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Abstract

We construct a realization of the quantum affine algebra Uq(ŝlN ) of an arbitrary

level k in terms of free boson fields. In the q → 1 limit this realization becomes

the Wakimoto realization of ŝlN . The screening currents and the vertex opera-

tors(primary fields) are also constructed; the former commutes with Uq(ŝlN ) mod-

ulo total difference, and the latter creates the Uq(ŝlN ) highest weight state from the

vacuum state of the boson Fock space.
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1 Introduction

Chiral algebras such as the Virasoro and current algebras play a central role in the con-

formal field theory (CFT) in two dimensional space-time. This theory is a quantum field

theory (QFT) of massless particles, in other words, a (massive) QFT at a critical point

(renormalization-group fixed point)[1]. Perturbing CFT’s suitably, we get integrable mas-

sive QFT’s [2, 3, 4]. In these theories, the Virasoro algebra does not exist any longer.

In many cases the quantum affine Lie algebra plays a crucial role instead of the Virasoro

algebra[5]. This quantum algebra is, for a large part, at the origin of the integrability.

Moreover it can almost determine the S-matrix of the theory, e.g. sine-Gordon model[5].

The Wess -Zumino -Novikov -Witten (WZNW) model is a fundamental example of

CFT’s; many CFT’s can be realized through a coset construction of WZNW models. The

WZNW model has been studied based on the representation theory of the affine Lie alge-

bra. Correlation functions of this model, which are vacuum expectation values of vertex

operators, satisfy certain holomorphic differential equations, what is called, Knizhnik-

Zamolodchikov (KZ) equations[6, 7]. We expect that “q-WZNW model”, which has a

symmetry of the quantum affine algebra, is certain massive deformation of the WZNW

model. Correlation functions of the q-WZNW model satisfy q-difference equations (q-KZ

equations)[8, 9]. Connection matrices of solutions for q-KZ equations are related to ellip-

tic solutions of the Yang-Baxter equations of RSOS models [9]. An application of q-vertex

operators based on Uq(ŝl2) was performed in diagonalization of the XXZ spin chain[10].

Free field realizations of the Virasoro and affine Lie algebras were useful for studying

representation theories[11] and calculating correlation functions[12, 13]. It is expected

that this is also the case for the quantum affine algebras. In fact, the integral formula

for correlation functions of the local operators of the XXZ spin chain was found by using

the free boson realization of Uq(ŝl2) and bosonized q-vertex operators[14, 15]. To study

higher rank versions of the XXZ spin chain, sine-Gordon model, etc., we need free field

realizations of the quantum affine algebras.

In this paper we construct a free boson realization of the quantum affine algebra

Uq(ŝlN ) with an arbitrary level k. In the q → 1 limit, it becomes the bosonized version

of the Wakimoto realization of ŝlN [16, 17, 18]. Free field realizations of Uq(ŝlN) with

level 1 were constructed in [19]. Free field realizations of Uq(ŝl2) with an arbitrary level

were constructed by several authors[20, 21, 22, 23] and that of Uq(ŝl3) was obtained by

the present authors [24]. We construct a free boson realization of Uq(ŝlN) by affinizing

the Heisenberg realization (q-difference operator realization) of Uq(slN)[25] and prove it

by the OPE (operator product expansion) technique. The screening currents and the

vertex operators(primary fields) are also constructed. They are necessary ingredients

for calculating correlation functions. Certain integral of the screening current commutes
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with Uq(ŝlN) and the vertex operator creates the highest weight state of Uq(ŝlN) from the

vacuum state of the boson Fock space.

This paper is organized as follows. In section 2 we fix our notations and recall the

definition of Uq(ŝlN). We construct a free field realization of Uq(ŝlN) in section 3, and the

screening currents and the vertex operators in section 4. Section 5 is devoted to discus-

sion. The grading operator is also bosonized. In Appendix A we present the Heisenberg

realization of Uq(slN). In Appendix B q-difference expressions of our free field realization

are given. In Appendix C,D we give useful formulas and some details of calculations.

2 Notations

Throughout this paper, complex numbers q and k are fixed. q is assumed to be a generic

value with |q| < 1. We will use the standard symbol [x],

[x]
def
=
qx − q−x

q − q−1
, (2.1)

and
∑n−1

r=n ∗
def
= 0,

∏n−1
r=n ∗

def
= 1. Let ᾱi, Λ̄i (1 ≤ i ≤ N − 1), (aij)1≤i,j≤N−1, be the simple

roots, fundamental weights, the Cartan matrix of slN respectively. (·, ·) is the symmetric

bilinear form; (ᾱi, ᾱj) = aij, (Λ̄i, ᾱj) = δij. g stands for the dual Coxeter number of slN ,

i.e., g = N .

The q-difference operator with a parameter α is defined by[20]

α∂zf(z)
def
=
f(qαz)− f(q−αz)

(q − q−1)z
. (2.2)

The Jackson integral with parameters p ∈ C (|p| < 1) and s ∈ C
× is defined by

∫ s∞

0
f(z)dpz

def
= s(1− p)

∑

n∈Z

f(spn)pn. (2.3)

These operations satisfy the following property:
∫ s∞

0
α∂zf(z)dpz = 0 for p = q2α. (2.4)

The deformed commutator with a parameter p ∈ C is

[A,B]p
def
= AB − pBA. (2.5)

The quantum affine algebra Uq(ŝlN ) is the associative algebra over C with Chevalley

generators e±i , invertible ti (i = 0, 1, · · · , N − 1), and the following relations[26]4:

[ti, tj] = 0, (2.6)

4For the grading operator d, see section 5.
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tie
±
j t

−1
i = q±aextij e±j , (2.7)

[e+i , e
−
j ] = δij

ti − t−1
i

q − q−1
, (2.8)

and
1−aextij∑

r=0

(−1)r
[
1− aextij

r

]
(e±i )

1−aextij −re±j (e
±
i )

r = 0, (2.9)

where (aextij )0≤i,j≤N−1 is the Cartan matrix of the extended Dynkin diagram of slN and

[n
r
]
def
= [n]!

[r]![n−r]!
, [n]!

def
=

∏n
r=1[r].

Uq(ŝlN) is isomorphic to the associative algebra over C with Drinfeld generators E±,i
n

(n ∈ Z), H i
n (n ∈ Z − {0}), invertible Ki (i = 1, 2, · · · , N − 1), invertible γ, and the

following relations[27]:

γ : central element, (2.10)

[Ki, H
j
n] = 0, KiE

±,j
n K−1

i = q±aijE±,j
n , (2.11)

[H i
n, H

j
m] =

1

n
[aijn]

γn − γ−n

q − q−1
δn+m,0, (2.12)

[H i
n, E

±,j
m ] = ±1

n
[aijn]γ

∓ 1
2
|n|E

±,j
n+m, (2.13)

[E+,i
n , E−,j

m ] =
δij

q − q−1

(
γ

1
2
(n−m)ψi

+,n+m − γ−
1
2
(n−m)ψi

−,n+m

)
, (2.14)

and

[E±,i
n+1, E

±,j
m ]q±aij + [E±,j

m+1, E
±,i
n ]q±aij = 0, (2.15)

[E±,i
n , E±,j

m ] = 0 for aij = 0, (2.16)

[E±,i
n , [E±,i

m , E
±,j
ℓ ]q∓1 ]q±1 + [E±,i

m , [E±,i
n , E

±,j
ℓ ]q∓1]q±1 = 0 for aij = −1. (2.17)

Here ψi
±,n are defined by the following equation:

∑

n∈Z

ψi
±,nz

−n def
= K±1

i exp
(
±(q − q−1)

∑

±n>0

H i
nz

−n
)
. (2.18)

Let H i
0 be defined by

Ki
def
= exp((q − q−1)1

2
H i

0), (2.19)

then eqs.(2.11)-(2.13) hold for H i
n (n ∈ Z)5. Eq.(2.11) is derived from eqs.(2.12),(2.13).

