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Abstract

We study the continuum limit of the spin-1 chain in the non-Abelian bosonization

approach of Affleck and show that the Hamiltonian of integrable spin-1 chain yields

the Lagrangian of supersymmetric sine-Gordon model in the zero lattice spacing

limit. We also show that the quantum group generators of the spin-1 chain give

non-local charges of the supersymmetric sine-Gordon theory.
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One-dimensional quantum spin chains have played a very important role in the theory

of highly correlated electron systems. There has recently been experimental interest

in quasi one-dimensional systems of loosely coupled molecules. They can be described

(approximately) by anti-ferromagnetic spin chains. Some of them have spin s greater

than 1
2
. Spin chains have also played a special role in the theory of integrable systems.

XXZ spin chains are known to have quantum group symmetry Uqsu(2) [1]. This symmetry

underlies the integrability of spin chains. Quantum group symmetries[2] also appear in

some class of quantum field theories in 1+1 dimensions, e.g. non-local conserved charges

in the sine-Gordon theory generate the affine Uqŝu(2) symmetry[3]. In fact, the continuum

(field theory) limit of the XXZ spin-1
2

chain is known to be the sine-Gordon theory[4, 5].

In this letter we consider the continuum limit of the spin-1 chain in the non-Abelian

bosonization approach of Affleck[6]. We show that the Hamiltonian of the integrable spin-

1 chain yields the Lagrangian of supersymmetric sine-Gordon model in the zero lattice

spacing limit and that the Uqŝu(2) quantum group generators of the infinitely long chain

give non-local charges of the latter theory.

It is believed that, in contrast to the spin-1
2

case, the spin-1 Heisenberg model has a

mass gap[7]. The more general spin-1 chain with isotropic bilinear-biquadratic Hamilto-

nian H = J
∑

n[~Sn+1 · ~Sn − b(~Sn+1 · ~Sn)2] is also conjectured to be gapful for b 6= ±1. We

are interested in the case of b = 1, which is an integrable point and gapless[8], and hence it

makes sense to consider its field theory limit. Integrable deformation of this Hamiltonian

incorporating anisotropy was constructed in ref.[9] and was further studied in ref.[10].

HXXZ = J
∑

n

[
~Sn+1 · ~Sn − (~Sn+1 · ~Sn)2

+1
2
(q − q−1)2(S3

n+1S
3
n − (S3

n+1S
3
n)2 + (S3

n+1)
2 + (S3

n)2)

−1
2
(q + q−1 − 2){S3

n+1S
3
n, S

+
n+1S

−
n + S−

n+1S
+
n } + 1

2
(q2 − q−2)(S3

n+1 − S3
n)

]
. (1)

This XXZ Hamiltonian commutes with Uqsu(2), whose generators are H1 and E±
1 :

qH1 = · · · q2S3
n+1q2S3

nq2S3
n−1 · · · , E±

1 =
√

[2]/2
∑

n

· · · qS3
n+1S±

n q
−S3

n−1 · · · , (2)

where S± = S1±iS2 and [x] = (qx−q−x)/(q−q−1). For infinitely long chain, in which case

the last boundary term can be discarded, this symmetry is enhanced to the affine quantum

group symmetry Uq ŝu(2) with level 0 [11], whose generators are H1, E
±
1 , H0 = −H1 and

E±
0 =

√
[2]/2

∑
n · · · q−S3

n+1S∓
n q

S3
n−1 · · ·.
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To derive the continuum limit of (1) we use the oscillator representation of spin-1

operator Sa
n. In view of the lack of the Jordan-Wigner transformation for the spin-1

case, we employ the construction of Sa
n out of a pair of spin-1

2
operators[6, 5]. We will

comment on other methods later. To get s = 1 we need two (f = 1, 2) replicas of doublet

(α = 1, 2) complex fermions ψαf
n . They obey the canonical anticommutation relations

