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Abstract

We study the irreducible unitary highest weight representations, which

are obtained from free field realizations, ofW infinity algebras (W∞, W1+∞,

W 1,1
∞ , WM

∞ , WN
1+∞, WM,N

∞ ) with central charges (2, 1, 3, 2M , N , 2M +N).

The characters of these representations are computed.

We construct a new extended superalgebra WM,N
∞ , whose bosonic sector

is WM
∞ ⊕WN

1+∞. Its representations obtained from a free field realization

with central charge 2M+N , are classified into two classes: continuous series

and discrete series. For the former there exists a supersymmetry, but for

the latter a supersymmetry exists only for M = N .

∗e-mail address: odake@jpnrifp.bitnet.
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1 Introduction

The conformal field theory (CFT) in two dimensional space-time has made great

progress in close contact with both the string theory and various branches of mathe-

matics. The Virasoro algebra plays a central role in CFT, and to construct models of

CFT and extend this theory, one needs an extension of the Virasoro algebra. In view of

this several extensions (superconformal algebras, W algebras, parafermions, etc.) have

been studied. The notable example is Zamolodchikov’s W3 algebra and its WN gener-

alization (AN−1 type W algebra) containing fields of conformal weight (spin) 2, · · · , N

as conserved currents [1]. All of extended Virasoro algebras containing currents of spin

> 2 have a non-linear property.

By taking an appropriate N → ∞ limit of the WN algebra, one can obtain a linear

algebra with infinite number of fields. The first example is the w∞ algebra [2], which

can be interpreted as the algebra of area-preserving diffeomorphisms of two dimensional

phase space. But w∞ admits a central extension only in the Virasoro sector. By

deforming w∞, Pope, Romans and Shen constructed the W∞ algebra [3], which admits

central extension in all spin sectors. This is another large N limit of WN . In addition,

they constructed the W1+∞ algebra [4], which contains a spin 1 field too, and their

super extension, super W∞ algebra [5], whose bosonic sector is W∞ ⊕ W1+∞. Soon

afterward Bakas and Kiritsis constructed the WM
∞ algebra [6], which is a u(M) matrix

version of W∞, and Sano and the present author constructed the ŝu(N)-W1+∞ algebra

[7], which is an extension of W1+∞ and contains the SU(N) current algebra. We will

change the notation ŝu(N)-W1+∞ to WN
1+∞. WN

1+∞ is to WN
∞ what W1+∞ is to W∞

[8]. In this paper we will construct a new superalgebra WM,N
∞ , whose bosonic sector is

WM
∞ ⊕WN

1+∞. In this notation, super W∞ [5] and super ŝu(N)-W∞ [7] are W 1,1
∞ and

W 1,N
∞ respectively.

Given an algebra which generates the symmetry of a model, it is important to

develop its representation theory to find what fields appear in the model. The success

of the representation theory of the Virasoro algebra is a good example [9]. In spite of

difficulties due to the non-linearity, the minimal representations of theWN algebra have

been studied in detail by using the free field realization of Feigin-Fuchs type or the coset
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model of affine Lie algebras [1, 10]. AlthoughW infinity algebras are linear algebras and

their structure constants are explicitly known, their representation theories have been

studied very poorly [11, 8]. In this paper we will initiate the study of representation

theories ofW infinity algebras and construct their unitary representations based on free

field realizations.

Our methods to study representation theories are as follows. First we prepare a free

field realization of the W infinity algebra and its Fock space. In the Fock space, we try

finding all the highest weight states (HWS’s) of the subalgebra (an affine Lie algebra

or the Virasoro algebra), whose generators have the lowest spin. Next we check these

states are also the HWS’s of the whole W infinity algebra. To compute the characters

of W1+∞ and WN
1+∞, we use the character formulas of the affine Lie algebras and the

fact that the generators of W1+∞ and WN
1+∞ do not change the U(1) charge. For W∞

andWM
∞ , we use the facts that the generators of theW infinity algebras are represented

in terms of bilinears of the free fields and they preserve a certain quantum number. For

super cases, we use the results of bosonic cases and the spectral flow invariance. The

Witten index is also computed.

The organization of this paper is as follows. In §2 we construct a new superalgebra

WM,N
∞ and present its free field realization. In §3-5 the representations of W infinity

algebras (W1+∞, WN
1+∞, W∞, WM

∞ , W 1,1
∞ , WM,N

∞ ) are studied, and their characters are

computed. In §6 we present a discussion.