Defining the fields H i(z), E±,i(z) and ψi
±(z) as

H i(z)
def
=

∑

n∈Z

H i
nz

−n−1, E±,i(z)
def
=

∑

n∈Z

E±,i
n z−n−1, ψi

±(z)
def
=

∑

n∈Z

ψi
±,nz

−n, (2.20)

5 In the case of n = 0, 1
n
∗ should be understood as limn→0

1
n
∗. For example, limn→0

1
n
[n] = 2 log q

q−q−1 ,

limn→0
1
n
[aijn]

γn−γ−n

q−q−1 = 0, limn→0
1
n
[aijn]γ

∓ 1

2
|n| = 2 log q

q−q−1 aij . In the following, this convention is

assumed.
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the above relations can be rewritten as formal power series equations:

[ψi
±(z), ψ

j
±(w)] = 0, (2.21)

(z − qaijγ−1w)(z − q−aijγw)ψi
+(z)ψ

j
−(w)

= (z − qaijγw)(z − q−aijγ−1w)ψj
−(w)ψ

i
+(z), (2.22)

(z − q±aijγ∓
1
2w)ψi

+(z)E
±,j(w) = (q±aijz − γ∓

1
2w)E±,j(w)ψi

+(z), (2.23)

(z − q±aijγ∓
1
2w)E±,j(z)ψi

−(w) = (q±aijz − γ∓
1
2w)ψi

−(w)E
±,j(z), (2.24)

[E+,i(z), E−,j(w)] =
δij

(q − q−1)zw

(
δ(z−1wγ)ψi

+(γ
1
2w)− δ(z−1wγ−1)ψi

−(γ
− 1

2w)
)
,(2.25)

and

(z − q±aijw)E±,i(z)E±,j(w) = (q±aijz − w)E±,j(w)E±,i(z), (2.26)

E±,i(z)E±,j(w) = E±,j(w)E±,i(z) for aij = 0, (2.27)

E±,i(z1)E
±,i(z2)E

±,j(w)− (q + q−1)E±,i(z1)E
±,j(w)E±,i(z2)

+E±,j(w)E±,i(z1)E
±,i(z2) + (replacement : z1 ↔ z2) = 0 for aij = −1,(2.28)

where δ(x) is given by

δ(x)
def
=

∑

n∈Z

xn. (2.29)

Correspondence between Chevalley generators and Drinfeld generators are [27]:

ti 7→ Ki (i = 1, · · · , N − 1), (2.30)

e±i 7→ E
±,i
0 (i = 1, · · · , N − 1), (2.31)

t0 7→ γK−1
1 · · ·K−1

N−1, (2.32)

e+0 7→ [E−,N−1
0 , [E−,N−2

0 , [· · · , [E−,2
0 , E

−,1
1 ]q−1 · · ·]q−1 ]q−1K−1

1 · · ·K−1
N−1, (2.33)

e−0 7→ K1 · · ·KN−1[[· · · [E+,1
−1 , E

+,2
0 ]q, · · · , E+,N−2

0 ]q, E
+,N−1
0 ]q. (2.34)

Uq(ŝlN ) has the Hopf algebra structure. We take its coproduct ∆ as

∆(ti) = ti ⊗ ti, (2.35)

∆(e+i ) = e+i ⊗ 1 + ti ⊗ e+i , (2.36)

∆(e−i ) = e−i ⊗ t−1
i + 1⊗ e−i , (2.37)

and its antipode S is

S(ti) = t−1
i , S(e+i ) = −t−1

i e+i , S(e−i ) = −e−i ti. (2.38)

An explicit coproduct formula for all the Drinfeld generators has not been obtained.
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Let V (λ) be the Verma module over Uq(ŝlN) generated by the highest weight state

|λ〉, such that

H i
n|λ〉 = E±,i

n |λ〉 = 0 (n > 0), (2.39)

E
+,i
0 |λ〉 = 0, (2.40)

H i
0|λ〉 = ℓi|λ〉, (2.41)

where the classical part of the highest weight is λ̄ =
∑N−1

i=1 ℓiΛ̄i.

Next we will introduce boson fields. For a set of bosonic oscillators an (n ∈ Z), and

zero modes p̂a, q̂a whose commutation relations are

[an, am] = nρa(n)δn+m,0, a0 =
2 log q

q − q−1
p̂a, (2.42)

[p̂a, q̂a] = ρa, [an, q̂a] = 0 (n 6= 0), (2.43)

where ρa is a constant and ρa(n) satisfies

lim
q→1

ρa(n) = ρa, lim
n→0

ρa(n) =
(
2 log q

q − q−1

)2

ρa, (2.44)

we define free boson fields a(z;α) and a±(z) as follows:

a(z;α)
def
= −

∑

n 6=0

an

[n]
q−α|n|z−n + q̂a + p̂a log z, (2.45)

a±(z)
def
= ±

(
(q − q−1)

∑

±n>0

anz
−n + p̂a log q

)
(2.46)

= ±(q − q−1)
( ∑

±n>0

anz
−n + 1

2
a0

)
. (2.47)

We abbreviate a(z; 0) as a(z)
def
= a(z; 0). In the q→1 limit a(z;α) becomes the free chiral

boson field φ(z) used in the string theory and CFT (but the meaning of z is different).

Correspondence between a(z;α) and φ(z) = x̂−
√
−1p̂ log z +

√
−1

∑
n 6=0

1
n
αnz

−n is

a(z;α)→
√
−1

√
ρaφ(z), an→

√
ρaαn, p̂a→

√
ρap̂, q̂a→

√
−1

√
ρax̂. (2.48)

Moreover let us define boson fields with parameters L,M as follows:

a(L1, · · · , Lr;M1, · · · ,Mr|z;α)
def
= −

∑

n 6=0

[L1n] · · · [Lrn]

[M1n] · · · [Mrn]

an

[n]
q−α|n|z−n +

L1 · · ·Lr

M1 · · ·Mr

(q̂a + p̂a log z), (2.49)

a±(L1, · · · , Lr;M1, · · · ,Mr|z)
def
= ±

(
(q − q−1)

∑

±n>0

[L1n] · · · [Lrn]

[M1n] · · · [Mrn]
anz

−n +
L1 · · ·Lr

M1 · · ·Mr

p̂a log q
)

= ±(q − q−1)
( ∑

±n>0

[L1n] · · · [Lrn]

[M1n] · · · [Mrn]
anz

−n +
L1 · · ·Lr

M1 · · ·Mr

1
2
a0

)
. (2.50)
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We abbreviate these as

( L1

M1

L2

M2
· · · Lr

Mr

a
)
(z;α)

def
= a(L1, L2, · · · , Lr;M1,M2, · · · ,Mr|z;α), (2.51)

