), we obtain the following relations.

Theorem 3.2 For the polynomials in (23), the following forward and backward shift rela-
tions hold for n € Z>,

F(A)Pu(w; A)
BN P, (2; X —

)

Proof: It is sufficient to show (AI9]), because (2.13) and ([AI7)-@I9) imply (£20). Taking
AW ([I4) with (j,k) = (1,2) as an example, let us prove ([AI9). It is shown by direct

calculation:

FaN) Bz X = ), (4.19)
bn(N) B (3 N). (4.20)

|

FN)Bu(; X)

(1 —a1q2e™)(1 — ayq™2€™) (araz, aras, aray; q)n

_ p2ix n
1—e %)
1 . 1
q 7", araza3a4q" ", arqze”, aygTze T
X 403 q;4
aiaz, a103, 104
1 1
(1—a1g 2e ™) (1 — asq 2e"™) (araz, ara3, a1045 q)y
_ p—2ix n
1—e ay
1, 1,
q ", araza3a4q" ", arqT2e, ayqze™
X 403 q;4
aiaz, a103, G104
. n - —1 -1 -1 . k
B (a1a2,a1a3,@1@47Q)nZ (¢7" a1a2a3a4q" ", a1q"2€"" a1 27T Q) g
ap(l —e*) & (@102, aras, a1a45 )y (a5 )
X ((1 — ae®qk 2)(1 — azq 2e™) — ¥ (1 — ase ik 2)(1 — aqxq ze ””))

k

1 . 1 .
_ (@109, 0103, 01043 q)n Z": (7" a1a2a3a4q™ ", a1q™ 2 a1q7 27 5 q)p g
ay(l—e*v) o (@102, aras, aras; q)i (¢;9)k
X (1 — alaqu_l)(l — €2im)
k

T

sk q
(a1a2q_1> a1a3, G104 C_I)k (q ; C_I)k

. n -n n—1 -1 iz -1 -
o (a1a2, a1a3, a104;qQ)n (1 - ara q_l) (¢7", a1a2a304q" ", 0197 7€", a1q" %
= g — 103

aTL
1 k=0

= q 2 (1 — ayasq™ ")

-1 . n - -1 -1 -1 iz k
y (arasqt, aras, a1aq;q)n ~— (@77 arasazasq" b arq 2e a1 2e Q) g

(alq‘%)” pare (a1a2q™", ara3, ara4; q)x (4;9)
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= fu(A)Py(2: X — 8).
The other cases are proved in the same way. 0

Remark 2.1 After submitting this manuscript to arXiv (arXiv:2301.00678), when I gave
a talk at ICTAM 2023 Tokyo (August 2023), Satoshi Tsujimoto informed me of the paper
by Kalnins and Miller [12], in which the formulas (ZI9)—(Z20) for Askey-Wilson case (€14
with (j,k) = (1,2) are given from a different point of view. Their operators 7 = 7(@bed),
o T*(aq%,bq%,a;%,dq%)7 4= plebed and = M(cq%,dq%,aq*%,bq*%) correspond to our F(A),
B(A), F(A) and B(X) with (a1, as, as, as) = (a,b, ¢, d), respectively.

Remark 2.2 Two formulas with § and —d are equivalent by interchanging F and B, e.g.
(@19) and (£20) for cH (b) agree with (£20) and (£I9) for cH (a) with the replacements
a, — a; + % and ay —> ay — %, respectively.

Remark 2.3 The relations (LI9)-(Z20) are invariant under the s-operation. In contrast
to the z-shift relations studied in [4] (see Theorem[3.3]), the coordinate z is not shifted, and
only the parameters A are shifted. We choose the operators F(A) and B(A\) @II)-#I2) to
respect this x-operation invariance. See also Remark[3.3]

Remark 2.4 We can show that
Vi(z + i3 M) Va(z —i2; X) = Vi(z; A — 8)Va(z; X — 6),

Vile +i3 AV (0 — i35 ) + Vi (0 — i3 WVale + i3 2) — Ho(Vbo(N) (4.21)

=Vi(z + i A= OV (23 A = 8) + Vi (z — iy A — 8)Va(zs A — 8) — fo(A — 8)bo(A — 8),
which imply

FBA) = fo(Mbo(A) = B = §)F(A = 8) — fo(A = 8)bo(A - 8).  (4.22)

4.3 Polynomials in rdQM systems

For the rdQM systems described by the polynomials (24)-(2.3) (except C and ¢B), let us
define the operators F(A) and B(A) as follows:

F) Y Di(x+ LX) + By (3 M), (4.23)
BA) Y By(z: A) + Da(2; N)e ™, (4.24)

where the potential functions By (z; A), Ba(z; X), D1(z; X) and Dy(x; A) satisfy
B(z;A) = Bi(x;\)Ba(x; X),  D(xz;A) = Dy(2;X)Da(z; N). (4.25)
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For ¢R case, their explicit forms are given by

(1—¢")(1 —dg") By(r: A) = (" =D —bg")(A — )

