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Abstract

For the isospectral Darboux transformations of the discrete quantum mechanics
with real shifts, there are two methods: type I and type II constructions. Based on
the type I construction, the type I multi-indexed little g-Jacobi and little ¢-Laguerre
orthogonal polynomials were presented in J.Phys. A50 (2017) 165204. Based on the
type II construction, we present the type II multi-indexed little g-Jacobi and little
g-Laguerre orthogonal polynomials.

1 Introduction

The new type of orthogonal polynomials — exceptional and multi-indexed polynomials — [1]—
[14] have the characteristic that they form a complete set of orthogonal basis in spite of
the missing degrees, by which the restrictions of Bochner’s theorem [15] are avoided. They
are constructed based on the polynomials in the Askey-scheme of hypergeometric orthog-
onal polynomials [16], which satisfy second order differential or difference equations. To
study such orthogonal polynomials, the quantum mechanical formulation is very useful. We
consider ordinary quantum mechanics (0QM) and two kinds of discrete quantum mechanics
(dQM), dQM with pure imaginary shifts (idQM) and dQM with real shifts (rdQM) [17].
The Schrodinger equation for oQM is a differential equation and that for dQM is a difference
equation. The coordinate x for oQM and idQM is continuous and that for rdQM is discrete.

The multi-indexed orthogonal polynomials are systematically constructed by the multi-
step Darboux transformations for quantum mechanical systems. When the wavefunctions
of the virtual states are used as seed solutions, the multi-step Darboux transformations give

the case-(1) multi-indexed orthogonal polynomials. Here, the case-(1) is the case that the
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set of missing degrees of the multi-indexed polynomials is {0,1,...,¢ — 1}, and the case-
(2) is otherwise. The quantum mechanical systems associated to the case-(1) multi-indexed
orthogonal polynomials have shape invariance [10]-[14].

For oQM (Jacobi and Laguerre [10]) and idQM (Askey-Wilson and Wilson [12], con-
tinuous Hahn [I4]) cases, there are two types of virtual states, type I and type II. For
rdQM (finite: ¢-Racah and Racah [I1], semi-infinite: Meixner, little g-Jacobi and little g¢-
Laguerre [13]) cases, we considered one type of virtual state. In the first manuscript of [11]
(arXiv:1203.5868v1), we considered two types of virtual states (type I and II) for Racah and
g-Racah cases. But the multi-step Darboux transformations with these two types of virtual
states as seed solutions give essentially the same multi-indexed polynomials, because these
rdQM systems are finite systems. So we discussed only one type of virtual state in [I1].
However, this situation may be different for semi-infinite systems. The purpose of this paper
is to consider two types of virtual states for the semi-infinite rdQM systems and to obtain
the type II multi-indexed little g-Jacobi and little g-Laguerre polynomials.

This paper is organized as follows. In section 2lthe finite and semi-infinite rdQM systems
are recapitulated and the multi-step Darboux transformations are discussed. There are
two methods, the type I and type II constructions. Section [3]is the main part of the paper.
Based on the type II construction, we obtain the case-(1) type II multi-indexed little ¢-Jacobi
polynomials. Similarly, the case-(1) type II multi-indexed little g-Laguerre polynomials are

obtained in section Ml Section [l is for a summary and comments.

2 Darboux Transformations for rdQM

In this section we recapitulate the isospectral Darboux transformations for rdQM systems

[T1]. The first manuscript of [I1] is larXiv:1203.5868v1 and we will cite it as [T11](v1).

2.1 rdQM systems

The Hamiltonian H of a finite rdQM system is a real symmetric matrix, and we consider a

tri-diagonal one [1§],

H= (%x,y)x,ye{o,l,...,N}a (21)

Hoy=—V/B(@)D(x +1) 6441y — VB(x —1)D(x) 6m1y + (B(z) + D(2)) 65y,  (2.2)
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where the potential functions B(z) and D(x) are positive but vanish at the boundary,
B(z) >0 (¢z=0,1,...,N—1), B(N)=0,
D(xz)>0 (x=1,2,...,N), D(0)=0. (2.3)
We write this H as

—/B(x)D(x + 1)’ — /B(x — 1)D z) + D(z)
= —\/B(z)e?\/D(x) — /D(z) e~ \/B(x) + B(x) + D(z), (2.4)
is a matrix whose (z,y)-element is 6,41,, and F(z) means a diagonal matrix

F(z) = diag(F(0), F'(1),...,F(N)). The Schrodinger equation of rdQM system is a matrix

eigenvalue problem,

where e*?

Han(ZL') :gnQSn(l’) (nzO,l,...,N), 0=& <& < "'<5N, (25)

where the eigenstate vector (eigenvector) is ¢, = (¢n())sefo,1,..n} and the product of H
and ¢, is given by Ho, () = Z;jzo Mo ydn(y). The constant term of A is chosen so that
& = 0. We remark that the matrix notation H¢,(x) represent

(a) : Hoo0n(0) + Hoi1¢n(1) (x=0),
(b) + Hogsn( — 1) + Hagou2) + Homabn(+1) (1 <z <N —1),
(C) : KHN7N_1¢7L(N — 1) +HN,N¢n(N) (SL’ = N),

and the expressions (a) and (c¢) can be regarded as given by (b) because the boundary
conditions D(0) = 0 and B(N) = 0 [23) give “Ho—1"= 0 and “Hyn+1"= 0. The inner
product of two state vectors f(z) and g(z) is (f,g) = prv:o f(z)g(z) and the norm of f(z)
is |||l = \/(f, f). The orthogonality relations for ¢, (z) are
1
(6ny ) = 2 0 (n,m=0,1,...,N), (2.6)
where d,, are constants.
The Hamiltonian (2.4]) can be expressed in factorized form in two ways (type-(i) and

type-(ii) factorizations) [11](v1) :

H=ATA=ADT D (2.7)
type-(i) : A= +/B(z) — e?\/D(z), A" =+/B(z)—+/D (2.8)
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type-(ii) : AW = /D(z) — e ?/B(z), AW =./D(x)— /B(z)é’. (2.9)

We remark that since the factor D(0) does not appear in A and A, the boundary condition
“D(0) = 0” is automatically satisfied in the type-(i) factorization (B(N) = 0 is needed).
Similarly, since the factor B(N) does not appear in A% and AT, the boundary condition
“B(N) =07 is automatically satisfied in the type-(ii) factorization (D(0) = 0 is needed).

