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Abstract

For the isospectral Darboux transformations of the discrete quantum mechanics
with real shifts, there are two methods: type I and type II constructions. Based on
the type I construction, the type I multi-indexed little q-Jacobi and little q-Laguerre
orthogonal polynomials were presented in J. Phys.A50 (2017) 165204. Based on the
type II construction, we present the type II multi-indexed little q-Jacobi and little
q-Laguerre orthogonal polynomials.

1 Introduction

The new type of orthogonal polynomials – exceptional and multi-indexed polynomials – [1]–

[14] have the characteristic that they form a complete set of orthogonal basis in spite of

the missing degrees, by which the restrictions of Bochner’s theorem [15] are avoided. They

are constructed based on the polynomials in the Askey-scheme of hypergeometric orthog-

onal polynomials [16], which satisfy second order differential or difference equations. To

study such orthogonal polynomials, the quantum mechanical formulation is very useful. We

consider ordinary quantum mechanics (oQM) and two kinds of discrete quantum mechanics

(dQM), dQM with pure imaginary shifts (idQM) and dQM with real shifts (rdQM) [17].

The Schrödinger equation for oQM is a differential equation and that for dQM is a difference

equation. The coordinate x for oQM and idQM is continuous and that for rdQM is discrete.

The multi-indexed orthogonal polynomials are systematically constructed by the multi-

step Darboux transformations for quantum mechanical systems. When the wavefunctions

of the virtual states are used as seed solutions, the multi-step Darboux transformations give

the case-(1) multi-indexed orthogonal polynomials. Here, the case-(1) is the case that the
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set of missing degrees of the multi-indexed polynomials is {0, 1, . . . , ℓ − 1}, and the case-

(2) is otherwise. The quantum mechanical systems associated to the case-(1) multi-indexed

orthogonal polynomials have shape invariance [10]–[14].

For oQM (Jacobi and Laguerre [10]) and idQM (Askey-Wilson and Wilson [12], con-

tinuous Hahn [14]) cases, there are two types of virtual states, type I and type II. For

rdQM (finite: q-Racah and Racah [11], semi-infinite: Meixner, little q-Jacobi and little q-

Laguerre [13]) cases, we considered one type of virtual state. In the first manuscript of [11]

(arXiv:1203.5868v1), we considered two types of virtual states (type I and II) for Racah and

q-Racah cases. But the multi-step Darboux transformations with these two types of virtual

states as seed solutions give essentially the same multi-indexed polynomials, because these

rdQM systems are finite systems. So we discussed only one type of virtual state in [11].

However, this situation may be different for semi-infinite systems. The purpose of this paper

is to consider two types of virtual states for the semi-infinite rdQM systems and to obtain

the type II multi-indexed little q-Jacobi and little q-Laguerre polynomials.

This paper is organized as follows. In section 2 the finite and semi-infinite rdQM systems

are recapitulated and the multi-step Darboux transformations are discussed. There are

two methods, the type I and type II constructions. Section 3 is the main part of the paper.

Based on the type II construction, we obtain the case-(1) type II multi-indexed little q-Jacobi

polynomials. Similarly, the case-(1) type II multi-indexed little q-Laguerre polynomials are

obtained in section 4. Section 5 is for a summary and comments.

2 Darboux Transformations for rdQM

In this section we recapitulate the isospectral Darboux transformations for rdQM systems

[11]. The first manuscript of [11] is arXiv:1203.5868v1 and we will cite it as [11](v1).

2.1 rdQM systems

The Hamiltonian H of a finite rdQM system is a real symmetric matrix, and we consider a

tri-diagonal one [18],

H = (Hx,y)x,y∈{0,1,...,N}, (2.1)

Hx,y = −
√
B(x)D(x+ 1) δx+1,y −

√
B(x− 1)D(x) δx−1,y +

(
B(x) +D(x)

)
δx,y, (2.2)
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where the potential functions B(x) and D(x) are positive but vanish at the boundary,

B(x) > 0 (x = 0, 1, . . . , N − 1), B(N) = 0,

D(x) > 0 (x = 1, 2, . . . , N), D(0) = 0. (2.3)

We write this H as

H = −
√
B(x)D(x+ 1) e∂ −

√
B(x− 1)D(x) e−∂ +B(x) +D(x)

= −
√
B(x) e∂

√
D(x)−

√
D(x) e−∂

√
B(x) +B(x) +D(x), (2.4)

where e±∂ is a matrix whose (x, y)-element is δx±1,y, and F (x) means a diagonal matrix

F (x) = diag(F (0), F (1), . . . , F (N)). The Schrödinger equation of rdQM system is a matrix

eigenvalue problem,

Hφn(x) = Enφn(x) (n = 0, 1, . . . , N), 0 = E0 < E1 < · · · < EN , (2.5)

where the eigenstate vector (eigenvector) is φn = (φn(x))x∈{0,1,...,N} and the product of H

and φn is given by Hφn(x)
def
=

∑N
y=0Hx,yφn(y). The constant term of H is chosen so that

E0 = 0. We remark that the matrix notation Hφn(x) represent

(a) : H0,0φn(0) +H0,1φn(1) (x = 0),

(b) : Hx,x−1φn(x− 1) +Hx,xφn(x) +Hx,x+1φn(x+ 1) (1 ≤ x ≤ N − 1),

(c) : HN,N−1φn(N − 1) +HN,Nφn(N) (x = N),

and the expressions (a) and (c) can be regarded as given by (b) because the boundary

conditions D(0) = 0 and B(N) = 0 (2.3) give “H0,−1”= 0 and “HN,N+1”= 0. The inner

product of two state vectors f(x) and g(x) is (f, g) =
∑N

x=0 f(x)g(x) and the norm of f(x)

is ‖f‖ =
√
(f, f). The orthogonality relations for φn(x) are

(φn, φm) =
1

d2n
δnm (n,m = 0, 1, . . . , N), (2.6)

where dn are constants.

The Hamiltonian (2.4) can be expressed in factorized form in two ways (type-(i) and

type-(ii) factorizations) [11](v1) :

H = A†A = A(ii) †A(ii), (2.7)

type-(i) : A =
√
B(x)− e∂

√
D(x), A† =

√
B(x)−

√
D(x) e−∂ , (2.8)
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type-(ii) : A(ii) =
√
D(x)− e−∂

√
B(x), A(ii) † =

√
D(x)−

√
B(x) e∂ . (2.9)

We remark that since the factor D(0) does not appear in A and A†, the boundary condition

“D(0) = 0” is automatically satisfied in the type-(i) factorization (B(N) = 0 is needed).

Similarly, since the factor B(N) does not appear in A(ii) and A(ii) †, the boundary condition

“B(N) = 0” is automatically satisfied in the type-(ii) factorization (D(0) = 0 is needed).

For the rdQM systems associated to the orthogonal polynomials in the Askey scheme,

the eigenstate φn(x) (n ∈ Z≥0) has the following form [18],

φn(x) = φ0(x)P̌n(x), P̌n(x)
def
= Pn

(
η(x)

)
. (2.10)

Here η(x) is the sinusoidal coordinate [18] and Pn(η) is a polynomial of degree n in η. We

choose the normalization P̌n(0) = 1 with η(0) = 0, and set P̌n(x) = 0 (n ∈ Z<0). The ground

state φ0(x) is characterized by Aφ0(x) = 0 (or A(ii)φ0(x) = 0) and its explicit form is

φ0(x) =

√√√√
x−1∏

y=0

B(y)

D(y + 1)
, (2.11)

with the normalization φ0(0) = 1 (convention:
∏n−1

k=n ∗ = 1). In the concrete examples, B(x)

and D(x) are rational functions of x or qx, and the defining range of φ0(x) can be extended

to x ∈ R (e.g., (a; q)x is expressed as (a; q)x = (a; q)∞/(aq
x; q)∞, which is defined for x ∈ R).