(a) : Bi(x;A) = (VT 1)1 — dgzr) 1— dg
(1 =dg™)(1 = g¢") =gV (A - b dg")(1 - ¢ dg”)
Dy (a5 X) = 1 — ™)1 — dgz=-1)’ Dy(w;A) = —d 1— dg>® ,
(4.26)
, (T =bg")(1 —dg") oy (=0 H(1 =g )(A = cq”)
(b): Bi(w;A) = (1 —bg1)(1 — dg2=+1)’ By(w;A) = — 1—dg> )
Sy (=b7Mdg")(1 = ¢Y) (=0 (1 = dg" ) (1 — ¢ 'dg")
PN = g gy PN = g /
(4.27)
(1 —cq®)(1 - dg") Ny (=g H(1 =¢"M)(1 = bg")
(c): Bi(z;A) = 1= g D)1 = dg=+1)’ By(z;N) = — T d ,
. (A =cMdg")(1 - q) (=91 = dg™M)(1 = b 1dg")
P = g1 gy P = g /
(4.28)
(@) Bifasn) = - e = S )
(A=D1 —dg™tM)(1 — b ldg”) Ly (I=cTdg")(1 —¢")
D1(1’7 A) = —d 1_ dq2m_1 s DQ(ZL', )\) = (1 — C_l)(l — dq2m) s
vy (A=Y = dgt (1 = ¢l dg”) . (1=b7tdg")(1 = ¢7)
D1($7 >\) = —d 1_ dq2x_1 s DQ(SL’, )\) = (1 — b )(1 — dq2x) s
@) By = LSOy - D00
Dy A) = —d L= ¢")(1 —b'dg®)(1 — C‘ldqm)’ Dyl A) = L~ dg"™)(1 - ¢%)

1 — dg2a—1 (1—¢V)(1 —dg*>)’

and the constants f,(X), bo(X\) and & are given by

(a): fuA) =1, by(A) =Envit(N) —E(N), & = (1 0,0,1), (4.32)
(b): fu(A) =1, ba(A) = —¢ " (1 =bg" ") (1 —cd'q""), § =(0,1,0,1), (4.33)
(©): faA) =1, bu(A) = —¢ (1 —cq" ) (1 —bd" 1q" M), 8=1(0,0,1,1), (4.34)
(d): fuA) = —¢ (1 —cg®)(1 —bd L"), by(A)=1, 6 =(0,0,—1,—1), (4.35)
(€): fuA) = —¢ "1 =bg™)(1 —cd N, by(A) =1, § =(0,—1,0,—1),  (4.36)
(£): faX) = SN(A) — &), by(A\) =1, §=(-1,0,0,-1). (4.37)
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For other cases, see Appendix [A.3]

Then we can show that By(x), Ba(z), Di(x) and Ds(x) satisfy

Bi(x — 1; M) Da(w; A) + Di(x + 1; 0)By(w; A) — fo(A)bo(A) = —=B(w; A) — D(w; A), (4.38)

and the constants f, and b, satisfy

(4.39)

(4.40)

Corresponding to this factorization (£40), we obtain the following relations.

Theorem 3.3 For the polynomials in (2.4) —(2.5) (except C and ¢B), the following forward
and backward shift relations hold for n € Zso,

F(X) Bul; X) :

4.41)
B P, (x4 5: X —8) = bp(N) Py (23 M), (4.42)
where s is given by
1 :H(a)(b),K(a),R (a)(b)(c),dH (a)(b)(c),dqgK (a)(b), ¢H (a)(b),
o ¢K (a), qqK (a)(b), agK (a)(b), ¢R (a)(b)(c), dgH (a)(b)(c), (4.43)
dgK (a)(b), M (a), 1¢J (a),1qL (a),¢M (a)(b), ASCII (a), ¢C (a) ’
0 : others

Proof: It is sufficient to show (A1), because (2.13) and ([439)-(@.41) imply (£.42). Taking
qR (a) ([£26]) as an example, let us prove (LA4I]). Tt is shown by direct calculation:

F(X)Pu(a; )
(1 _ a—ldqx+1)(1 _ qm—l—l)
(1 —a™'q)(1 —dg**)
(1 —ag®)(1 —dq")
(ag=t = 1)(1 — dg*+1)

q ", abed™'q"t, ¢, dg*
4¢3( q; q)
a, b, c

4¢3<q—n’ abcd_lq”_l, q—m—l’ dqm—l—l

a, b, ¢ q;q)
B 1 “~ (¢, abed g™t g7 dgT 5 q), g
(1 —ag1)(1 - dg**1) ,; (a,b,c;q)x (45 9)
% (_aq—l(l - a—ldqm—l-l)(_qm—l-l)(l . q—w-l-k—l) + (1 o aqm)(l o dqw-l-k))
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1 n (q—n CLde_lqn_l q—:c—l dq:c . q>k qk 1 )
— ) ) I ) 1 _ 1 _ d x+1
(1 —ag™")(1 = dg*>*1) 2 (a,b,¢;q)k (Q§Q)k( ag )L —dg™)

n

k=0
(g abed™ "t g dg" ;9 ¢
. (ag=,b,¢;5q)k (a5 )
= fu(N) Pz + 531 = ).

k

The other cases are proved in the same way. 0

Remark 3.1 Two formulas with 8 and —§ are equivalent by interchanging F and B, e.g.