For the rdQM systems associated to the orthogonal polynomials in the Askey scheme,
the eigenstate ¢, (x) (n € Zso) has the following form [I8],

def

on(x) = ¢o(2)Pu(2),  Pulz) = Pu(n(z)). (2.10)

Here n(x) is the sinusoidal coordinate [I8] and P, (n) is a polynomial of degree n in 1. We
choose the normalization P,(0) = 1 with n(0) = 0, and set P,(x) = 0 (n € Z). The ground
state ¢o(z) is characterized by A¢o(z) = 0 (or AW ¢y(x) = 0) and its explicit form is

(2.11)

with the normalization ¢o(0) = 1 (convention: [}

~!% =1). In the concrete examples, B(z)
and D(x) are rational functions of x or ¢*, and the defining range of ¢y(z) can be extended
tox € R (e.g., (a;q), is expressed as (a;q)z = (a; ¢)oo/(aG"; @), Which is defined for z € R).
The similarity transformed Hamiltonian H in terms of the ground state ¢g(z) is

~ def

H = go(z) L oHogo(z) = B(x)(1 —€) + D(z)(1 — e?), (2.12)
and (2.3) becomes
HE,(z) = E,Py(2). (2.13)

The semi-infinite rdQM systems, whose coordinate x takes values in Zx(, can be obtained

by taking N — oo limit.

2.2 Multi-step Darboux Transformations

The property of the Darboux transformations depends on the choice of seed solutions. We
consider the virtual states as seed ‘solutions’, which give isospectral deformations. There
are two types of virtual states, the type I and type II [I1](v1). For the construction of the
multi-indexed (¢-)Racah polynomials, these two types of virtual states give essentially the

same polynomials. So the type II construction is omitted in [I1].
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Remark: We comment on [T1](v1). Instead of ) (in the last paragraph of § 3.4 of [11](v1)),

we should consider ():
€SN B (O, A+ A — A A Ao — Aa, 200 — A, (2.14)
with Ay = —N. Then we have
B'™Ma;A) = D''(N — ;4 (X)),  D'™(x;A) = BN (N — 249 (X)), (2.15)
and the type I and II multi-indexed (g-)Racah polynomials are related:

Pg’n(aj; A) = Pil)n (N —z; t(CX,)(A)). (2.16)

Let us consider a finite rdQM system. We assume the existence of two rational functions

B'(xz) and D'(x) of x or ¢* satisfying

B(z)D(z +1) = o?B'(z)D'(z + 1), a>0, (2.17)
B(z)+ D(z) = a(B'(z) + D'(z)) + o/, o' <0, (2.18)

where a and o are constants. We impose on them the following conditions:

typel: B'(z) >0 (x=0,1,...,N+L—1),

D'()>0 (z=1,2,...,N), D'(0)=D'(N+1)=0, (2.19)
typeIll: D'(z) >0 (x=—-L+1,...,—1,0,1,...,N),

B'(z) >0 (z=0,1,...,N—1), B'(N)=B'(-1)=0, (2.20)

where L is a certain positive integer to be specified later. The function bo (x) is defined by

o() def\lgm (x=0,1,...,N), (2.21)

with the normalization ¢(0) = 1. Like ¢y(z), the defining range of ¢o(z) can be extended
to x € R. We define a function v(z),

v(x) & ?O(x):x_l Bly) ::ﬁw (x=0,1,...,N), (2.22)

o Ply+1)



whose defining range can also be extended to x € R. Note that v!(z) = 0 for € Z>y,; and
V(z) = 0 for # € Z<_;. The relations (ZI7)—(2I8) imply the following relation between

two Hamiltonians:

H = aH + O/, (2.23)
H Y —/B(2)®\/D'(&) — /D'(x)e?\/B(z) + B(z) + D'(x). (2.24)

We assume the existence of virtual state vectors ¢y (x) (v € V),

def 7 def

Oy(2) = do(2)&, (), &) = & (n(2))- (2.25)

Here V is the index set of the virtual state vectors, and the virtual state polynomial &,(n) is

a polynomial of degree v in 7 satisfying the difference equation (for z € R)

B'(x)(&(2) = &+ 1)) + D'(2) (& (2) — &l — 1)) = & & (2), (2.26)
where £ is a constant. We impose on &’ and &,(z) the following conditions:
E Lokl +d/, & <0, (2.27)
typeI: &(z)>0 (z=0,1,...,N,N+1), (2.28)
type IT: &(2) >0 (z=-1,0,1,...,N). (2.29)

Since the matrix H is a positive semi-definite real symmetric matrix, &, being negative is a
sufficient condition for the virtual state ¢, (z) to not be a true eigenvector, see (2.30) (2.31)).
We choose the normalization &,(0) = 1 for type I and &,(—1) = 1 for type II (which is
different from [II](v1)). Relations (2.23]), (225 and (2.26) imply that virtual state vectors

ng(x) are polynomial ‘solutions’ of the Schrodinger equation except for one end-point:

l

type L: HQ;V(I) VQ;V("B) (ZL" =0,1,....N— 1)a Hév(z) # qugv(l') (I = N)> (230)
type II: HQ;V(I) vQNSV(x) (ZL" =12,..., N)> HQ;V(I’) # qugv(l') (I = O)a (2'31)

due to D'(0) = 0 and B'(N) > 0 for type I (2.19), and D’(0) > 0 and B'(N) = 0 for type II
2.20).