2 Algebras and Free Field Realizations

We will define a new extended superalgebra WM,N
∞ , whose bosonic sector is WM

∞ ⊕

WN
1+∞. OtherW infinity algebras are contained in it as subalgebras. WM,N

∞ is generated

by1

W i,(αβ)(z), (i ≥ −1;α, β = 1, 2, · · · , N), (1)

W̃ i,(ab)(z), (i ≥ 0; a, b = 1, 2, · · · ,M), (2)

1 As usual, the mode expansion of a field A(z) of conformal weight h is A(z) =
∑

Anz
−n−h, where

the sum is taken over n ∈ Z−h for the Neveu-Schwarz (NS) sector, n ∈ Z for the Ramond (R) sector.
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Gi,aα(z), (i ≥ 0; a = 1, · · · ,M ;α = 1, · · · , N), (3)

Ḡi,aα(z), (i ≥ 0; a = 1, · · · ,M ;α = 1, · · · , N). (4)

W i,(αβ)(z) and W̃ i,(ab)(z) are bosonic fields with conformal spin i + 2, and generate

WN
1+∞ and WM

∞ respectively. WN
1+∞ (WM

∞ ) contains W1+∞ (W∞) as a subalgebra, and

their generators are

V i(z) =
N∑

α=1

W i,(αα)(z), Ṽ i(z) =
M∑

a=1

W̃ i,(aa)(z). (5)

V 0(z) and Ṽ 0(z) are the Virasoro generators with central charge c and c̃ respectively.

WN
1+∞ contains the U(N) current algebra, which is generated by

ŝu(N)k :




H i(z) = J (ii)(z)− J (i+1,i+1)(z), (i = 1, · · · , N − 1) Cartan

J (αβ)(z), (α < β) raising ; (α > β) lowering,
(6)

û(1)K : J(z) =
N∑

α=1

J (αα)(z), (7)

where J (αβ)(z) = −4qW−1,(βα)(z) 2. k is the level of ŝu(N) and K stands for a normal-

ization of û(1) ([Jm, Jn] = Kmδm+n,0). G
i,aα(z) and Ḡi,aα(z) are fermionic fields with

conformal spin i + 3
2
. W i,(αβ)(z) (W̃ i,(ab)(z), Gi,aα(z), Ḡi,aα(z)) transform according to

the adjoint (trivial, N, N̄) representation of su(N), and have U(1) charge 0 (0, 1,−1),

respectively.

(Anti-)commutation relations of WM,N
∞ are given by3

[W i,(αβ)
m ,W j,(γδ)

n ] = 1
2

∑

r≥−1

qrgijr (m,n)(δ
γβW

i+j−r,(αδ)
m+n + (−1)rδαδW

i+j−r,(γβ)
m+n )

+δijδαδδγβδm+n,0q
2iki(m), (8)

[W̃ i,(ab)
m , W̃ j,(cd)

n ] = 1
2

∑

r≥−1

qrg̃ijr (m,n)(δ
cbW̃

i+j−r,(ad)
m+n + (−1)rδadW̃

i+j−r,(cb)
m+n )

+δijδadδcbδm+n,0q
2ik̃i(m), (9)

[W i,(αβ)
m , Gj,cγ

n ] = δαγ
∑

r≥−1

qraijr (m,n)G
i+j−r,cβ
m+n , (10)

2This definition is slightly different from [7].
3 q is a deformation parameter and we can take it to be an arbitrary non-zero constant(e.g., q = 1

4
).

This q has nothing to do with q = e2πiτ appearing in the characters.
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[W i,(αβ)
m , Ḡj,cγ

n ] = δβγ
∑

r≥−1

qr(−1)raijr (m,n)Ḡ
i+j−r,cα
m+n , (11)

[W̃ i,(ab)
m , Gj,cγ

n ] = δbc
∑

r≥−1

qrãijr (m,n)G
i+j−r,aγ
m+n , (12)

[W̃ i,(ab)
m , Ḡj,cγ

n ] = δac
∑

r≥−1

qr(−1)rãijr (m,n)Ḡ
i+j−r,bγ
m+n , (13)

{Gi,aα
m , Ḡj,bβ

n } =
∑

r≥0

qr(δabbijr (m,n)W
i+j−r,(βα)
m+n + δαβ b̃ijr (m,n)W̃

i+j−r,(ab)
m+n )

+δijδabδαβδm+n,0q
2iǩi(m), (14)

[W i,(αβ)
m , W̃ j,(ab)

n ] = {Gi,aα
m , Gj,bβ

n } = {Ḡi,aα
m , Ḡj,bβ

n } = 0. (15)

The structure constants [3, 4, 5, 6, 7] are

gijr (m,n) = 1
2(r+1)!

φij
r (0,−

1
2
)N i,j

r (m,n), (16)

g̃ijr (m,n) = 1
2(r+1)!

φij
r (0, 0)N

i,j
r (m,n), (17)

aijr (m,n) = (−1)r

4(r+2)!
((i+ 1)φij

r+1(0, 0)− (i− r − 1)φij
r+1(0,−

1
2
))N

i,j− 1

2
r (m,n), (18)

ãijr (m,n) = −1
4(r+2)!

((i− r)φij
r+1(0, 0)− (i+ 2)φij

r+1(0,−
1
2
))N

i,j− 1

2
r (m,n), (19)

bijr (m,n) = (−1)r4
r!