{ψαf
n , ψβg†

m } = δαβδfgδnm. The spin-1 operator is represented as

Sa
n = 1

2
ψαf†

n σa
αβψ

βf
n , (3)

where σa’s are Pauli matrices. On each lattice site there are 24 states obtained by acting

creation operators ψαf†
n on the vacuum |0〉n defined by ψαf

n |0〉n = 0. Spin-1 states |1, m〉n
are obtained by acting the lowering operator S−

n on the highest weight state |1, 1〉n =
∏

f ψ
1f†
n |0〉n. This spin-1 representation space is characterized by[6]

~S2
n|∗〉L = 2|∗〉L, or equivalently ψαf†

n ψαg
n |∗〉L = δfg|∗〉L. (4)

Here the suffix L refers to the lattice theory. Thus we impose the above constraint to

project out three spin-1 states |1, m〉n from 16 states on each site.

The second equation of (4) means that a half of the particle states is filled on each site.

In the case of spin-1
2
, an analysis of the Hubbard model shows that this condition implies

half-filling in the momentum space. By a similar analysis of multi-band Hubbard models,

one can argue that this is the case for higher spins[6, 5]. We define the half-filling vacuum

|0〉HF as the state in which particle states are filled up to the Fermi sea of momentum

kF = π/2a. Low energy excitations are creations of fermions and holes near the Fermi

sea. To describe such excitations we introduce chiral fermions ψαf
±,ℓ on a pair of even and

odd lattice sites:

ψαf
2ℓ = (−1)ℓ(ψαf

+,ℓ + ψαf
−,ℓ)/

√
2, ψαf

2ℓ−1 = −i(−1)ℓ(ψαf
+,ℓ − ψαf

−,ℓ)/
√

2. (5)

The fast oscillating term (−1)ℓ comes from exp(±ikFa2ℓ) and exp(±ikFa(2ℓ − 1)). The

spin operator (3) is expressed in terms of chiral fermions as

Sa
2ℓ = 1

2
(Ja

ℓ +Ga
ℓ ), Sa

2ℓ−1 = 1
2
(Ja

ℓ −Ga
ℓ ), (6)

where

Ja
±,ℓ = 1

2
ψαf†
±,ℓ σ

a
αβψ

βf
±,ℓ, Ja

ℓ = Ja
+,ℓ + Ja

−,ℓ, Ga
ℓ = 1

2
(ψαf†

+,ℓ σ
a
αβψ

βf
−,ℓ + ψαf†

−,ℓ σ
a
αβψ

βf
+,ℓ). (7)
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We will present the derivation of the continuum limit of the Hamiltonian H of isotropic

spin-1 chain. Extension to the anisotropic case HXXZ will be briefly discussed later. We

take the zero lattice spacing limit (a→ 0). The space coordinate is x = 2aℓ and the sum

is replaced by the integral 2a
∑

ℓ →
∫
dx. There are a few alternative ways of computing

the continuum Hamiltonian depending on the different stages at which we move from the

lattice to continuum theory. We take the prescription of taking the a → 0 limit in an

early stage and computing the operator products of currents in the continuum theory.

We have also made the computation in the lattice theory taking the a → 0 limit in the

resulting expression. We have obtained the same physical results (modulo some subtleties

related to regularization).

In the continuum 1√
2a
ψαf
±,ℓ → ψαf

± (x) and their propagators are 〈ψαf†
± (x)ψβg

± (y)〉 =

δαβδfg(∓2πi)−1(x − y ± iǫ)−1, where ±iǫ is the UV cutoff in the continuum theory. We

assume the existence of the continuum (field theory) limit of lattice spin-1 states and the

half-filled vacuum: |∗〉L → |∗〉FT , |0〉HF → |0〉FT . Here suffices L, FT and HF refer

to lattice, field theory and half filling. Normal ordering of fermions refers to this |0〉FT .