For the Darboux transformation with the type I virtual state vector ¢! (z) (type II virtual

R

state vector ¢l1(z)) as a seed solution, the type-(i) factorization (Z8) (type-(ii) factorization
(29)) is used, respectively:
H=AlA, + £l e A AL 4 &
=
N —1)

I: ¢ . - .
type {.Aﬁﬁ{,(x) =0 ($ = 0’ 1’ Tt gbgow(x) d:Cf Av¢n(x) )
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H =AY TA“‘ + &N Hrew = AP AN 4 £n
trpe {1 { AP =0 w=1,2..,N) {¢2°W(x) 40 (1),

and new virtual state vectors are @Lre%(x) oo AL, () + (correction term at z = N) and
Prew (1) L AW G (1) 4 (correction term at z = 0), see [[1](v1) for explicit formulas. Here
we explain why the type-(i) (type-(ii)) factorization is used for the type I (type IT) virtual
state vector, respectively The matrices A, and A" are given by A, o \/ B,(x)—e \/ Dy(

and A &'\ /D (2) — 794/ B,(z) with By(z) & oB'(z )EVE(I(Jr1 and Dy(2) & oD/ (2) Své(im)l),
and they satisfy BV( )Dy(z + 1) = B(x )D(x +1) and By(z) + Dy(z) + & = B(x) + D(x).
Since (0, 0)-element of Al A, + &, is B, (0)+&,, we need the condition D, (0) = 0 for type-(i)
factorization. Similary, since (N, N)-element of AT AW &, is ﬁV(N )+ E,, we need the
condition B,(N) = 0 for type-(ii) factorization. Be careful not to confuse (A, A®) and (A,,

AS“)). We call the multi-step Darboux transformations with only the type I (type II) virtual
state vectors as seed solutions type I (type II) construction. In the multi-step Darboux
transformations, various quantities are neatly expressed in terms of Casoratians: W (for
type I) and Wé_) (for type II) [11](v1). The Casorati determinants of a set of n functions
{f;(x)} are defined by

Welfis oo fil(w) et (a4 -1) (2.32)
WL o £)() S det (e =5+ D)
= (D) EOWelfi, forn oy fil@ —n+ 1), (2.33)

(for n = 0, we set W¢[|(z) = W(C_)[](:c) = 1). The auxiliary functions ¢(x), ¢y () and
o\ () (M € Zsg) are defined by [18, 9] [I1](v1)
aef (2 + 1) — ()

o(z) 1) , | (2.34)
ou(z) < H etk _nl()k__%x iz (2.35)
A= 1 ok, +771()k—_n]()~”c “ED M1, (236)

and o(2) = pi(e) = ¢ (@) = ¢ (@) = 1.
Let us consider the M-step Darboux transformations with virtual state vectors Q;V(SL’)

(v € D) as seed solutions. Here D is

D ={dy,dg,...,du} (1<d<dy<---<dpy; d;eV), (2.37)
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and we assume |V| > M and L > M. Although this notation d; conflicts with the notation of
the normalization constant d,, in (2.6), we think this does not cause any confusion because

L wm. The Hamiltonian of the deformed system, the Schrodinger

the latter appears as —

equation and the orthogonality relations are given by [11]

%D - (%Dx,y):c,ye{o,l ..... N}

' /Bo(z) e \/Dp(z) — /Dp(z) e ?/Bp(z) + Bp(z) + Dp(z) (2.38)
= AL Ap, Ap ¥ \/Bp(z) — ¢?/Dp(z), Ab X \/Bp(x) —/Dp(x)e?, (2.39)

HD¢Dn(x) :gnQSDn(x) (n20717"'7N)7 (240)
M

(690:600) = [](En — 1) 50um (nm =01, N). (2.41)
j=1 n

The semi-infinite systems are obtained by taking N — oo limit. We present explicit forms
of Bp(z), Dp(x) and ¢p,(x) for the semi-infinite systems in §2.2.IH2.2.21 Only the final

results are given here. For intermediate steps, see [11} [13], [I1](v1).

2.2.1 type I construction for semi-infinite systems

In the type I construction for semi-infinite systems, the virtual state vectors qgv(x) are now
solutions of the Schrodinger equation (Z30) (with N — oo), but they have infinite norms.
Explicit forms of Bp(x), Dp(x) and ¢p,(z) are

WC[gdp"'ang](x) WC[€d1>"'>€dM?V]($+1)

et VB (z = _ V / )
o) e Y e Gl t 1) Weléw bl
DD(SL’) d:43f aD’(a:)WC[gdlf ce ,fdwf](l’ + 1) Wc[gdlv, ce ,gd]\:[, V](ZL’ - 1)7 (243)
Wc[gdun'vng](x) Wc[gdl,...,ng,V](SL’)
b ) (—1) \/szl 0B/ (@ -+ = 1) 9o(a) Wella - a0 o1

VWel€ar, - € )(@) Welda, . &, )z +1)

The Casoratian W¢[€q,, . . ., &, ](x) has definite sign for & € Zsg (see [I3] for proof). The
potential functions Bp(z) and Dp(z) are positive: Bp(x) > 0 (x € Zsg), Dp(z) > 0
(LU c Zzl) and DD(O) = 0.

