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1. Introduction

Conformal field theory has attracted much interest for the last ten years, since it de-

scribes classical vacua of string theory and two–dimensional statistical system at fixed

points of the renormalization group. The representation theory of the Virasoro algebra

plays a central role [BPZ]. However, when the systems have larger symmetries, the Vi-

rasoro algebra must be extended. For example, when supersymmetry exists one will be

led to the super Virasoro algebra [NS, R, GS], while for ZN symmetry what is called

the WN algebra will be relevant [Z, BS].

In the WN algebra (or its supersymmetric extension [IMY]), there are (N − 1)

generating currents with spins s = 2, 3, ..., N (and their superpartners if supersymmetry

exists). Here s = 2 corresponds to the energy momentum tensor. The peculiar nature

of the algebra is in its nonlinearity, i.e., the singular part of the operator product of

generating currents is not expanded as a linear combination of the generating currents,

and one has to introduce composite fields made of the currents. The occurrence of

such operators implies that the corresponding algebra is not a Lie algebra in ordinary

sense. Indeed, the check of the Jacobi identity gives severe restrictions on the structure

constants.

The situation changes drastically if we take a suitable limit N → ∞ [B]. The

resulting algebra, called the W∞ algebra, becomes a Lie algebra [PRS1]. This limiting

procedure is essentially equal to regarding the composite fields needed in the operator

product expansion of lower spin currents, as a new generating current with higher spin.

Great simplification further occurs if we add spin–1 current (u(1) current) to the

W∞ algebra [PRS2]. The obtained algebra is named theW1+∞ algebra for this historical

reason. Although there are several types of W infinity–like algebras [BK, FFZ], we may

say, at cost of rigor, that this is the most fundamental one. All other algebras such as

W∞ and WN are obtained by imposing some suitable constraints on it.

The W1+∞ algebra naturally arises in various physical systems. Firstly, in two–

dimensional quantum gravity (the square root of) the generating function of scaling
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operators is identified with a τ–function of KP hierarchy and obeys the vacuum condition

of the W1+∞ algebra [FKN, DVV, IM, KS, S, G]. Secondly, in the quantum Hall effect,

edge states satisfy the highest weight condition of the W1+∞ algebra, reflecting the

incompressibility of quantum fluid [IKS, CTZ]. Some interesting applications are also

known in higher dimensional physics, such as the construction of gravitational instantons

[T, YC, P]. Furthermore, the W1+∞ algebra is known to be closely related to the central

extension of gl(∞) algebra [KR]. The application to the large N two–dimensional QCD

[GT, DLS] seems also intriguing in this context.

The major reason of such generality of the W1+∞ algebra is that it is a central

extension of the Lie algebra of differential operators on the circle [PRS1]. Recently,

Kac and Radul gave a general framework on such Lie algebra and classified all the

quasifinite representations [KR]. Since the purpose of this paper is to extend their work

to the system with supersymmetry, it may be instructive to review their main results.

Let G be the Lie algebra of differential operators on the circle; G={znf(D) | n∈ Z},

where f(w) ∈ C[w] (polynomial ring with w indeterminate) and D ≡ z d
dz . Let then

W1+∞ be the central extension of G, and for znf(D) ∈ G we denote the corresponding

operator in W1+∞ by W (znf(D)). The central extension is defined by the following

commutation relations:

[W (znf(D)), W (zmg(D))] = W ( [znf(D), zmg(D)] ) + C Ψ(znf(D), zmg(D)),

where the two–cocycle Ψ is given by

Ψ(znf(D), zmg(D)) = −Ψ(zmg(D), znf(D))

=

{∑n
j=1 f(−j)g(n− j) if n = −m > 0

0 if n+m 6= 0 or n = m = 0.

More symmetrically, it is written as

[
W (znexD), W (zmeyD)

]
= ( exm − eyn ) W (zn+me(x+y)D) − C δn+m,0

exm − eyn

ex+y − 1
.

The two–cocycle is shown to be unique up to coboundaries [Li, F].
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The W1+∞ algebra has the following principal gradation:

W1+∞ =
⊕
n∈Z

(W1+∞ )n ,

(W1+∞ )n = { znf(D) | f(w) ∈ C[w] } .

Note that the Cartan subalgebra is given by (W1+∞ )0 =
⊕∞

s=0 CW (Ds). A highest

weight state |λ 〉 is thus characterized by the condition

(W1+∞ )n |λ 〉 = 0 (n ≥ 1),

(W1+∞ )0 |λ 〉 ⊂ C|λ 〉.

We introduce the energy operator L0 ≡ −W (D) and call its eigenvalue of state the

energy level. Note that [L0,W (z−kf(D))] = + kW (z−kf(D)).