(@41) and (442) for H(c) agree with (£42) and (44I]) for H(b) with the replacements
a — a—+1and b — b— 1, respectively. For C and ¢B, we do not have new factorization

(440) and another type of forward and backward shift relations (4.41])—(Z.42).

Remark 3.2 The relations (AL41)-(@.42) for twelve cases ((a) of H, K, R, dH, dqgK, ¢H,
¢K, q¢K, agK, qR, dgH, d¢K, which have f, = 1, by(A) = Ens1(A) — E(A), s = 1 and
Dy(0;A) = Bi(N;A) = 0) were given in [4] and they were called forward and backward
z-shift relations. By considering e ?F(X) and B(A)e?, the above results (@A0) and (ZAT)-
(4.42) with s = 1 are rewritten as

HA) = — (BN (€ PF(N) + fo(N)bo(N), (4.44)
(e ?FN) Pu(; X) = fu(A) P23 X — §), (4.45)
(BX)e?) By X — &) = b (X) Po(a; N). (4.46)

That is, x is not shifted. As an identity of polynomial, the z-shift is not essential. How-
ever, we think that this x-shift has important implications in the state-adding Darboux
transformation for the finite rdQM systems [4], [TT].

Remark 3.3 AW and ¢R polynomials are related as [2]

eil’AW = d%qqua (a17 az,as, CL4) = (ad_%v bd_%7 Cd_% ) d%)v
BV (@MW A = d73 (a, b, ¢5.q)n P (@ AT, (4.47)

For the (j, k) = (1,4) case in (&Id)), the operators F and B for AW are related to those for
qR (a) (£20) as

e FANANY) = (¢~ = FRAT),
BW(AW)em3P = (7N — 1)TIBR (AR, (4.48)
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These extra factors e*z” give the property in RemarkZ3l Similarly AW with (4, k) = (2, 4),

(3,4), (1,2), (1,3) and (2,4) cases correspond to gR (b), (c), (d), (e) and (f), respectively.

Remark 3.4 We can show that

Bi(x — 5;X)Ba(x — s+ 1;0) = B(m; A —68), Di(xz—s+1;X)Dy(x — 5;A) = D(z; A — 6),
By(z — $;X) Doz — s+ 1;0) + Dy (x — s+ 1; X) Bo(x — 5;X) — fo(A)bo(A) (4.49)
= Bi(x — ;A — 8)Dy(x: A — 8) + Dy(z 4+ 1; A — 8)Ba(z; A — 8) — fo(A — 8)bo(A — 6),

which imply

F(NB(A) —fo(N)bo(X) = B(A = 8)F(A = 8) — fo(A—8)by(A—8).  (4.50)

4.4 Polynomials in rdQMJ systems

For the rdQMJ systems described by the polynomials (2.6]) (except dgHel, dgHell and SW),
let us define the operators F7(X) and B’(A) as follows:

o .
FIN) = Dl (g N) + Bl (5 \)g"™, (4.51)
B (N) X BI(; A) + DI (n; N)g "n, (4.52)

where the potential functions By (n; X), By (n; X), Di (n; A) and Dy(n; X) satisfy
B’ (n;A) = Bl(n; \) B3 (1; A),  D’(15; ) = DY (n; \) Dy (13 A). (4.53)
For bqJ case, their explicit forms are given by

() Blpn) =TT pix) = (10— ayy gy — o).

1—a
DY x) = T Dl x) = (- 7 ), (450
o) Bl A =T Bl x) = (- D agn - o)
DY x) = T D Dl x) = (1 - g ). (4.59
© BN = - Urtagton o), By =
D N) = (1= e~ (ag =), Dl 3 = "=, (1.50
(@) BN = (= aa)n =), B x) = L0
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DA = (ag = D~ ca). D x) = T2, (4.57)

and the constants f7(X), b () and § are given by

(@) : fIA) =1, B(A) =—¢ (1 —ag")(1 —bg"""), &=(1,-1,0), (4.58)
(b): fIA) =1, B(A) = —¢ (1 —cqg”)(1 —abc 2g"™), § =(0,0,1), (4.59)
(c): fl(A) = =g (1= g™ (1 —abe™'q"), b"(A)—l, 6 = (0,0,-1), (4.60)
(d): fIA) = =g "1 —ag"™)(1=bg"), bY(A) =1, &§=(-1,1,0). (4.61)

For other cases, see Appendix [A.4]
Then we can show that B} (n), By (n), Di(n) and Dj(n) satisfy

B (g~ ) D3 (n; A) + Di (am; M) By (11 A) = J§(N)B3(A) = =B (1;0) = D’ (3 A),  (4.62)
and the constants f7 and b) satisfy
Ea(A) = JENBIA) = [INBA) (0 € Zs). (4.63)
The relations ([E62) give other factorizations of H(X) 212),
H'(A) = =B (NF ) + f(NBN). (4.64)
Corresponding to this factorization (4.64]), we obtain the following relations.