The similarity transformed Hamiltonian H̃ in terms of the ground state φ0(x) is

H̃
def
= φ0(x)

−1 ◦ H ◦ φ0(x) = B(x)(1− e∂) +D(x)(1− e−∂), (2.12)

and (2.5) becomes

H̃P̌n(x) = EnP̌n(x). (2.13)

The semi-infinite rdQM systems, whose coordinate x takes values in Z≥0, can be obtained

by taking N → ∞ limit.

2.2 Multi-step Darboux Transformations

The property of the Darboux transformations depends on the choice of seed solutions. We

consider the virtual states as seed ‘solutions’, which give isospectral deformations. There

are two types of virtual states, the type I and type II [11](v1). For the construction of the

multi-indexed (q-)Racah polynomials, these two types of virtual states give essentially the

same polynomials. So the type II construction is omitted in [11].
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Remark: We comment on [11](v1). Instead of t(ex) (in the last paragraph of § 3.4 of [11](v1)),

we should consider t(ex
′):

t
(ex′)(λ)

def
= (λ1, λ1 + λ3 − λ4, λ1 + λ2 − λ4, 2λ1 − λ4), (2.14)

with λ1 = −N . Then we have

B′ II(x;λ) = D′ I
(
N − x; t(ex

′)(λ)
)
, D′ II(x;λ) = B′ I

(
N − x; t(ex

′)(λ)
)
, (2.15)

and the type I and II multi-indexed (q-)Racah polynomials are related:

P̌ II
D,n(x;λ) = P̌ I

D,n

(
N − x; t(ex

′)(λ)
)
. (2.16)

Let us consider a finite rdQM system. We assume the existence of two rational functions

B′(x) and D′(x) of x or qx satisfying

B(x)D(x+ 1) = α2B′(x)D′(x+ 1), α > 0, (2.17)

B(x) +D(x) = α
(
B′(x) +D′(x)

)
+ α′, α′ < 0, (2.18)

where α and α′ are constants. We impose on them the following conditions:

type I : B′(x) > 0 (x = 0, 1, . . . , N + L− 1),

D′(x) > 0 (x = 1, 2, . . . , N), D′(0) = D′(N + 1) = 0, (2.19)

type II : D′(x) > 0 (x = −L+ 1, . . . ,−1, 0, 1, . . . , N),

B′(x) > 0 (x = 0, 1, . . . , N − 1), B′(N) = B′(−1) = 0, (2.20)

where L is a certain positive integer to be specified later. The function φ̃0(x) is defined by

φ̃0(x)
def
=

√√√√
x−1∏

y=0

B′(y)

D′(y + 1)
(x = 0, 1, . . . , N), (2.21)

with the normalization φ̃0(0) = 1. Like φ0(x), the defining range of φ̃0(x) can be extended

to x ∈ R. We define a function ν(x),

ν(x)
def
=
φ0(x)

φ̃0(x)
=

x−1∏

y=0

B(y)

αB′(y)
=

x−1∏

y=0

αD′(y + 1)

D(y + 1)
(x = 0, 1, . . . , N), (2.22)

5



whose defining range can also be extended to x ∈ R. Note that νI(x) = 0 for x ∈ Z≥N+1 and

νII(x) = 0 for x ∈ Z≤−1. The relations (2.17)–(2.18) imply the following relation between

two Hamiltonians:

H = αH′ + α′, (2.23)

H′ def
= −

√
B′(x) e∂

√
D′(x)−

√
D′(x) e−∂

√
B′(x) +B′(x) +D′(x). (2.24)

We assume the existence of virtual state vectors φ̃v(x) (v ∈ V),

φ̃v(x)
def
= φ̃0(x)ξ̌v(x), ξ̌v(x)

def
= ξv

(
η(x)

)
. (2.25)

Here V is the index set of the virtual state vectors, and the virtual state polynomial ξv(η) is

a polynomial of degree v in η satisfying the difference equation (for x ∈ R)

B′(x)
(
ξ̌v(x)− ξ̌v(x+ 1)

)
+D′(x)

(
ξ̌v(x)− ξ̌v(x− 1)

)
= E ′

v ξ̌v(x), (2.26)

where E ′
v is a constant. We impose on E ′

v and ξ̌v(x) the following conditions:

Ẽv
def
= αE ′

v + α′, Ẽv < 0, (2.27)

type I : ξ̌v(x) > 0 (x = 0, 1, . . . , N,N + 1), (2.28)

type II : ξ̌v(x) > 0 (x = −1, 0, 1, . . . , N). (2.29)

Since the matrix H is a positive semi-definite real symmetric matrix, Ẽv being negative is a

sufficient condition for the virtual state φ̃v(x) to not be a true eigenvector, see (2.30)–(2.31).

We choose the normalization ξ̌v(0) = 1 for type I and ξ̌v(−1) = 1 for type II (which is

different from [11](v1)). Relations (2.23), (2.25) and (2.26) imply that virtual state vectors

φ̃v(x) are polynomial ‘solutions’ of the Schrödinger equation except for one end-point:

type I : Hφ̃v(x) = Ẽvφ̃v(x) (x = 0, 1, . . . , N − 1), Hφ̃v(x) 6= Ẽvφ̃v(x) (x = N), (2.30)

type II : Hφ̃v(x) = Ẽvφ̃v(x) (x = 1, 2, . . . , N), Hφ̃v(x) 6= Ẽvφ̃v(x) (x = 0), (2.31)

due to D′(0) = 0 and B′(N) > 0 for type I (2.19), and D′(0) > 0 and B′(N) = 0 for type II

(2.20).

For the Darboux transformation with the type I virtual state vector φ̃I
v(x) (type II virtual

state vector φ̃II
v (x)) as a seed solution, the type-(i) factorization (2.8) (type-(ii) factorization

(2.9)) is used, respectively:

type I :

{
H = Â†

vÂv + Ẽ I
v

Âvφ̃
I
v(x) = 0 (x = 0, 1, . . . , N − 1)

⇒

{
Hnew def

= ÂvÂ
†
v + Ẽ I

v

φnew
n (x)

def
= Âvφn(x) ,
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type II :

{
H = Â

(ii) †
v Â

(ii)
v + Ẽ II

v

Â
(ii)
v φ̃II

v (x) = 0 (x = 1, 2, . . . , N)
⇒

{
Hnew def

= Â
(ii)
v Â

(ii) †
v + Ẽ II

v

φnew
n (x)

def
= Â

(ii)
v φn(x) ,

and new virtual state vectors are φ̃I new
v′ (x)

def
= Âvφ̃

I
v′(x) + (correction term at x = N) and

φ̃II new
v′ (x)

def
= Â

(ii)
v φ̃II

v′(x) + (correction term at x = 0), see [11](v1) for explicit formulas. Here

we explain why the type-(i) (type-(ii)) factorization is used for the type I (type II) virtual

state vector, respectively. The matrices Âv and Â
(ii)
v are given by Âv

def
=

√
B̂v(x)−e

∂

√
D̂v(x)

and Â
(ii)
v

def
=

√
D̂v(x)− e−∂

√
B̂v(x) with B̂v(x)

def
= αB′(x) ξ̌v(x+1)

ξ̌v(x)
and D̂v(x)

def
= αD′(x) ξ̌v(x−1)

ξ̌v(x)
,

and they satisfy B̂v(x)D̂v(x+ 1) = B(x)D(x + 1) and B̂v(x) + D̂v(x) + Ẽv = B(x) +D(x).