( L1

M1

L2

M2
· · · Lr

Mr

a±
)
(z)

def
= a±(L1, L2, · · · , Lr;M1,M2, · · · ,Mr|z). (2.52)

Normal ordering prescription : : is defined by




move an (n > 0) and p̂a to right,

move an (n < 0) and q̂a to left.
(2.53)

For example,

: exp
(
a(z;α)

)
:= exp

(
−

∑

n<0

an

[n]
(q−αz)−n

)
eq̂azp̂a exp

(
−

∑

n>0

an

[n]
(qαz)−n

)
. (2.54)

For multicomponent ai (ain, p̂
i
a, q̂

i
a), we treat them similarly; [ain, a

j
m] = nρija (n)δn+m,0,

etc. We can easily verify the following:

[
1
2

∑

i,j

∑

n∈Z

: ai−nρ
−1,ij
a (n)ajn :, aℓm

]
= −maℓm, (2.55)

where ρ−1,ij
a (n) is an inverse of ρija (n), i.e.,

∑
ℓ ρ

iℓ
a (n)ρ

−1,ℓj
a (n) = δij.

3 Free Boson Realization of Uq(ŝlN)

To construct the Drinfeld Uq(ŝlN) generators of level k in terms of free boson fields, we

need N2 − 1 free boson fields ai (1 ≤ i ≤ N − 1), bij and cij (1 ≤ i < j ≤ N). Their

commutation relations are

[ain, a
j
m] =

1

n
[(k + g)n][aijn]δn+m,0, [p̂ia, q̂

j
a] = (k + g)aij, (3.1)

[bijn , b
i′j′

m ] = −1

n
[n]2δii

′

δjj
′

δn+m,0, [p̂ijb , q̂
i′j′

b ] = −δii′δjj′, (3.2)

[cijn , c
i′j′

m ] =
1

n
[n]2δii

′

δjj
′

δn+m,0, [p̂ijc , q̂
i′j′

c ] = δii
′

δjj
′

, (3.3)

and the remaining commutators vanish.

Let us define fields H i(z), ψi
±(z) and E

±,i(z) (1 ≤ i ≤ N − 1) as follows6:

H i(z)
def
=

1

(q − q−1)z

×
( i∑

j=1

(bj,i+1
+ (q

k
2
+j−1z)− b

j,i
+ (q

k
2
+jz))

6 These operators are well-defined on the boson Fock space that will be defined in the next section.
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+ai+(q
g
2 z) +

N∑

j=i+1

(bi,j+ (q
k
2
+jz)− b

i+1,j
+ (q

k
2
+j−1z))

)

−(replacement : x+(q
αz) 7→ x−(q

−αz) for x = a, b), (3.4)

ψi
±(q

± k
2 z)

def
= : exp

( i∑

j=1

(bj,i+1
± (q±(k+j−1)z)− b

j,i
± (q±(k+j)z))

+ai±(q
± k+g

2 z) +
N∑

j=i+1

(bi,j± (q±(k+j)z)− b
i+1,j
± (q±(k+j−1)z))

)
:, (3.5)

E+,i(z)
def
=

−1

(q − q−1)z

×
i∑

j=1

: exp
(
(b+ c)j,i(qj−1z)

)

×
(

exp(bj,i+1
+ (qj−1z)− (b+ c)j,i+1(qjz))

− exp(bj,i+1
− (qj−1z)− (b+ c)j,i+1(qj−2z))

)

× exp
(j−1∑

ℓ=1

(bℓ,i+1
+ (qℓ−1z)− b

ℓ,i
+ (qℓz))

)
:, (3.6)

E−,i(z)
def
=

−1

(q − q−1)z

×
(i−1∑

j=1

: exp
(
(b+ c)j,i+1(q−(k+j)z)

)

×
(

exp(−bj,i− (q−(k+j)z)− (b+ c)j,i(q−(k+j−1)z))

− exp(−bj,i+ (q−(k+j)z)− (b+ c)j,i(q−(k+j+1)z))
)

× exp
( i∑

ℓ=j+1

(bℓ,i+1
− (q−(k+ℓ−1)z)− b

ℓ,i
− (q−(k+ℓ)z))

+ai−(q
− k+g

2 z) +
N∑

ℓ=i+1

(bi,ℓ− (q−(k+ℓ)z)− b
i+1,ℓ
− (q−(k+ℓ−1)z))

)
:

+ : exp
(
(b+ c)i,i+1(q−(k+i)z)

)

× exp
(
ai−(q

− k+g
2 z) +

N∑

ℓ=i+1

(bi,ℓ− (q−(k+ℓ)z)− b
i+1,ℓ
− (q−(k+ℓ−1)z))

)
:

− : exp
(
(b+ c)i,i+1(qk+iz)

)

× exp
(
ai+(q

k+g
2 z) +

N∑

ℓ=i+1

(bi,ℓ+ (qk+ℓz)− b
i+1,ℓ
+ (qk+ℓ−1z))

)
:

−
N∑

j=i+2

: exp
(
(b+ c)i,j(qk+j−1z)

)

×
(

exp(bi+1,j
+ (qk+j−1z)− (b+ c)i+1,j(qk+jz))

8



− exp(bi+1,j
− (qk+j−1z)− (b+ c)i+1,j(qk+j−2z))

)

× exp
(
ai+(q

k+g
2 z) +

N∑

ℓ=j

(bi,ℓ+ (qk+ℓz)− b
i+1,ℓ
+ (qk+ℓ−1z))

)
:
)
, (3.7)

where bii
def
= 0, cii

def
= 0 and (b+ c)ij

def
= bij + cij. These expressions are guessed from free

boson realizations of Uq(ŝl2)[20], Uq(ŝl3)[24] and the Heisenberg realization of Uq(slN)[25]

(Appendix A). q-difference expressions of these fields are given in Appendix B. In the q→1

limit, eqs.(3.4),(3.6) and (3.7) become the bosonized version of the Wakimoto realization

of ŝlN with level k[16, 17, 18].

From eqs.(3.4) and (2.19), H i
n and Ki are

H i
n =

i∑

j=1

(bj,i+1
n q−(k

2
+j−1)|n| − bj,in q

−(k
2
+j)|n|)

+ainq
− g

2
|n| +

N∑

j=i+1

(bi,jn q
−(k

2
+j)|n| − bi+1,j

n q−(k
2
+j−1)|n|), (3.8)

Ki = q
∑i

j=1
(p̂j,i+1

b
−p̂

j,i
b

)+p̂ia+
∑N

j=i+1
(p̂i,j

b
−p̂

i+1,j
b

)
. (3.9)

We obtain the following proposition:

Proposition 1 H i, ψi
±, E

±,i in eqs.(3.4)-(3.7) satisfy the relations eqs.(2.10)-(2.13) with

γ = qk, eq.(2.28), and the following relations:

E+,i(z)E−,j(w) ≃ E−,j(w)E+,i(z)

∼ reg.+
δij

(q − q−1)w

(
1

z − qkw
ψi
+(q

k
2w)− 1

z − q−kw
ψi
−(q

− k
2w)

)
, (3.10)

(z − q±aijw)E±,i(z)E±,j(w) ≃ (q±aijz − w)E±,j(w)E±,i(z) ∼ reg., (3.11)

E±,i(z)E±,j(w) ≃ E±,j(w)E±,i(z) ∼ reg. for aij = 0, (3.12)

where the symbol ≃ and ∼ mean equality in the OPE sense (in other words analytic

continuation sense), and ∼ means equality modulo regular parts.