Theorem 3.4 For the polynomials in (2.0) (except dgHel, dgHell and SW), the following
forward and backward shift relations hold for n € Z>,

FUNPu (5 A) = fA(A) Palr'mp; X = 6), (4.65)
B (NP, (r'm; A — 8) = b2 (A) P (m; N), (4.66)

where 1’ is given by

o { q :bgJ(c)(d),bgL (c)(d), ASCI (a), gL (b)

1 :bqJ (a)(b),bgL (a)(b), ASCI (b),qL (a) (4.67)

Proof: It is sufficient to show (A.63]), because (2.14) and (A.63)-(.63]) imply (A.66). Taking
bqJ (a) (£54) as an example, let us prove (£.63). It is shown by direct calculation:

FHX) Pl X)
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-1 -n n+1 —1 —-n n+1
) (q , abg ,77‘ ) n a(l —n) (q , abg ,qn‘ )
= _1 3% aq. cq ¢;q) +— 3% aq. cq q:q

-1 n -n n+1 k

n (", abg" i)k ¢ k
= —(a—mn)+a(l —ng")

1—a,; (ag; cq; q)n (q;q)k( )

_ ! z": (" abg™niae dF g,
l—a=  (ag,cq;qe  (4:0)k
_i (", abg"" 3 q)r ¢*
(a,cq;q)e (40
= fi(A) (11 A — 6).
The other cases are proved in the same way. n

Remark 4.1 Two formulas with & and —& are equivalent by interchanging F? and B’, e.g.
(A60) and (LG0) for bgJ (d) agree with (Z66) and (A65) for bgJ (a) with the replacements

a — aq and b — bg~!

factorization (£64) and another type of forward and backward shift relations (£.63])(Z66).
Remark 4.2 As in Remark[32, by considering g~ F* (A) and B’ ()\)q"%, the above results

(E64) and (Z.6H)-(£606) with ' = ¢ are rewritten as

, respectively. For dgHel, dgHell and SW, we do not have new

H(A) = —(B' A" (¢ "5 F (V) + IR, (4.68)
(" F(N) Pa(m; A) = FLA)Pa(n; X — 8), (4.69)
(B'(A)g"a) Po(m: A — &) = BL(A) Pa(m; A). (4.70)

That is, i is not ¢-shifted. As an identity of polynomial, the g-shift of 7 is not essential.
Remark 4.3 We can show that

BI(r' ' M) By (gr' ' A) = B (n; A= 68), Di(gr' 'm; ) Dy (r' Tty A) = DY (; A — 6),

B "' A)D3(gr' " s X) + DY (g’ T s M) B3 (' gy A) — J (B3N (4.71)

= Bl(q ' A= 8)D3(n; A — 8) + D (qn; A — 8) B (m;; A — 8) — f(A — 8)b}(A - 6),
which imply

FINB(A) —fi BN =B A= 8)F (A =8) - fi(A—8B)(A—3). (4.72)

n—r’' ~1n

5 Summary and Comments

The orthogonal polynomials in the Askey scheme satisfy second order differential or differ-

ence equations (Theorem[]) and we study them by using quantum mechanical formulation
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(0QM, idQM, rdQM, rdQMJ). The forward and backward shift relations are their basic prop-
erties (Theorem2.T] 22]), in which the degree n and the parameters A are shifted. They are
based on the factorizations of the differential or difference operators # B31) and H BI8).
Although Theorem[], 2.11 and are well known results, their formulas in quantum me-
chanical formulation are expressed neatly and systematically in a universal form. Motivated
by the recently found forward and backward z-shift relations [4], in which the coordinate
r and parameters A are shifted, we have tried to find new forward and backward relations.
We have found new factorizations of H ([@7), (18), @A0) and H’ @64), and based on
them, we have obtained another type of forward and backward shift relations (Theorem[3.T],
B2 B3, B4). While some of these results may be found in the literature, this is the first
comprehensive study. In these forward and backward shift relations except for some cases
of rdQM and rdQMJ, only the parameters A are shifted. As an identity of polynomial, the
a-shift (or g-shift of n) is not essential (RemarkB.2] A.2]).

The forward and backward shift relations are related to the shape invariance property
of quantum mechanical systems [7, 8, Bl [5]. It is an interesting problem to investigate the
quantum mechanical implications of the another type of forward and backward shift relations
obtained in this paper (cf. Remark2.4] 3.4 [A.3]). Especially the twelve finite rdQM cases
in Remark[3.2] are interesting. In these cases, we think that the z-shift has important im-
plications related to the state-adding Darboux transformations. The state-adding Darboux
transformations for finite rdQM systems were studied in [4, [11]. For one-step transforma-
tion, the range of x, {0,1,..., N}, is extended to {—1,0,1,..., N}, and the parameter N
(= (size of the Hamiltonian) — 1) is shifted to N + 1, and the deformed potential functions
contain the factors B(z+1; A—48) and D(z+1; A —3§), where § is certain shift of parameters
(the component of & corresponding to N is —1). The boundary conditions B(z) = 0 for
T = Tmax = N and D(x) = 0 for x = z,;, = 0 are inherited by the deformed system, because
we have B(x 4+ 1; A —8) =0 for = Zpax = N and D(z +1;A = 6) = 0 for = 2, = —1.
Thus the z-shift, x — x + 1, is important. The M added eigenvectors of the deformed sys-
tems by M-step state-adding Darboux transformations are obtained explicitly in [11]. But
they were found through a very technical trial and error process, and a better derivation is
desired. For the state-adding Darboux transformations in oQM, the added eigenfunctions
are expressed neatly in terms of the Wronskian and seed solutions. We believe that this is

also the case for finite rdQM, namely, the added eigenvectors are expressed neatly in terms
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of the Casoratian and seed solutions, and that the x-shift relations in Remark[3.2] play an

important role. We hope this topic will be successfully solved and we will be able to report

the results somewhere.

