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We give the Heisenberg realization for the quantum algebra U,(sl,,), which is written by
the ¢-difference operator on the flag manifold. We construct it from the action of U,(sl,,) on the
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1.Introduction

Recently, the quantum Knizhnik-Zamolodchikov equations (¢-KZ eq.) [Sm, FR] have been
analyzed [M1, R]. This ¢-KZ equations are important both for physics and mathematics by the
relationship with 2-dimensional integrable theories [Sm, DFJMN], quantum affine Lie algebras
and elliptic R-matrices [FR, DJO].

To solve the classical (¢ = 1) KZ equations, an important and powerful tools were the
free field realization for the affine Lie algebra G [W, FF| and the Heisenberg realization for the
corresponding Lie algebra G which is written by the differential operator on the flag manifold
[SV, ATY, FM]. Even in the quantum case (¢ # 1), for example for the algebra Uq(s/l\g), the
Heisenberg realization and the free field realization [FJ, M2, ABG, Sh| are also important for
the analysis of the ¢-KZ equation [JMMN, KQS, M3|. We expect that this situation is the
same for other quantum affine Lie algebras.

The aim of this paper is to construct the Heisenberg realization for the quantum algebra
Uy(sly). In the forthcoming paper [AOS]|, the free field realization for the quantum affine

algebra Uq(s/l;) will be constructed by using this Heisenberg realization.

2. Quantum algebra U,(sl,)

§2.1. First we fix some notations. The algebra U,(sl,) is generated by e;, f; and invertible

k; (1 <i<n—1) with relations

- . 1—Ayj
k‘iejki 1 _ quej, ( 1)m [1 — Al]:| el—Aij—me e — ()
o i i€ — Y%
]Cifjk?i_l = q_Aijfw m=0 "
S 1-4
i Ry m — A4y 1-A;;—m m __
eifj_fjeizéijmy (1) [ m ]}fi P =0,
m=0

where ¢ € C, (Aij)i<ij<n—1 is the Cartan matrix such that A;; = 25;; — 6;j41 — 0ij—1,
[:ﬂ = [n]!/[n —m|!/m]! and [n] = (¢" — ¢ ") /(¢ —q~1).
The algebra U,(sl,,) is a Hopf algebra with the comultiplication A
A(k;) = ki ® ki, Ale;) =e; @1+ k; ® e, A(f;) :fi®ki_1+1®fi,
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the antipode S such that S(k;) = k; ', S(e;) = —k; es, S(fi) = — fik; and the co-unit € such
that 6(]{72) = 1, 6(62') = 0, G(fl) =0.

§2.2. Let M) be the Verma module over U,(sl,) generated by the highest weight vector |\)
such that e;|\) = 0, k;|\) = ¢*¢|\) with \; € C. The dual module Mj; is generated by ()|
which satisfies (A|f; = 0, (A|k; = ¢*(\|. The bilinear form M} ® My — C is uniquely defined
by (AJA) =1 and ((u|X)|v) = (u|(X]|v)) for any (u| € M3, |v) € My and X € Uy(sly).

3. Heisenberg realization for U,(sl,)
§3.1. The Heisenberg algebra H, is generated by the coordinate z;;, a:i_jl € C and the

differential operator ¥;; = xij% (1 < i < j < n) with relation [¥;;, x| = 5,@6{33;{1 or
ij

equivalently

i —0i; _ b6L47
q TR Y = q T

The quantum algebra U,(sl,,) is realized by the Heisenberg algebra #,,. We have

Theorem 1. There exists the algebra homomorphism wy : Uy(sl,) — H,, define as

v

i—1 m
Z- (95:—9; i+1)+(>‘i_219ii+1)+2j (Fi41—945)
)

ma(ki) = g—i=1 sit2
! NI T
ma(es) = Zqul( o +1)—[19k:i+1]7
1 Tkit+1
i—1 . i—1 n
7T>\<fi) = Z % [191“]6]_ Zj:k+1(19ji_19j i+1)—()\i—2’l9ii+1)_2j:i+2(191‘+1j—19ij)
1 ki
n
+ it [(Ni — Piigr) + Z (Pig15 — Vij)]
j=i+2
. k [ﬁi—l—l k]q +ZJ:k( +14 J),
k—it2 Tit1k

Here [n] denotes the g integer, so my(g)’s are the g-difference operators. The proof will be given
in the next section.

