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1. Introduction

The W1+∞ algebra [1] appears in many two-dimensional physical systems, for exam-

ple, quantum gravity [2, 3, 4, 5] and quantum Hall effect [6, 7]. However, we are far from

applying the W1+∞ algebra to these physical systems, since the representation theory

of the W1+∞ algebra has not been understood enough. On the other hand, we know

that the W1+∞ algebra is realized by free fields [8], as is the case for the W∞ algebra

[9] and its generalizations [10, 11]. The aim of the present letter is to demonstrate that

the representation theory of the W1+∞ algebra is easily investigated by using this free

field realization. Although we here exclusively consider the case when the central charge

of the W1+∞ algebra is unity, the generalization of our analysis to other central charges

is straightforward, and will be reported elsewhere with the relation of our work with the

one by Kac and Radul [12].

This letter is arranged as follows. In sect. 2, we introduce free fermions and free

bosons which play the fundamental role in the analysis of the W1+∞ algebra. We then

in sect. 3 study the representation theory of the W1+∞ algebra on the basis of the

fermionization. This section contains the main results of the letter. In sect. 4, we discuss

the bosonization of the W1+∞ algebra. Sect. 5 is devoted to conclusions.

2. Free fermions, bosons and their correspondence

2.1. We first fix some notations. The free fermion fields

ψ̄(z) =
∑

r∈Z− 1
2

ψ̄rz
−r− 1

2 , ψ(z) =
∑

r∈Z− 1
2

ψrz
−r− 1

2 ,

are defined with the anti-commutation relations {ψ̄r, ψs} = δr+s,0, {ψr, ψs} = {ψ̄r, ψ̄s} =

0, and thus satisfy the following OPE relations:

ψ̄(z)ψ(w) =
1

z − w
+ ◦

◦ ψ̄(z)ψ(w)
◦
◦ ,

ψ(z)ψ̄(w) =
1

z − w
+ ◦

◦ ψ(z)ψ̄(w)
◦
◦ ,

ψ(z)ψ(w) = ◦
◦ ψ(z)ψ(w)

◦
◦ ,

ψ̄(z)ψ̄(w) = ◦
◦ ψ̄(z)ψ̄(w)

◦
◦ .
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Here {A,B} = AB+BA, and (1−x)−1 =
∑

n∈Z≥0 x
n. We denote by ◦

◦ O ◦
◦ the fermionic

normal ordering defined as ◦
◦ArBs

◦
◦ = ArBs θ(r < 1/2) − BsAr θ(r ≥ 1/2), where Ar

and Br are ψr or ψ̄r, and θ(P ) is a step function such that θ(P ) = 1 if the statement P

is true, otherwise zero.

The fermion Fock space F is spanned by the vectors

ψ̄−r1 · · · ψ̄−rkψ−s1 · · ·ψ−sl |0 〉, ri > ri+1 > 0, si > si+1 > 0, (2.1.1)

where |0 〉 is the highest weight vector such that ψ̄r|0 〉 = ψr|0 〉 = 0 for r > 0.

2.2. The free boson field

φ(z) = q + α0 log z −
∑

n∈Z6=0

αn

n
z−n,

is defined with the commutation relations [αn, αm ] = nδn+m,0, [α0, q ] = 1, and thus

satisfies the following OPE relation:

φ(z)φ(w) = log(z − w)+ : φ(z)φ(w) : .

Here [A,B ] = AB − BA, and log(1 − x) = −
∑

n∈Z>0 x
n/n. We denote by : O : the

bosonic normal ordering defined as : αnO : = αn : O : θ(n < 0)+ : O : αn θ(n ≥ 0) and

: qO := q : O :, where O ∈ C[αn, q].

The boson Fock space B(Λ) is spanned by the vectors α−m1
· · ·α−mk

|Λ 〉, with mi ≥

mi+1 > 0, where |Λ 〉 with Λ ∈ C is the highest weight vector such that αn|Λ 〉 = 0 for

n > 0 and α0|Λ 〉 = Λ|Λ 〉. Note that |Λ 〉 = eΛq|0 〉.