The case-(1) multi-indexed orthogonal polynomials are constructed for R, ¢R, W, AW,

M, lqJ, gL, cH and MP, and they have shape invariant property, namely, satisfy the forward

and backward shift relations like Theorem[.Il It is an interesting problem to investigate

whether these multi-indexed polynomials satisfy another type of forward and backward shift

relations such as Theorem[3.2] and B.3]
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A Data for §4

We give the data for the another type of forward and backward shift relations in §[4l

A.1 Data for §4.1]

We present explicit forms of F, B, f, b, and & in §EI1
Operators F(A) and B(A):

L:(a): ﬁ(x)d:ef%x%w—% (:nd%w—%), B(x)d:ef—%%ﬂ (=2 +1

(A1)
0 L1 () B} o oo
(A.2)

pJ: (a) ]t"()\)d:ef(tanhx+cosihx)%—h—%—w( (U+Z)%—h—%—w>,
Ba) ¥ <tanhx—cosihx)%—h+%+iu (: (n—i)%—h+%+iu), (A.3)

(b): F(A) & (tanhx—m:hx)%—h—%wu (: (n—i)d%—h—%ﬂu),
B(\) o (tanhxjtcosihx)%—h—l—%—w (: (77+i)dif7—h+%—w> (A.4)
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Constants f,(X), by(A) and &:

L:(a): fuM)=n+g—1% b(A)=1, d=1,
(b): fuAN) =1, bu(N)=n+g+3, §=-1,
pl:(a): fuA)=n—h—3—ip, by(A)=n—h+3+in
(b): fuA)=n—h—3+iu, b,(A)=n—h+3—ipn

We remark that the second components of § for pJ are unphysical values.

A.2 Data for §4.2

We present explicit forms of Vi(z), fus by and & in §A2 The potential function Vo(z) can

be obtained from (£I3)).
Potential functions V;(z; A):

cH: (a):
MP : (a) :

Vi(z;X) = a1 +ix, (b):
Vi(z; A) = a+iz, (b):

Vi(z; A) = ap + iz,
Vi(z;A) =377,

W Assume {a}, a;} = {a;, ar} (as aset) and set {[,m} = {1,2,3,4}\{j, k},
a; +ix)(ay + i)

Vi@ A) = VI A) (1= 1,2), Vi(eA) =

2ix+1

Y

cdH : Assume {a},a;} = {a;,ar} (as a set) and set {l} = {1,2,3}\{j, k},
Vi(z; A) = VPP (@A) (i =1,2),
. (@ +ix)(ay +iz) _ Sy @t
(a): Vilwsd) = =20 (0): Vi(wid) = 5o,
cdgH : Assume {a},a;} = {a;,ar} (as a set) and set {1} = {1,2,3}\{J, k},
Vil A) = VP () (i =1,2)
_ v (T—a;e™) (1 — age™) _ L L—ae”
(): V@A) =——= G ) M@X =15
ASC : Assume ay,as € R for (b) and (c),
i (eI —ae) 1 agen
(a): Vi@ d) = —— = G () VilmN) = — 5
_ gy L age® : P
() : Vi(z; A) = 1 — ge2ia’ (d): Vi(;A) = 1 — ge2ie’
1 —ae® 1
cbgHe : (a) : Vi(z;A) = 1= gern (b) : Vi(z; A) = 1— ge2ic’
1
cqHe : Vi(x; A) = 1= g
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(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
(A.15)

(A.16)

(A.17)



(1 . q%(a+%)eix>(1 . q%(a—l—%)eix)

cgl:(a): Vi(z; ) = e , (A.18)
() : Vi a) = LT qz“*z)lef);;z ¢:e) (A.19)

cql: (a) : Vi(a: A) = (1— q%(a+§)leij)(§i2; q%(wr%)eir)’ (b) : Vi(z: A) = 1_;(162”7
(A.20)
O (A1)
1) iy = ) (422
AP (@) Vil = SEET O RE) ) N) = i (A2

Constants f,,(X), bu(X) and &
cH: (a): ~n()\) =a;+al+n—1, by(A)=ay+as+n, 6= (%,—%), (A.24)
(b): fuA) =ag+ai+n—1, by(A) =a1+al +n, 6=1(-13.3), (A.25)
MP: (a): fu(A)=2a+n—1, b,(X) =2sing, &= (3,0), (A.26)
(b): fu(A) =2sing, b,(A)=2a+mn, &§=(-1,0), (A.27)
W: fuN) =a; +apr+n—1, by(A) =a;+ ap +n,