Since (0, 0)-element of Â†
vÂv+ Ẽv is B̂v(0)+ Ẽv, we need the condition D̂v(0) = 0 for type-(i)

factorization. Similary, since (N,N)-element of Â
(ii) †
v Â

(ii)
v + Ẽv is D̂v(N) + Ẽv, we need the

condition B̂v(N) = 0 for type-(ii) factorization. Be careful not to confuse (A, A(ii)) and (Âv,

Â
(ii)
v ). We call the multi-step Darboux transformations with only the type I (type II) virtual

state vectors as seed solutions type I (type II) construction. In the multi-step Darboux

transformations, various quantities are neatly expressed in terms of Casoratians: WC (for

type I) and W
(−)
C (for type II) [11](v1). The Casorati determinants of a set of n functions

{fj(x)} are defined by

WC[f1, f2, . . . , fn](x)
def
= det

(
fk(x+ j − 1)

)

1≤j,k≤n
, (2.32)

W
(−)
C [f1, f2, . . . , fn](x)

def
= det

(
fk(x− j + 1)

)
1≤j,k≤n

= (−1)(
n

2)WC[f1, f2, . . . , fn](x− n + 1), (2.33)

(for n = 0, we set WC[·](x) = W
(−)
C [·](x) = 1). The auxiliary functions ϕ(x), ϕM(x) and

ϕ
(−)
M (x) (M ∈ Z≥0) are defined by [18, 19] [11](v1)

ϕ(x)
def
=
η(x+ 1)− η(x)

η(1)
, (2.34)

ϕM(x)
def
=

∏

1≤j<k≤M

η(x+ k − 1)− η(x+ j − 1)

η(k − j)
, (2.35)

ϕ
(−)
M (x)

def
=

∏

1≤j<k≤M

η(x− j + 1)− η(x− k + 1)

η(k − j)
= ϕM(x−M + 1), (2.36)

and ϕ0(x) = ϕ1(x) = ϕ
(−)
0 (x) = ϕ

(−)
1 (x) = 1.

Let us consider the M-step Darboux transformations with virtual state vectors φ̃v(x)

(v ∈ D) as seed solutions. Here D is

D = {d1, d2, . . . , dM} (1 ≤ d1 < d2 < · · · < dM ; dj ∈ V), (2.37)
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and we assume |V| ≥ M and L ≥M . Although this notation dj conflicts with the notation of

the normalization constant dn in (2.6), we think this does not cause any confusion because

the latter appears as 1
d2n
δnm. The Hamiltonian of the deformed system, the Schrödinger

equation and the orthogonality relations are given by [11]

HD = (HD x,y)x,y∈{0,1,...,N}

def
= −

√
BD(x) e

∂
√
DD(x)−

√
DD(x) e

−∂
√
BD(x) +BD(x) +DD(x) (2.38)

= A†
DAD, AD

def
=

√
BD(x)− e∂

√
DD(x), A†

D
def
=

√
BD(x)−

√
DD(x) e

−∂, (2.39)

HDφD n(x) = EnφD n(x) (n = 0, 1, . . . , N), (2.40)

(φDn, φDm) =

M∏

j=1

(En − Ẽdj ) ·
1

d2n
δnm (n,m = 0, 1, . . . , N). (2.41)

The semi-infinite systems are obtained by taking N → ∞ limit. We present explicit forms

of BD(x), DD(x) and φD n(x) for the semi-infinite systems in § 2.2.1–2.2.2. Only the final

results are given here. For intermediate steps, see [11, 13], [11](v1).

2.2.1 type I construction for semi-infinite systems

In the type I construction for semi-infinite systems, the virtual state vectors φ̃v(x) are now

solutions of the Schrödinger equation (2.30) (with N → ∞), but they have infinite norms.

Explicit forms of BD(x), DD(x) and φD n(x) are

BD(x)
def
= αB′(x+M)

WC[ξ̌d1 , . . . , ξ̌dM ](x)

WC[ξ̌d1 , . . . , ξ̌dM ](x+ 1)

WC[ξ̌d1 , . . . , ξ̌dM , ν](x+ 1)

WC[ξ̌d1 , . . . , ξ̌dM , ν](x)
, (2.42)

DD(x)
def
= αD′(x)

WC[ξ̌d1, . . . , ξ̌dM ](x+ 1)

WC[ξ̌d1 , . . . , ξ̌dM ](x)

WC[ξ̌d1, . . . , ξ̌dM , ν](x− 1)

WC[ξ̌d1 , . . . , ξ̌dM , ν](x)
, (2.43)

φD n(x)
def
=

(−1)M
√∏M

j=1 αB
′(x+ j − 1) φ̃0(x)WC[ξ̌d1, . . . , ξ̌dM , νP̌n](x)

√
WC[ξ̌d1 , . . . , ξ̌dM ](x)WC[ξ̌d1 , . . . , ξ̌dM ](x+ 1)

. (2.44)

The Casoratian WC[ξ̌d1, . . . , ξ̌dM ](x) has definite sign for x ∈ Z≥0 (see [13] for proof). The

potential functions BD(x) and DD(x) are positive: BD(x) > 0 (x ∈ Z≥0), DD(x) > 0

(x ∈ Z≥1) and DD(0) = 0.

2.2.2 type II construction for semi-infinite systems

In the type II construction for semi-infinite systems, the virtual state vectors φ̃v(x) satisfy

the Schrödinger equation except for the end-point x = 0, (2.31) (with N → ∞). Explicit
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forms of BD(x), DD(x) and φD n(x) are

BD(x)
def
= αB′(x)

W
(−)
C [ξ̌d1 , . . . , ξ̌dM ](x− 1)

W
(−)
C [ξ̌d1, . . . , ξ̌dM ](x)

W
(−)
C [ξ̌d1, . . . , ξ̌dM , ν](x+ 1)

W
(−)
C [ξ̌d1 , . . . , ξ̌dM , ν](x)

, (2.45)

DD(x)
def
= αD′(x−M)

W
(−)
C [ξ̌d1, . . . , ξ̌dM ](x)

W
(−)
C [ξ̌d1 , . . . , ξ̌dM ](x− 1)

W
(−)
C [ξ̌d1 , . . . , ξ̌dM , ν](x− 1)

W
(−)
C [ξ̌d1 , . . . , ξ̌dM , ν](x)

, (2.46)

φD n(x)
def
=

(−1)M
√∏M

j=1 αD
′(x− j + 1) φ̃0(x)W

(−)
C [ξ̌d1 , . . . , ξ̌dM , νP̌n](x)

√
W

(−)
C [ξ̌d1 , . . . , ξ̌dM ](x)W

(−)
C [ξ̌d1, . . . , ξ̌dM ](x− 1)

. (2.47)

The Casoratian W
(−)
C [ξ̌d1, . . . , ξ̌dM ](x) has definite sign for x ∈ Z≥−1 (by similar proof as type

I). The potential functions BD(x) and DD(x) are positive: BD(x) > 0 (x ∈ Z≥0), DD(x) > 0

(x ∈ Z≥1) and DD(0) = 0. In § 3 and § 4, we will denote φD n(x) in (2.47) as φgen
D n(x).