2.2.2 type II construction for semi-infinite systems

In the type II construction for semi-infinite systems, the virtual state vectors qgv(x) satisfy

the Schrodinger equation except for the end-point x = 0, (2Z31)) (with N — oo). Explicit
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forms of Bp(x), Dp(z) and ¢p,(x) are

W(C_)[gd17 e 7£dM](x - 1) W(C_)[gdw s 7£deV](x + 1)

o V V V s , 2.45

D(x) “ (x) Wg_) [§d1> s 7§dh]](x) Wg_) [§d1a s 7€dM’ I/](ZL’) ( )
()1 3 e 3

Do(2) ¥ oD/ (x — M ch[ﬁdu o Ean](x)  We [gdlf”"gdhf’y](x — 1)7 2.46

D<x> “ (x )Wg_)[gdu-..,fdM](l'— 1) Wg_)[§d1a'“>€dM>V](x) ( )

(bDn(x) d:ef (_1>M\/H]A/il aD/(x—j+1> (Z;O(l’)w(c_)[édlv’”7£dM7VPn](x)' (247)

\/W(C_)[gdw SRRE) ng](LL’) Wé_)[édl’ T ’édM](x B 1>

The Casoratian Wg_) [€4,,- .., €q,,](2) has definite sign for & € Zs_; (by similar proof as type
I). The potential functions Bp(x) and Dp(z) are positive: Bp(z) > 0 (z € Z>¢), Dp(x) >0
(x € Z>1) and Dp(0) = 0. In §B and §M], we will denote ¢p,(z) in [2417) as o5 ().

3 Multi-indexed Little g-Jacobi polynomials

In this section we present the case-(1) multi-indexed little g-Jacobi polynomials, especially
type II polynomials. Various quantities depend on a set of parameters A = (A1, Ao, ...) and
q (0 < g < 1), and ¢* stands for ¢*122) = (¢ ¢*2 .. .). Their dependence is expressed as
f=f(X\) and f(z) = f(x;A), but g-dependence is suppressed.

3.1 Original system
Let us present the basic data of little g-Jacobi rdQM system. The standard little ¢g-Jacobi

7n’ abanrl
aq

polynomial p,(¢"; a,blq) = gqﬁl(q q;q’”“) [16] does not satisfy our normalization

P,(0) = 1. We change the parametrization slightly from the standard one, (a, b)*#ndard —
(aq™t,bg™1) [20]. The basic data are as follows [I8, 21]:
> =(ab), 6=(1,1), k=q' O<a<l, b<I, (3.1)
B(x;A) =aq ' (¢"" —b), D(z)=q" -1, (32)
EAN) =" =11 —abg"™), nlx)=1-q¢" olx)=7q", (3.3)
. —n’ Cl,b n—lj —x s _ _
(T3 A) = 3¢1(q qb T giag “) = ¢,(A) pu(1 —n(x);aq~ ", bg""q)
. abg" ! def o —(m) (@5 q)
— / A q » @ ‘ . / A = (— n ( ) ! n 4
a0 (T Jaa), ) (o (3.4)
. o b n—1. "
P,(z;X) = ¢ (A)n(x)™ + lower degree terms, ¢, () o (—a)_"q_"("_l)w, (3.5)

)



do(2; A)? = EZ Z;a - %a do(z:A) > 0, o(0;A) = 1, (3.6)

b.ab: q)n anqn(n—l) 1— abq2n—1 (CL' Q)oo
dn)\2:(’ ’ ’ . dp(X) >0, 3.7
> (a,q; q)n 1—abg" — (ab; @) ) (3.7
and P,(z; \) satisfies
Bu(0;A) =1, P,(0o; A) (L lim B, (25 X)) = cu(A). (3.8)

T—r00

Note that the most right hand side of ¢o(z; A)? [B.6)) is defined for x € R. This rdQM system
is shape invariant,

ANANT = AN+ 6)TAN + 8) + E(N). (3.9)

As a consequence of the shape invariance combined with the Crum’s theorem and the nor-

malization, we obtain [17]

AN)pn(;A) = % 1 (T X+ 8) (n € Zs), (3.10)
AN ¢n1 (@A +8) = V/B(0; X) du(23X) (0 € L), (3.11)
These relations give the forward and backward shift relations:
FN)Py(2;0) = Ea N Poy (A + 8) (0 € Zsp), (3.12)
B Py 1(2; X+ 68) = Py(2;0), (n € Zs), (3.13)

where the forward and backward shift operators are

FA) L /B0, A) go(z; A+ 8) 7 o AA) 0 do(x;A) = B(0; Ngp(z) (1 — ), (3.14)

def 1 2N 1o t o bl
= B(0; )" (B(z; X) — D(z)e ?) (). (3.15)

The similarity transformed Hamiltonian (ZIZ) is expressed as H(A) = B(A)F(A). The
auxiliary functions ¢ (z) Z35) and ¢\, (z) E36) become

War(Y) )

oar(z) = gl 2 )= M(VM-DEM-1) (3.16)

o (@) = gl .

3.2 Type I polynomials

The potential functions B'(z) and D'(x) and the virtual state polynomials & () are given
by [13]

B (x;0) & B(z;:£(N), D''(2) ¥ D(x), (3.17)
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(x; N) def P, (x;tl()\)), (3.18)

v

where the twist operation t and the shift § are (remark: (a, b)**d are used in [13])

= (2 - )\17 )\2)7 namely qtl(}\) = (a—qu’ b)a (319)

t(A) =
), fA) +ud=€(A+ud) (VueR), (3.20)

)
with al(A) £ ag~! and o/T(A) &' —(1 = ag~!)(1 = b). The parameter range is 0 < a < ¢!+
and b < 1. Various formulas for the type I multi-indexed little g-Jacobi polynomials are

presented in [13].
3.3 Type II polynomials
The twist operation t and the shift & are defined by

1) = (A,2— o), namely ¢ = (a,57'¢?), (3.21)
5" (1, -1), ) +ud =" A +ud') (VueR). (3.22)

Without using this twist operation, let us define the potential functions and the virtual state

polynomials. The potential functions B'(z) and D’(x) are given by
Bz A) L ab g = 1), D'MazA) Eplgtr -1, (3.23)
which satisfy the conditions (2ZI7)—(218) with
11 def ; 1 11 def -1
a’(A)=0bg, o (A) = —(1—-a)(l=bg). (3.24)