(0); =) =73, (8= (8)m=—3 (A.28)
cdH: (a): fuN) =a;+ap+n—1, byA) =1, (8); =@ =1 @)i=-1 (A.29
(b): fuN) =1, byA) =a; +ar+n, (8)=1 (8);=()=—1, (A.30)
cdgH : (a) : fu(A) = ¢ 2 (1 — ajarg"™"), ba(A) = ¢ %, (8); = (8)x = 3, (8)1 = —3, (A.31)
(b) : fulA) =q 2, bu(A) = q 2 (1 — ajarg”), (8) =13, (8); = (&)= -1 (A.32)
ASC:(a): fu(A) =q 2(1—maxg"™"), ba(A)=q2, 8§=1(4,3) (A.33)
() : fuA) =q72, (N =q"2, §=(3.-3), (A.34)
(©): fuN) =q%, b(XN) =q72, 6=(-33) (A.35)
(d): faA) =q"2, ba(A) =q 2(1 —aaxq"), §=(-3,—3), (A.36)
cbgHe : (a): fu(A) =¢ 7%, b.(\)=¢ %, §=1, (A.37)
(b): faX) =472, ba(X)=q7%, 6=—4, (A.38)
cqHe : ~n()\) =q 2, l;n()\) —¢ 2, &:none, (A.39)



g (a): fu(A) =1—¢""" b, (A) =¢"(1 =g, §=(1,-1) (A.40)
(b): fuX) =" (1 =¢"™), bu(A) =1—¢*"* 6 =(-1,1) (A.41)
cgL:(a): fuN) =1—=¢*"™, by(A)=q¢ ", =1 (A.42)
(b): faA)=q", ba(A) =1 =g & =1, (A.43)
cqH : () 1 fu(N) = ¢ 72 (1 — aajq" ™), bu(A) = ¢ 72 (1 — aza3q"), & = (3, —3,0), (A.44)
(b) : fa(N) =q 7 (1 = azasq" "), ba(N) = ¢ (1 — maiq"), § = (=3, 3,0), (A.45)
gMP: (a) : fu(A) =q 2 (1—a’¢"™"), ba(N) =¢72, §=(3,0) (A.46)
(b): fuX) =q7%, bu(A) =q 2(1—0d’q"), §=(—3,0) (A.47)

A.3 Data for §4.3

We present explicit forms of Bi(z), Di(x), fn, b, and & in §A31 The potential functions
Bs(x) and Dy(x) can be obtained from (4.25).
Potential functions By (z; A) and Dy (z; A):

H:(a): Bi(z;\) = Nl Dl(x;)\):N+1, (A.48)
(b): Biwd) = 2 Dy n) = (A-19)
(¢): Bi(z;A) =a(N —x), Di(z;A)=—a(b+ N —z), (A.50)
(d): Bi(z;A) = N(x +a), Di(x;A)=N(b+ N —x), (A.51)

N —zx T

K:(a): Bi(z;A) = Nl Di(x; ) = Nl (A.52)
(b): Bi(z;\) = Np, Dy(z;\) = N(1 - p), (A.53)
: (@ =N)(x+d) oy (@Hdt N

Ro@: Bied) =-me g PN = mrom oz g A9

: @ Fb)(z+d) N (z+d-Dx

b)Y BuleiN = g haerivay DN = oo ym v A9
. N (@+o(@+d L (z+d—c)x

() BN = g s i gy DN = ooz A9
. Sy = N)(z+D) o clz+d+N)(z+d—b)

(@) Buw:X) = —=5 = Di(wA) = 1 , (A57)
. Sy b@ = N)(z+c) b+ d+N)(z+d—o)

(&) Bi(wA) = —=5 . Diw:) = T , (A58)
. . N +b)(z+c) . N@+d-b(z+d—oc)

() Biw:X) = =5~ Di(wd) = - S . (A.59)
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dH :

dqgK :

qK :

qqK :

agK :

(x+a+b—1)(N—2) r(r+a+b+N—-1)