At each energy level k, there might be infinitely many states, reflecting the in-

finitely many degrees of freedom in the polynomial ring. The quasifinite representation

is obtained if we require that all but finitely many states at each energy level vanish.

More precisely, it is equivalent to saying that the set

I−k ≡
{
f(w) ∈ C[w] | W (z−kf(D))|λ 〉 = 0

}
is different from {0} for any k ≥ 1. Since I−k is an ideal in C[w], we can introduce

the monic (with unit leading coefficient) generating polynomial bk(w); I−k = (bk(w)).

These polynomials {bk(w)}k=1,2,3,... are called characteristic polynomials.

A surprising result obtained in ref. [KR] is that they are almost uniquely determined

by the first characteristic polynomial b(w) ≡ b1(w). To show this, one has to observe

that (i) bk(w) is divided by `.c.m.(b(w), b(w−1), ..., b(w−k+1)), (ii) b(w)b(w−1)...b(w−

k+1) is divided by bk(w). These statements are proved by using the null state conditions

of the W1+∞ algebra. Thus, if difference of any two distinct roots of b(w) is not an

integer, then bk(w) is uniquely expressed as bk(w) = b(w)b(w − 1)...b(w − k + 1).

It is further shown that the generating function ∆(x) of highest weights:

∆(x) ≡ −
∞∑
s=0

xs

s!
∆(s) for W (Ds)|λ 〉 = ∆(s)|λ 〉

4



satisfies a simple differential equation:

b

(
d

dx

)
[ (ex − 1)∆(x) + C ] = 0.

To cover all W–like algebras with supersymmetry, the W1+∞ algebra must be

extended such as to contain supersymmetry. Such extension was first considered in ref.

[MR, UY] in the context of supersymmetric Kadmtsev-Petviashvili hierarchy, and also

in ref. [BdWV, BPRSS], where explicit form of (anti–) commutation relations are given.

In this paper, we reformulate their work on the super W1+∞ algebra (later denoted by

SW1+∞) and develop the representation theory, on the basis of the analysis by Kac

and Radul for the W1+∞ algebra. We find that quasifiniteness is again characterized by

polynomials, and that the highest weights are expressed in terms of combined differential

equations.

The present paper is organized as follows. In sect. 2 and sect. 3, we discuss the

general theory of the super W1+∞ algebra, viewing it as a central extension of the

Lie superalgebra of superdifferential operators on the circle. In sect. 4, we classify the

quasifinite highest weight representations of the super W1+∞ algebra, and then, in sect.

5, derive the differential equation which determines the highest weights. In sect. 6, we

discuss the spectral flow (two–parameter family of automorphisms) in SW1+∞. In sect.

7, we consider the (B,C)–system as an example. Sect. 8 is devoted to conclusion and

discussion. The embedding of SW1+∞ into ĝl(∞|∞) and null vector condition are given

in Appendices.

2. General Theory of Lie Superalgebra of Superdifferential Operators on the

Circle

2.1. Let A = A(0) ⊕ A(1) be a Z2–graded associative algebra and let σ : A → A be

a Z2–preserving automorphism of A; σ
(
A(0,1)

)
= A(0,1). We specify the Z2–gradation
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of an element a ∈ A(0) (resp. a ∈ A(1)) as |a| = 0 (resp. |a| = 1). We then introduce

the twisted Laurent polynomial algebra A[z, z−1] over A:

A[z, z−1] ≡ C[z, z−1] ⊗C A

=

 ∑
n∈Z

zn ⊗ an

∣∣∣∣∣∣ an ∈ A, all but finite number of an’s vanish


with the following ∗–multiplication:

(zn ⊗ a) ∗ (zm ⊗ b) ≡ zn+m ⊗ σm(a) · b.

Note that the Z2–gradation of A naturally induces that of A[z, z−1]; |zn ⊗ a| ≡ |a| if

a ∈ A(0) or A(1). In what follows, we will denote zn ⊗ a by zna for simplicity.

2.2. Let Ãσ denote the algebra A[z, z−1] regarded as a Lie superalgebra with respect

to the usual (anti–) bracket:

[ zna, zmb } ≡ (zna) ∗ (zmb)− (−1)|a||b|(zmb) ∗ (zna)

= zn+mσm(a) · b− (−1)|a||b|zn+mσn(b) · a.

2.3. Fix a linear map str : A → V such that str ab = (−1)|a||b| str ba, where V is a

vector space over C. Then we can define a central extension Âσ, str of Ãσ by V , 0 →

V → Âσ, str → Ãσ → 0, as follows. First, we notice that the map Ψσ, str : Ãσ×Ãσ → V

defined by

Ψσ, str(z
na, zmb)

≡ −(−1)|a||b|Ψσ, str(z
mb, zna)

≡
{
str
(
(1 + σ + · · ·+ σn−1)(σ−n(a) · b)

)
if n = −m > 0,

0 if n+m 6= 0 or n = m = 0,

satisfies the 2–supercocycle condition:

(1) Ψσ, str(A,B) = −(−1)|A||B|Ψσ, str(B,A),

(2) (−1)|A||C|Ψσ, str ( [A,B}, C ) + cyclic permutation = 0.