3 Multi-indexed Little q-Jacobi polynomials

In this section we present the case-(1) multi-indexed little q-Jacobi polynomials, especially

type II polynomials. Various quantities depend on a set of parameters λ = (λ1, λ2, . . .) and

q (0 < q < 1), and qλ stands for q(λ1,λ2,...) = (qλ1, qλ2 , . . .). Their dependence is expressed as

f = f(λ) and f(x) = f(x;λ), but q-dependence is suppressed.

3.1 Original system

Let us present the basic data of little q-Jacobi rdQM system. The standard little q-Jacobi

polynomial pn(q
x; a, b|q) = 2φ1

(
q−n, abqn+1

aq

∣∣q ; qx+1
)
[16] does not satisfy our normalization

P̌n(0) = 1. We change the parametrization slightly from the standard one, (a, b)standard =

(aq−1, bq−1) [20]. The basic data are as follows [18, 21]:

qλ = (a, b), δ = (1, 1), κ = q−1, 0 < a < 1, b < 1, (3.1)

B(x;λ) = aq−1(q−x − b), D(x) = q−x − 1, (3.2)

En(λ) = (q−n − 1)(1− abqn−1), η(x) = 1− qx, ϕ(x) = qx, (3.3)

P̌n(x;λ) = 3φ1

(q−n, abqn−1, q−x

b

∣∣∣ q ; a−1qx+1
)
= c′n(λ) pn

(
1− η(x); aq−1, bq−1|q

)

= c′n(λ) 2φ1

(q−n, abqn−1

a

∣∣∣ q ; qx+1
)
, c′n(λ)

def
= (−a)−nq−(

n

2) (a; q)n
(b; q)n

, (3.4)

P̌n(x;λ) = cn(λ)η(x)
n + lower degree terms, cn(λ)

def
= (−a)−nq−n(n−1) (abq

n−1; q)n
(b; q)n

, (3.5)

9



φ0(x;λ)
2 =

(b; q)x
(q; q)x

ax =
(b, qx; q)∞
(bqx, q; q)∞

ax, φ0(x;λ) > 0, φ0(0;λ) = 1, (3.6)

dn(λ)
2 =

(b, ab; q)n a
nqn(n−1)

(a, q; q)n

1− abq2n−1

1− abqn−1
×

(a; q)∞
(ab; q)∞

, dn(λ) > 0, (3.7)

and P̌n(x;λ) satisfies

P̌n(0;λ) = 1, P̌n(∞;λ)
( def
= lim

x→∞
P̌n(x;λ)

)
= c′n(λ). (3.8)

Note that the most right hand side of φ0(x;λ)
2 (3.6) is defined for x ∈ R. This rdQM system

is shape invariant,

A(λ)A(λ)† = κA(λ+ δ)†A(λ+ δ) + E1(λ). (3.9)

As a consequence of the shape invariance combined with the Crum’s theorem and the nor-

malization, we obtain [17]

A(λ)φn(x;λ) =
En(λ)√
B(0;λ)

φn−1(x;λ+ δ) (n ∈ Z≥0), (3.10)

A(λ)†φn−1(x;λ+ δ) =
√
B(0;λ)φn(x;λ) (n ∈ Z≥1). (3.11)

These relations give the forward and backward shift relations:

F(λ)P̌n(x;λ) = En(λ)P̌n−1(x;λ+ δ) (n ∈ Z≥0), (3.12)

B(λ)P̌n−1(x;λ+ δ) = P̌n(x;λ), (n ∈ Z≥1), (3.13)

where the forward and backward shift operators are

F(λ)
def
=

√
B(0;λ)φ0(x;λ+ δ)−1 ◦ A(λ) ◦ φ0(x;λ) = B(0;λ)ϕ(x)−1(1− e∂), (3.14)

B(λ)
def
=

1√
B(0;λ)

φ0(x;λ)
−1 ◦ A(λ)† ◦ φ0(x;λ+ δ)

= B(0;λ)−1
(
B(x;λ)−D(x)e−∂

)
ϕ(x). (3.15)

The similarity transformed Hamiltonian (2.12) is expressed as H̃(λ) = B(λ)F(λ). The

auxiliary functions ϕM(x) (2.35) and ϕ
(−)
M (x) (2.36) become

ϕM(x) = q(
M

2 )x+(
M

3 ), ϕ
(−)
M (x) = q(

M

2 )x−
1

6
M(M−1)(2M−1). (3.16)

3.2 Type I polynomials

The potential functions B′(x) and D′(x) and the virtual state polynomials ξ̌v(x) are given

by [13]

B′ I(x;λ)
def
= B

(
x; tI(λ)

)
, D′ I(x)

def
= D(x), (3.17)
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ξ̌Iv(x;λ)
def
= P̌v

(
x; tI(λ)

)
, (3.18)

where the twist operation t and the shift δ̃ are (remark: (a, b)standard are used in [13])

t
I(λ)

def
= (2− λ1, λ2), namely qt

I(λ) = (a−1q2, b), (3.19)

δ̃
I def
= (−1, 1), t

I(λ) + uδ = t
I(λ+ uδ̃

I
) (∀u ∈ R), (3.20)

with αI(λ)
def
= aq−1 and α′ I(λ)

def
= −(1− aq−1)(1− b). The parameter range is 0 < a < q1+dM

and b < 1. Various formulas for the type I multi-indexed little q-Jacobi polynomials are

presented in [13].

3.3 Type II polynomials

The twist operation t and the shift δ̃ are defined by

t
II(λ)

def
= (λ1, 2− λ2), namely qt

II(λ) = (a, b−1q2), (3.21)

δ̃
II def
= (1,−1), t

II(λ) + uδ = t
II(λ+ uδ̃

II
) (∀u ∈ R). (3.22)

Without using this twist operation, let us define the potential functions and the virtual state

polynomials. The potential functions B′(x) and D′(x) are given by

B′ II(x;λ)
def
= ab−1q(q−x−1 − 1), D′ II(x;λ)

def
= b−1q1−x − 1, (3.23)

which satisfy the conditions (2.17)–(2.18) with

αII(λ)
def
= bq−1, α′ II(λ)

def
= −(1− a)(1− bq−1). (3.24)

For (2.20) (with N → ∞), we take L = M and assume 0 < b < qM . The virtual state

polynomial ξ̌v(x) (v ∈ Z≥0) is given by

ξ̌IIv (x;λ)
def
= c̃′ IIv (λ) 2φ1

(q−v, ab−1qv+1

a

∣∣∣ q ; bqx
)
, c̃′ IIv (λ)

def
=

(a; q)v
(bq−v−1; q)v

, (3.25)

which satisfies

ξ̌IIv (−1;λ) = 1, ξ̌IIv (∞;λ)
( def
= lim

x→∞
ξ̌IIv (x;λ)

)
= c̃′ IIv (λ), (3.26)

and

ξ̌IIv (x;λ) = c̃IIv (λ)η(x)
v + lower degree terms, c̃IIv (λ)

def
= bvq−(

v+1

2 ) (ab
−1qv+1; q)v

(bq−v−1; q)v
. (3.27)
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As mentioned below (3.22), ξ̌IIv (x;λ) is defined without using t
II, and we remark that

ξ̌IIv (x;λ) 6∝ P̌v(x; t
II(λ)) in contrast to the type I case (3.18). For simplicity of presenta-

tion, the superscript II is omitted in the following.