Proof. A straightforward but tedious OPE calculation shows this proposition. We give

the useful formulas in Appendix C and how the poles cancel each other in Appendix D.

For eq.(2.28) some explanation is needed. Let us denote OPE of each term of E±,i(z) as

follows (see Appendix D for notation):

E±,i(A)(z)E±,j(B)(w) ≃ f
ijAB
± (z, w) : E±,i(A)(z)E±,j(B)(w) : . (3.13)

For i = j there are three cases:

f iiAB
± (z, w) = qℓ

z − w

z − q±2w
and f iiBA

± (w, z) = qℓ
w − z

w − q±2z
, (3.14)

9



f iiAB
± (z, w) = qℓ

q±2z − w

z − q±2w
and f iiBA

± (w, z) = qℓ, (3.15)

f iiAB
± (z, w) = qℓ and f iiBA

± (w, z) = qℓ
q±2w − z

w − q±2z
, (3.16)

where ℓ ∈ Z depends on i, j, A,B,±. For aij = −1 there are two cases7:

f
ijAB
± (z, w) = qm

q∓1z − w

z − q∓1w
and f jiBA

± (w, z) = qm, (3.17)

f
ijAB
± (z, w) = qm and f jiBA

± (w, z) = qm
q∓1w − z

w − q∓1z
, (3.18)

where m ∈ Z depends on i, j, A,B,±. These OPE equations can be translated to formal

power series equations:

E±,i(A)(z)E±,j(B)(w) = g
ijAB
± (z, w) : E±,i(A)(z)E±,j(B)(w) : . (3.19)

Eqs.(3.14)-(3.18) are translated to

giiAB
± (z, w) = qℓ(z − w)

1

z

∑

n≥0

(
q±2w

z

)n

and giiBA
± (w, z) = qℓ(w − z)

1

w

∑

n≥0

(
q±2 z

w

)n
, (3.20)

giiAB
± (z, w) = qℓ(q±2z − w)

1

z

∑

n≥0

(
q±2w

z

)n
and giiBA

± (w, z) = qℓ, (3.21)

giiAB
± (z, w) = qℓ and giiBA

± (w, z) = qℓ(q±2w − z)
1

w

∑

n≥0

(
q±2 z

w

)n
, (3.22)

g
ijAB
± (z, w) = qm(q∓1z − w)

1

z

∑

n≥0

(
q∓1w

z

)n
and gjiBA

± (w, z) = qm, (3.23)

g
ijAB
± (z, w) = qm and gjiBA

± (w, z) = qm(q∓1w − z)
1

w

∑

n≥0

(
q∓1 z

w

)n
, (3.24)

respectively. A product of three E’s can be expressed as

E±,i1(A1)(z1)E
±,i2(A2)(z2)E

±,i3(A3)(z3)

= gi1i2A1A2
± (z1, z2)g

i1i3A1A3
± (z1, z3)g

i2i3A2A3
± (z2, z3)

× : E±,i1(A1)(z1)E
±,i2(A2)(z2)E

±,i3(A3)(z3) : . (3.25)

We remark that this is a consequence of the bosonic realization. Using this fact, we obtain

E±,i(A1)(z1)E
±,i(A2)(z2)E

±,j(B)(w)− (q + q−1)E±,i(A1)(z1)E
±,j(B)(w)E±,i(A2)(z2)

+E±,j(B)(w)E±,i(A1)(z1)E
±,i(A2)(z2)

= giiA1A2
± (z1, z2)

(
g
ijA1B
± (z1, w)g

ijA2B
± (z2, w)− (q + q−1)gijA1B

± (z1, w)g
jiBA2
± (w, z2)

+gjiBA1
± (w, z1)g

jiBA2
± (w, z2)

)
× : E±,i(A1)(z1)E

±,i(A2)(z2)E
±,j(B)(w) : . (3.26)

7 For E−, there are extra poles. However, we can discard them because they cancel each other.
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In each case, this coefficient is antisymmetric with respect to z1 and z2. Therefore eq.(2.28)

holds. ✷

We remark that eqs.(3.10), (3.11), (3.12) imply eqs.(2.25), (2.26), (2.27) respectively.

Therefore we obtain our main statement:

Corollary 2 H i, ψi
±, E

±,i in eqs.(3.4)-(3.7) realize the quantum affine algebra Uq(ŝlN) in

the Drinfeld realization with γ = qk.

4 Screening Currents and Vertex Operators

To calculate correlation functions and investigate the irreducible representation, we need

screening operators, which commute with Uq(ŝlN ). Let us define the screening currents

Si(z) (i = 1, · · · , N − 1) as follows:

Si(z)
def
= : exp

(
−
( 1

k + g
ai
)
(z; k+g

2
)
)
: S̃i(z), (4.1)

S̃i(z)
def
=

−1

(q − q−1)z

×
N∑

j=i+1

: exp
(
(b+ c)i+1,j(qN−jz)

)

×
(

exp(−bi,j− (qN−jz)− (b+ c)i,j(qN−j+1z))

− exp(−bi,j+ (qN−jz)− (b+ c)i,j(qN−j−1z))
)

× exp
( N∑

ℓ=j+1

(bi+1,ℓ
− (qN−ℓ+1z)− b

i,ℓ
− (qN−ℓz))

)
: . (4.2)

We remark that S̃i(z) is nothing else but E+,N−i(z) with replacement bi,j± 7→−bN+1−j,N+1−i
∓ ,

(b+ c)i,j 7→ (b+ c)N+1−j,N+1−i. These screening currents have the following properties.

Proposition 3 Si, S̃i in eqs.(4.1),(4.2) and H i, E±,i in eqs.(3.4)-(3.7) satisfy the follow-

ing relations:

[H i
n, S

j(z)] = 0, (4.3)

E+,i(z)Sj(w) ≃ Sj(w)E+,i(z) ∼ reg., (4.4)

E−,i(z)Sj(w) ≃ Sj(w)E−,i(z)

∼ reg.+ δijk+g∂w

(
1

z − w
: exp

(
−
( 1

k + g
aj

)
(w;−k+g

2
)
)
:
)
, (4.5)

and

(z − q−aijw)S̃i(z)S̃j(w) ≃ (q−aijz − w)S̃j(w)S̃i(z) ∼ reg., (4.6)

S̃i(z)S̃j(w) ≃ S̃j(w)S̃i(z) ∼ reg. for aij = 0. (4.7)
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Proof. Straightforward (see Appendices C,D). ✷

Eqs.(4.3)-(4.5) can be expressed in the commutator form.

Corollary 4

[H i
n, S

j(z)] = 0, (4.8)

[E+,i
n , Sj(z)] = 0, (4.9)

[E−,i
n , Sj(z)] = δijk+g∂z

(
zn : exp

(
−
( 1

k + g
aj

)
(z;−k+g

2
)
)
:
)
. (4.10)

From this we get the desired property of the screening charges.