((i+ j + 2− r)φij
r (

1
2
,−1

4
)

− (i+ j + 3
2
− r)φij

r+1(
1
2
,−1

4
))N

i− 1

2
,j− 1

2

r−1 (m,n), (20)

b̃ijr (m,n) = − 4
r!
((i+ j + 1− r)φij

r (
1
2
,−1

4
)

− (i+ j + 3
2
− r)φij

r+1(
1
2
,−1

4
))N

i− 1

2
,j− 1

2

r−1 (m,n), (21)

and

Nx,y
r (m,n) =

r+1∑

ℓ=0

(−1)ℓ
(
r + 1

ℓ

)
[x+ 1 +m]r+1−ℓ[x+ 1−m]ℓ

×[y + 1 + n]ℓ[y + 1− n]r+1−ℓ, (22)

φij
r (x, y) = 4F3

[ −1
2
− x− 2y, 3

2
− x+ 2y,− r+1

2
+ x,− r

2
+ x

−i− 1
2
,−j − 1

2
, i+ j − r + 5

2

; 1
]
, (23)

4F3

[ a1, a2, a3, a4
b1, b2, b3

; z
]
=

∞∑

n=0

(a1)n(a2)n(a3)n(a4)n
(b1)n(b2)n(b3)n

zn

n!
, (24)

where [x]n = x(x−1) · · · (x−n+1), [x]0 = 1 and (x)n = x(x+1) · · · (x+n−1), (x)0 = 1

and
(
x

n

)
= [x]n/n!. Since g

ij
r = bijr = 0 for i− j − r < −1 and g̃ijr = aijr = ãijr = b̃ijr = 0
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for i − j − r < 0, the summations over r are finite sums and the algebra closes. The

central terms are

ki(m) = ki
i+1∏

j=−i−1

(m+ j) , ki =
22i−2((i+ 1)!)2

(2i+ 1)!!(2i+ 3)!!
k, (25)

k̃i(m) = k̃i
i+1∏

j=−i−1

(m+ j) , k̃i =
22i−3i!(i+ 2)!

(2i+ 1)!!(2i+ 3)!!
k̃, (26)

ǩi(m) = ǩi
i∏

j=−i−1

(m+ j +
1

2
) , ǩi =

22ii!(i+ 1)!

3((2i+ 1)!!)2
ǩ. (27)

In the case of WM,N
∞ , the Jacobi identity requires

K = Nk , c = Nk , c̃ =Mk̃ , k̃ = 2k , ǩ = 3k. (28)

Since the level k of ŝu(N) (N > 1) is a positive integer for unitary representations, cen-

tral charges c and c̃ must be multiples of N and 2M respectively. (Anti-)commutation

relations of WM,N
∞ are consistent with the hermiticity properties of the generators:

W i,(αβ)†
n = W

i,(βα)
−n , W̃ i,(ab)†

n = W̃
i,(ba)
−n , Gi,aα†

n = Ḡi,aα
−n . (29)

The Cartan subalgebra of WM,N
∞ is generated by

W
i,(αα)
0 , W̃

i,(aa)
0 . (30)

The HWS of WM,N
∞ in the NS sector is defined by





An|hws〉 = 0, (n > 0;A = W, W̃ ,G, Ḡ)

W
i,(αβ)
0 |hws〉 = 0, (α > β)

W̃
i,(ab)
0 |hws〉 = 0, (a > b),

(31)

and, in the R sector, we require one more condition:

Gi,aα,R
0 |hws〉R = 0. (32)

The HWS’s of other W infinity algebras are defined in a similar way.

Since WM,N
∞ contains a current algebra, there exists an automorphism, so called

spectral flow [12]. Namely (anti-)commutation relations are invariant under the trans-

formations of the generators. Explicit forms of the transformation rules are essentially
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the same as W 1,N
∞ [7]. Due to this property, representations in the R sector and those

in the NS sector have one-to-one correspondence. We define the representations in the

R sector as those mapped from the NS sector by the spectral flow with η = 1
2
. Then

we can show |hws〉R = |hws〉NS, because




W i′
n =

∑i
j=−1 (coeff.) ·W

j
n + (coeff.) · δn0, Gi′

n =
∑i

j=0 (coeff.) ·G
j

n+ 1

2

W̃ i′
n =

∑i
j=0 (coeff.) · W̃

j
n + (coeff.) · δn0, Ḡi′

n =
∑i

j=0 (coeff.) · Ḡ
j

n− 1

2

.
(33)

WM,N
∞ with level k=1 is realized by N complex free fermions ψα(z) =

∑
n ψ

α
nz

−n− 1

2

(α = 1, · · · , N) and M complex free bosons i∂ϕa(z) =
∑

n α
a
nz

−n−1 (a = 1, · · · ,M).

Operator product expansions of the free fields are

ψ̄α(z)ψβ(w) ∼
δαβ

z − w
, i∂ϕ̄a(z)i∂ϕb(w) ∼

δab

(z − w)2
. (34)

Generators of WM,N
∞ are represented in terms of bilinears of the free fields [4, 5, 6, 7] :

W j,(αβ)(z) =
2j−1(j + 1)!

(2j + 1)!!
qj

j+1∑

r=0

(−1)r
(
j + 1

r

)2

(∂j+1−rψ̄α∂rψβ)(z), (35)

W̃ j,(ab)(z) =
2j−1(j + 2)!

(2j + 1)!!
qj

j∑

r=0

(−1)r

j + 1

(
j + 1

r

)(
j + 1

r + 1

)
(∂j−ri∂ϕ̄a∂ri∂ϕb)(z), (36)

Gj,aα(z) =
2j+

1

2 (j + 1)!