The virtual state polynomial ξ̌v(x) satisfies the difference equation (for x ∈ R) (2.26)

with

E ′
v(λ)

def
= Ev

(
t(λ)

)
= (q−v − 1)(1− ab−1qv+1). (3.28)

Proof: Let us consider the following function fv(z) (v ∈ Z≥0),

fv(z) = 2φ1

(q−v, ab−1qv+1

a

∣∣∣ q ; bz
)
=

v∑

k=0

akz
k, ak =

(q−v, ab−1qv+1; q)k
(a; q)k

bk

(q; q)k
,

ak =
(1− q−v+k−1)(1− ab−1qv+k)

1− aqk−1

b

1− qk
ak−1 (1 ≤ k ≤ v).

This fv(z) satisfies the q-difference equation

ab−1(1− qz)
(
fv(z)− fv(qz)

)
+(b−1q− z)

(
fv(z)− fv(q

−1z)
)
= (q−v − 1)(1− ab−1qv+1)zfv(z),

which is shown by comparing the coefficients of zk terms of both sides (k = 0, 1 ≤ k ≤ v and

k = v+ 1). By substituting z = qx and fv(z) = c̃′v
−1ξ̌v(x) into this q-difference equation, we

obtain (2.26).

From (2.29) (with N → ∞), the virtual state polynomials should satisfy ξ̌v(x) > 0

(x ∈ Z≥−1). Let us check this condition. Note that c̃′v > 0 for a < 1 and b < qv+1. Since

ξ̌v(−1) = 1 > 0, we consider x ∈ Z≥0. By using the identity ((1.13.17) in [16])

2φ1

(q−n, b

c

∣∣∣ q; z
)
= (bc−1q−nz; q)n 3φ2

(q−n, b−1c, 0

c, b−1cqz−1

∣∣∣ q; q
)

(n ∈ Z≥0),

ξ̌v(x) is rewritten as

ξ̌v(x) = c̃′v(q
x+1; q)v 3φ2

(q−v, bq−v−1, 0

a, q−v−x

∣∣∣ q; q
)

= c̃′v(q
x+1; q)v

v∑

k=0

(q−v, bq−v−1; q)k
(a, q−v−x; q)k

qk

(q; q)k

= c̃′v(q
x+1; q)v

v∑

k=0

(qv−k+1, bq−v−1; q)k
(a, qx+v−k+1; q)k

qk(x+1)

(q; q)k
, (3.29)

and each k-th term of the sum are positive for a < 1 and b < qv+1. Therefore we obtain

ξ̌v(x) > 0 (x ∈ Z≥−1) for a < 1 and b < qv+1.
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In the following, we assume the following parameter range:

0 < a < 1, 0 < b < q1+dM , (3.30)

which will be extended in the last paragraph of this subsection. The functions φ̃0(x) (> 0)

(2.21) and ν(x) (2.22) become

φ̃0(x;λ)
2 =

(q; q)x
(b; q)x

ax =
(bqx, q; q)∞
(b, qx+1; q)∞

ax, (3.31)

ν(x;λ) =
(b; q)x
(q; q)x

=
(b, qx+1; q)∞
(bqx, q; q)∞

, (3.32)

and the virtual state energy Ẽv (2.27) becomes

Ẽv(λ) = −(1− aqv)(1− bq−1−v). (3.33)

The virtual state vectors φ̃v(x) (2.25) satisfy the Schrödinger equation except for the end-

point x = 0, (2.31) (with N → ∞).

We define the denominator polynomial Ξ̌D(x;λ) and the multi-indexed orthogonal poly-

nomial P̌D,n(x;λ) (n ∈ Z≥0) as follows:

Ξ̌D(x;λ)
def
= CD(λ)

−1ϕ
(−)
M (x)−1W

(−)
C [ξ̌d1 , . . . , ξ̌dM ](x;λ), (3.34)

P̌D,n(x;λ)
def
= CD,n(λ)

−1ϕ
(−)
M+1(x)

−1ν(x;λ+M δ̃)−1W
(−)
C [ξ̌d1 , . . . , ξ̌dM , νP̌n](x;λ) (3.35)

= CD,n(λ)
−1ϕ

(−)
M+1(x)

−1

×

∣∣∣∣∣∣∣∣∣

ξ̌d1(x1) · · · ξ̌dM (x1) r1(x1)P̌n(x1)

ξ̌d1(x2) · · · ξ̌dM (x2) r2(x2)P̌n(x2)
... · · ·

...
...

ξ̌d1(xM+1) · · · ξ̌dM (xM+1) rM+1(xM+1)P̌n(xM+1)

∣∣∣∣∣∣∣∣∣

, (3.36)

where xj
def
= x− j + 1 and rj(x) = rj(x;λ,M) (1 ≤ j ≤M + 1) are given by

rj
(
x− j + 1;λ,M

) def
=
ν(x− j + 1;λ)

ν(x;λ +M δ̃)
=

(bq−M+x; q)M−j+1(q
x−j+2; q)j−1

(bq−M ; q)M
, (3.37)

and the constants CD(λ) and CD,n(λ) are given by

CD(λ)
def
=

1

ϕ
(−)
M (−1)

∏

1≤j<k≤M

Ẽdj(λ)− Ẽdk(λ)

α(λ)D′(−j;λ)
, (3.38)

CD,n(λ)
def
= (−1)Mq(

M+1

2 )CD(λ). (3.39)
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They are polynomials in η(x),

Ξ̌D(x;λ)
def
= Ξ̌D

(
η(x);λ

)
, deg ΞD(η) = ℓD, (3.40)

P̌D,n(x;λ)
def
= P̌D,n

(
η(x);λ

)
, deg PD,n(η) = ℓD + n, (3.41)

where ℓD is

ℓD
def
=

M∑

j=1

dj −
1

2
M(M − 1). (3.42)

Their normalizations are

Ξ̌D(−1;λ) = 1, P̌D,n(0;λ) = 1, (3.43)

and we set P̌D,n(x) = 0 (n ∈ Z<0). The coefficients of the highest degree terms are

Ξ̌D(x;λ) = cΞD(λ)η(x)
ℓD + lower degree terms,

cΞD(λ) =

M∏

j=1

c̃dj (λ)

c̃j−1(λ)
·

∏

1≤j<k≤M

bq−1 − aqj−1+k−1

bq−1 − aqdj+dk
, (3.44)

P̌D,n(x;λ) = cPD,n(λ)η(x)
ℓD+n + lower degree terms,

cPD,n(λ) = cΞD(λ)cn(λ)q
−nM

M∏

j=1

1− bqn−dj−1

1− bq−j
. (3.45)

The denominator polynomial Ξ̌D(x) is positive for x ∈ Z≥−1 (see the remark below (2.47)).

