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Abstract

We derive conditions for fermionic construction of N=0,1 and 2
(super)conformal algebras, and obtain some solutions satisfying these
conditions., In +the N=2 case +these conditions can be simplified when

supercurrents are written by complex fermions.
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4§1‘ Introduction

Recently a great &eal of attention has been paid to the conformally and
guperconformally invariant two-dimensional field theories in connection to
string. theory and two-dimensional critical phenomena. Unitary
representations of the (super)conformal algebra ,which give constraints on
possible values of the central charge ¢, highest weight and U(l) charge
[1,2,4], are realized 1in several ways (free fermions, free bosong, free

fermions and bosons, ZN-currents and a free boson,...)[2,4,6-14], It is

known that fermionic representation of (super)conformal algebra is relevant
to constructing some models which are difficult to be realized by bosong or
boson-fermion models by projection[8]. In the case of N=2Z, representations

“with gzl are also important in their relevance to the compactification 0f

superstring [65-771.

In this talk we study the representations of N=0,1 and 2
(guperdconformal algebras congtructed out of fermions, which are manifestly
unitary [1&]. We use the method of operator product expansions (OFE)
following ref [61. (Qe do not restriet the energy momentum tensgor to a

bilinear form.) In the N=2 case, for instance, we assume
G:Z(coeffioient)x(fermion)s, and calculate the OPE of GG, which defines the

energy momentum tensor T(z) and the U(l) current J(z). The OPE of T,G,G and
J must realize the N=2 superconformal algebra, so constraints are imposed on
the coefficients in G.

We denote free real fermions by H,(z),H (z),..., and free cogplex

fermiong by wa(z),wa(z),xp(z),..‘. Propagators are given by <Ha(z)Hb(w)?='

<¢a(z)ﬁb(w)>=8ab z } y (Neveu~-Schwartz fermion) and Wick's theorem is




applied. Repested indices are summed unless cherwise mentioned., [ ]

1

(abl”  3A

means antisymmetrization (e.g. A A, D)) . ( )  means

ab “ba

symmetrization and " denotes complex conjugation.

§2. N=0,1(super)conformal algebras
The conformal (Virasoro) algebra T(z) is defined by the OPE

¢ 2

HDTO~ 3-wd * z-w)2

1
TGO+ Z=-aTW | ¢S

1,

We assume T(z)=Aab2.

aHa(z)Hb(z):+Aa HaH HcHd(z), where Aa and Aab are

bed b el cd

real and AabcdzA[abcd]' Then T(z) satisfies the conformal algebra if and

only if
c=irasderacta-ny
A =leoastaymy -12A A +96A A )
ab 2 ab abed cd acde bcde ’
Aabea™*Peralbed1e 3 etarnledter
Free energy momentum tensqr(Aab=8ab, Aabcd:O) and Sugawara form [11-13] are

golutions of (2)
O(z) is called a conformal (primary) field with conformal dimension h
if

h
(z-w)2

TCZ) (W)~ GCw) + E%Gaocw) . - (3)

The N=1 gsuperconformal algebra T(z) and G(z) is defined by (1) and the

L]

following OPE

2¢C 2 :
3(z-w)3 * z—wT(W) (4)

GCz)G(w) ~




- and G is a conformal field with h=%.

4

We assume G(z)=- H H,(z), where 7., ., 18 real and 7y

abc ab e bc=7[abc]'

Since is a positive-semidefinite symmetric matrix, it is

772310(37761'100

7 =X & (no

atbe Ta aa!l

diagonalized by some orthogonal matrix. 5o we can assume 7abo

sum over a) without loss of generality and xa>0 (xa=o means vabc:O (all

b,e), 80 Ha is decoupled.). From the OPE of GG, T 1is defined by

T(z)=18%_L

alH (z) + A H H H H {(z), where L

abcd abe H

(z)=%:8H H (z):(no sum over a)
a a 2 aa

and A We note that in supersymmetric base Aabcd in T(z) is

=9
Mabed” 27eatb70d]e‘

written in terms of vabc in G(z) in conirast to the N=0 case where Aabcd is

arbitrary. Then T(z) and G(z) satisfy the N=1 superconformal algebra if and

only if

2.
3L~6§xa,

=18(X _+X +Xc)vabc—727 (no sum over a,b,C). (h)