(@A) (N+1)(2x+a+0b) ’ (@) (N+1)(2x—2+a+b)’
(A.60)
' \_ (@+a)(zr+a+b-1) Ny r(x+b—1)
B@N = e rary 0 DN S i om—atas )
(A.61)
z+a+b—1 T
: Bi(x: =— Dilx: = A.62
X =5 DN =g (A.62)
(x +a)(N —x) (x+b—1)(z+a+b+N-1)
. By(z;A) = Di(a;A) =
X = =gy Dilsd 21— 2+a+tb ’
(A.63)
\y (N —2x) \y_ alr+a+b+N-—-1)
Bi(:d) 2r+a+0b Du(w:A) = 20 —24+a+0b (A.64)
' ' _N(x—i—a) Ny N(zx+b-1)
—N-1 N—z —x
. ¢ T (1—-q¢"7") . -1
Bl([lf, A) = q—N—l 1 s Dl([lf, A) = m, (A66)
Bi(z;X) =q¢ !, Di(z ) = —(¢*—1) (A.67)
(@A) =p ¢ " 1 =¢""), Di(z;A)=—-(1—-p ¢, (A.68)
Bi(z;A) = (1—¢")p ¢ N Di(zsA) = (¢ N =11 —-p'¢), (A.69)
q:c—N -1 1— q:c
Bl(x7 )\) = q_N_l _ 1 Dl(x7 )\) = 1 _ qN+17 (A7O>
_ T -1 T
Bi(esA) = 29 pyasn) = 9120 (A71)
1—ag™! ag~t —1
Bi(z;A) = (1—a)(¢" N =1), Di(z;Q) =(a—1)g " (¢" " =) (A.72)
Bi(;A) = (¢ = 1)(1 —aq”), Di(z;A) = (1—¢")ag™' (¢ = b), (A.73)
q:c—N 1 1— q:c
Bl(xu )‘) = q_N_l _ 17 Dl(xu )‘) = 1— qN+1 (A74>
Bl(flf, A) = q_N - ]-7 Dl(llf, A) = (1 - qN)p> (A75)
x—N x
q 1 1—gq
Bl(xu )‘) = q_N_l _ 17 Dl(xu )‘) = 1— qN+1 (A76>
Bi(z;X) = qq¢", Di(z;X) =1—4¢", (A.77)
Bi(z;A) = p_l(qm_N —1), Di(z;A) = —p N (A.78)
Bi(z;A) = (¢ NV = 1Dp7'¢*, Di(m;A)=(1—-¢")Q—p'¢" V), (AT9)
qm—N -1 1— qm
Bl(xﬂA): q_N_1_17 Dl(xﬂA): 1 qN+1> (A8O)
1 —pg** _ p(1—q")
BiwsX) = 20— D) =5 (A.81)



: Bi(zA) = (1—pg) ("N = 1), Di(z;X) = (pg—1)g" 7, (A.82)

: Bi(z;A) = (¢ = 1)(1 = pg™), Di(z;A) = (¢ = 1)pq", (A.83)
(qgc—N - 1)(1 - aqu_l) (1 - qm>(1 _ abq:v+N—1)
N = T a ey PN T by
(A.84)
(1 —aq”)(1 —abg"™") (1—¢")(1 —bg"")
N = g i a) PN T T g1 )
(A.85)
Sy L—abg™ 3y L b ?ag(1—q°)
' . _ (q:c—N o 1)(1 o aq:c> . B q—N<1 _ abq:c-i-N—l)(l _ qu—l>
P B A) = 1 — abg®* o Dl d) = b(1 — abg?*—2) ’
(A.87)
, (I—a)(¢" N —1) L (a=1)g" N1 — abg"tN )
Bl(xu )‘) - 1 _ abq% D1($7 A) - 1 _ abq%—z )
(A.88)
_ (¢ —1)(1 - aq”) . (T=¢M)agm N1 = bg" )
Bila:d) = 1 — abg?* » Di(mA) = 1 — abg?*—2 ’
(A.89)
. (@ =11 +pg") W (=g +pgttN)
BN ey DY T e @ e
(A.90)
. Sy L+pg” N P —qY)
. Bl(x? A) - 1 +pq2x+1? Dl(x7 A) - 1 _l_qux_l ) (Ag]‘)
r—N z—N-1 z+N
. o 1 a4 (L +pg*™™)
. Bl(xu )‘) - 1 +pq2x+17 Dl(':(:u )‘) - 1 +pq2x_1 (A92>
_N N 2r—N—-1
. I . vy (1=¢")pq
. Bl(xu )‘) - 1 +pq2x+17 D1($7 A) - 1 +pq2x_1 (A93>
. Ny T 15} N\ T
BN = 507 DieN) = g (A.94)
. L Be N\ B
. Bl(flf,)\)— 1—0’ Dl(va)_ 1—0’ (A95)
—1(,,—x —x
. N U ) , -1
BN = T S D) = (A.96)
: Bi(z;A) = (1—b)ag™", Di(z;A)=b—1 (A.97)
Bi(z;A) =q¢ ', Di(z;A) = —(¢"—1) (A.98)
C Bi(z;A) =aq', Di(x; ) = -1 (A.99)
: Bi(z;A) = ¢""', Di(z;A) =1—¢", (A.100)
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g1 (a): faA) =1, ba(A) = —¢"(1—ag")(1 —bg"™"), &=(-1,1), (A.156)
(b) s fuA) = —¢ (1 —ag" )1 =bg"), bu(A)=1, &=(1,-1), (A.157)

gL : (a) : fu(A) =1, by(A) = —¢ (1 —aq"), & =—1 (A.158)
(b)) : fu(A) = —¢ (1 —ag"™Y), bo(A) =1, 6=1, (A.159)

gM: (a): fu(A) =1, by(A) =q"+¢q !, §=(0,1), (A.160)
(b) : fu(A) =1, bo(A) = —b" (1 —0bg"), & =(1,0) (A.161)

() faA)==b""g (1 =bg"™), bu(X) =1, & =(=1,0), (A.162)

d): fuAN) =¢"+¢ b,(A)=1, §=(0,-1), (A.163)
ASCIL: (a) : fu(A) =1, by(A\)=¢", d=1, (A.164)
(b): fulA) =¢" b,(A) =1, §=—1 (A.165)
qC:(a): fuN) =1, by(A)=¢ " +aq™, d=1, (A.166)
b): fuAN) =¢"+a, by(A\) =1, §=-1 (A.167)