For (Z20) (with N — o0), we take L = M and assume 0 < b < ¢™. The virtual state
polynomial &, (z) (v € Zsg) is given by

v o1 vl :
(s 2) E () 500 abmq” aibg), M) dﬁ%, (3.25)
which satisfies
G152 =1, &l N (F lim &3 N) =" (), (3.26)
and
Nz X) = AN (A)n(x)Y + lower degree terms, () Ly (V;I)%. (3.27)
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As mentioned below [B22), £(x;\) is defined without using ', and we remark that
Nz A) ot Py(x; (X)) in contrast to the type I case (3I8). For simplicity of presenta-
tion, the superscript II is omitted in the following.
The virtual state polynomial &, (z) satisfies the difference equation (for = € R) (2.20)
with
EN) FE(N) = (¢ =11 —ab ™). (3.28)

Proof: Let us consider the following function fy(z) (v € Zxo),

q_V7 ab_lqv+1 v i (q—v’ ab_quH; q>k bk
fV z) = gb ( ’ q; bZ) == agz -, ap = ’
(2) =201 a kz_o & k (a; Q) (@ Dk

(1 - q—v-i-k—l)(l _ ab—lqv-i-k) b
1—agkt 1—gq

ap = kak_l (1§]€§V)

This f,(z) satisfies the g-difference equation

ab™ (1= q2)(fu(2) = fu(g2)) + (07 q = 2) (ful(2) = fulg™'2)) = (7" = 1)(1 —ab~'q" )z fu(2),

which is shown by comparing the coefficients of z* terms of both sides (k =0, 1 < k < v and
k = v +1). By substituting z = ¢* and f,(z) = & ~'&,(z) into this ¢-difference equation, we
obtain (2.26]). 0

From (Z29) (with N — o0), the virtual state polynomials should satisfy & (z) > 0
(r € Z>_1). Let us check this condition. Note that &, > 0 for a < 1 and b < ¢*'. Since
£(—1) =1 > 0, we consider z € Z(. By using the identity ((1.13.17) in [16])

g™, b7'c, 0
¢, b=tegz=1

2¢1<q_’;, ’ ‘ q; Z) = (bc™'q "2 q)n 3¢2< ‘ Q§Q) (n € Zxo),

& () is rewritten as

E(x) = 6’V(q”1;q)vg¢z(q_v’ b 0 ) 4 q)

a, q "

N —~ (Vb gk ¢
=" q)v
; (@, 7" ) (49
_ () ZV: ("~ bg™ " @) gF Y (3.29)
TR (a4, T e (@)

v+1

and each k-th term of the sum are positive for a < 1 and b < ¢""". Therefore we obtain

Eo(x) >0 (x € Zs_y) fora < 1 and b < ¢"*+'.
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In the following, we assume the following parameter range:
O<a<l, 0<b<qgTim (3.30)

which will be extended in the last paragraph of this subsection. The functions ¢o(z) (> 0)

221) and v(z) ([222) become

- $q)x bq”, 4; @)
e = B o (00740 3.31
bo(z; A) (b;9)x (0, 6" @)oo (3:31)

09 _ (0" @)oo
v(x;N) = = , 3.32
(#3) (@ @)e (04", 45 @)ox (3:32)
and the virtual state energy &, (227) becomes

E(A) = —(1—ag")(1 = bg™'7). (3.33)

The virtual state vectors ¢y (z) [2:25) satisfy the Schrodinger equation except for the end-
point z = 0, [2Z31)) (with N — o00).
We define the denominator polynomial Zp(x; A) and the multi-indexed orthogonal poly-

nomial Pp,,(7;A) (n € Zsg) as follows:
En(z: ) o) Lol ()W EL L ] (@A), (3.34)
Ppn(; ) € Cp (W) 100 (1) A+ ME) WS [Eh - Eans P (1 0) (3.35)

= Cp(A) ') ()

{dl(ifl) %dM(l“l) 7“1(951)}:771(931)
ro(x2) P (2
5d1('$2) é-dM'('Ié) 2 2). (22) | (3.36)
Eai(Tarpn) -+ ng(l"MH) rarer(@ar1) Pa(Tarsa)
where z; oy —j+1and ri(z) =rj(x; A, M) (1 < j < M +1) are given by
: et V(@ =G+ LX) (bg M) n—ja (6" )
(r—j+ 1A AT T LN / RUE 3.37
T (x J ) V(x;}\ 4 Md) (bq‘M;q)M ( )
and the constants Cp(A) and Cp () are given by
o1 Eq;(N) — Eq, (N)
Co(A) € ——— P (3.38)
o5 (=1) 1<j1;[<M a(A)D'(=j; A)
Con(X) & (1) )ep(A). (3.39)
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They are polynomials in n(z),

Zp(a3A) € Ep(n(@):X),  degEp(n) = Io, (3.40)
Pp(z0) Pp(n(z); X), deg Pp,(n) ={lp+n, (3.41)
where /p is
M
tp ¥ ;d] — MM~ 1) (3.42)
Their normalizations are
Ep(—L;A) =1, Pp,(0;A) =1, (3.43)

and we set Pp,(r) =0 (n € Zy). The coefficients of the highest degree terms are

=p(2;A) = 5 (A)n(2)" + lower degree terms,

_ ﬁ éd] (A) H bq—l _ aqj—l-l-k—l (3 44)
j=1 ~J—1(>‘) 1<j<k<M bg~t —aqhitd
Pp,(z;A) = Cg (AN)n(z) P+ + lower degree terms,
M
= “n 1-— bqn dj—1
j=1

The denominator polynomial Zp(z) is positive for z € Z>_; (see the remark below (Z47)).
The multi-indexed orthogonal polynomial Pp (1) has n zeros in the physical region 0 <17 < 1
(& x € Ryp), which interlace the n+1 zeros of Pp,+1(n) in the physical region, and ¢p zeros
in the unphysical region n € C\[0,1). This property can be verified by numerical calcula-
tion. The lowest degree multi-indexed orthogonal polynomial is related to the denominator

polynomial as

The deformed potential functions Bp(x) (2.45) and Dp(z) ([2.46) and the eigenvectors
() (2417) become

