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Abstract

We derive conditions for fermionic construction of N=0,1 and 2
(super)conformal algebras, and obtain some solutions satisfyihg these
conditions. In the N=2 case these conditions can be éimplified when

supercurrents are written by complex fermions.

momentum- tensor to a bilinear form.) In the NEZ'CaSe,‘for instance, weq

1. Introduction

Recently a great deal of attention has been paid:to the conformally and
superconformally invariant = two-dimensional field theories in connection fo
string theory and two-dimensional critigal phenomena.  Unitary
representations of the conformal and superconformal = algebras give
constraints on ~possible values of critical indices. For N=0,1 and .2 Kac-
determinant formulae have been obtained [1-31. and possible values of the
central charge ¢, highest weight and U(1) charge [1,2,4], and corresponding
characters [5-8] for the unitary Iirreducible representation have been
derived. Unitary representations of the (super)conformal algebra -are
realized in several ways (free fermions, free bosons, free fermjons and

bosons. ZN—currents and a free boson,...){2,4,10-18]1. It is known that

fermionic representation of (super)conformal algebra is relévant to
constructing some models which are difficult to be realized by bosons or

boson-fermion models by projectionf10}. In the case of :N=2, representations

with ?21 are also important in their relevance to the,compactification of .
superstring [9-111.
In this paper we study the representations - of N=0.1] and 2

{super)conformal algebras constructed out of fermions. which are manifestly

unitary. When the supercurrent G(z) is represented as (fermfon)s, we derive
necessary and sufficient conditions. such that it forms’ superconformal
algebra and also give several solutions., We use thé method of operator

product expansions (OPE) fqllowing ref [101. (We do not restrict‘thevenergy

assume G=F(coefficientdx(fermion)>, and calculate the OPE of G&, which
defines the energy momentum tensor T(z) and the U(1) current d(z). The OPE

1
- |
4

|
i




of T.G.G and J must realize the N=2 superconformal algebra. so constraints
are-imposed on the coefficients in G.

‘We ‘denote free -real fermions by Ha(z).Hu(z),..., and free complex

fermions by ¢a(z).wa(z).xp(z),.... Propagators are given by <Ha(Z)Hb(W)>=

= 1 . .
2 1 i) = —_— - ~ . ~ i
<ua(z)ub(w), Sab T (Neveu-Schwartz fermion) and Wick's theorem  is

applied. - Repeated -indices are summed unless otherwise menticned. [ -1

means = antisymmetrization (e.q. A[ab]' 2(Aab Aba)) , ( ) means

.symmetrization and = denotes complex conjugation.

2. (V 0)conformal algebra

The Lonformal algebra T(z) is defined by the OPE

T T ()~ s

_c ,_2 1
STt w)zmm aT(w) . _ S

We assume T(z)=A a3 :gH (z)Hb(z) #A - H H.H H,.(z), where Aab and Aabcd ‘are

abcd a' b ¢d
real. and Aabcd=A[abcd]' Then Tiz) satisfies the conformal ‘algebra if and
oni& if
B é=%tra4%trA(tA-A) :
A =baetin) 128 A 496, LA L (2)
A A -36A A

abcd ™ 2Aeratbeale 3R erarbPeaier

Aab=5ab' ,Aabcd=0 is a solution of (2) and then T(z) is a free energy
momentum tensor In the case where T is the Sugawara form, many solutions

are glven in [15- 17]

v

3. N=1 superconformal algebra

Glz) is célled a conformal field with conformal dimension h if

h A
T{z)C(w)~ '(Z—w)-z'@(w) + aG(W) . (3)

The N=1 superconformal algebra T(z) and G(2) isgdefined by (1) and the

following OPE

5
G(z)G(w)~ + —Z—-—V-IT(W) ) (4}

2C
3(z-w)3

and G is a conformal field with h=§.