2.3. As is well known, there exists the fermion-boson correspondence. The free fermion

fields ψ̄(z) and ψ(z) are realized by the free boson field φ(z) as ψ̄(z) =: eφ(z) : and

ψ(z) =: e−φ(z) :. On the other hand, the U(1) current ∂φ(z) is realized by the free

fermion fields as the fermion number current ∂φ(z) = ◦
◦ ψ̄(z)ψ(z)

◦
◦ , and the zero-mode
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operator q plays the role of the fermion number sift operator. The highest weight vector

|N 〉 for N ∈ Z of boson Fock space B(N) is then expressed as

|N 〉 =



















ψ̄−N+ 1
2
· · · ψ̄− 3

2
ψ̄− 1

2
| 0 〉,

| 0 〉,

ψN+ 1
2
· · ·ψ− 3

2
ψ− 1

2
| 0 〉,

N > 0,

N = 0,

N < 0.

(2.3.1)

Therefore, we have the relation F = ⊕N∈ZB(N).

3. The W1+∞ algebra

3.1. The W1+∞ algebra with central charge c = 1 [13] is nothing but the algebra of

“local” bilinears of fermions; the generating currents W k(z) (k ∈ Z>0) of the W1+∞

algebra are defined as follows:

W k(z) =
k−1
∑

p,q,t=0

p+q+t=k−1

ckp,q,t
◦
◦ ∂

pψ̄(z)∂qψ(z) ◦◦ z
−t,

with arbitrary constants ckp,q,t ∈ C. Or equivalently,

W k(z) =
∑

n∈Z

W k
nz

−n−k, W k
n =

∑

r,s∈Z− 1
2

r+s=n

ckr,s
◦
◦ ψ̄rψs

◦
◦ , (3.1.1)

with†

ckr,s =

k−1
∑

p,q,t=0

p+q+t=k−1

ckp,q,t

[

−r −
1

2

]

p

[

−s−
1

2

]

q

,

where [n ]m ≡
∏m−1

j=0 (n − j). If we set c10,0,0 = 1, then c1r,s = 1, and thus W 1(z) is just

the fermion number current which realized by the free boson as ∂φ(z). Since

[

W k
n , ψ̄r

]

= ckr+n,−rψ̄r+n,
[

W k
n , ψr

]

= −ck−r,r+nψr+n,

the generators W k
n satisfy the W1+∞ algebra

[

W k
n ,W

s
m

]

=
∑

ℓ≥2

gk,s,ℓn,m W k+s−ℓ
n+m + Ck,s

n δn+m,0, (3.1.2)

† The W1+∞ algebra spanned by the generatorsW k
n in eq. (3.1.1) is a subalgebra of gl(∞).

In particular, the W 1(z) is the time evolution generator of KP hierarchy [14].
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with some constants gk,s,ℓn,m , Ck,s
n ∈ C.

For example, the standard basis for the W1+∞ generators [13] is

ckp,q,t = (−1)q
(

p+ q

q

)2 (
2(k − 1)

k − 1

)−1

δt,0,

with
(

n
m

)

= [n]m/m!. In this basis, the anomaly terms in eq. (3.1.2) are diagonarized,

that is to say Ck,s
n ∝ δk,s. Moreover, they preserve the hermiticity; namely, if we set

ψ†
r = ψ̄−r, thenW

k†
n =W k

−n. Since theW1+∞ algebra is a Lie algebra, any basis obtained

by the invertible linear transformation from this standerd basis as W̃ k
n =

∑

s≥1 T
k
s W

s
n

with T k
s ∈ C generate the same W1+∞ algebra.

3.2. It is easy to see that the vector |N 〉 in eq. (2.3.1) is the highest weight vector of

the W1+∞ algebra which satisfies W k
n |N 〉 = 0 for n > 0 and W 1

0 |N 〉 = N |N 〉. Let then

M(N) and L(N) be, respectively, the Verma module and the irreducible module over the

W1+∞ algebra with respect to the highest weight vector |N 〉. Since any generators of

the W1+∞ algebra and the highest weight vector |N 〉 are realized by fermions, we have

the relation F ⊃
∑

N∈Z
M(N). Note here that M(N) ∩M(N ′) = ∅ for N 6= N ′, since

[

W 1
0 ,W

k
n

]

= 0. Thus, we obtain the relation F ⊃ ⊕N∈ZM(N). On the other hand,

since the oscillator modes αn of the free boson field belong to the W1+∞ algebra, we also

have the relation ⊕N∈ZB(N) ⊂ ⊕N∈ZM(N). Thus, we conclude that F = ⊕N∈ZM(N).