Bp(xz;A) = B(z; A+ MJ) Z N Epz—LATS) (3.47)
L Zp(23A) Ep(r — 2 A+ 9)

Do@d) = D)z N L AL o) (3.48)

(T A) =/ (bg™; ) dolr: A + M3) Pp (2 N). (3.49)

\/Ep(x; A)Zp(z — 1; )
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We define the eigenvectors ¢p,(x) as
z;A),  opa(0;A) =1 (3.50)

Ul n) & Ep(on) =AM -1 @)
VE(@ NEn(e — 1)

dpn(1;X)  Pp(2; ) Pp o

Note that the formula (ZII) gives

z—1 5
Bp(y; A) = Wl AT M)
SYPINE | RIS Foo(e: ),
dpo(z; A) \IZH)DD(?/+1;)\) ol )\/Ep(x;}\)ép(x_L)‘) P

where ([3.43)) and (B3.40) are used. The orthogonality relations for ¢35 (z) [241) (with N —

00) give those for Pp (),

S S i)~ G
E HD 1. )\) f)pm(l’7 A)Ppﬁn(l} >\) = dn(}\)2dp’n()\)2 ( ,m & ZZO), (352)
where dpm()\) (> 0) is given by
3 Moo D’ OA+(j—1)8) (bg ;@)
e VA YRR e vi=rsy T

7j=1
The Hamiltonian of the deformed system is (2.38) (with N — oo),
Ho) = (Ho(Nas),. s, = AN Ao (N (354
o —/Bp(x;A) €2/ Dp(2;X) — /Dp(z;X) e ?\/Bp(2; X) + Bp(x; A) + Dp(z; N).

The eigenvectors ¢p,(z) ([B.50) satisfy the Schrédinger equation,

)\) (n € ZZO)'

Hp(A)dpn(2;A) = En(X)dpn(7; (3.55)

The similarity transformed Hamiltonian is defined by

Ho(N) = ¢p(232) 7 0 Hp(A) 0 dp (a3 )
= p(z—1; ) ED(:L';)\+5) 0
Blo; A+ Mb) - ENEY (ép(x—1;>\+a) 6)
Ep(x; ) Ep(x —2; A+ 8) _
<ép($— L;A+9) —C 6)’ (3:56)
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and the multi-indexed orthogonal polynomials Ppm(l'; A) are its eigenpolynomials:

Hp(A) Ppn(@:A) = Ea(A) Ppa(: X)) (n € Zsg). (3.57)
The shape invariance of the original system (3.9) is inherited by the deformed systems:
AN Ap AT = kAp(A + 8)TAp(A + 8) + E1(N). (3.58)

As a consequence of the shape invariance and the normalization, we obtain

SRUE-ACY N .
AD(A)¢Dn(x7 >\) = B,D((); )\) ¢Dn—1( ; A+ 5) ( - ZZO)v (359)
ApN) T opn_1(m; XA+ 68) = /Bp(0; A) dpn(z;X) (0 € Z). (3.60)

These relations give the forward and backward shift relations:

fD(A)pp7n(£L’; )\) = gn()\)pr,n_l(l'; A+ 5) (TL - ZZO)> (361)
Bo(N)Pp 1 (X +8) = Pp(2:0) (n € Zsy), (3.62)

where the forward and backward shift operators are

Fo(A) € /Bp(0; A) dp (23 A+ 8) " 0 Ap(X) 0 p(; A)

BO; X+ Md) (= , - _
_ m(ED(LAM) —Ep(r— 17}\+5)ea), (3.63)
Bp(A) < m Up(2;0) 7 0 Ap(A)T 0 ¥p (a3 X + 8)
1
T BOA+ M&)ZEp(x — LA+ )
x (B(a:; A+ M&)Ep(z — 1;A) — D(2)Ep( /\)e_a>g0(x). (3.64)

The similarity transformed Hamiltonian (3.50) is expressed as Hp(A) = Bp(A) Fp(N).
The denominator polynomial Zp(x) and the multi-indexed polynomials Pp ,(x) are nor-
malized as ([3.43]). Their values at x = oo are given by (cf. (3.8)) and (3.26)))

= . def im =n(z: — 2 5&1()\)

._D(OO,)\)( - xl_mo‘—‘D( 7A)) - ]];[1 ~;_1(A)7 (365)
3 et o1 ) T &) =€)
Pp,u(00; A)(E lim Pp (25 X)) —H ey 121 ooy N (6)



In (237), we have assumed the order di < dy < --- < dy (standard order). Under
the permutations of d;’s, the denominator polynomial Zp(x) (834) and the multi-indexed
polynomial Pp ,(x) (B:35) may change their sign, but the deformed potential functions Bp(x)
B47) and Dp(x) (348) are invariant. So the deformed Hamiltonian Hp (B.54) does not
depend on the order of d;’s. Setting one of d; to 0, for example dj; = 0, we obtain the

following relation between M-indexed polynomial and (M — 1)-indexed polynomial,
Ppo(z;A) = Ppn(z;A+6), D' ={d—1,dy—1,...,dy_1—1}. (3.67)

The denominator polynomial Zp(z) behaves similarly. This is why we have restricted d; > 1.