A.4 Data for §4.4

We present explicit forms of B} (n), Dj(n), fu, by and & in §AA The potential functions
Bj(n) and D3(n) can be obtained from (#53).
Potential functions Bj(n; A) and Dj(n; A):

“la(l - “aq —
bl : (a) : Bi(m: ) = %@"’ Di(n; ) = % (A.168)
1 . —1 _
by Bl = T iy = 100 A.169
c): Bi(p;A) = (bg—1)n"a, Di(n;A) = (1 —bg)n~*(aq —n), A.170

( ( )
( = ( )
(d): Bi(m;A) = (ag — 1)n~'b, Di(n; A) = (ag — 1)~ (1 — by), (A.171)

ASCI: (a): Bi{(;A)=n""¢"", Di(mA)=—n""(1—n), (A.172)
(b): Bi(m;A) = —n"lag™", Di(p;A) = —n~"(n—a), (A.173)

gL (a): Bi(;A) =n"'(1+n), Di(mA)=-n""q, (A.174)

(b): Bi(n; ) ( )

Di(m;A) = —a™".

a) .

Il
- 3

b) :
Constants (), b} (X) and 9:

bgL: (a): fI(A) =1, B2(A) =—¢™(1—aq"), &6=(1,0), (A.176)

n



(b): fIAN) =1, B(A) =—¢"(1—bg"), 6=1(0,1), (A.177)

(@ R =", BN =1, 5=(0,-1) (A.178)

ASCI: (a): fI(A) = B;{(A) ——q ", b= (A.180)

(b): fIN) ==¢", BN =1, §=1, (A.181)

gL:(a): fiN) =1, BN =—a'¢ " (1—ag"™), §=-1, (A.182)

b): N =—=at1—ag"), BEA) =1, d=1. (A.183)
References

[1] M. E.H.Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, vol. 98

of Encyclopedia of mathematics and its applications, Cambridge Univ. Press, Cambridge
(2005).

R. Koekoek, P. A.Lesky and R.F.Swarttouw, Hypergeometric orthogonal polynomials
and their q-analogues, Springer-Verlag Berlin-Heidelberg (2010).

S. Odake and R. Sasaki, “Discrete quantum mechanics,” (Topical Review) J. Phys. A44
(2011) 353001 (47pp), larXiv:1104.0473/[math-ph]l. Typo in (2.132), ¢;(n, A) for H :

1 1
3 =~ T

S. Odake and R. Sasaki, ““Diophantine” and Factorisation Properties of Finite Orthog-
onal Polynomials in the Askey Scheme,” larXiv:2207.14479/[math.CA].

S. Odake and R. Sasaki, “Orthogonal Polynomials from Hermitian Matrices I1,” J. Math.
Phys. 59 (2018) 013504 (42pp), larXiv:1604.00714/[math.CA].

S.Odake and R. Sasaki, “Unified theory of annihilation-creation operators for solvable
(‘discrete’) quantum mechanics,” J. Math. Phys. 47 (2006) 102102 (33pp), arXiv:
quant-ph/0605215.

S. Odake and R. Sasaki, “Orthogonal Polynomials from Hermitian Matrices,” J. Math.
Phys. 49 (2008) 053503 (43pp), larXiv:0712.4106/[math.CA]. (For the dual ¢g-Meixner
and dual g-Charlier polynomials, see [5].)

30


http://arxiv.org/abs/1104.0473
http://arxiv.org/abs/2207.14479
http://arxiv.org/abs/1604.00714
http://arxiv.org/abs/quant-ph/0605215
http://arxiv.org/abs/0712.4106

8]

[12]

S.Odake and R. Sasaki, “Exactly solvable ‘discrete’ quantum mechanics; shape invari-
ance, Heisenberg solutions, annihilation-creation operators and coherent states,” Prog.

Theor. Phys. 119 (2008) 663-700, arXiv:0802.1075/[quant-ph].

R. Sasaki, Mathematical Physics in Solvable Quantum Mechanical Systems (in Japa-
nese), SGC library 122, Saiensu-Sha Co., Ltd. (2016).

R. Askey and J. Fitch, “Integral representations for Jacobi polynomials and some appli-

cations,” J. Math. Anal. Appl. 26 (1969) 411-437.

S.Odake, “New Finite Type Multi-Indexed Orthogonal Polynomials Obtained From
State-Adding Darboux Transformations,” Prog. Theor. Exp. Phys. 2023 (2023) 073A01
(39pp), larXiv:2209.12353/[math-ph].

E. G. Kalnins and W. Miller, Jr., “Symmetry techniques for ¢-series: Askey-Wilson poly-
nomials,” Rocky Mountain J. Math. 19 (1989) 223-230.

31


http://arxiv.org/abs/0802.1075
http://arxiv.org/abs/2209.12353

	Introduction
	Orthogonal Polynomials in the Askey Scheme
	Forward and Backward Shift Relations
	Another type of Forward and Backward Shift Relations
	Polynomials in oQM systems
	Polynomials in idQM systems
	Polynomials in rdQM systems
	Polynomials in rdQMJ systems

	Summary and Comments
	Data for §4
	Data for §4.1
	Data for §4.2
	Data for §4.3
	Data for §4.4