Corollary 5 If the Jackson integrals of the screening currents eq.(4.1),

∫ s∞

0
Si(z)dpz, p = q2(k+g), (4.11)

are convergent, they commute with Uq(ŝlN) generated by eqs.(3.4)-(3.7).

Next we will construct the vertex operators(primary fields), which create the Uq(ŝlN )

highest weight states from the vacuum state of the boson Fock space. The vacuum state

of the boson Fock space, |0〉, is defined by

ain|0〉 = bijn |0〉 = cijn |0〉 = 0 (n ≥ 0). (4.12)

Let |pa, pb, pc〉 be

|pa, pb, pc〉 def
= exp

(N−1∑

i,j=1

pia
a−1
ij

k + g
q̂ja +

∑

1≤i<j≤N

p
ij
b (−1)q̂ijb +

∑

1≤i<j≤N

pijc q̂
ij
c

)
|0〉, (4.13)

then |pa, pb, pc〉 is the highest weight state of the boson Fock space, i.e.,

ain|pa, pb, pc〉 = bijn |pa, pb, pc〉 = cijn |pa, pb, pc〉 = 0 (n > 0), (4.14)

p̂ia|pa, pb, pc〉 = pia|pa, pb, pc〉, p̂ijx |pa, pb, pc〉 = pijx |pa, pb, pc〉 (x = b, c). (4.15)

The boson Fock space F (pa, pb, pc) is generated by oscillators of negative mode on the

highest weight state |pa, pb, pc〉. E±,i
n change pb − pc only, S

i
n changes pa and pb − pc, H

i
n

does not change pa, pb, pc. |pa, 0, 0〉 has the following property:

Proposition 6 H i, E±,i in eqs.(3.4)-(3.7) act on |pa, 0, 0〉 as follows:

Xn|pa, 0, 0〉 = 0 (n > 0;X = H i, E±,i), (4.16)

E
+,i
0 |pa, 0, 0〉 = 0, (4.17)

H i
0|pa, 0, 0〉 = pia|pa, 0, 0〉. (4.18)
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Proof. Straightforward. Xn (n > 0) annihilate |pa, pb, pc〉 with pb + pc = 0, and E
+,i
0

annihilate |pa, 0, 0〉. ✷

This property is just the highest weight state condition of Uq(ŝlN).

Corollary 7 Using the highest weight state |pa, 0, 0〉 = |(ℓ1, · · · , ℓN−1), 0, 0〉, we get the

highest weight left module of Uq(ŝlN), V (λ),

V (λ) →֒
⊕

r∈Z
N(N−1)/2

F ((ℓ1, · · · , ℓN−1), r,−r), (4.19)

where the classical part of the highest weight is λ̄ = ℓ1Λ̄1+· · ·+ℓN−1Λ̄N−1 = (ℓ1, · · · , ℓN−1).

As is well known in CFT, this module is reducible.

Let us define the vertex operator with a weight λ̄ = (ℓ1, · · · , ℓN−1) and a parameter α,

φλ̄(z;α), as follows:

φλ̄(z;α)
def
=: exp

(N−1∑

i,j=1

( ℓi

k + g

min(i, j)

N

N −max(i, j)

1
aj

)
(z;α)

)
: . (4.20)

The highest weight state of Uq(ŝlN), |(ℓ1, · · · , ℓN−1), 0, 0〉, is created from the vacuum |0〉
by this operator with any parameters α and β,

|(ℓ1, · · · , ℓN−1), 0, 0〉 = lim
z→0

φλ̄(qβz;α)|0〉. (4.21)

Moreover this vertex operator has the following properties.

Proposition 8 φλ̄ in eq.(4.20) and H i, E±,i in eqs.(3.4)-(3.7) satisfy the following rela-

tions:

[H i
n, φ

λ̄(z;α)] =
1

n
[ℓin]q−(α+ g

2
)|n|znφλ̄(z;α), (4.22)

[E+,i
n , φλ̄(z;α)] = 0, (4.23)

and

(z − qℓ
i

w)E−,i(z)φλ̄(w;−k+g
2
) ≃ (qℓ

i

z − w)φλ̄(w;−k+g
2
)E−,i(z) ∼ reg. (4.24)

Proof. Straightforward. We use the q-analogue of the inverse of the Cartan matrix:

N−1∑

r=1

[airn]

[n]

[min(r, j)n][(N −max(r, j))n]

[Nn][n]
= δij . (4.25)

✷

We remark that eq.(4.24) can be rewritten as
[
E−,i

n , φλ̄(z;−k+g
2
)
]
qℓ

i = −z
[
φλ̄(z;−k+g

2
), E−,i

n−1

]
qℓ

i . (4.26)

From φλ̄(qβz;α) with appropriate α and β, we can construct the q-vertex operator

Φ(z)[9], which has an intertwining property. We will discuss this problem in the next

section.
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5 Discussion

In this paper we have constructed a free boson realization of Uq(ŝlN). We can also bosonize

the grading operator d. d is defined by the property for the Chevalley generators,

[d, ti] = 0, [d, e±i ] = ±δi0e±i , (5.1)

or equivalently, for the Drinfeld generators,

[d,H i
n] = nH i

n, [d, E±,i
n ] = nE±,i

n . (5.2)

Using eqs.(2.55) and (4.25), let us define the q-analogue of the Virasoro L0 operator[17, 18]

as follows:

L0
def
= 1

2

N−1∑

i,j=1

∑

n∈Z

: ai−n

n2

[n][(k + g)n]

[min(i, j)n][(N −max(i, j))n]

[Nn][n]
ajn : +

N−1∑

i,j=1

ρ̄i
a−1
ij

k + g
p̂ja

+1
2

∑

1≤i<j≤N

∑

n∈Z

: bij−n(−1)
n2

[n]2
bijn : +1

2

∑

1≤i<j≤N

p̂
ij
b

+1
2

∑

1≤i<j≤N

∑

n∈Z

: cij−n

n2

[n]2
cijn : +1

2

∑

1≤i<j≤N

p̂ijc , (5.3)

where ρ̄i = 1, i.e., ρ̄ = (1, 1, · · · , 1) =
∑N−1

i=1 Λ̄i is the half sum of positive roots of slN .

Then d = −L0 satisfies eq.(5.2) on the representation space given in Cor.7. The L0

eigenvalue of |(ℓ1, · · · , ℓN−1), 0, 0〉 is 1
2(k+g)

ℓia−1
ij (ℓ

j + 2ρ̄j)= 1
2(k+g)

(λ̄, λ̄+ 2ρ̄).

We have also constructed the screening currents and the vertex operators. Using

these, we can start the representation theory and calculation of correlation functions.

Like as ŝlN [28, 29], it is expected that the projection from the boson Fock space to the

irreducible Uq(ŝlN ) representation space can be done by BRST cohomology technique. In

fact, recently, this procedure has been worked out for Uq(ŝl2)[30]. The BRST operator is

constructed by using the screening current.

To calculate the Jackson integral formulas for the correlation functions, which are

solutions of q-KZ equation, we must first prepare the q-vertex operators Φ. We will

restrict ourselves to the type I [10] vertex operator Φ
V (ν)Vλ

V (µ) (z) : V (µ) → V (ν) ⊗ Vλz.