Futhermore, since the Kac determinant for the fermion Fock space F does not vanish,

the Verma module M(N) is irreducible, i.e. M(N) = L(N). We thus have proved the

following theorem [11].

Theorem 3.2. The fermion Fock space F is the direct sum of the irreducible modules

L(N) (N ∈ Z) over W1+∞:

F = ⊕
N∈Z

L(N).

3.3. The Cartan subalgebra ofW1+∞ is spanned byW k
0 , for which the following equation

holds:
[

W k
0 , ψ̄r

]

= ākr ψ̄r,
[

W k
0 , ψr

]

= akrψr, (3.3.1)
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with ākr = ckr,−r and akr = −ck−r,r. Therefore, any vector in the form of eq. (2.1.1) is an

eigenvector of the Cartan subalgebra. Hence, the full character chL(N) of the W1+∞

algebra,

chL(N) = trL(N)

∏

k≥1

x
Wk

0

k ,

is now easily calculated by taking a trace over the fermion Fock space F = ⊕N∈Z L(N)

as follows:

Theorem 3.3. The generating function of the full characters chL(N) is

∑

N∈Z

zNchL(N) =
∏

r− 1
2
∈Z≥0



 1 + z
∏

k≥1

x
āk
−r

k







 1 + z−1
∏

k≥1

x
ak
−r

k



 . (3.3.2)

The character formula with xk = 1 for k ≥ 3 was obtained in Ref. [11].

The right hand side of eq. (3.3.2) can be rewritten as

exp







∑

n≥1

(−1)n−1

n
f̄(xnk )z

n







exp







∑

n≥1

(−1)n−1

n
f(xnk )z

−n







,

where

f̄(xk) =
∑

r− 1
2
∈Z≥0

∏

k≥1

x
āk
−r

k , f(xk) =
∑

r− 1
2
∈Z≥0

∏

k≥1

x
ak
−r

k .

Thus, by introducing the elementary Schur polynomials as

∑

n∈Z

P̄nz
n = exp







∑

n≥1

(−1)n−1

n
f̄(xnk )z

n







,

∑

n∈Z

Pnz
n = exp







∑

n≥1

(−1)n−1

n
f(xnk )z

−n







,

the full character chL(N) is now expressed as

chL(N) =
∑

n,m∈Z

n+m=N

P̄nPm.

3.4. We next discuss eigenvectors and eigenvalues for the Cartan subalgebra in L(N).

Due to eq. (3.3.1), we know that the eigenvectors in L(N) have the following form:

ψ̄−r1 · · · ψ̄−rtψ−s1 · · ·ψ−st |N 〉, ri > ri+1 > N, si > si+1 > −N.

6



Here the fermion number of the above state is N , since ψ̄ and ψ appear the same times.

The eigenvalues are easily calculated by using eq. (3.3.1), and we have the following

theorem.

Theorem 3.4. Eigenvectors of the Cartan subalgebra of W1+∞ in L(N) are parametrized

by ordered sets Y = (n1 > · · · > nt |m1 > · · · > mt ) with ni, mi ∈ Z≥0:
†

|N ; Y 〉 = ψ̄−N−n1−
1
2
· · · ψ̄−N−nt−

1
2
ψN−m1−

1
2
· · ·ψN−mt−

1
2
|N 〉(−1)

∑

t

i=1
(mi+i−1),

and the eigenvalue of |N ; Y 〉 is

W k
0 |N ; Y 〉 =

(

wk
N + Y k

N (Y )
)

|N ; Y 〉, (3.4.1)

with

wk
N =

N− 1
2

∑

r= 1
2

āk−r θ(N ≥ 0) +

−N− 1
2

∑

s= 1
2

ak−s θ(N < 0),

Y k
N (Y ) =

t
∑

i=1

(

āk−N−ni−
1
2

+ ak
N−mi−

1
2

)

,

where wk
N is the weight of the highest weight vector |N 〉.

Besides the above parametrization Y , we have other expressions for the eigenvectors,

for example,

ψ̄−N−f1+
1
2
· · · ψ̄−N−fp+p− 1

2
|N − p 〉, fi ≥ fi+1 ∈ Z>0,

ψN−g1+
1
2
· · ·ψN−gq+q− 1

2
|N + q 〉, gi ≥ gi+1 ∈ Z>0.