Vabc “a b adevbdfvcef
The right-hand side of the second eguation of (B) is equal to

6<X +X +x )7 2 identically. Solutions of (5) are found in

b Aderab’clde

(14,1587,

83, N=2 superconformal algebra

N=2 superconformal algehfa T(z),Gl(z),Gz(z) and J(z) is defined by (1D

and the following OPE

i, 3 ij, 2¢ 2 J 2 1
G ()G (W)~ & (3<z—w)3 + 7 T(w)) +'ig (7 W)ZJ(W) + z__WE)J(W)),
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2~ oo, (k=) (g"%=-g""=1) .
by Loieiigd
J(z)G™ (w) — G (wy,
and Gi(z) and J(z) are conformal fields with h=§

the complex notation

2

G2y 1 4l

G(z) J7
with h=g, and
2
G2~ 3cifw>3f (Z?W)ZJ<W;+ E%;aJ(w)+‘E%gT(w)
G(z)G(W)~ 0 (G(z)G(w)~ 0)

- 1
J(2)G(wW)~ meG(w)

i .
We assume G (2)

(i)z
abe

(1

7 label”

7

(1,1

ah07 =X,8

7 a'be “a aa’

and J are defined

=9
abed 2

7(1) 77(

where A ealb’c

superconformal algebra
Coavy =91pal
3—3%xa—ztrA

(2),,(2)

ab07 =X,

7 a‘be “a aa'
(1) (2)

/e[ab cd]e'o
(i),
abe

7 v gigt!

(no sum over a)

Airave1d”

Gy - L&
(J(2)GCw)~ Z_WG(W)) :

cmintl) where 7;1)

abe (i=1,2),

HaHbHc(z)

This is the most general form of (fermion)g.

by T(Z)=18XaLHa(Z) + AadeHaHbHCHd(Z)’
1) e (1Y (2)
dle and Aab~ 91?70(:1[e1?7bf}cdl’

if and only if

. (1 (1
(no sum over & ) , Vea[bvcd]e'

(2)

(1) (2) _
’ 77<:<z‘l(a77b)cd"0’

(1 =0,

i

be

and Xa>0 as before. From the OPE of G

(2>
97<ea[b?70d]e

(6)

and 1,respectively. Or in

5
+i1G%)(z), which are conformal fields

(7

is real and

We can assume

lGi, T

J(z)=A_ . H H, (2)

ab a'b

Then GI,T,J satigfy the N=2

(8)



Dy oy . A A =0,

77a]oc be elabe dle

Aab=9(xa+xb)A +12A

ab abodAcd (no sum over a,b),

(Xa xb)Aab 0 (no sum over a,h)

(i)

. It is hard to find solutions to
abe

in addition to the condition (5) for 7

eqs. (8) and (5). B0 we shall use complex fermions, which are suited for the
N=2 algebra,

We assume G(z)=—17abc¢a¢b¢c(z) where Vabc is complex and vabczvtabc]'

Since 7., 7 is a positive-semidefinit hermitian matrix, it is

abc’a’be

diagonalized by some unitary matrix. 8o we can assume 7 _, 7

=x & no
abc’a'be Ta aa'(

sum over a) and Xa>0 as before. In this form of the complex fermions the

OPE of GG 1is trivially satisfied. From the OPE of G and G(Z):_iﬁabc
Yo 2), T and J are defined by F(Z)=9XaL¢a(Z) abc ab'et ¢b¢ wb.¢