We also have the following dual generatorsf

T These dual generators relate to the screening currents of the free field realization for U,(sl,,)
[AOS] which must important to the analysis of the ¢-KZ equation.
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Theorem II. There exists the algebra anti-homomorhpism 7y : Uy(sly,) — Hy, Ty = G o
7 0 0, with o such that o(k;) = kn—;, o(e;) = en—i, 0(fi) = fnoi and & such that 5(x;;) =

Tn4+1—j n+l—i; U(ﬁij) = —ﬁn+1—j n+1—i, 5()\1') = —Apti—i-

§3.2. Let F = CJz;;]|0) be the Fock module over Heisenberg algebra H,, generated by the
highest weight vector |0) such that a:z-_jl|0> = 1;;|0) = 0. The dual module F* = (0 C[asi_jl] is
generated by (0| which satisfies (0|x;; = (0[¢;; = 0. The bilinear form F7*® F — C is uniquely
defined by (0[0) = 1 and ((u|X)|v) = (u[(X|v)) for any (u| € F*, |v) € F and X € H,.
For (O\f(a:;l) € F* and g(z;)|0) € F, <O|f(a;;1) g(x;;)]0) is nothing but the constant part of

f(ﬂfi_jl) g(z4j).
4. Construction of the Heisenberg realization for U,(sl,)

Next we prove above Theorems by a Borel-Weil like approach, which is based on the

method in Ref. [N]. First we give some notations.
§4.1. The ¢-symmetric algebra A,(Mat,,) is generated by ¢;; (1 < i,j < n) with relations

tiktjk = qtjrtik, tatjr = tirti,
(4.1)
tiktit = qtitig, tiktjr — qlatje = ity — q_ltjk:tih
for i < j and k < [. Note that this algebra has the algebra automorphism p such that p(¢;;) =

! and the algebra anti-automorphism p such that p(t;;) = tnt+1—j nt1—i

tnt1—j nt1—i, (@) = G~
pla) =g
The algebra A,(Mat,) has the structure of a U,(sl,)-module. The action of U,(sl,,) on

A (Mat,,) is

57n'_6'm j — —
kmti; = tijq°mi—om+1a, emtij = ti j—10m+1, Jmti; = ti j4+10mj,

g(w) = (gau)(g,v),  g.1=e(g)l,

a

for all u, v € Ay(Mat,) and for all g € Uy(sl,) with A(g) = >, g, @ g.. Note that this
action of g € Uy(sl,,) can be written by the matrix o(g)i; as gti; = Y1 tjk0(9)r; with o(kn,) =

qEmm=Em+imi1 olen) = Epmit, 0(fm) = Emi1m and (Eap)ij = 0aidsj. These matrices are
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noting but the vector representation for the U,(sl,,). The action for the rows of matrix ¢;; is

given by the above automorphism p or p.
§4.2. For the ordered set I = {i; < --- < i,}and J = {j; <--- < j.}, let £ be the quantum
r-minor determinant with respect to rows I and columns J such that [TT, NYM]

55 = Z <_q)l(g)tio(1)j1 o 'tia(r)jr'

TES,
Here S, is the permutation group of the set {1,---,r} and Il(o) stands for the number of
inversions involved in o ; I(o) = #{(i,); i < j, o(i) > o(j)}. From now on, £ = 0if I or J
has same elements. Note that 5555 = S{/{f, if I' c1,J cJ. We have

Proposition. With the lower triangular matriz B, the Gauss decomposition of the matrix

T = (t;;) of the q-coordinates is given as
[T BN TS B i — e d
tij = ZBiksz:j, Bij=(§&.7"1) 151...5 ‘, X = (&0 1511,,,1_13',
k

and B;; =0 fori < j and X;; =0 fori>j. Here {1---0} ={ }.