Currents in the continuum are

(2a)−1Ja
±,ℓ → Ja

±(x) = 1
2
(ψαf†

± σa
αβψ

βf
± )(x), (8)

(2a)−1Ga
ℓ → Ga(x) = 1

2
(ψαf†

+ σa
αβψ

βf
− + ψαf†

− σa
αβψ

βf
+ )(x) (9)

and their operator product expansions (OPE) are easily calculated. For example,

Ja
±(x)J b

±(0) = (∓2πix)−2δab + (∓2πix)−1iǫabcJc
±(0) + (Ja

±J
b
±)(0) + · · · , (10)

Ja
±(x)Gb(0) = (∓2πix)−1(±1

4
δabF (0) + 1

2
iǫabcGc

±(0)) + (Ja
±G

b)(0) + · · · , (11)

where F (x) = (ψαf†
+ ψαf

− − ψαf†
− ψαf

+ )(x). The first equation means that Ja
± define the

ŝu(2) × ŝu(2) Kac-Moody algebra of level k = 2, as we have designed. Following Affleck

we assume that the states in the field theory satisfy the continuum limit of the spin-1

constraint (4)[6]

( ~J 2 + ~G2)(x)|∗〉FT = 0, ( ~J · ~G+ ~G · ~J)(x)|∗〉FT = 0, (12)

where (AB)(x) stands for normal ordering defined by the regular part of OPE.

We are now ready to compute the a → 0 limit of the Hamiltonian H . Using (~Sn+1 ·
~Sn)2 = 1

4
{Sa

n+1, S
b
n+1}{Sa

n, S
b
n} − 1

2
~Sn+1 · ~Sn, the Hamiltonian is now written as

H = 2aJ
∫
dx

[
3
2
(H(2)

e + H(2)
o )(x) − (H(4)

e + H(4)
o )(x)

]
, (13)
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where suffices e and o refer to even and odd n, and

(2a)−2~S2ℓ+1 · ~S2ℓ → H(2)
e (x) = 1

4
( ~J − ~G)(x+ 2a) · ( ~J + ~G)(x), (14)

(2a)−2 1
4
{Sa

2ℓ+1, S
b
2ℓ+1}{Sa

2ℓ, S
b
2ℓ} →

H(4)
e (x) = (2a)2 1

16
[(πǫ)−2δab + (JaJ b +GaGb)(x+ 2a) − (JaGb +GaJ b)(x+ 2a)]

×[(πǫ)−2δab + (JaJ b +GaGb)(x) + (JaGb +GaJ b)(x)], (15)

and similar expressions for H(2)
o and H(4)

o . We have used the fact that (JaJ b +GaGb) and

(JaGb + GaJ b) are symmetric in a and b. The relevant terms of the Hamiltonian can be

obtained using the OPE such as (10) and (11). The results are

H(2)
e + H(2)

o = 1
2
( ~J 2 − ~G2), (16)

H(4)
e + H(4)

o = −1/(2π)2[1
2
( ~J 2 − ~G2) + 1

2
( ~K2) + 3

4
(F 2)]

+(a/πǫ)2 1
2
( ~J 2 + ~G2) − (2a)−115i/(32π3)F, (17)

where ~K = ~J+− ~J− (the coefficients depend on how the continuum theory is regularized).

There appear operators F , ~G2 and F 2 in addition to the composites of the currents Ja
± of

the ŝu(2) Kac-Moody algebra of level 2, which we denote by ŝu(2)2. The divergent term

a−1F violates the invariance under the translation by a. We should discard this term

assuming the lattice regularization respecting this invariance.