(2j + 1)!!
qj

j∑

r=0

(−1)r
(
j + 1

r

)(
j

r

)
(∂j−ri∂ϕ̄a∂rψα)(z), (37)

Ḡj,aα(z) =
2j+

1

2 (j + 1)!

(2j + 1)!!
qj

j∑

r=0

(−1)j+r

(
j + 1

r

)(
j

r

)
(∂j−ri∂ϕa∂rψ̄α)(z), (38)

where the normal ordered product of two fields A(z) and B(z) is defined by (AB)(z) =
∮
z

dx
2πi

1
x−z

A(x)B(z). One of the methods to obtain the general level k realization is to

prepare k copies of the above realization, because WM,N
∞ is linear. The spectral flow

transformation rules of the generators with a parameter η are easily derived from those

of the free fields:

ψα′(z) = zηψα(z), ψ̄α′(z) = z−ηψ̄α(z), ϕa′(z) = ϕa(z), ϕ̄a′(z) = ϕ̄a(z), (39)

because eq. (34) are invariant under this transformation. The transformation rules that

will be needed later are

W−1,(αβ)′
n = W−1,(αβ)

n − δαβδn0
1
4q
η,

W 0,(αβ)′
n = W 0,(αβ)

n − 4qηW−1,(αβ)
n + δαβδn0

1
2
η2,

G0,aα′
n = G0,aα

n+η , Ḡ0,aα′
n = Ḡ0,aα

n−η , W̃ 0,(ab)′
n = W̃ 0,(ab)

n .

(40)
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The vacuum states of the fermion and boson Fock spaces, |0〉 and |~p,~̄p〉, are defined

as usual: ψα
m|0〉 = ψ̄α

n |0〉 = αa
n|~p,~̄p〉 = ᾱa

n|~p,~̄p〉 = 0, (m ≥ 0, n > 0), αa
0|~p,~̄p〉 = pa|~p,~̄p〉,

ᾱa
0|~p,~̄p〉 = p̄a|~p,~̄p〉. Hermiticity properties of the generators eq. (29) are satisfied by

those of the free fields (ψα†
n = ψ̄α

−n, α
a†
n = ᾱa

−n). In the following we take p∗a = p̄a, so

that the unitarity of the representations is manifest.

3 Representations of W1+∞ and WN
1+∞

We first consider the representations of W1+∞ with c = 1 realized by one complex

free fermion. We remark that the Virasoro generator V 0(z) agrees with the Sugawara

form of û(1) current. For each integer n, we can find the HWS of the subalgebra û(1)

contained in the fermion Fock space, and we denote them as

|n〉
def
=





ψ− 1

2

ψ− 3

2

· · ·ψ−n+ 1

2

|0〉 n ≥ 1

|0〉 n = 0

ψ̄− 1

2

ψ̄− 3

2

· · · ψ̄n+ 1

2

|0〉 n ≤ −1.

(41)

These states are well known in Sato theory [13]. We can check that |n〉 is not only the

HWS of û(1) but also the HWS of W1+∞. The conformal weight hn and U(1) charge

Qn of |n〉 are

hn =
1

2
n2, Qn = n. (42)

Although the eigenvalues of the higher-spin generators are easily calculated, we omit

them here.

Since the dependence on the eigenvalues of higher-spin generators are very com-

plicated, we consider the characters which count conformal weight and U(1) charge

only:

chW1+∞(θ, τ)
def
= trqV

0
0
− 1

24 zJ0 , (43)

where q = e2πiτ (Imτ > 0) and z = eiθ. Since W1+∞ contains û(1) as a subalgebra,

the representation of W1+∞ has more states than one of û(1). On the other hand,

the representation of W1+∞ has less states than the Fock space with the fixed U(1)

charge, because generators of W1+∞ do not change U(1) charge. These statements are
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expressed in terms of characters as follows:

χû(1)1
n (θ, τ) ≤ chW1+∞

n (θ, τ) ≤ znχFock
n (τ), (44)

where A ≤ B means B − A is a q-series with non-negative coefficients. In general, the

character formula of û(1)K with U(1) charge Q is

χ
û(1)K
Q (θ, τ)

def
= trqL0−

1

24 zJ0 =
1

η(τ)
q

1

2K
Q2

zQ, (45)

where η(τ) = q
1

24

∏∞
n=1(1−q

n). On the other hands, the generating function of χFock
n (τ)

is
∑

n∈Z

znχFock
n (τ) = trFockq

V 0
0
− 1

24 zJ0 = q−
1

24

∞∏

n=1

(1 + zqn−
1

2 )(1 + z−1qn−
1

2 ). (46)

Due to the Jacobi’s triple product identity, we have χû(1)1
n (θ, τ) = znχFock

n (τ). Therefore

we obtain the character formula of W1+∞,

chW1+∞

n (θ, τ) = χû(1)1
n (θ, τ). (47)