) | — . 7 o g —ln p y - 7 .
and J(z)~9xa.¢a¢a(z). where Lwa(z)—z.(awawa ¢a8¢a)(z).(no sum over a). We

can verify that T,G,é and J satisfy the N=2 superconformal algebra if and

only if
(e La1eLl
370X, =815%, (9)
vabc=9(xa+xb+xc)’7abc (no sum over a, b, ¢)
from straightforward calculations. This condition 1is much simpler than
(8). The first eguation of (9)‘cbmes from the relation between centers of



the conformal and Kac~Moody algebra, i.e.,k=§. The second eguation of (9)

means that G has U(l) charge 1. A sgeries of solutions of (9) are given by

) @ :
vabc”Afabc s vaaB—BM B (1o
where fabC is the siructure constant of a simple Lie algebra (a=1,.‘.,dG,
facdfbed ad;édb) and M B ig a real antisymmetric matrix (a=1,...,dk) and &
representation of the Lie algebra,
a ,,b ¢ &b _ a,a P
(M%, M7 = £ (rMMo=-ic 8., (MM )ch‘ o/\édﬁ) an
The second equation of (6) means Vaaﬁzvaﬁazvﬁaa=‘7aaﬁ=_vﬁaa:"
V2dgmdy 1 e Yty
7 -BM Az———and Ba——— (we assume 2d,2d,) gives S=—7F—.
Ao 3J6d.c 3J6e @A 39
G adj _ X
1 ¢ dG k
Az—— and B=0 gives §=—§ and T is QLA - Sugawara form. This solution is
3J30adj '

given in refs.[2] and [9]. For A=0, see the next paragraph.

As a special case of hbh, we take G(z2)==i9_, 9 w3 (z) where 7 is
afa’o" R a ofja

complex (a=1,...n, a=1l,..,m and vaBazv[aB]a' We can take
vaﬁavaﬁa'=xaéaa'(no sum over a), 7aBa7a'Ba yaaaa (no sum over ), xa,ya>0.

(9) reduces to

Cove L o2 2
3"%Xa“§yauzxa+4§ya (12)
VaBa=(Xa+2(ya+YB))7aBa. (no sum over a,q,B). | | @

if xa(ya) are independent of a(o), i.e. if there exists an 7aﬁa gsatisfying

o _.m " o
7aﬁa7aﬁa'"4n+m8aaf i Vaﬁava'ﬁa_4n+m8aa’ (13)

- -




then it is a solution of (12) and gives

c_.nm
T inen (14>
From (18) n eand m must satisfy n<—m(m 1)}. For example, 7 =————1-—~~~Ma
=9 afda a3
K, +4c
X X
& C deX
(M is a real antisymmetric matrix satisfying (11)) gives == (In
3 4dG X
' c‘dG :
particular Vb gives 7=—, )- For n=1, we can show that m=even
J~—-— %bc 3 5
ad J
1 .
and 7 = X(antisymmetric unitary matrix) by simple considerations.
B o8
— 1 ( 0 m/2 )
Bl e “Inse O aR
gives all discrete series §=1—Bl—- Di. VYecchia et. al. gave fermionic
=4 2
2

costruetion of N=2 supercurrent algebra using SU(2) and U(l) currents.[4]
And it is this case,

As a special case of 79w, we take G(z)=-i7_ ¥ © x (2) where 7 is

aap’a’a’p
complex (a=l,..,n, o=1,..,m, p=1,..,1). We cgn take vaapaa'ap Xd da,(nca sum
over  a), vqapﬁaa o yagaa (no sum over o), Vaapﬁaap,=zp8pp,(no éumvover R)
and»xa,ya,zp>0. (9) reduces to
N Ll (15)
7 l(X Y +z )7 (no sum over a,a,B). - )

If xaﬁya,zp) are independent of ala,p), i.e. if there exists an vaap

satisfying



n 5 __2ml 7 7 . 2ln o
acp’a‘op nmeml+ln-aat * ‘aceac'p nmml+lnToa’ (16)

-~ __2nm .
77acxpvaap“"nm-rmlﬂ*ln pp’

then it is a solution of (15) and gives

(17

4

=R o]

1
1

From (16) n,m and 1 must satisfy n<ml, m<ln and 1<{nm. For example, for

Iy d.d .
n=dc, m=l=dk, anﬁ= 2 _ Maaﬁ gives %:—EEQT%_ where M® is an antihermitian
! T Vi r2ey . G A
e . o 2 . c
matrix satisfying (11). Especially for n=m=l=d,, 7_, =-———"f gives 3
G ahbce J3 abe g
e, ..
adj
d
G V2 nzl LK, V2, 2 o . C
=—> , For n=m=l, 7_, =——— 3 exp2ui=(atb+c-3))=—""7 z S rina L BlVes o
3 abe Jgnak‘o n An %50 a+tb+c-3,kn 3

. Other solutiong are found in [1517.