We have assumed the parameter range (3.30). This range is needed in the intermediate
Darboux transformations, but may be extended in the final results of the deformed system.
There is one more reason why the range may be extended. Following our previous papers
[11l, 13], we have used the symmetry (2.23) and imposed positivity on B’(z), D’(x) and
«, respectively. However, B'(x) and D’(z) always appear in combination with «. So, by

introducing the following new quantities,

B (x) Y aB(x), D™(z) Y aD/ (), &ragl (3.68)
H/new d:ef _\/B/new(x) ea\/D/new(x) _ \/Dlnew a\/B/new B/HCW( ) + D/HCW(:C>’

the symmetry (2.23)) is expressed as H = H "V 4 o/ and the positivity condition is imposed
on B'*¥(z) and D’™¥(z). The virtual state energy (Z27) is & = £"°% 4+ o/ and it should
be negative for v € D and v = 0 (o = 5~0). By considering these, the parameter range is
extended to

0<a<l1, b<g'tim, (3.69)

3.4 Examples

For illustration, let us write down the type I and II single-indexed little g-Jacobi polynomials.

For D = {d}, they are given by

Pl = (e s (6o + D) o P +1), (370
Bl @) = 5= (1= b O = )P0 - (1= @R = 1), T
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The type I and II multi-indexed polynomials are different polynomials, except for D = {1},
in which case the two polynomials are related as P{Il}’n(x; A—d ) = PH} (23X — SH). For
example, for D = {2} and n = 0,1, we have

Poy () = = bqil e (1—ag (A —ag )+ 1+ )1 —ag *)(a—bg*)g"*

+(a = bg’)(a — bg")g* ™),

Plyy () = a(1—b)(1 —qbq)(l — bg?) (_(1 —a)(1—ag ") (1 —ag™®)
—(1=a)(1=ag®)((1 +q)(a —bg’) — ¢*(1 — ab))¢"?
+ (1= ag ) (a — bg®) (1 + q)(1 — abg) — a + bg?) >~
+ (1= ab)(a — bg")(a — bg*)g* ),

= bq_l)l(l ) (1 =ag)(1 = ag®) = (1 +¢)(1 — ag®)(b — ag’)g"?

+ (b — ag®)(b— ag")g*?),
-1

Peya(®) = o _qbq_l)(l = (~(1 = a)(1 = ag)(1 - ag?)
+(1=a)(1—ag’)((1+q)(b—ag’) + ¢*(1 — ab)) "~
— (1 —aq®)(b—ag®) (1 + q)(q — ab) + b — ag®)¢** >
+ (1= ab)(b — ag’) (b — ag*)*" ).

Pigy o(2) =

We remark that P{Iﬂ’n(x; A)| = P}

T=—T,q—q" {2},n
for n > 2.

(z; A) holds for n = 0,1, but does not hold

4 Multi-indexed Little ¢g-Laguerre polynomials

In this section we present the case-(1) multi-indexed little g-Laguerre polynomials, especially

type II polynomials.

4.1 Original system

Let us present the basic data of little g-Laguerre rdQM system. The standard little ¢-
Laguerre polynomial p,(¢%;alq) = ggbl a0 }q q“"”*l [16] does not satisfy our normalization
Pn(O) = 1. The little ¢-Laguerre system is obtained from little g-Jacobi system by setting

b = 0. We change the parametrization slightly from the standard one, a**#"ard = gg=!. The
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basic data are as follows [I8], 21]:

*=a =1, kK=q¢', O<a<l, (4.1)
B(x;A) =ag™*™", D(x)=¢ " -1, (4.2)
En=q"—-1 nx)=1-4¢" o)=7", (4.3)

Pn($§ A) = 2¢0(q 4

q; a‘lq”1> = (A) pa(1 = n(x);ag7"|q)

=0 (T ), N E e D, (1)

Po(2;X) = cu(A)n(x)™ + lower degree terms, ¢, () & (—a) g "), (4.5)

e e G RV MU PV EE (1.6)

a7 =T e A >0 (4.7)
n - (a,’ q; q)n ) q 0 n ) N

and P,(0; \) satisfies (3.8). The little ¢-Laguerre system has shape invariance (3.3) and the

formulas (3.10)-(3.16) hold.

4.2 Type I polynomials

The potential functions B'(x) and D’(z) and the virtual state polynomials &,(z) are given

by BI7) ([BI8), where the twist operation t and the shift § are (remark: #9214 is ysed in
[13])

- A1, namely qtl()‘) =a ¢, (4.8)

t(x)
% 1 ) +ud =N+ ud) (YueR), (4.9)

with a!(A) < ag! and a’l(X) = —(1 — ag™'). The parameter range is 0 < a < ¢'T.

Various formulas for the type I multi-indexed little g-Laguerre polynomials are presented in
[13], which are obtained from those for the type I multi-indexed little g-Jacobi polynomials
by setting b = 0.

4.3 Type II polynomials

The potential functions B'(x) and D’'(x) for little g-Jacobi system ([3.23]) diverge in the b — 0
limit. But B'™%(z) and D'V (x) (3.68) have well-defined b — 0 limits, because « (B3.24)

vanishes. So we define B'"*V(z) and D'**V(x) as follows:
B/nCWH(LL’; }\) def a(q—m—l _ 1)7 D/nCWH(SL’) def q " (410)
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The constant o and the shift § are defined by
U Y (1), § E (4.11)
By taking b — 0 limit of ([B.25), the virtual state polynomial &, () (v € Zsg) is given by

s A) AN 10 (1 g
a
which satisfies (3.26) and (3.27) with
2

AN E (—a)'q”.

v

v ~ def
aiag ), M) (asq)., (4.12)

(4.13)

For simplicity of presentation, the superscript II is omitted in the following.
The virtual state polynomial &, (z) satisfies the difference equation (for z € R) (2.28)

(with superscript “new”) with
A L —a(1 — ¢Y). (4.14)

It is positive &, (x) > 0 (v € Z>_,) for 0 < a < 1.

In the following, we assume the following parameter range:

0<a<l. (4.15)

The functions ¢o(z) (> 0) 22I) and v(x) [222) become

. (¢; D)o
2:A)? = (¢;q),0° = —24®, 4.16
1 (@ )0
v(x; A) = = , 4.17
(5:2) (@0 (G0 (4.17)
and the virtual state energy &, (227) becomes
E(A) = —(1 —ag"). (4.18)

The virtual state vectors ¢, (z) (2.25) satisfy the Schrodinger equation except for the end-
point z = 0, (Z31) (with N — o0).