The multi-indexed orthogonal polynomial PD,n(η) has n zeros in the physical region 0 ≤ η < 1

(⇔ x ∈ R≥0), which interlace the n+1 zeros of PD,n+1(η) in the physical region, and ℓD zeros

in the unphysical region η ∈ C\[0, 1). This property can be verified by numerical calcula-

tion. The lowest degree multi-indexed orthogonal polynomial is related to the denominator

polynomial as

P̌D,0(x;λ) = Ξ̌D(x− 1;λ+ δ). (3.46)

The deformed potential functions BD(x) (2.45) and DD(x) (2.46) and the eigenvectors

φgen
D n(x) (2.47) become

BD(x;λ) = B(x;λ+M δ̃)
Ξ̌D(x− 1;λ)

Ξ̌D(x;λ)

Ξ̌D(x;λ+ δ)

Ξ̌D(x− 1;λ+ δ)
, (3.47)

DD(x;λ) = D(x)
Ξ̌D(x;λ)

Ξ̌D(x− 1;λ)

Ξ̌D(x− 2;λ+ δ)

Ξ̌D(x− 1;λ+ δ)
, (3.48)

φgen
D n(x;λ) =

√
(bq−M ; q)M

φ0(x;λ+M δ̃)√
Ξ̌D(x;λ)Ξ̌D(x− 1;λ)

P̌D,n(x;λ). (3.49)
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We define the eigenvectors φD n(x) as

φD n(x;λ)
def
= ψD(x;λ)P̌D,n(x;λ), φD n(0;λ) = 1, (3.50)

ψD(x;λ)
def
=

√
Ξ̌D(0;λ)

φ0(x;λ+M δ̃)√
Ξ̌D(x;λ)Ξ̌D(x− 1;λ)

, ψD(0;λ) = 1. (3.51)

Note that the formula (2.11) gives

φD 0(x;λ) =

√√√√
x−1∏

y=0

BD(y;λ)

DD(y + 1;λ)
=

√
Ξ̌D(0;λ)

φ0(x;λ+M δ̃)√
Ξ̌D(x;λ)Ξ̌D(x− 1;λ)

P̌D,0(x;λ),

where (3.43) and (3.46) are used. The orthogonality relations for φgen
D n(x) (2.41) (with N →

∞) give those for P̌D,n(x),

∞∑

x=0

φ0(x;λ+M δ̃)2

Ξ̌D(x;λ)Ξ̌D(x− 1;λ)
P̌D,n(x;λ)P̌D,m(x;λ) =

δnm

dn(λ)2d̃D,n(λ)2
(n,m ∈ Z≥0), (3.52)

where d̃D,n(λ) (> 0) is given by

d̃D,n(λ)
2 def
= κ(

M

2 )
M∏

j=1

α(λ)D′(0;λ+ (j − 1)δ̃)

En(λ)− Ẽdj(λ)
=

(bq−M ; q)M∏M

j=1

(
En(λ)− Ẽdj (λ)

) . (3.53)

The Hamiltonian of the deformed system is (2.38) (with N → ∞),

HD(λ) =
(
HD(λ)x,y

)
x,y∈Z≥0

= AD(λ)
†AD(λ) (3.54)

def
= −

√
BD(x;λ) e

∂
√
DD(x;λ)−

√
DD(x;λ) e

−∂
√
BD(x;λ) +BD(x;λ) +DD(x;λ).

The eigenvectors φD n(x) (3.50) satisfy the Schrödinger equation,

HD(λ)φD n(x;λ) = En(λ)φD n(x;λ) (n ∈ Z≥0). (3.55)

The similarity transformed Hamiltonian is defined by

H̃D(λ)
def
= ψD(x;λ)

−1 ◦ HD(λ) ◦ ψD(x;λ)

= B(x;λ+M δ̃)
Ξ̌D(x− 1;λ)

Ξ̌D(x;λ)

(
Ξ̌D(x;λ+ δ)

Ξ̌D(x− 1;λ+ δ)
− e∂

)

+D(x)
Ξ̌D(x;λ)

Ξ̌D(x− 1;λ)

(
Ξ̌D(x− 2;λ+ δ)

Ξ̌D(x− 1;λ+ δ)
− e−∂

)
, (3.56)
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and the multi-indexed orthogonal polynomials P̌D,n(x;λ) are its eigenpolynomials:

H̃D(λ)P̌D,n(x;λ) = En(λ)P̌D,n(x;λ) (n ∈ Z≥0). (3.57)

The shape invariance of the original system (3.9) is inherited by the deformed systems:

AD(λ)AD(λ)
† = κAD(λ+ δ)†AD(λ+ δ) + E1(λ). (3.58)

As a consequence of the shape invariance and the normalization, we obtain

AD(λ)φD n(x;λ) =
En(λ)√
BD(0;λ)

φD n−1(x;λ+ δ) (n ∈ Z≥0), (3.59)

AD(λ)
†φD n−1(x;λ+ δ) =

√
BD(0;λ)φD n(x;λ) (n ∈ Z≥1). (3.60)

These relations give the forward and backward shift relations:

FD(λ)P̌D,n(x;λ) = En(λ)P̌D,n−1(x;λ+ δ) (n ∈ Z≥0), (3.61)

BD(λ)P̌D,n−1(x;λ + δ) = P̌D,n(x;λ) (n ∈ Z≥1), (3.62)

where the forward and backward shift operators are

FD(λ)
def
=

√
BD(0;λ)ψD(x;λ+ δ)−1 ◦ AD(λ) ◦ ψD(x;λ)

=
B(0;λ+M δ̃)

ϕ(x)Ξ̌D(x;λ)

(
Ξ̌D(x;λ+ δ)− Ξ̌D(x− 1;λ+ δ)e∂

)
, (3.63)

BD(λ)
def
=

1√
BD(0;λ)

ψD(x;λ)
−1 ◦ AD(λ)

† ◦ ψD(x;λ+ δ)

=
1

B(0;λ+M δ̃)Ξ̌D(x− 1;λ+ δ)

×
(
B(x;λ+M δ̃)Ξ̌D(x− 1;λ)−D(x)Ξ̌D(x;λ)e

−∂
)
ϕ(x). (3.64)

The similarity transformed Hamiltonian (3.56) is expressed as H̃D(λ) = BD(λ)FD(λ).

The denominator polynomial Ξ̌D(x) and the multi-indexed polynomials P̌D,n(x) are nor-

malized as (3.43). Their values at x = ∞ are given by (cf. (3.8) and (3.26))

Ξ̌D(∞;λ)
( def
= lim

x→∞
Ξ̌D(x;λ)

)
=

M∏

j=1

c̃′dj (λ)

c̃′j−1(λ)
, (3.65)

P̌D,n(∞;λ)
( def
= lim

x→∞
P̌D,n(x;λ)

)
=

M∏

j=1

c̃′dj (λ)

c̃′j−1(λ)
·

M∏

j=1

En(λ)− Ẽdj(λ)

−Ẽj−1(λ)
· c′n(λ). (3.66)
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In (2.37), we have assumed the order d1 < d2 < · · · < dM (standard order). Under

the permutations of dj’s, the denominator polynomial Ξ̌D(x) (3.34) and the multi-indexed

polynomial P̌D,n(x) (3.35) may change their sign, but the deformed potential functions BD(x)

(3.47) and DD(x) (3.48) are invariant. So the deformed Hamiltonian HD (3.54) does not

depend on the order of dj ’s. Setting one of dj to 0, for example dM = 0, we obtain the

following relation between M-indexed polynomial and (M − 1)-indexed polynomial,

P̌D,n(x;λ)
∣∣∣
dM=0

= P̌D′,n(x;λ+ δ̃), D′ = {d1 − 1, d2 − 1, . . . , dM−1 − 1}. (3.67)

The denominator polynomial Ξ̌D(x) behaves similarly. This is why we have restricted dj ≥ 1.

We have assumed the parameter range (3.30). This range is needed in the intermediate

Darboux transformations, but may be extended in the final results of the deformed system.