Proof. follows from
ti; = BuXy + (€)', (@) T = Bira X + (G e
which are obtained from the g-deformed Jacobi identity

1vreleerr4+lr42 _ fleorr4l ¢1orr42 1-vrr41 ¢1-orr42
§1~~~T§1~~~TT+17"—|—2 _glmrr—l—l 1.-orr42 _q£1~~~r7"—|—2 1-vrr41 - QED

We regard X;; (i < j) as a g-analogue of local coordinates of the flag manifold B\GL,,.

. . s . i eledidtleit . i—1y—1 i—1
For i <y and I = {i1 < --- <.}, we denote ny = & ;i7" then X;; = (n;” ") n;
Since the principal minors f% Z 's 1 <4 < n commute with each other, one can consistently

adjoin their inverse to the algebra C[¢]].
§4.3. The quantum minor 7;;’s satisty, for r < i < j < k </, the same relations as ¢;;’s in
(4.1) and Pliiker relation ( Young symmetry ) [TT, NYM, N]

ning, — aning, + niniy =0,
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and the commutation relations

MiNik = AN;k7 5 MiiMe = QMg Nkl = MeMij + 0 Mk

ror ro T T 2, r 1
NiiNik = 4M5kMi5, NiiMer = 4 Mt "5
The action of Uy(sl,) on the quantum minor 77} is

b = iy oS

emn;:g'_l = nzz:;il(sm-l-lj? fmn?'_ = 7723+15mj + 771_1,_1]57711
Owning to the Pliiker relation, 771+13 = 7724_1(77Z h- 177; T qnj_ Yi=h~ 177;“}1, the algebra

A = C[n L ()™ Y1<i<n_1, i<j<n has the structure of a U, (sl,)-module.

§4.4. To relate the non-commutative algebra C[X;;| with the commutative one C|xz;;], we fix

the ordering of 17;-’8. The algebra A has the basis

{ () - ()) r(ph) 2 -+ ()22 -+ (M=) 7 | ayj € Lz, 0 < §, ai; €Z },

which ordering we call normal ordering. We introduce the projection ¢ x ¢ : A — A such that

o any ordered H )% 2 = normal ordered H —hyaii,

1<] 1<J
Let Z¢ = o [[,(ni~ ") [T (Xje)% S with A; € Z and a;; € Zx>o. If we denote Y =
(i hyaim .o (i~ 1% with ay = A\ — Z?:H_l a;j, then Z¢ =Y'... Y"1 The algebra A has
the decomposition A = @),czAx such that Ay is the vector space spanned by the vectors
{Z$ | aij € Z>p, i < j }. The algebra Ay also has the structure of a U,(sl,,)-module, and we
have

Lemma. The left action of Uy(sl,) on Ay is as follows

i—1 "
kiZ;L — quzj:l (aji—aji+1)+(Xi—2a; i+1)+zj:i+2(ai+1j—aij)’

i Zk—l(a”_a“ ) .
e Zs = q&=" T ay i 0] Z9 (X)X 2

k=1
1—1 i1 n
£iZ8 =) lawil X (Xui) ' 2520 2 imp (W= ag )= i =2a040) =3 0 (a5 —asg)
k=1
N —aiig) + Y (airr —aij)] S Xiis1 258
j=i+2

n

— >\i+ n i i — Qg4

- g [ai+1k]§Xik(Xi+1k) lzggq ZJ:k(a +1j ag)‘
k=i+2



Proof. follows from

n—1 n
k’mYZ — Yzq(a a +1)Zg:'b it 1Zj:z+1a +1J’

; (il )~y
emY " = [aim41] g YZ(UZnH Z o Z Om+1j,
Jj=i+1

‘ N N
meZ = [aim]on:n—&l nm 1YZO Zémj +5m1 1 Z azk 77;]{320 k: ) 1Y12q Zj:“rl !