Next we consider the representations of WN
1+∞ with c = N realized by N complex

free fermions. We use the same techniques as W1+∞ case. We remark that, in the case

of level k=1, the Virasoro generator V 0(z) agrees with the sum of the Sugawara form

of û(1)N and ŝu(N)1 [14]. For each integer n, there exists the HWS of ŝu(N)1, and we

denote them as

|n〉
def
=





∏m
j=1(

∏N
α=1 ψ

α
−j+ 1

2

) ·
∏a

α=1 ψ
α
−m− 1

2

|0〉 n ≥ 1

|0〉 n = 0
∏−m−1

j=1 (
∏N

α=1 ψ̄
N+1−α

−j+ 1

2

) ·
∏N−a

α=1 ψ̄
N+1−α

m+ 1

2

|0〉 n ≤ −1,

(48)

where we express n as n = Nm + a, (m ∈ Z; a = 0, 1, · · · , N − 1). |n〉 is the HWS of

the a-th rank antisymmetric representation of ŝu(N)1. The state |n〉 is also the HWS

of WN
1+∞. The conformal weight hn and U(1) charge Qn are

hn =
1

2N
n2 +

a(N − a)

2N
, Qn = n. (49)

The first and second factors of hn are contributions from û(1)N and ŝu(N)1 respectively.
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Neglecting the dependence on the eigenvalues of higher-spin generators, we consider

the characters which count conformal weight, U(1) charge and eigenvalues of SU(N),

chW
N
1+∞(θ, ~θ, τ)

def
= trqV

0
0
−N

24 eiθJ0ei
~θ· ~H0, (50)

where ~θ =
∑N−1

i=1 θi~αi and ~αi is a simple root of su(N). WN
1+∞ contains û(1)N ⊕ ŝu(N)1

as a subalgebra, and generators of WN
1+∞ do not change U(1) charge. Therefore, the

similar argument as W1+∞ case shows that the character formula of WN
1+∞ is given by

ch
WN

1+∞

n (θ, ~θ, τ) = χû(1)N
n (θ, τ)χŝu(N)1

a (~θ, τ), (51)

where a ≡ n(mod N), 0 ≤ a ≤ N − 1. The character of û(1) is given by eq. (45), and

the character formula of ŝu(N)1 is given by [15]

χŝu(N)1
a (~θ, τ)

def
= trqL0−

N−1

24 ei
~θ· ~H0 =

1

η(τ)N−1

∑

~M∈ΛR

q
1

2
( ~M+~Λa)2ei

~θ·( ~M+~Λa), (52)

where ΛR is a root lattice of su(N), and ~Λi (1 ≤ i ≤ N − 1) is a fundamental weight of

su(N) and ~Λ0 = ~0. To show eq. (51), we need the identity:

trFockq
V 0
0
−N

24 eiθJ0ei
~θ· ~H0 = q−

N
24

N∏

j=1

∞∏

n=1

(1 + zz−1
j−1zjq

n− 1

2 )(1 + z−1zj−1z
−1
j qn−

1

2 )

=
∑

n∈Z

χû(1)N
n (θ, τ)χŝu(N)1

a (~θ, τ), (53)

where zj = eiθj , z0 = zN = 1, and a ≡ n(mod N). This identity is proved by the

Jacobi’s triple product identity.

4 Representations of W∞ and WM
∞

We first consider the representations of W∞ with c̃ = 2 realized by one complex free

boson. In the boson Fock space, the HWS’s of the Virasoro generator Ṽ 0(z) are classified

into two classes: continuous series, whose momentum can be changed continuously, and

discrete series, whose state exists for each integer n,

|p, p̄〉, (p 6= 0), (54)

|n〉
def
=





(α−1)
n|0, 0〉 n ≥ 1

|0, 0〉 n = 0

(ᾱ−1)
−n|0, 0〉 n ≤ −1.

(55)

10



We can check that these states are the HWS’s of W∞. Their conformal weights are

hpp̄ = |p|2, hn = |n|. (56)

Neglecting the dependence on the eigenvalues of higher-spin generators, we consider

the characters which count conformal weight only,

chW∞(τ)
def
= trqṼ

0
0
− 2

24 . (57)

Since Ṽ i
n contains the terms ᾱ0αn and ᾱnα0, and the momentum p is non-zero for the

continuous series, the set of generators Ṽ i
n is identified with the set of oscillators αn,

ᾱn. Therefore the character formula of the continuous series of W∞ is

chW∞

pp̄ (τ) =
q|p|

2

η(τ)2
. (58)

This result was first derived by Bakas and Kiritsis, using the Z∞ parafermion [11].

For the discrete series, ᾱ0αn and ᾱnα0 are acting on the state as 0. So, the number

of the states of the discrete series is less than one of the continuous series. Let us define

the quantum number B as (number of oscillators without¯ ) − (number of oscillators

with¯). Then B|n〉 = n|n〉, and generators of W∞ do not change B on |n〉. By taking

the appropriate linear combinations of Ṽ i
n, we can obtain all the oscillators of the form

ᾱnαm. From these two facts, the generating function of the characters of the discrete

series is
∑

n∈Z

tnchW∞

n (τ) = trFockq
Ṽ 0
0
− 2

24 tB =
q−

2

24

∏∞
n=1(1− tqn)(1− t−1qn)

. (59)

From this, the character formula of the discrete series of W∞ is expressed as4

chW∞

n (τ) =
1

2η(τ)2
∑

m∈Z

sign(m)(−1)mqmn− 1

8 (q
1

2
(m+ 1

2
)2 − q

1

2
(m− 1

2
)2)

=
1

η(τ)2

∞∑

m=1

(−1)mq
1

2
m(m−1)+mn(qm − 1). (60)

The relation between continuous and discrete series is

lim
p→0

chW∞

pp̄ (τ) =
∑

n∈Z

chW∞

n (τ). (61)

4 Recently Bakas and Kiritsis have constructed the non-linear deformation of W∞ based on the

SL(2,R)k/U(1) coset model, and investigated its characters, which include the characters of W∞ in

the large k limit [16].
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Next we consider the representations of WM
∞ with c̃ = 2M realized by M complex

free bosons. Since the argument is the same as W∞ case, we present the results only.