There is one more reason why the range may be extended. Following our previous papers

[11, 13], we have used the symmetry (2.23) and imposed positivity on B′(x), D′(x) and

α, respectively. However, B′(x) and D′(x) always appear in combination with α. So, by

introducing the following new quantities,

B′ new(x)
def
= αB′(x), D′new(x)

def
= αD′(x), E ′new

v
def
= αE ′

v, (3.68)

H′ new def
= −

√
B′ new(x) e∂

√
D′ new(x)−

√
D′ new(x) e−∂

√
B′ new(x) +B′ new(x) +D′ new(x),

the symmetry (2.23) is expressed as H = H′ new +α′ and the positivity condition is imposed

on B′ new(x) and D′ new(x). The virtual state energy (2.27) is Ẽv = E ′new
v + α′ and it should

be negative for v ∈ D and v = 0 (α′ = Ẽ0). By considering these, the parameter range is

extended to

0 < a < 1, b < q1+dM . (3.69)

3.4 Examples

For illustration, let us write down the type I and II single-indexed little q-Jacobi polynomials.

For D = {d}, they are given by

P̌ I
{d},n(x) =

(1− b)qn

(1− aqn−d−1)(1− bqn+d)

(
ξ̌Id(x+ 1)P̌n(x)− aq−1ξ̌Id(x)P̌n(x+ 1)

)
, (3.70)

P̌ II
{d},n(x) =

q−x

1− bq−1

(
(1− bqx−1)ξ̌IId (x− 1)P̌n(x)− (1− qx)ξ̌IId (x)P̌n(x− 1)

)
. (3.71)
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The type I and II multi-indexed polynomials are different polynomials, except for D = {1},

in which case the two polynomials are related as P̌ I
{1},n(x;λ − δ̃

I
) = P̌ II

{1},n(x;λ − δ̃
II
). For

example, for D = {2} and n = 0, 1, we have

P̌ I
{2},0(x) =

1

(1− bq)(1− bq2)

(
(1− aq−1)(1− aq−2) + (1 + q)(1− aq−2)(a− bq3)qx−2

+ (a− bq3)(a− bq4)q2x−4
)
,

P̌ I
{2},1(x) =

q

a(1− b)(1− bq)(1− bq3)

(
−(1− a)(1− aq−1)(1− aq−3)

− (1− a)(1− aq−3)
(
(1 + q)(a− bq3)− q2(1− ab)

)
qx−2

+ (1− aq−3)(a− bq3)
(
(1 + q)(1− abq)− a+ bq2

)
q2x−2

+ (1− ab)(a− bq3)(a− bq4)q3x−4
)
,

P̌ II
{2},0(x) =

1

(1− bq−1)(1− bq−2)

(
(1− aq)(1− aq2)− (1 + q)(1− aq2)(b− aq3)qx−2

+ (b− aq3)(b− aq4)q2x−3
)
,

P̌ II
{2},1(x) =

q−1

a(1− b)(1− bq−1)(1− bq−3)

(
−(1− a)(1− aq)(1− aq3)

+ (1− a)(1− aq3)
(
(1 + q)(b− aq3) + q2(1− ab)

)
qx−2

− (1− aq3)(b− aq3)
(
(1 + q)(q − ab) + b− aq2

)
q2x−3

+ (1− ab)(b− aq3)(b− aq4)q3x−3
)
.

We remark that P̌ I
{2},n(x;λ)

∣∣
x→−x,q→q−1= P̌ II

{2},n(x;λ) holds for n = 0, 1, but does not hold

for n ≥ 2.

4 Multi-indexed Little q-Laguerre polynomials

In this section we present the case-(1) multi-indexed little q-Laguerre polynomials, especially

type II polynomials.

4.1 Original system

Let us present the basic data of little q-Laguerre rdQM system. The standard little q-

Laguerre polynomial pn(q
x; a|q) = 2φ1

(
q−n, 0
aq

∣∣q ; qx+1
)
[16] does not satisfy our normalization

P̌n(0) = 1. The little q-Laguerre system is obtained from little q-Jacobi system by setting

b = 0. We change the parametrization slightly from the standard one, astandard = aq−1. The
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basic data are as follows [18, 21]:

qλ = a, δ = 1, κ = q−1, 0 < a < 1, (4.1)

B(x;λ) = aq−x−1, D(x) = q−x − 1, (4.2)

En = q−n − 1, η(x) = 1− qx, ϕ(x) = qx, (4.3)

P̌n(x;λ) = 2φ0

(q−n, q−x

−

∣∣∣ q ; a−1qx+1
)
= c′n(λ) pn

(
1− η(x); aq−1|q

)

= c′n(λ) 2φ1

(q−n, 0

a

∣∣∣ q ; qx+1
)
, c′n(λ)

def
= (−a)−nq−(

n

2)(a; q)n, (4.4)

P̌n(x;λ) = cn(λ)η(x)
n + lower degree terms, cn(λ)

def
= (−a)−nq−n(n−1), (4.5)

φ0(x;λ)
2 =

ax

(q; q)x
=

(qx; q)∞
(q; q)∞

ax, φ0(x;λ) > 0, φ0(0;λ) = 1, (4.6)

dn(λ)
2 =

anqn(n−1)

(a, q; q)n
× (a; q)∞, dn(λ) > 0, (4.7)

and P̌n(0;λ) satisfies (3.8). The little q-Laguerre system has shape invariance (3.9) and the

formulas (3.10)–(3.16) hold.

4.2 Type I polynomials

The potential functions B′(x) and D′(x) and the virtual state polynomials ξ̌v(x) are given

by (3.17)–(3.18), where the twist operation t and the shift δ̃ are (remark: astandard is used in

[13])

t
I(λ)

def
= 2− λ1, namely qt

I(λ) = a−1q2, (4.8)

δ̃
I def
= −1, t

I(λ) + uδ = t
I(λ+ uδ̃

I
) (∀u ∈ R), (4.9)

with αI(λ)
def
= aq−1 and α′ I(λ)

def
= −(1 − aq−1). The parameter range is 0 < a < q1+dM .

Various formulas for the type I multi-indexed little q-Laguerre polynomials are presented in

[13], which are obtained from those for the type I multi-indexed little q-Jacobi polynomials

by setting b = 0.

4.3 Type II polynomials

The potential functions B′(x) and D′(x) for little q-Jacobi system (3.23) diverge in the b→ 0

limit. But B′ new(x) and D′new(x) (3.68) have well-defined b → 0 limits, because α (3.24)

vanishes. So we define B′ new(x) and D′ new(x) as follows:

B′ new II(x;λ)
def
= a(q−x−1 − 1), D′ new II(x)

def
= q−x. (4.10)
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The constant α′ and the shift δ̃ are defined by

α′ II(λ)
def
= −(1− a), δ̃

II def
= 1. (4.11)

By taking b→ 0 limit of (3.25), the virtual state polynomial ξ̌v(x) (v ∈ Z≥0) is given by

ξ̌IIv (x;λ)
def
= c̃′ IIv (λ) 1φ1

(q−v

a

∣∣∣ q ; aqx+v+1
)
, c̃′ IIv (λ)

def
= (a; q)v, (4.12)

which satisfies (3.26) and (3.27) with

c̃IIv (λ)
def
= (−a)vqv

2

. (4.13)

For simplicity of presentation, the superscript II is omitted in the following.

The virtual state polynomial ξ̌v(x) satisfies the difference equation (for x ∈ R) (2.26)

(with superscript “new”) with

E ′new
v (λ)

def
= −a(1− qv). (4.14)

It is positive ξ̌v(x) > 0 (x ∈ Z≥−1) for 0 < a < 1.