(3.4.2)

Such many different expressions for the same eigenvector are understood as the different

parametrizations for the same Young diagram. The first expression for the eigenvectors

in the theorem 3.4 corresponds to the following parametrization for the Young diagram

† We have inserted a phase factor for later convenience.
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Y = (n1 > · · · > nt |m1 > · · · > mt ) with ni, mi ∈ Z≥0:

n1

n2

. . .

nt

m1 m2 mt

.

The other two expressions for the eigenvectors in eq. (3.4.2) correspond to the following

parametrizations for the Young diagram Y = ( f1 ≥ · · · ≥ fp ) or Y = ( g1 ≥ · · · ≥ gq )

with fi, gi ∈ Z>0, respectively:

f1

f2

...

fp , or

g1 g2 ··· gq

.

3.5. We now calculate the eigenvalues explicitly. To do so, we introduce a new basis of

W1+∞ for which the eigenvalues have a simple form;

c2k−1
p,q,t = (−1)k−1δk−1

p δk−1
q δ0t , c2kp,q,t =

(−1)k−1

2

(

δkpδ
k−1
q − δk−1

p δkq
)

δ0t ,

or equivalently,

W 2k−1(z) = (−1)k−1 ◦
◦ ∂

k−1ψ̄(z)∂k−1ψ(z) ◦◦ ,

W 2k(z) =
(−1)k−1

2
◦
◦

(

∂kψ̄(z)∂k−1ψ(z)− ∂k−1ψ̄(z)∂kψ(z)
)

◦
◦ .

For this basis, one can easily obtain

ā2k−1
r =

k− 3
2

∏

s= 3
2
−k

(r + s), ā2kr = r

k− 3
2

∏

s= 3
2
−k

(r + s), akr = (−1)kākr .
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Thus, the eigenvalue of the eigenvector |N ; Y 〉 is evaluated as eq. (3.4.1) with

w2k−1
N =

1

2k − 1

k−1
∏

ℓ=1−k

(N + ℓ), w2k
N =

N

2k

k−1
∏

ℓ=1−k

(N + ℓ),

and

Y 2k−1
N (Y ) = (2k − 2)

∑

(i,j)∈Y

k−2
∏

ℓ=2−k

(N + j − i+ ℓ),

Y 2k
N (Y ) = (2k − 1)

∑

(i,j)∈Y

(N + j − i)

k−2
∏

ℓ=2−k

(N + j − i+ ℓ), Y 2
N (Y ) =

∑

(i,j)∈Y

1,

where (i, j) ∈ Y means that the Young diagram Y has a box in the place of the i-th row

and j-th column. Here we have used the identities

b
∑

m=a

c
∏

n=−c

(m+ n) =
1

2c+ 2

{

c+1
∏

n=−c

(b+ n)−
c
∏

n=−c−1

(a+ n)

}

,

b
∑

m=a

m

c
∏

n=−c

(m+ n) =
1

2c+ 3

{

(b+
1

2
)

c+1
∏

n=−c

(b+ n)− (a−
1

2
)

c
∏

n=−c−1

(a+ n)

}

.

4. Bosonization of the W1+∞ algebra

4.1. We now study the representation theory of the W1+∞ algebra in terms of the free

boson field. Since

◦
◦ ∂

pψ̄(z)∂qψ(z) ◦◦ =
∑

m,n∈Z≥0

m+n=p+q

bp,qm,n∂
mP (n+1)(z),

P (n)(z) = : e−φ(z)∂neφ(z) : = : ( ∂ + ∂φ(z) )
n · 1 :, bp,qm,n =

(−1)q−m

n+ 1

( q

m

)

,

the generators of the W1+∞ algebra are realized by the free boson field as follows [2]:

W k(z) =

k−1
∑

m,n,t=0

m+n+t=k−1

c̃km,n,t∂
mP (n+1)(z)z−t,

with c̃km,n,t =
∑k−1

p,q=0 c
k
p,q,tb

p,q
m,nδp+q+t,k−1. Obviously, B(N) = L(N).
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4.2. Let S̄n and Sn with n ∈ Z be the elementary Schur polynomials defined by

∑

n∈Z

S̄nz
n = exp

{

∑

n>0

W 1
−n

n
zn

}

,
∑

n∈Z

Snz
n = exp

{

−
∑

n>0

W 1
−n

n
zn

}

,

and let χm,n with m,n ∈ Z be the following operators:

χm,n ≡ (−1)m+1
∑

ℓ≥0

S̄n−ℓSm+ℓ+1 = (−1)m
∑

ℓ≥0

S̄n+ℓ+1Sm−ℓ.