e assume G(z)=—1vabC aHbH (z), where 7abc15 real and 7abc=7[abc]'
Since abc a'br is a positive-semidefinite symmetric wmatrix, it 1is
dlagoral1zed by some orthogonal matrix. So we can assume 7abc 2'be Xasaa

sum over a) without loss of generality and xa>0‘(xa=0 means vabc=0 {all

b.c). 50 Ha is decoupled.). From the OPE of GG, T is defined by

_ _1. .
T(Z)flaxaLHa(Z) + AabcdHaHbHcHd(Z)’ where LHa(z)-Q.aHaHa(z).(no sum over a)

and A We note that in supersymmetric case A in T(z) is

9
abed” °7ea[b7cd]e' abcd

written in terms of"]abC in Gfz) ‘ini contrast to’fhe'N=0 case where Aabcd is
arbifrary. 'Then‘T(z) and G(z) satisfy the N=1 sumerconfmrmal‘algebra if and
only if | |

2

376X,

7abc=18(Xa+xb+xc)7abc-727ade7bdfvcef (no sum over a.b.c). (5)
The right-hand side of the second equation of (3) 1is equal to

6(% +X +x )7

b 244, 1ab7cge 1dentically.

A series of solutions of (5) are given by
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- -3 '
7abc'Afabc ’ 7aaB_BM af (6)
where fabc is the structure <constant of a simple Lie algebra
(a=1,...,dG. facdfbcd=cadj8ab) and MaaB is a real antisvmmetric matrix
(“=]"“’dx) and a representation of the Lie algebra,
. \é.kb s uC b _ adidy
n%,u°] fapcdt! + (KM =-k 8, o Gl )aB CASaB’ . {71

. - - - -7 =- = a
The second equation of (6) means 7aaB'7aBa'7Baa_ van 7Baa 7aBa BA B’

A=———l——— and B=0 gives gc=§§ and T is free. A= A
3J2ca - 3 ‘§§

dJ

f )
Vzcadj(mk+cadj)(KA+2cadj'

s e ey #3c, . d
- adj - . 2 . A A ""adj "G
and B gives 3C=37—4C

; and T is
f Jlicy+2¢c_, )
3“2Cadj(KA+Cadj)(‘A+2¢adj) A Tadjt A “Tad]

given as- a difference of the Sugawara forms[18]. A=0 and B=- l

3.2 2C_ 1.0
BW(;cf\h.cadJ

O S e . . .
gives 3 e and T is written in terms of currents.
. AL LI ‘ ’

4. N=2 superconformal algebra

N=2-- superconformal algebra T(z).Gl(z).Gz(z) and J(z) is defined by (1)

and the following OPE

i Jeoy. sld,_2c 2 Cij, 2 1

glz)6 (W7 75 f§?22ﬁ75 + S5 + e ;TE;QTEJ(w) + Z:;QJ(W)),
k Cy 12_ 21 o '

DI~ oy, (k=) L (e e =1) {8)

| PR SN O P
J(2)G" (w) Fwie G (w),

and G'(z) and J(z) are conformal fields with h=% and 1,respectively. Or in

the complex notation gii;}=jé;(GliiG2)(z), which are cdnformal fields
' ve . .
) 3 -
with h=3, and
Bl 26 2 iave L 2.
G(2)GW)~ z=yst CEMERARL Z_waJ(w)+ Z-WT(W?,
G(z)G(w)~ 0 (G(z)G(W)~ 0) o (9)

1 ~ 1=
Jmew- sk w@Ew-~ - SLEw)

(1 iz1o . (i
H HbHC(z) (i=1,23, where vabc

Tooyais
Ve assume G (z)=-i7, HH

is real and

(1)_,1) Ce ;13
7abc™7Tabc] " This is the most general form of (fermion)”. We can gssume

(1,01 _ ; 1.1
Tabe7a beXalaqr (N0 SUm over a)  and x>0 as before. From the OPE of GG, T
and ] are defined by T(z)=18x L, H Hy (2)