Φ
V (ν)Vλ

V (µ) (z) can be constructed from φλ̄(qβz;α) with appropriate α, β. From eq.(4.24), we

choose α = −k+g
2
. This choice agrees with refs.[31] (Uq(ŝl2) with an arbitrary level k) and

[32] (vector representation of Uq(ŝlN ) with k = 1). Starting from φλ̄(z)
def
= φλ̄(z;−k+g

2
),

we define φλ̄
i1,···,in(z) as follows:

φλ̄
i1,···,in(z)

def
=

[
φλ̄
i1,···,in−1

(z), E−,in
0

]
qx
, x = (λ̄−

n−1∑

j=1

ᾱij , ᾱin). (5.4)
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To determine β, we must the specify finite dimensional representation of Uq(ŝlN ). Re-

sults of refs.[31, 32] suggest β = k + g. Once the finite dimensional representation is

obtained and β is determined, we can construct the q-vertex operator Φ
V (ν)Vλ

V (µ) (z) from

our φλ̄
i1,···,in(q

βz). Then, we can calculate correlation functions of the q-vertex operators

in standard way. These problems are now under investigation.

To extend our results to arbitrary quantum affine Lie algebras, it may be important

to consider the geometrical interpretation of the free boson realization. For q = 1 case,

the β-γ system is suitable for the geometrical interpretation[17]. For q 6= 1 case, we define

the quantum β-γ fields, βij
α,±(z) (α = ±1), γij(z), as follows:

β1,±(z)
def
=

−1

(q − q−1)z
: exp

(
b±(z)− (b+ c)(q±1z)

)
:, (5.5)

β−1,±(z)
def
=

−1

(q − q−1)z
: exp

(
−b∓(z)− (b+ c)(q±1z)

)
:, (5.6)

γ(z)
def
= : exp

(
(b+ c)(z)

)
:, (5.7)

where we suppress the superscript ij. They are not free fields any longer. They satisfy

(z − qα+α′

w)βα,ǫ(z)βα′,ǫ′(w) = (qα+α′

z − w)βα′,ǫ′(w)βα,ǫ(z) (ǫ, ǫ′ = ±), (5.8)

β±1,±(z)β∓1,±(w) = β∓1,±(w)β±1,±(z), (5.9)

(z − q∓1w)β±1,±(z)γ(w) = (q∓1z − w)γ(w)β±1,±(z), (5.10)

(z − q∓1w)γ(z)β±1,∓(w) = (q∓1z − w)β±1,∓(w)γ(z), (5.11)

γ(z)γ(w) = γ(w)γ(z). (5.12)

Our free boson realization of Uq(ŝlN) is reexpressed by these quantum β-γ fields. In

the q → 1 limit, βα,+(z) − βα,−(z) and γ(z) become usual β(z) and γ(z) respectively.

These βα,±, γ fields are the affinization of q-oscillator(aa† − q±1a†a = q∓N ); a → γ,

a† → βα,+ − βα,− (see Appendix A). We expect that our realization in terms of the

quantum β-γ system acts on the q-deformed semi-infinite flag manifold[17].

Our free boson realization may be also useful to analyze the q-analogue of the Virasoro

and W algebras by the Hamiltonian reduction, and the representation at the critical level

k = −g.
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Appendix A

For the reader’s convenience, we give the result of [25], the Heisenberg realization of

Uq(slN ) with the weight λi ∈ C. Let us consider variables xij and derivatives ∂
∂xij

(1 ≤
i < j ≤ N). Their commutation relations are

[ ∂

∂xij
, xi′j′

]
= δii′δjj′, others = 0. (A.1)

Standard Chevalley generators of Uq(slN), e
±
i , ti = qhi (i = 1, · · · , N − 1), are realized as

follows:

hi
def
= −

i∑

j=1

(ϑj,i+1 − ϑj,i) + λi −
N∑

j=i+1

(ϑi,j − ϑi+1,j), (A.2)

e+i
def
=

i∑

j=1

xj,i
1

xj,i+1
[ϑj,i+1]q

−
∑j−1

ℓ=1
(ϑℓ,i+1−ϑℓ,i), (A.3)

e−i
def
=

i−1∑

j=1

xj,i+1
1

xj,i
[ϑj,i]q

∑i

ℓ=j+1
(ϑℓ,i+1−ϑℓ,i)−λi+

∑N

ℓ=i+1
(ϑi,ℓ−ϑi+1,ℓ)

+xi,i+1[λi −
N∑

ℓ=i+1

(ϑi,ℓ − ϑi+1,ℓ)]

−
N∑

j=i+2

xi,j
1

xi+1,j
[ϑi+1,j ]q

λi−
∑N

ℓ=j
(ϑi,ℓ−ϑi+1,ℓ), (A.4)

where ϑij
def
= xij

∂
∂xij

, xii
def
= 1, ϑii

def
= 0.

Our free field realization of Uq(ŝlN) is obtained by the following replacement with

suitable argument:

x 7→ e(b+c)(z), (A.5)

−ϑ 7→ ±b±(z), (A.6)

λ 7→ ±a±(z), (A.7)

[A(z)] 7→ eA+(z) − eA−(z)

(q − q−1)z
. (A.8)

Appendix B

In this appendix, we reexpress eqs.(3.4),(3.6),(3.7) and (4.1) by using the q-difference

operator. These expressions are not unique and we give one of them.

Using the following formulas

1

(q − q−1)z

(
a+(q

αz)− a−(q
−αz)

)
= 1∂za(z;α) =

∑

n∈Z

anq
−α|n|z−n−1, (B.1)
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1

(q − q−1)z
:
(
exp(±b±(z)− (b+ c)(qz))− exp(±b∓(z)− (b+ c)(q−1z))

)
:

=: 1∂z
(
exp(−c(z))

)
· exp(−b(z;∓1)) :, (B.2)

1

(q − q−1)z
:
(
exp(±a+(qαz))− exp(±a−(q−αz))

)
:

=: M∂z

(
exp

(
±
( 1

M
a
)
(z;α)

))
· exp

(
∓
( 1

M
a
)
(z;α −M)

)
:, (B.3)

1

(q − q−1)z
:
(
exp(b(qαz))− exp(b(q−αz))

)
:

=: M∂z

(
exp

(( α
M
b
)
(z)

))
· exp

((M − α

M
b
)
(z)

)
:, (B.4)

( α
M
b
)
(z)±

( 1

M
b
)
(z;±α + 1) =

(α± 1

M
b
)
(z; 1), (B.5)

eqs.(3.4),(3.6),(3.7) and (4.1) are rewritten as follows:

H i(z) = 1∂z
( i∑

j=1

(bj,i+1(z; k
2
+ j − 1)− bj,i(z; k

2
+ j))

+ai(z; g
2
) +

N∑

j=i+1

(bi,j(z; k
2
+ j)− bi+1,j(z; k

2
+ j − 1))

)
, (B.6)

E+,i(z) = −
i∑

j=1

: exp
(
(b+ c)j,i(qj−1z)

)

×1∂z
(
exp(−cj,i+1(qj−1z))

)
· exp(−bj,i+1(qj−1z;−1))

× exp
(j−1∑

ℓ=1

(bℓ,i+1
+ (qℓ−1z)− b

ℓ,i
+ (qℓz))

)
:, (B.7)

E−,i(z) = −
i−1∑

j=1

: exp
(
(b+ c)j,i+1(q−(k+j)z)

)