=i+1
n—1 n
= [@im] & M1 (1 )Y S Z5mj+5mi—1[ Z a) om 2D
j=i k=i+1
_5mz L Z azk o 1 2 ,'72 1) 1771243 1(,’,’; 1) lyigq_zg‘:kaij,
k=i+1

here we use kn,(n])* = (kmn})® em(n))* = [a](])* (emn), fm(ni)® = [a](fmnf)(ni)*~"
with a € Z and the identity Zk[&k]q(2j<k _Zj>k)aj = [>_, ax]. The polynomials of ¢ in
e; Z% and f;Z5 come from the Cartan parts of the comultiplication of e; and f; respectively.

Q.ED.

§4.5. Proof of Theorem I
We consider the commutative algebra C|z;j]i1<i<j<n and define an isomorphism my : Ay —
Claij] by mA(Z3) = 2%, with 2% = [],_;(z,;)*7. Applying this isomorphism 7 to above

Lemma, we obtain the g-difference operators on C[z;;] in Theorem I. Q.E.D.

§4.6. Proof of Theorem II.

With the lower triangular matrix B, the Gauss decomposition of inverse direction 7' = X B is
obtained by the algebra anti-automorphism p in §4.1 from the Gauss decomposition T'= BX.
By the algebra automorphism p with some sign changing, we get the action of U,(sl,) on

C[X;] and the dual generators of Theorem IT. Q.E.D.

Conclusion and Discussion.

We constructed the Heisenberg realization for the U,(sl,) by the flag coordinate, which
is applicable to the construction of the free field realization for the Uq(s/l;) [AOS]. In the Ref.
[DJMM], they also gave the similar realization for the U,(sl,) but it seems that it can not be
affinized.
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Appendix. The Jordan-Schwinger type realization and ¢-oscillator

§ A.1. If we consider only i = 1 of t;; € A,(Mat,,), then we can obtain the n variables Jordan-
Schwinger type realization for U, (sl,,) [H, Z]. Let us denote t; = 1, the algebra A = Clt;]1<i<n

has the basis { t&»---t{" | a; € Z>( }, which ordering we call normal ordering, and has the

An

structure of a U,(sl,,)-module. By an isomorphism 7 : A — Clz;], w(t& ---t]*) = " -+ - 2%

and by the action of U,(sl,,) on A, we obtain
Proposition. There exists the algebra homomorphism m : Uy(sl,,) — H,, define as

-y X5 Ty
7(k) = g0, w(er) = " [Wis1], 7(f) = x_fl[ﬁi],

We introduce the projection ¢ * ° same as before. Denote X; = t7't; (2 < i < n) and
Z¢ = S, X2 = ton 1§ with a; = A — >, a;, then the algebra A[t;'] has the
decomposition A[tl_l] = @rez Ay such that Ay is the vector space spanned by the vectors
{Z§ | a; € Z>o, i > 1 }. By an isomorphism 7y : Ay — Clz;], ma(te---t7") = z5* - - xl»
and by the action of U,(sl,,) on Ay, we obtain the n — 1 variables inhomogeneous realization
for U,(sly,), which is the same as above Proposition with additional conditions z; = 1 and
Y1 = A=Y, ¥;. This realization corresponds with that in Theorem-I on C[z1;] with \; =0

for i # 1.

§ A.2. For the Heisenberg algebra (x,9) with ¢’zq~" = gz, if we denote

then (a, a]L, N) satisfies the g-oscillator algebra such that
aal = [N], ata = [N + 1],

which is equivalent to afa - qj[laa]L = ¢V, And they satisfy [N, a] = a, [N, aT] — —af.

So we can rewrite our Theorem by the g-oscillator algebra.
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