H

a(z) + A H.H H H (2}, J(z)=Aa b

abcd a b cd b
_e ) () e () (@) i e
where Aabcd' 27ea[b7cd]e and Aab' glvcd[avb]cdf Then G*,T,d satlsfybthe/N 2.
superconformal algebra if and only if
C_. _ 2
3-3§xa-2trA

(2),,(2) 1y (1) _ (2) _(2)

7]

abcva'bc=xa5aaf * Teatb’cdle™ Tealb’cdle
) (2 _ (1 (2 -
Telab’cdle™? © Tedta®prcd™?
L . i (3 o ' o -
Tabct 818 "Aqramhe1q™® , o ~ (10)
aDa g A AL =0
- “abcTbe ' “elabc’dle 7’

= . 5 " i
Aab 9(xa+xb)Aab+I_Aabchcd (no sum over a;bh),

- i

(xa-xb)Aab=O {(no’ sum over a.b)
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in addition to the condition (5) for 7;£) It is hard to find solutions to

eqs. (10) and (5). So we shall use complex fermions. which are suited for
the N=2 algebra.

Ve assume G(z)=-i7

bt awbwc(z) where vabc is complex and 7abc=7[abc]'

Since is a positive-semidefinit hermitian matrix. it is

7abc7a’bc

N2
diagonalized by some unitary matrix. So we can assume vabr 2 bo™ asaa {no

sum over a) and xa>0 as before. In this form of the complex fermions the

OPE of GG is triv{ally satisfied. From the OPE of G and G(z)=-i§abc

Y de (z). T and J are defined by T(z)=9x_L

9 = = .
a ¢a( z)- 27abc ab'c’ l’['b‘bc'/'b"&c'(Z)'

and J{z)= 9x wb(z): where L (z)—2 (9¢ ¢ -y 3¢ )(z):(no sum over a). We
: a

can’ verify that T.G,G and J satisfy the N=2 superconformal algebra if and
only if ' '
C_.3 N —3 2 . . . ) .
38X, } (1)
ab 9(xa+xb+x )vabc (no sum over a, b, c)

from straightforward calculations. This condition is much s(mpler'than

(10). The first equation of (11) comes from the relation between centers of

the conformal and Kac-Moody algebra, i.e.,k=§. The second equation of ~(11)

J2d -
means that G has U(1) charge l. Again (8) are solutions of(1l). AsSd
‘ 3J6d.c
GCdj
d.+d d
and B= E__ (We assume qu>dA) gives §= ) A. A ! and B=0 gives %=—g
3J6cX : ENET |
; adj
-7~

and T is ng - Sugawara form. This solution is given in refs.[2] and [131.
“a

For A=0. see the next paragraph.

As a special case of 7ukt. we take G(z)=-17aBa¢awB¢a(z) where 7aBa is

complex (a=1....m. o=l...,m) and 7aBa=7[aB]a' We can take

7oBalapa “XaSaq (MO SUM over a), 7aBa +Ba™Y (B (O SUm Over ad, ..y, >0

(11) reduces to
Covy =y oFyl 2
3'§xa'§}a Zka+4§ya
= 2y
7aBa (Xa+’(}a+yB))7aBa (no sum over a.«a.B).

If xa(ya) are independent of ala), i.e. if there exists an 7aBa satisfying

VaBa7aBa"4n+m8aa' ) 7aBa7a'Ba 4n+m8aa' (13)

then it is a solution of (12) and gives,

c__nm )
Tinm - (14)
From {13) n and m must satisfy n<9m(m 1). For example, 7 «Ba ———11::Ma
N
Jic, tdc
A TTA
a c d dA
(* is a real antisymmetric matrix satisfying (7)) gives F=575— (In
. 3 4dG+dA
articular 7 -—:L~——f jves 9=g§ ). For n=1, we can show that m=even
particular 7y s —"lape 9 35 '
NisTogm
adj
and 7 = 1 x(antisymmetric unitary matrix) by 5simple considerations.
Bl e ok

7 Bf—‘l_ Y 1%
Q,
Jm+4 _]_%% O “p




gives all discrete series %=1-———- Di Vecchia.et. al. gave fermionic

~costruction of N=2 supercurrent algebra.using SU(2) and U(1) currents.[4]

And it is this. case. For n=2 and m=even(>2).