Then we have the following theorem.

Theorem 4.2. The eigenvectors |N ; Y 〉 associated with the Young diagram Y =

(n1 > · · · > nt |m1 > · · · > mt ) with ni, mi ∈ Z≥0 is realized as

|N ; Y 〉 = det
(

χmi,nj

)

1≤i,j≤t
|N 〉.

Proof . We consider the generating function of the eigenvectors,

ψ̄(z1) · · · ψ̄(zt)ψ(w1) · · ·ψ(wt)|N 〉 =
∑

{ri,si}

ψ̄r1 · · · ψ̄rtψs1 · · ·ψst |N 〉
t
∏

i=1

z
−ri−

1
2

i w
−si−

1
2

i .

Note that the left hand side can be rewritten in terms of bosons as
∏

i<j(zi − zj)(wi − wj)
∏

i,j(zi − wj)
:

t
∏

i=1

eφ(zi)
t
∏

j=1

e−φ(wi) : |N 〉.

Thus, the theorem is obtained if we use the following identity:
∏

i<j(zi − zj)(wi − wj)
∏

i,j(zi − wj)
= (−1)

1
2
t(t−1) det

(

1

zi − wj

)

1≤i,j≤t

.

Note that the polynomial det
(

χmi,nj

)

1≤i,j≤t
is exactly the character polynomial ap-

pearing in Ref. [14] as the τ function of the KP hierarchy.

4.3. If we consider the other two parametrizations for the eigenvectors in eq. (3.4.2),

then we obtain the following proposition.

Proposition 4.3. The eigenvectors |N ; Y 〉 associated with the Young diagram Y =

( f1 ≥ · · · ≥ fp ) or Y = ( g1 ≥ · · · ≥ gq ) with fi, gi ∈ Z>0 is realized by the Schur poly-

nomials of bosons as follows:

|N ; Y 〉 = det
(

S̄fi+j−i

)

1≤i,j≤p
|N 〉.

= det (Sgi+j−i )1≤i,j≤q
|N 〉(−1)

∑

i
gi .
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Proof . We now bosonize the generating function of the eigenvectors as

ψ̄(z1) · · · ψ̄(zp)|N − p 〉 =
∏

i<j

(zi − zj) :

p
∏

i=1

eφ(zi) : |N − p 〉.

By using the Vandermonde’s determinant
∏

i<j

(zi − zj) = (−1)
1
2
p(p−1) det

(

zj−1
i

)

1≤i,j≤p
,

we obtain the first part of the proposition. The second part is proved similarly.

5. Conclusion and Discussion

On the basis of the free fermion realization, we have identified the eigenvectors and

eigenvalues for the Cartan subalgebra of W1+∞ with c = 1, which are parametrized by

the Young diagrams. Furthermore, we have obtained the full character formula for the

W1+∞ algebra.

In addition, we wish to make several further comments.

First, in the case of the free boson realization, not only the vector |N 〉 with N ∈ Z

but also |Λ 〉 with Λ ∈ C is the highest weight vector of the W1+∞ algebra. Since N is

treated as an indeterminate variable in deriving the formulas of characters chL(N) and

eigenvectors |N ; Y 〉, we can replace N ∈ Z by Λ ∈ C in the formulas.

Second, the W1+∞ algebra can also be realized by the bc system with spins λ and

1− λ,

b(z) =
∑

r∈Z−λ

brz
−r−λ, c(z) =

∑

r∈Z+λ

crz
−r+λ−1.

In fact, it is achieved simply by replacing ψ̄r and ψs with br+ 1
2
−λ and cs− 1

2
+λ, respectively.

Eigenvectors and eigenvalues for the bc system are the same as those of the free fermion

system. If we redefine the Virasoro generator W 2(z) by adding the derivative of U(1)

current W 1(z), then the central charge of the Virasoro generator varies. However, the

W1+∞ algebra itself does not change because this redefinition is nothing but a linear

transformation of the W1+∞ generators W k
n .

Third, even for the other quasi-finite case c 6= 1 [12, 15], we expect that the eigen-

vectors are also parametrized by the Young diagrams.

Finally, for other W infinity algebras considered in Ref. [11], we can easily write

down the full characters or the generating functions of them as the theorem 3.3.
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