×1∂z
(
exp(−cji(q−(k+j)z))

)
· exp(−bji(q−(k+j)z; 1))

× exp
( i∑

ℓ=j+1

(bℓ,i+1
− (q−(k+ℓ−1)z)− b

ℓ,i
− (q−(k+ℓ)z))

+ai−(q
− k+g

2 z) +
N∑

ℓ=i+1

(bi,ℓ− (q−(k+ℓ)z)− b
i+1,ℓ
− (q−(k+ℓ−1)z))

)
:

+ : k+g∂z

(
exp

(( k + i

k + g
(b+ c)i,i+1

)
(z) +

( 1

k + g
ai
)
(z; k+g

2
)

+
N∑

ℓ=i+1

(( 1

k + g
bi,ℓ

)
(z; k + ℓ)−

( 1

k + g
bi+1,ℓ

)
(z; k + ℓ− 1)

)))

× exp
(( g − i

k + g
(b+ c)i,i+1

)
(z)−

( 1

k + g
ai
)
(z;−k+g

2
)
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−
N∑

ℓ=i+1

(( 1

k + g
bi,ℓ

)
(z; ℓ− g)−

( 1

k + g
bi+1,ℓ

)
(z; ℓ− g − 1)

))
:

+
N∑

j=i+2

: exp
(
(b+ c)i,j(qk+j−1z)

)

×1∂z
(
exp(−ci+1,j(qk+j−1z))

)
· exp(−bi+1,j(qk+j−1z;−1))

× exp
(
ai+(q

k+g
2 z) +

N∑

ℓ=j

(bi,ℓ+ (qk+ℓz)− b
i+1,ℓ
+ (qk+ℓ−1z))

)
:, (B.8)

Si(z) = − : exp
(
−
( 1

k + g
ai
)
(z; k+g

2
)
)

×
N∑

j=i+1

exp
(
(b+ c)i+1,j(qN−jz)

)

×1∂z
(
exp(−ci,j(qN−jz))

)
· exp(−bi,j(qN−jz; 1))

× exp
( N∑

ℓ=j+1

(bi+1,ℓ
− (qN−ℓ+1z)− b

i,ℓ
− (qN−ℓz))

)
: . (B.9)

These expressions are adequate for taking the q → 1 limit, because there is no de-

nominator q − q−1. In this limit α∂z, (
L1

M1
· · · Lr

Mr
a)(z;α), ( L1

M1
· · · Lr

Mr
a±)(z) become α∂z,

L1···Lr

M1···Mr
a(z), 0 respectively. Eqs.(3.4),(3.6) and (3.7) become the bosonized version of the

Wakimoto realization of ŝlN with level k[16, 17, 18]; βij(z) and γij(z) are expressed in

terms of bij(z) and cij(z) with q = 1 as follows[33]:

βij(z) = − : ∂z

(
exp

(
−cij(z)

))
· exp

(
−bij(z)

)
:, (B.10)

γij(z) = : exp
(
(b+ c)ij(z)

)
: . (B.11)

Appendix C

In this appendix we give useful formulas.

First we give formulas for a boson a in section 2 (see the footnote below eq.(2.19)).

[A,B] commute with A,B ⇒ [A, eB] = [A,B]eB, (C.1)

eAeB = e[A,B]eBeA, (C.2)

[
an,

( L1

M1
· · · Lr

Mr

a±
)
(z)

]
= ±θ(∓n > 0)(q − q−1)

[L1n] · · · [Lrn]

[M1n] · · · [Mrn]
nρa(n)z

n, (C.3)

[
an,

( L1

M1

· · · Lr

Mr

a
)
(z;α)

]
=

[L1n] · · · [Lrn]

[M1n] · · · [Mrn]

n

[n]
ρa(n)q

−α|n|zn, (C.4)
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[( L1

M1
· · · Lr

Mr

a+
)
(z),

( L′
1

M ′
1

· · · L
′
s

M ′
s

a−
)
(w)

]

= −(q − q−1)2
∑

n>0

[L1n] · · · [Lrn]

[M1n] · · · [Mrn]

[L′
1n] · · · [L′

sn]

[M ′
1n] · · · [M ′

sn]
nρa(n)

(w
z

)n
, (C.5)

[( L1

M1
· · · Lr

Mr

a
)
(z;α),

( L′
1

M ′
1

· · · L
′
s

M ′
s

a−
)
(w)

]

= (q − q−1)
∑

n>0

[L1n] · · · [Lrn]

[M1n] · · · [Mrn]

[L′
1n] · · · [L′

sn]

[M ′
1n] · · · [M ′

sn]

n

[n]
ρa(n)q

−αn
(w
z

)n

+
L1 · · ·Lr

M1 · · ·Mr

L′
1 · · ·L′

s

M ′
1 · · ·M ′

s

ρa log q, (C.6)

[( L′
1

M ′
1

· · · L
′
s

M ′
s

a+
)
(z),

( L1

M1

· · · Lr

Mr

a
)
(w;α)

]
= eq.(C.6), (C.7)

[( L1

M1
· · · Lr

Mr

a
)
(z;α),

( L′
1

M ′
1

· · · L
′
s

M ′
s

a
)
(w; β)

]

= −
∑

n 6=0

[L1n] · · · [Lrn]

[M1n] · · · [Mrn]

[L′
1n] · · · [L′

sn]

[M ′
1n] · · · [M ′

sn]

n

[n]2
ρa(n)q

−(α+β)|n|
(w
z

)n

− L1 · · ·Lr

M1 · · ·Mr

L′
1 · · ·L′

s

M ′
1 · · ·M ′

s

ρa log
w

z
, (C.8)

where θ(P ) is a step function, θ(P ) = 1(0) when the proposition P is true(false). These

are formal power series equations.

Next we give specific formulas often used in proofs. For calculation of [H i
n, ∗],

[ain, a
j
±(z)] = ±θ(∓n > 0)(q − q−1)

1

n
[(k + g)n][aijn]z

n, (C.9)
[
ain,

( 1

k + g
aj

)
(z;α)

]
=

1

n
[aijn]q

−α|n|zn, (C.10)

[bn, b±(z)] = ∓θ(∓n > 0)(q − q−1)
1

n
[n]2zn, (C.11)

[bn, b(z)] = −1

n
[n]zn, (C.12)

where we suppress the superscript of bij . For OPE calculation,

exp
(
αb+(z)

)
exp

(
βb−(w)

)

≃
(

(z − w)2

(z − q2w)(z − q−2w)

)αβ

exp
(
βb−(w)

)
exp

(
αb+(z)

)
, (C.13)

exp
(
αb+(z)

)
: exp

(
βb(w)

)
: ≃

(
z − qw

qz − w

)αβ

: exp
(
βb(w)

)
: exp

(
αb+(z)

)
, (C.14)

: exp
(
αb(z)

)
: exp

(
βb−(w)

)
≃

(
z − qw

qz − w

)αβ

exp
(
βb−(w)

)
: exp

(
αb(z)

)
:

=
(
z − qw

qz − w

)αβ

qαβ : exp
(
αb(z) + βb−(w)

)
:, (C.15)
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exp
(
ai+(q

k+g
2 z)

)
exp

(
a
j
−(q

− k+g
2 w)

)