AT , ©
1 O Ilg% 1 20. PRy
77 - . 2
aPl aB2” B
’lm 0 Jm+ 8
v oap 0ic O
gives C.2n d%
3 m+8°
rAs- a special case of 79w, we take G(Z)=-17aap a2Xp (z) where 7 ac is
complex (a=1,...n. o=1,..,m, p=1....1). We can take 7aap7a’ap asaa (no sum
over al, Vaapvaa p yaSa (no sum over a). 7aap7aap'=zp8pp'(no sum over B)
and xa,ya.zp>0. (11) reduces to
gl X, =5 =L +Ev +
3 2§‘a 2a fed °§zp gxa Ezp : (15)
Vi l(\( +y +Z 7 (no sum over a.a.RB).

aap 2 7a "a “p ‘aap

1f xa(ya.zp) are independent of ala.p). 1i.e. if there exists an 7aa

satisfying
5 ) S 7 - 2in
7aap7a'ap"nm+ml+1n5aa' ) 7aap7aa'p"nm+ml+ln aa’ (16)
n B e 20D g

acp’aap’ nmtml+ln“pp’

then it is a solution of (15) and gives

(17

From (16) n.,m and 1 must satisfy n<ml, m¢{In and i<{nm. For example. fof

d.d
nﬁd . m=l= dA VaaB f2 MaaB gives %=—3a§;é~ where M* is an antihermitian
Jx +2¢ O O §

. : : : e . c
matrix satisfying (7)., Especially for n-m-l—dG, 7abc abc gives 3
/3 adJ
=E§ For n=m=1, 7 Jr Z exp(2n1 (awb+c-3))-‘/E 2 8. . gives <
3 : ' abc \/3—_k 0 JS,—n k=0~a+b+c-3,kn 3
=8 | When m and 1 are relatively prime and h=ml 7 L 2 nilexp(ZWiK(a-
3" * ‘aap n Wk-ﬂ ? n
) 1 . ' J2 2
1+1{a-1)+m(p-1)) gives £ m . If 1=1, then n=m, %7.,,=—=§_. and Z=1-
3 mil+l abl Ny ab 3
which was obtained in the previous paragraph. For 1=2 and n=m>2, 7ab1= iz——
Jn+4
= ; ; : c._2n_ ’ =
Sab'  Tap2” n+4(traceless unitary matrix . gives g=—=. In the 1=2 and
. 1 a 4 . . .
R ; , = = , M=2,n=4) giv .solution with
n¥m case ,for instance 7aaB J%UaB (UaB o8 m=2,n=4) gives a.solu
c4
35
Now G(z)=—1vabC ¢apb¢c(2):( where 7abc is complex and 7abc=7a[bc]) is

left to be considered. In general, OPE of GG is nontrivial and.the final

condition is as complicated as (10), so we shall not write it down in this

paper. But for a special form G(z)=—ivaBa=9awB:%afz) (vaBa is complex), it

is easy to show that %=integer. G(z)=l—(:¢1¢1: +i:§é¢2:)¢(z), which can be
given by fermionization of G=id¢y(z) (¢ is a complex boson), is an example

of this case.

5. conclusions and discussions S R
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In this paper we discussed fermionic construction of N=0.1 and 2
{super)conformal algebra. Starting from general form of supercurrents. we
derived conditions for them to realize conformal algebra. In particular. it
‘was shouwn that. fn N=2 case, these conditions reduced to a simpler form
when we use complex fermions. We gave several sblutions which satisfy these
conditions.  Our construction will give a step forward in understanding and

studying the structure of superconformal algebras.
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