Introducing time t, the Hamiltonian can be converted to the Lagrangian

L = 1
2
i(ψαf†

+

↔
∂ 0 ψ

αf
+ + ψαf†

−
↔
∂ 0 ψ

αf
− ) −H. (18)

As we have designed, ψαf
± (x) become right(left)-moving fermions ψαf

± (x±), where x± =

x0 ∓ x1 = t∓ x. By evaluating the operator products of Ga(x+, x−) and F (x+, x−) with

Ja
±(x±), we have found that Ga and F are spin (1

2
, 1

2
) multiplet of ŝu(2)2 × ŝu(2)2 and

( ~G2 − 1
4
F 2) is a singlet. This implies that we should set (F 2 − 4 ~G2)(x) = 0. After using

this relation and the constraint (12), the Hamiltonian is

H = 2aJ
∫
dx[A( ~J 2

+ + ~J 2
− )(x) + 2B( ~J+ · ~J−)(x)], (19)

A = 3[1 − 1/(2π)2]/2, B = [3 − 5/(2π)2]/2. (20)

We now begin to see the emergence of the supersymmetric sine-Gordon theory. After

normalizing J correctly(J ∼ a−1), the first term on the r.h.s. of (19) is the Hamiltonian of
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the Wess-Zumino-Witten model with level 2. This model has the central charge c = 3/2

and is supersymmetric. The second term is a perturbation to the conformal invariant

theory and the resulting theory is the super sine-Gordon theory with β =
√

4π [12, 13].

To express the Hamiltonian in a more familiar form, we use the fact that the Kac-

Moody algebra ŝu(2)2 is represented by a real boson and a real fermion (Z2 parafermion)[9]:

J3
±(x±) = ±

√
1/π∂±φ±(x±), J+

± (x±) = ψ±(x±)
√
µ/πe±i

√
4πφ±(x±), J−

± = (J+
± )†, (21)

where we have suppressed the normal ordered symbol and “cocycle factors” which en-

sure the commutativity of right and left currents. The propagators of φ± and ψ± are

〈φ±(x±)φ±(0)〉 = − 1
4π

log(iµx±), 〈ψ±(x±)ψ±(0)〉 = (2πix±)−1. Using the identity[14]

µ2 cos2(
√

4πφ) = π
2
(∂φ)2, the Lagrangian becomes

L =
1

2
∂µφ∂

µφ+
i

2
ψ̄γµ∂µψ +

1

4
λβψ̄ψ cos(βφ) +

1

8
λ2β2 cos2(βφ), (22)

where β =
√

4π and λ = µB/2πA. Here ψ = (ψ+, ψ−)T . This is the super sine-Gordon

model with β =
√

4π. For this value of β the last two terms in (22) are (irrelevantly)

marginal.

To get the model with β <
√

4π we should consider the anisotropic case HXXZ . A new

feature is that the Hamiltonian (1) contains the (G3G3) term. In the case of spin-1
2
, the

(G3G3) term can be expressed in terms of ŝu(2)1 currents Ja
± after solving the constraint

like (4). In the case of spin-1, we expect that the (G3G3) term can be expressed in terms

of ŝu(2)2 currents Ja
± by solving the constraint (4). Then, the anisotropic terms (J3J3)

result in a change of the normalization of φ and we must rescale φ→ β√
4π
φ, as discussed

in ref.[5] in the case of spin-1
2
. Finally we get the Lagrangian of supersymmetric sine-

Gordon theory (22) with a general value of β. Unfortunately we are not yet able to solve

the constraint (4) explicitly.

Next we consider the continuum limit of the Uq ŝu(2)0 generators (2). They are rewrit-

ten, without any approximation, as qH1 = q2
∑

ℓ
J3

ℓ and

E±
1 =

√
[2]/2

∑

ℓ

q
∑

ℓ′>ℓ
J3

ℓ′

[
S±

2ℓq
−S3

2ℓ−1 + qS3
2ℓS±

2ℓ−1

]
q−

∑
ℓ′<ℓ

J3

ℓ′ . (23)

Taking the continuum limit, they are expressed in terms of Ja
± as qH1 = q2

∫
dxJ3(x) and

E±
1 =

√
[2]/2

∫ ∞

−∞
dxq

∫
∞

x
dx′J3(x′)J±(x)q

−
∫ x

−∞
dx′J3(x′)

, (24)

6



and similar expressions for H0 and E±
0 . The chiral bosons φ± are represented in terms

of φ and its conjugate momentum π = ∂0φ as φ±(t, x) = 1
2
[φ(t, x) ∓ ∫ x

−∞ dx′π(t, x′)].