The HWS’s of WM
∞ are

|~p,~̄p〉, ~p = (0, · · · , 0, pa, 0, · · · , 0), pa 6= 0, (62)

|n〉
def
=





(α1
−1)

n|~0,~0〉 n ≥ 1

|~0,~0〉 n = 0

(ᾱ1
−1)

−n|~0,~0〉 n ≤ −1.

(63)

The degeneracy of the ground states are 1 and
(
M+|n|−1

|n|

)
respectively. The conformal

weights are

h~p~̄p = |~p|2, hn = |n|. (64)

The characters which count conformal weight only, are defined by

chW
M
∞ (τ)

def
= trqṼ

0
0
− 2M

24 . (65)

The character formula of the continuous series of WM
∞ is

ch
WM

∞

~p~̄p
(τ) =

q|~p|
2

η(τ)2M
. (66)

The generating function of the character formulas of the discrete series is

∑

n∈Z

tnchW
M
∞

n (τ) =


 q−

2

24

∏∞
n=1(1− tqn)(1− t−1qn)




M

. (67)

The relation between continuous and discrete series is

lim
~p→~0

ch
WM

∞

~p~̄p
(τ) =

∑

n∈Z

chW
M
∞

n (τ). (68)

5 Representations of W 1,1
∞ and WM,N

∞

We first consider the representations of W 1,1
∞ with c̃ = 2, c = 1 realized by one pair

of complex free boson and fermion. Each state in the Fock space is expressed as a linear

combination of |∗̃〉 ⊗ |∗〉, where the first and second factors are states in the boson and

fermion Fock spaces respectively. W 1,1
∞ contains W∞ and W1+∞ as subalgebras, and

12



the generators of W∞ and W1+∞ are expressed by a boson and a fermion respectively.

Therefore |∗̃〉 and |∗〉 are the HWS’s of W∞ and W1+∞ respectively. By using the

results obtained in the previous sections, we find the HWS’s of W 1,1
∞ , continuous series

and discrete series:

|p, p̄〉 ⊗ |0〉, (69)

|n〉
def
=





|n− 1〉 ⊗ |1〉 n ≥ 1

|0〉 ⊗ |0〉 n = 0

|n+ 1〉 ⊗ | − 1〉 n ≤ −1.

(70)

The first and second factors of the tensor product are eqs. (54,55) and eq. (41) respec-

tively. Their conformal weight h and U(1) charge Q are

hpp̄ = |p|2, Qpp̄ = 0, (71)

(hn, Qn) =





(n− 1
2
, 1) n ≥ 1

(0, 0) n = 0

(−n− 1
2
,−1) n ≤ −1.

(72)

Neglecting the dependence on the eigenvalues of higher-spin generators, we consider

the characters which count conformal weight and U(1) charge only,

chW
1,1
∞ (θ, τ)

def
= trqṼ

0
0
− 2

24
+V 0

0
− 1

24 eiθJ0. (73)

Ṽ i
n contains the terms ᾱ0αn and ᾱnα0, and Gi

n and Ḡi
n contain the terms ᾱ0ψn and

α0ψ̄n. For the continuous series, the momentum p is non-zero, so the set of generators

of W 1,1
∞ is identified with the set of oscillators ψn, ψ̄n, αn, ᾱn. Therefore the character

of the continuous series is

chW
1,1
∞

pp̄ (θ, τ) =
q|p|

2

η(τ)2
q−

1

24

∞∏

n=1

(1 + zqn−
1

2 )(1 + z−1qn−
1

2 ) (74)

= chW∞

pp̄ (τ)
∑

n∈Z

chW1+∞

n (θ, τ) (75)

= chW∞

pp̄ (τ)f1,0(θ, τ), (76)

where we define fK,Q(θ, τ) as

fK,Q(θ, τ)
def
=

1

η(τ)

∑

n∈Z

q
K
2
(n+Q

K
)2zK(n+Q

K
). (77)
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For the discrete series, B|n〉 = n|n〉, and the generators of W 1,1
∞ do not change B on

|n〉. By taking appropriate linear combinations of generators of W 1,1
∞ , we obtain all the

oscillators of the form ψ̄nψm, ᾱnψm, αnψ̄m, ᾱnαm. From these two facts, the generating

function of the characters of the discrete series is

∑

n∈Z

tnchW
1,1
∞

n (θ, τ) =
q−

2

24

∏∞
n=1(1− tqn)(1− t−1qn)

· q−
1

24

∞∏

n=1

(1 + tzqn−
1

2 )(1 + t−1z−1qn−
1

2 ).