Now G(z)=—17abc:¢a¢bwc(z):( where vabc is complex and Vabczva[bo]) is

left to be considered. In general, OPE of GG is nontrivial and the final

condition is as complicated as (8), so we ghall not write it down in this

paper. But for a special form G(z)=~17aﬁa:¢a93:¢a(z) cvaBa is complex), ;t

is easy to show that 9=integer. G(z)=l*(:@ w,r +ite, 0 )Y(z), which can be
3 Jz 171 272

given by fermionization of G=i0p4(z) (¢ is a complex boson), is an example

of this case,

84. discussions and conclusions




We have constiructed representations of (super)qonformal algebras out of
fermions but know little about primary fields. Ordinary, fermion H(z) is a

a

o8

primary field with h=1/2 and current J%z)=tH M* H (z) M is real

20 afl o
antigymmetric and sgatigfy (11)) ig a primary field with h=1. The precise

meaning of them ,however, is that they have h=1/2 and 1 with respect to a

free energy  momentum tensor T(z)=L(z)=%:aHH:(z) and Sugawara form

p +i ~—§JaJag(z) regspectively. 80 in many models we constructed, H
X Tadj

T(z)=&(2)=

and J are not primary fieldes because T is not so. For illustration, we'll

consider the discrete series of Virasoro algebrall4l. su(2) current is

constructed out of fermions ¢g,¢3(a=1,..,N) by

(i, 1-ai a, )i . 101 0.
J (z)~2¢a0aB¢B(z) (level Ny, J (z)-zwadaﬂwﬁ(z) (level 1),
7@ oy Ly O oy ayel Ne1),

and energy momentum tensor T(z)=K(z) is given by

rKCz)=Z(1)(z)+ﬁ<0)(zﬁ—£(2)(z)
where

x(l)(z)=_l_ﬁJ(I)aJ(1)ag(Z)’ z(O)(z)"ljJ(O)aJ(O)ag(z)’

N+2° "3°
(2), 1, (2a (2)a,
e (z)~N+3° J °(z).
K(z) has
S P E— po = CN+3)p-(N+2)q)2-1
(N+2) (N+3) pg  4(N+2)(N+3) =

(1<a<psN+1).

In this case ¥,J are no longer primary fields with respect to K(2). Bu% OPE

hyy

(z~w)2

K(z)¢3(w) ~ wZ(w) + less singular term,

mlo-



PNe1,N#T 0

. 0. . .
K(z)wa(w) ~ Tz-w)2 wa(w) + less singular term,
Wi (0 PNELLNL (1D €0V
K(z)(J "~ "~NJ Y (W) ~ (7—w)£ (J -NJ Y(w) + less singular term

suggeste that ¢i+..., ¢3+... and J(l)l—NJ(O)1+‘.. are primary fields with

~ ~ . _ 1
h=h and hN+1,N‘(er N-I.,l.e. c=1/2, case waf... corresponds to

22 PN+1,N+1

(1)*J(0) eorresponds to h=1/2). Here "+,.." is very complicated

h=1/16 and J
infinite series. We hope it has a concise form like as a vertex operator.
In this talk we discussed fermionic construction of N=0,1 and 2
(superyconformal algebra, Starting from general form of supercurrents, we
derived conditions for them to realize confarmal‘algebra. In particular, it
was shown that, in N=2 case, these conditions reduced to a simpler form
when we use complex fermions. We gave several solutions which satisfy theée

conditions. Our construction will give a step forward in understanding and

studyving the structure of superconformal algebras.
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