In the following, we assume the following parameter range:

0 < a < 1. (4.15)

The functions φ̃0(x) (> 0) (2.21) and ν(x) (2.22) become

φ̃0(x;λ)
2 = (q; q)xa

x =
(q; q)∞

(qx+1; q)∞
ax, (4.16)

ν(x;λ) =
1

(q; q)x
=

(qx+1; q)∞
(q; q)∞

, (4.17)

and the virtual state energy Ẽv (2.27) becomes

Ẽv(λ) = −(1− aqv). (4.18)

The virtual state vectors φ̃v(x) (2.25) satisfy the Schrödinger equation except for the end-

point x = 0, (2.31) (with N → ∞).

The denominator polynomial Ξ̌D(x;λ) and the multi-indexed orthogonal polynomial

P̌D,n(x;λ) (n ∈ Z≥0) are defined by (3.34)–(3.39) (α(λ)D′(−j;λ) is replaced by D′new(−j;λ)

in (3.38)) with

rj
(
x− j + 1;λ,M

)
= (qx−j+2; q)j−1. (4.19)
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They are polynomials in η(x), (3.40)–(3.42), and their normalizations are (3.43). The coef-

ficients of the highest degree terms are (3.44)–(3.45) with

cΞD(λ) =
M∏

j=1

c̃dj (λ)

c̃j−1(λ)
· q−(M−1)ℓD , (4.20)

cPD,n(λ) = cΞD(λ)cn(λ)q
−nM . (4.21)

The lowest degree multi-indexed orthogonal polynomial and the denominator polynomial

are related as (3.46). In the end, the type II multi-indexed little q-Laguerre polynomials are

obtained from the type II multi-indexed little q-Jacobi polynomials by taking b→ 0 limit.

The deformed potential functions BD(x) (2.45) and DD(x) (2.46) become (3.47)–(3.48),

and the eigenvectors φgen
D n(x) (2.47) become

φgen
D n(x;λ) =

φ0(x;λ+M δ̃)√
Ξ̌D(x;λ)Ξ̌D(x− 1;λ)

P̌D,n(x;λ). (4.22)

We define the eigenvectors φD n(x) as (3.50)–(3.51). The orthogonality relations for φgen
D n(x)

(2.41) (with N → ∞) give those for P̌D,n(x), (3.52) with

d̃D,n(λ)
2 =

1
∏M

j=1

(
En − Ẽdj (λ)

) . (4.23)

The Hamiltonian of the deformed system, the Schrödinger equation and their similarity

transformed versions are given by (3.54)–(3.57). The shape invariance of the original system

(3.9) is inherited by the deformed systems (3.58). As its consequence, we have relations

(3.59)–(3.60) and the forward and backward shift relations (3.61)–(3.64).

The denominator polynomial Ξ̌D(x) and the multi-indexed polynomials P̌D,n(x) are nor-

malized as (3.43). Their values at x = ∞ are given by (3.65)–(3.66). The reason for

restricting dj ≥ 1 is the same as for little q-Jacobi case, (3.67).

5 Summary and Comments

We have reconsidered the multi-step Darboux transformations with the virtual states as

seed solutions for rdQM systems. There are two types of virtual states vectors, type I and

type II. For finite rdQM systems such as q-Racah and Racah cases, the multi-step Darboux

transformations with these two types of virtual states as seed solutions give essentially the

same multi-indexed polynomials. On the other hand, for semi-infinite rdQM systems such as
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little q-Jacobi and little q-Laguerre cases, they give different multi-indexed polynomials. By

constructing the type II virtual state vectors explicitly, we obtain the case-(1) type II multi-

indexed little q-Jacobi and little q-Laguerre orthogonal polynomials, which satisfy second

order difference equations. The deformed rdQM systems have shape invariance and the

multi-indexed polynomial satisfy the forward and backward shift relations. It is an interesting

problem to study other semi-infinite rdQM systems such as Meixner and q-Meixner cases.

In our previous studies [10]–[14] (except for the type I Laguerre), the virtual states are

obtained from the eigenstates by twisting the parameters (For the type I Laguerre, the

virtual states are obtained from the eigenstates by replacing x with ix). In the cases of the

type II little q-Jacobi and little q-Laguerre, the situation is different. For the type II little

q-Jacobi case in § 3.3, the twist operation is defined by (3.21), but it is used only in (3.28).

The potential functions B′(x) and D′(x) (3.23) and the virtual state polynomial ξ̌v(x) (3.25)

are not obtained from B(x), D(x) and P̌n(x) by twisting the parameters. This is also the

case for the type II little q-Laguerre in § 4.3.

The little q-Jacobi (Laguerre) polynomials reduce to the Jacobi (Laguerre) polynomials

in the q → 1 limit. Similarly the multi-indexed little q-Jacobi (Laguerre) polynomials reduce

to the multi-indexed Jacobi (Laguerre) polynomials in the q → 1 limit. The type I (II)

multi-indexed little q-Jacobi polynomials (λlqJ = (g+ 1
2
, h+ 1

2
)) reduce to the multi-indexed

Jacobi polynomials (λJ = (g, h)) with only type II (I) indices. For the virtual states in oQM,

see [22]. The reason for the exchange of type I and type II is the coordinate correspondence,

qx
lqJ+1 ↔ 1

2
(1−cos 2xJ). The minimum and maximum values of xlqJ, xlqJmin = 0 and xlqJmax = ∞,

correspond to the maximum and minimum values of xJ, xJmax =
1
2
π and xJmin = 0, respectively.

Similarly the type I (II) multi-indexed little q-Laguerre polynomials (λlqL = g + 1
2
) reduce

to the multi-indexed Laguerre polynomials (λL = g) with only type II (I) indices in the

q → 1 limit. We have no twist operation for the type II little q-Laguerre and the type

I Laguerre. For the multi-indexed Jacobi and Laguerre polynomials, it is possible to use

type I and II indices at the same time [10]. It is a challenging problem to study whether

mixed use of type I and II indices is possible for the multi-indexed little q-Jacobi and little

q-Laguerre polynomials. In the type I (II) construction, various quantities are expressed in

terms of the Casoratian WC (2.32) (W
(−)
C (2.33)), in which x is shifted to + (−) direction,

respectively. Since x is shifted in the opposite direction, using both WC and W
(−)
C is not a

good combination. In the above (2.32), we mention that the type-(ii) (type-(i)) factorization
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for the type I (type II) virtual state vectors is impossible, respectively. But this is the case

for finite N . For N → ∞ case, the type-(ii) factorization for the type I virtual state vectors

is possible. This would be a hint for mixed use of type I and II indices.
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[1] D.Gómez-Ullate, N.Kamran and R.Milson, “An extended class of orthogonal polyno-

mials defined by a Sturm-Liouville problem,” J. Math. Anal. Appl. 359 (2009) 352-367,

arXiv:0807.3939[math-ph].

[2] S.Odake and R. Sasaki, “Infinitely many shape invariant potentials and new orthogonal

polynomials,” Phys. Lett. B679 (2009) 414-417, arXiv:0906.0142[math-ph].

[3] S.Odake and R. Sasaki, “Another set of infinitely many exceptional (Xℓ) Laguerre poly-

nomials,” Phys. Lett. B684 (2010) 173-176, arXiv:0911.3442[math-ph].

[4] S.Odake and R. Sasaki, “Infinitely many shape invariant discrete quantum mechanical

systems and new exceptional orthogonal polynomials related to the Wilson and Askey-

Wilson polynomials,” Phys. Lett. B682 (2009) 130-136, arXiv:0909.3668[math-ph].

[5] S.Odake and R. Sasaki, “Exceptional (Xℓ) (q)-Racah polynomials,” Prog. Theor. Phys.

125 (2011) 851-870, arXiv:1102.0812[math-ph].
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