(78)

From this equation, the character formula of the discrete series is

chW
1,1
∞

n (θ, τ) =
∑

ℓ∈Z

chW∞

n−ℓ(τ)ch
W1+∞

ℓ (θ, τ). (79)

The relation between continuous and discrete series is

lim
p→0

chW
1,1
∞

pp̄ (θ, τ) =
∑

n∈Z

chW
1,1
∞

n (θ, τ). (80)

Since W 1,1
∞ is a superalgebra, we must consider the R sector also. By using the

spectral flow, the character of the R sector is expressed in terms of the character of the

NS sector:

chW
1,1
∞

,R(θ, τ) = q
3

24 z
3

6 chW
1,1
∞ (θ + πτ, τ). (81)

Explicitly they are

chW
1,1
∞

,R
pp̄ (θ, τ) = chW∞

pp̄ (τ)f1, 1
2

(θ, τ), (82)

chW
1,1
∞

,R
n (θ, τ) =

∑

ℓ∈Z

chW∞

n−ℓ(τ)χ
û(1)1
ℓ+ 1

2

(θ, τ). (83)

The conformal weight hR and U(1) charge QR in the R sector are

hRpp̄ =
1

8
+ |p|2, QR

pp̄ =
1

2
(84)

(hRn , Q
R
n ) =





(1
8
+ n, 3

2
) n ≥ 1

(1
8
, 1
2
) n = 0

(1
8
− (n + 1),−1

2
) n ≤ −1.

(85)

The ground states are singlets for n = 0,−1, and doublets for others.

In order to study whether a supersymmetry exist or not, and if it exists, whether it

is broken or unbroken, we define the Witten index:

Index
def
= trRq

Ṽ 0
0
+V 0

0
−hR

(−1)F , (86)
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where F is the fermion number, and trace is taken over the representation space of

the R sector. By using the property of the spectral flow and the fact that the fermion

numbers of the generators of W 1,1
∞ agree with their U(1) charges, the Witten index is

expressed as follows:

Index = q
3

24
−h− 1

2
QchW

1,1
∞ (π + πτ, τ). (87)

For representations n = 0,−1, the Witten indices are

Index0 = 1, Index−1 = −1. (88)

For other representations, the Witten index vanishes. Therefore there exists a (N = 2)

supersymmetry for all representations and it is broken for n = 0,−1.

Next we consider the representations of WM,N
∞ with c̃ = 2M , c = N realized by M

complex free bosons and N complex free fermions. Since the argument is the same as

W 1,1
∞ case, we present the results only. The HWS’s of WM,N

∞ are

|~p,~̄p〉 ⊗ |0〉, (89)

|n〉
def
=





|n−N〉 ⊗ |N〉 n ≥ N

|0〉 ⊗ |n〉 −N < n < N

|n+N〉 ⊗ | −N〉 n ≤ −N.

(90)

The first and second factors of the tensor product are given by eqs. (62,63) and eq. (48)

respectively. Their conformal weight h and U(1) charge Q are

h~p~̄p = |~p|2, Q~p~̄p = 0, (91)

(hn, Qn) =





(n− 1
2
N,N) n ≥ N

(1
2
|n|, n) −N < n < N

(−n− 1
2
N,−N) n ≤ −N.

(92)

Neglecting the dependence on the eigenvalues of higher-spin generators, we consider

the characters which count conformal weight, U(1) charge and eigenvalues of SU(N),

chW
M,N
∞ (θ, ~θ, τ)

def
= trqṼ

0
0
− 2M

24
+V 0

0
−N

24 eiθJ0ei
~θ· ~H0. (93)

The character formula of the continuous series is

chW
M,N
∞

~p~̄p
(θ, ~θ, τ) =

q|~p|
2

η(τ)2M
q−

N
24

N∏

j=1

∞∏

n=1

(1 + zz−1
j−1zjq

n− 1

2 )(1 + z−1zj−1z
−1
j qn−

1

2 ) (94)
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= ch
WM

∞

~p~̄p
(τ)

∑

n∈Z

ch
WN

1+∞

n (θ, ~θ, τ) (95)

= ch
WM

∞

~p~̄p
(τ)

N−1∑

a=0

fN,a(θ, τ)χ
ŝu(N)1
a (~θ, τ). (96)

The generating function of the characters of the discrete series is

∑

n∈Z

tnchW
M,N
∞

n (θ, ~θ, τ) =


 q−

2

24

∏∞
n=1(1− tqn)(1− t−1qn)




M

×q−
N
24

N∏

j=1

∞∏

n=1

(1 + tzz−1
j−1zjq

n− 1

2 )(1 + t−1z−1zj−1z
−1
j qn−

1

2 ).(97)

From this, the character formula of the discrete series is

chW
M,N
∞

n (θ, ~θ, τ) =
∑

ℓ∈Z

ch
WM

∞

n−ℓ (τ)ch
WN

1+∞

ℓ (θ, ~θ, τ). (98)

The relation between continuous and discrete series is

lim
~p→~0

chW
M,N
∞

~p~̄p
(θ, ~θ, τ) =

∑

n∈Z

chW
M,N
∞

n (θ, ~θ, τ). (99)