The denominator polynomial Ep(x; A) and the multi-indexed orthogonal polynomial
Pp (23 A) (n € Zs) are defined by B:32)-B39) (a(X)D'(—j; A) is replaced by D™ (—j; )
in (3.38))) with

ri(z—j+LAM) = ("7 q);1 (4.19)
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They are polynomials in n(z), (3:40)-(3.42), and their normalizations are (3.43). The coef-
ficients of the highest degree terms are (3.44)—(3.45) with

a0 =11 f,djfa)) g, (4:20)
b (N = NN ™. (421)

The lowest degree multi-indexed orthogonal polynomial and the denominator polynomial
are related as ([B.40]). In the end, the type II multi-indexed little g-Laguerre polynomials are
obtained from the type II multi-indexed little g-Jacobi polynomials by taking b — 0 limit.

The deformed potential functions Bp(z) (Z45) and Dp(z) (2:46) become (B47)—(3.48),
and the eigenvectors ¢ (x) ([2.4T) become

Da(TiA) = Polzi A + M9) Pp (3 A). (4.22)
\/ED(SU; A)Zp(z — 1;A)
We define the eigenvectors ¢p,,(z) as ([3.50)—-(B.51). The orthogonality relations for ¢% (x)
&A1) (with N — 0o) give those for Pp,,(z), [3.52) with
1
Hjj\il (571 - gdj (A)) .

The Hamiltonian of the deformed system, the Schrodinger equation and their similarity

dpn(N)? = (4.23)

transformed versions are given by ([3.54)—(3.57). The shape invariance of the original system
(B3] is inherited by the deformed systems (B58). As its consequence, we have relations

359)-(3.60) and the forward and backward shift relations (3.61))—(3.64).

The denominator polynomial Zp(x) and the multi-indexed polynomials Pp ,(x) are nor-

malized as ([343). Their values at © = oo are given by (B.65)-(B.66). The reason for
restricting d; > 1 is the same as for little g-Jacobi case, (B.61).

5 Summary and Comments

We have reconsidered the multi-step Darboux transformations with the virtual states as
seed solutions for rdQM systems. There are two types of virtual states vectors, type I and
type II. For finite rdQM systems such as ¢g-Racah and Racah cases, the multi-step Darboux
transformations with these two types of virtual states as seed solutions give essentially the

same multi-indexed polynomials. On the other hand, for semi-infinite rdQM systems such as
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little g-Jacobi and little ¢-Laguerre cases, they give different multi-indexed polynomials. By
constructing the type II virtual state vectors explicitly, we obtain the case-(1) type II multi-
indexed little ¢-Jacobi and little ¢-Laguerre orthogonal polynomials, which satisfy second
order difference equations. The deformed rdQM systems have shape invariance and the
multi-indexed polynomial satisfy the forward and backward shift relations. It is an interesting
problem to study other semi-infinite rdQM systems such as Meixner and ¢-Meixner cases.

In our previous studies [I0]-[14] (except for the type I Laguerre), the virtual states are
obtained from the eigenstates by twisting the parameters (For the type I Laguerre, the
virtual states are obtained from the eigenstates by replacing = with iz). In the cases of the
type II little g-Jacobi and little ¢g-Laguerre, the situation is different. For the type II little
g-Jacobi case in §[3.3 the twist operation is defined by (B2I]), but it is used only in ([B28]).
The potential functions B’(z) and D’(z) (23) and the virtual state polynomial &, (z) (B:25)
are not obtained from B(z), D(z) and P,(x) by twisting the parameters. This is also the
case for the type II little ¢g-Laguerre in §[4.3]

The little g-Jacobi (Laguerre) polynomials reduce to the Jacobi (Laguerre) polynomials
in the ¢ — 1 limit. Similarly the multi-indexed little g-Jacobi (Laguerre) polynomials reduce
to the multi-indexed Jacobi (Laguerre) polynomials in the ¢ — 1 limit. The type I (II)
multi-indexed little g-Jacobi polynomials (A% = (g + %, h+ %)) reduce to the multi-indexed
Jacobi polynomials (A? = (g, h)) with only type II (I) indices. For the virtual states in oQM,

see [22]. The reason for the exchange of type I and type II is the coordinate correspondence,

1qJ .. . 1qJ
q"" ! ¢ $(1—cos2z”). The minimum and maximum values of z'#’, z%; = 0 and 2] = oo,
. . . J J . 1 J o .
correspond to the maximum and minimum values of z°, x;,, = 57 and x;;;, = 0, respectively.

Similarly the type I (II) multi-indexed little ¢-Laguerre polynomials (A" = g + 1) reduce
to the multi-indexed Laguerre polynomials (A* = g) with only type II (I) indices in the
g — 1 limit. We have no twist operation for the type II little g-Laguerre and the type
I Laguerre. For the multi-indexed Jacobi and Laguerre polynomials, it is possible to use
type I and II indices at the same time [10]. It is a challenging problem to study whether
mixed use of type I and II indices is possible for the multi-indexed little ¢g-Jacobi and little
g-Laguerre polynomials. In the type I (II) construction, various quantities are expressed in
terms of the Casoratian W (2.32)) (Wg_) [233))), in which x is shifted to + (—) direction,
respectively. Since x is shifted in the opposite direction, using both W¢ and Wg) is not a

good combination. In the above (2.32)), we mention that the type-(ii) (type-(i)) factorization
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for the type I (type II) virtual state vectors is impossible, respectively. But this is the case

for finite N. For N — oo case, the type-(ii) factorization for the type I virtual state vectors

is possible. This would be a hint for mixed use of type I and II indices.
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