≃ z − qaijw

z − q−aijw

z − q−aij−2(k+g)w

z − qaij−2(k+g)w
exp

(
a
j
−(q

− k+g
2 w)

)
exp

(
ai+(q

k+g
2 z)

)
, (C.16)

exp
(
ai+(q

k+g
2 z)

)
: exp

(
−
( 1

k + g
aj

)
(w; k+g

2
)
)
:

≃ z − qaij−(k+g)w

qaijz − q−(k+g)w
: exp

(
−
( 1

k + g
aj

)
(w; k+g

2
)
)
: exp

(
ai+(q

k+g
2 z)

)
, (C.17)

: exp
(
−
( 1

k + g
ai
)
(z; k+g

2
)
)
: exp

(
a
j
−(q

− k+g
2 w)

)

≃ z − qaij−(k+g)w

qaijz − q−(k+g)w
exp

(
a
j
−(q

− k+g
2 w)

)
: exp

(
−
( 1

k + g
ai
)
(z; k+g

2
)
)
:

=
z − qaij−(k+g)w

qaijz − q−(k+g)w
qaij : exp

(
−
( 1

k + g
ai
)
(z; k+g

2
) + a

j
−(q

− k+g
2 w)

)
:, (C.18)

where α and β are parameters and ≃ means equality in the OPE sense (analytic contin-

uation sense).

exp(b+ c)’s commute each other because ρb(n) + ρc(n) = 0.

Appendix D

In this appendix we give how poles cancel each other in OPE of E+,i(z) and E−,j(w),

E−,i(z) and E−,j(w), E±,i(z) and Sj(w). Let us denote each term of eqs.(3.6),(3.7),(4.1)

as follows8:

E+,i(z) =
i∑

j=1

(E+,i(j,1)(z) + E+,i(j,2)(z)), (D.1)

E−,i(z) =
i−1∑

j=1

(E−,i(j,1)(z) + E−,i(j,2)(z))

+E−,i(i,1)(z) + E−,i(i,2)(z) +
N∑

j=i+2

(E−,i(j,1)(z) + E−,i(j,2)(z)), (D.2)

Si(z) =
N∑

j=i+1

(Si(j,1)(z) + Si(j,2)(z)). (D.3)

I. E+,i(z)E−,j(w).

For i = j, OPE E+,i(z)E−,j(w) has poles at z = qkw and z = q−kw. They come from

E+,i(i,1)(z)E−,j(j,2)(w) and E+,i(1,2)(z)E−,j(1,1)(w) respectively.

8 For example, E+,i(j,2)(z) = −1
(q−q−1)z : exp

(
(b + c)j,i(qj−1z)

)
× (−1) exp

(
b
j,i+1
− (qj−1z) − (b +

c)j,i+1(qj−2z)
)
× exp

(∑j−1
ℓ=1(b

ℓ,i+1
+ (qℓ−1z)− b

ℓ,i
+ (qℓz))

)
:.
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Some terms of E+,i(z)E−,j(w) have other poles but all these poles cancel in pairs. We

give these poles(z = qαw) and pairs (E+,i(A)(z)E−,j(B)(w) and E+,i(C)(z)E−,j(D)(w)).

α (A) (B) (C) (D)

(i) j = i −k − 2ℓ (ℓ, 1) (ℓ, 2) (ℓ+ 1, 2) (ℓ+ 1, 1)

1 ≤ ℓ ≤ i− 1

(ii) j = i+ 1 −k − 2ℓ+ 1 (ℓ, 1) (ℓ, 2) (ℓ, 2) (ℓ, 1)

1 ≤ ℓ ≤ i

(iii) j = i− 1 k + 1 (i− 1, 1) (j + 2, 1) (i, 1) (j, 2)

k + 1 (i− 1, 1) (j + 2, 2) (i, 2) (j, 2)

k + 1 (i, 1) (j + 2, 2) (i, 2) (j + 2, 1)

(iv) j ≤ i− 2 k + i− j (j, 1) (i+ 1, 1) (j + 1, 1) (i, 1)

k + i− j (j, 1) (i+ 1, 2) (j + 1, 2) (i, 1)

k + i− j (j + 1, 1) (i+ 1, 2) (j + 1, 2) (i+ 1, 1).

II. E−,i(z)E−,j(w).

E−,i(z)E−,j(w) has poles at z = q−aijw. Some terms of this OPE have extra poles.

But these extra poles (z = qαw) cancel in the following pairs (E−,i(A)(z)E−,j(B)(w) and

E−,i(C)(z)E−,j(D)(w)).

α (A) (B) (C) (D)

(i) j = i− 1 2k + i+ j (i− 1, 2) (j, 2) (i, 1) (j + 2, 2)

(ii) j ≤ i− 2 2k + i+ j (j, 2) (i, 1) (j + 1, 1) (i+ 1, 2)

2k + i+ j (j, 2) (i, 2) (j + 1, 2) (i+ 1, 2)

2k + i+ j (j + 1, 2) (i, 1) (j + 1, 1) (i, 2).

III. E+,i(z)Sj(w).

Poles (z = qαw) cancel in the following pairs (E+,i(A)(z)Sj(B)(w) and E+,i(C)(z)Sj(D)(w)).

α (A) (B) (C) (D)

(i) j = i N − i− j (i, 1) (j + 1, 2) (i, 2) (j + 1, 1)

(ii) j ≤ i− 1 N − i− j (j, 1) (i, 2) (j + 1, 2) (i+ 1, 1)

N − i− j (j, 1) (i+ 1, 2) (j, 2) (i+ 1, 1)

N − i− j (j, 2) (i, 2) (j + 1, 2) (i+ 1, 2).

IV. E−,i(z)Sj(w).

For i = j, OPE E−,i(z)Sj(w) has poles at z = qk+gw and z = q−(k+g)w. They come from

E−,i(N,1)(z)Sj(N,2)(w) and E−,i(i,1)(z)Sj(j+1,1)(w) respectively.

Some terms of E−,i(z)Sj(w) have other poles but all these poles cancel in pairs. Poles(z =
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qαw) and pairs (E−,i(A)(z)Sj(B)(w) and E−,i(C)(z)Sj(D)(w)) are

α (A) (B) (C) (D)

(i) j = i k −N + 2i+ 2 (i, 2) (j + 1, 2) (i+ 2, 2) (j + 2, 1)

k −N + 2ℓ (ℓ, 1) (ℓ, 2) (ℓ+ 1, 2) (ℓ+ 1, 1)

i+ 2 ≤ ℓ ≤ N − 1

(ii) j = i+ 1 k −N + 2ℓ− 1 (ℓ, 1) (ℓ, 2) (ℓ, 2) (ℓ, 1)

i+ 1 ≤ ℓ ≤ N

(iii) j ≤ i− 1 −k − g + i− j (j, 1) (i+ 1, 1) (j + 1, 1) (i, 1)

−k − g + i− j (j, 2) (i, 1) (j, 1) (i, 2)

−k − g + i− j (j, 2) (i+ 1, 1) (j + 1, 1) (i, 2).
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preprint RIMS-910 (1992);

A.H. Bougourzi, “Uniqueness of the Bosonization of the Uq(sl(2)k) Quantum Current

Algebra”, preprint CRM-1852 (1993).

[24] H. Awata, S. Odake and J. Shiraishi, “Free Boson Representation of Uq(ŝl3) ”,
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