By using the spectral flow, the character of the R sector is expressed in terms of the

character of the NS sector:

chW
M,N
∞

,R(θ, ~θ, τ) = q
3N
24 z

3N
6 chW

M,N
∞ (θ + πτ, ~θ, τ). (100)

Explicitly they are

chW
M,N
∞

,R

~p,~̄p
(θ, ~θ, τ) = ch

WM
∞

~p,~̄p
(τ)

N−1∑

a=0

fN,a+N
2

(θ, τ)χŝu(N)1
a (~θ, τ) (101)

chW
M,N
∞

,R
n (θ, ~θ, τ) =

∑

ℓ∈Z

ch
WM

∞

n−ℓ (τ)χ
û(1)N
ℓ+N

2

(θ, τ)χŝu(N)1
a (~θ, τ), (102)

where, in the second equation, a ≡ ℓ (mod N). The conformal weight hR, U(1) charge

QR and the degeneracy of the ground states in the R sector are

hR~p~̄p =
1

8
N + |~p|2, QR

~p~̄p =
1

2
N, degeneracy =

N∑

a=0

(
N

a

)
= 2N , (103)

(hRn , Q
R
n , degeneracy)
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=





(1
8
N + n, 3

2
N,
∑N

a=0

(
N

a

)(
M+n−a−1

n−a

)
) n ≥ N

(1
8
N + n, 1

2
N + n,

∑n
a=0

(
N

a

)(
M+n−a−1

n−a

)
) 0 < n < N

(1
8
N, 1

2
N + n,

(
N

N+n

)
) −N ≤ n ≤ 0

(1
8
N − (N + n),−1

2
N,
∑N

a=2N+n

(
N

a

)(
M−n−2N+a−1

−n−2N+a

)
) −2N < n < −N

(1
8
N − (N + n),−1

2
N,
∑N

a=0

(
N

a

)(
M−n−2N+a−1

−n−2N+a

)
) n ≤ −2N.

(104)

By using the property of the spectral flow and the fact that the fermion numbers

of the generators of WM,N
∞ agree with their U(1) charges, the Witten index eq. (86) is

expressed as

Index = q
N+2M

24
−h− 1

2
QchW

M,N
∞ (π + πτ,~0, τ). (105)

For the continuous series, the Witten index vanishes for all M,N . Therefore, for the

continuous series, there exists a supersymmetry, and it is unbroken.

In the case of the discrete series with M 6= N , the Witten index is not a number but

a q-series. Namely, at excited state, the number of bosonic states does not agree with

one of fermionic states. Therefore a supersymmetry does not exist in the discrete series

of WM,N
∞ (M 6= N). In the case of the discrete series with M = N , the Witten index

is just a number. So a (2N2 extended) supersymmetry exists. For representations n

(−N ≤ n ≤ 0), the Witten index is

Indexn = (−1)n
(

N

N + n

)
, (106)

and a supersymmetry is broken. For other representations, the Witten index vanishes

and a supersymmetry is unbroken.

6 Discussion

In this paper we have studied the irreducible unitary highest weight representations

of W infinity algebras, which are obtained from free field realizations, and derived

their character formulas. We have also constructed a new superalgebra WM,N
∞ , whose

bosonic sector is WM
∞ ⊕WN

1+∞. Its representations obtained from a free field realization

are classified into two classes, continuous and discrete. There exists a supersymmetry in

the continuous series, whereas a supersymmetry exists only for M = N in the discrete
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series. This is expected from the counting of the bosonic and fermionic degrees of

freedom of the generators:

W i−1,(αβ)(z) W̃ i,(ab)(z) Gi,aα(z) Ḡi,aα(z)

N2 + M2 − MN − MN = (M −N)2.
(107)

Perhaps a supersymmetry in the continuous series for M 6= N may be an accidental

one.

The representations with higher central charge and the realization independent rep-

resentations are future subjects. There are two difficulties in developing the realization

independent representation theories of W infinity algebras. One is that there are infi-

nite number of fields. The other is the complicated dependence on the eigenvalues of

higher-spin generators. For example, no one has succeeded in computing even the level

1 Kac determinant.

Although our representation theory is a restricted one, we have obtained the char-

acter formulas. It is interesting to apply these character formulas to models with W

infinity symmetry, for example [17], integrable non-linear differential equation systems

such as the KP hierarchy and the Toda hierarchy, four dimensional self-dual gravity

[18], Virasoro (W ) constraints on the partition function of the multi-matrix model [19],

and W infinity gravity [20, 21]. The modular properties of the characters are also

subjects of future research.

Finally, we mention the anomaly-free conditions. In refs.[22, 23], the anomaly-

free conditions for W∞, W1+∞ and W 1,1
∞ are considered by the BRS formalism and

ζ function regularization, and it is shown that their critical central charges are −2,

0 and −3 respectively. Similar calculations have been done for WN
1+∞ and W 1,N

∞ by

considering the ghost realizations of them, and their critical central charges are 0 and

−2 − N respectively [8]. For WM,N
∞ , we obtain kghost = M , and the critical central

charge is

(c̃+ c)critical = −(c̃+ c)ghost = −2M2 −MN. (108)
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