Under the rescaling φ → β√
4π
φ, the conjugate momentum must rescale as π →

√
4π
β
π.

After expressing Ja
± in terms of φ± and ψ±, and rescaling φ, quantum group generators

becomes qH1 = q−
β

π
(φ(∞)−φ(−∞)) and

E±
1 =

√
[2]/2

√
µ/πq−

β

2π
(φ(∞)+φ(−∞))

∫ ∞

−∞
dx(ψ+e

i 4π
β

φ+ + ψ−e
i 4π

β
φ+−iβφ), (25)

and similar expressions for other generators, where q = ei2π2/β2−iπ/2. These expressions

agree with the non-local charges in the supersymmetric sine-Gordon theory[13] up to

some constant factor. We can also show that the continuum limit of the quantum group

generators of the spin-1
2

XXZ chain agree with the non-local charges in the sine-Gordon

theory[3].

We comment on other oscillator representations of the spin-1 operator:

(i) Spin-1 version of Jordan-Wigner transformation. Jordan-Wigner transformation for

spin-1
2

case has an advantage that there are no constraints like (4). This is because the

Fock space on each site (|0〉n, ψ†|0〉n, (ψ†2|0〉n = 0)) agrees with the spin-1
2

representation

space. The spin-1 version is to introduce a “parafermion” such that its Fock space on

each site is three dimensional (|0〉n, ψ†|0〉n, ψ†2|0〉n, (ψ†3|0〉n = 0)), which can be identified

with the spin-1 representation space.

(ii) Triplet real fermions. The supersymmetric sine-Gordon Hamiltonian is expressed in

terms of the ŝu(2)2 currents, and the level 2 currents are realized by a triplet of real

fermions[9]. It seems natural to introduce triplet real fermions from the beginning and

write Sa
n = −1

2
iǫabcψb

nψ
c
n. Real fermions on each site, however, do not allow a definite

particle picture. Sa
n acts on ψa

n as spin-1 representation by adjoint action [Sa
n, [S

a
n, ψ

b
n]] =

2ψb
n, and Sa

nS
a
n = 3

4
6= 2, in contrast with (4). Nevertheless it is tempting to pursue

this possibility further. In this construction of Sa
n there appear the operators F and Ga

which obey the OPE similar to those discussed above. The Ga can be shown to satisfy

the constraint (12). The computation of the continuum Hamiltonian is straightforward

and we get the same form as (19) and hence the supersymmetric sine-Gordon theory.

Presumably the field theory treatment of the spin-1 chain suggested by Tsvelik[15] can

be derived in this way.

Our derivation of the supersymmetric sine-Gordon theory as the continuum limit of

XXZ spin-1 chain is rather heuristic. However, the fact that the connection of the quantum
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group generators in the lattice theory and those in the continuum theory is correctly

obtained supports our conclusion. A rigorous proof can be made by carrying out an

analysis based on the Bethe ansatz similar to that used to prove the equivalence of the

continuum limit of XXZ(XYZ) spin-1
2

chain and the sine-Gordon theory[4].

We have shown that the continuum theory possesses supersymmetry. The question

arises whether the spin-1 chain has supersymmetry for finite lattice spacing or supersym-

metry emerges only in the zero lattice spacing. This question can be answered by making

a more rigorous treatment mentioned above.

The present approach of deriving the continuum limit can be applied to other cases of

integrable spin chains: (a) The spin-1 Hamiltonian with b = −1 is known to have SU(3)

symmetry[16]. We expect to get the affine ŝu(3) Toda field theory in the continuum limit.

(b) For the higher spin case we introduce 2s doublets of fermions to express the spin

operator. We expect to get the fractional supersymmetric sine-Gordon theory[17] in the

continuum.
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