Thus, denoting by W (A) the element in Âσ, str which corresponds to A ∈ Ãσ, we define

the (anti–) bracket of two elements W (A), W (B) ∈ Âσ, str by the following formula:

[W (A),W (B) } ≡ W ([A,B }) + Ψσ, str(A,B).

Hereafter, we will restrict ourselves to one–dimensional central extensions; V = C.
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3. The Super W1+∞ Algebra SW1+∞

3.1. In the rest of the present paper, we will exclusively consider the case where A is

the polynomial algebra over (2 × 2) supermatrices:

A ≡
{ [

f0(w) f+(w)
f−(w) f1(w)

] ∣∣∣∣ fA(w) ∈ C[w] ; A = 0, 1,±
}

= A(0) ⊕A(1).

(3.1)

Here we assign the Z2–gradation as follows:

A(0) =

{[
f0(w) 0

0 f1(w)

]}
A(1) =

{[
0 f+(w)

f−(w) 0

]} : Z2−even,

: Z2−odd.

Introducing a basis PA (A = 0, 1,±) in A as

P0 =

[
1 0
0 0

]
,

P+ =

[
0 1
0 0

]
,

P1 =

[
0 0
0 1

]
P− =

[
0 0
1 0

] ∈ A(0),

∈ A(1),

we may denote F ∈ A as F (w) = fA(w)PA. Note that the multiplication as matrices

respects the Z2–gradation.

3.2. Following the general prescription given in the previous section, we fix a Z2–

preserving automorphism σ : A → A, and define a new Z2–graded associative algebra

A[z, z−1] ≡ C[z, z−1] ⊗C A

=

 ∑
n∈Z

znFn(w)

∣∣∣∣∣∣ Fn(w) ∈ A , all but finite number of Fn(w)’s vanish


with the following ∗–multiplication:

(znF (w)) ∗ (zmG(w)) ≡ zn+mσm (F (w) ) ·G(w).

We will set σ as σ(F (w)) = σ(fA(w)PA) ≡ fA(w + 1)PA, so that we may replace

fA(w) by fA(D) with D = z∂/∂z, and ∗–multiplication by the usual multiplication as

matrices.† Note here that f(D) zm = zmf(D +m) for any holomorphic function f(w).

† This choice of σ is not unique. In ref. [KR], for example, they also consider the case,

σ′(F (w)) = F (qw).
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3.3. Let Ãσ ≡ sw1+∞ denote the algebra A[z, z−1] regarded as a Lie superalgebra

with the following (anti–) bracket:

[ znF (D), zmG(D) } =
[
znfA(D)PA, z

mgB(D)PB

}
≡ (znfA(D)PA) · (zmgB(D)PB)− (−1)|PA||PB |(zmgB(D)PB) · (znfA(D)PA).

3.4. We now introduce a linear map str0 : A → C as str0F (D) ≡ strF (0), i.e.,

str0

[
f0(D) f+(D)
f−(D) f1(D)

]
≡ f0(0)− f1(0).

We should notice that str0 has the following property:

str0F (D)G(D) = (−1)|F (D)||G(D)|str0G(D)F (D).

Thus, we can define a one–dimensional central extension Âσ, str0 ≡ SW1+∞ of Ãσ =

sw1+∞ through the following (anti–) commutation relation:

[W (znF (D)),W (zmG(D)) } ≡ W ([ znF (D), zmG(D) })−CΨσ, str0(z
nF (D), zmG(D)),

(3.2)

where C is the central charge, and for n = −m > 0, the 2–supercocycle Ψσ, str0 is given

by

Ψσ, str0(z
nF (D), zmG(D)) = str0

(
(1 + σ + · · ·+ σn−1)(σ−n(F (D)) ·G(D))

)
=

n∑
j=1

fA(−j)gB(n− j) strPAPB

=
n∑

j=1

{f0(−j)g0(n− j) + f+(−j)g−(n− j)

− f−(−j)g+(n− j)− f1(−j)g1(n− j)}.

Note here that

strPAPB =

 1 if (A,B) = (0, 0) or (+,−)
−1 if (A,B) = (−,+) or (1, 1)
0 otherwise.

8



The above (anti–) commutation relations can be rewritten in a simpler form if we

introduce znexD as a generating series for znDk:

[W (znexDPA),W (zmeyDPB)}

= exm W (zn+me(x+y)DPAPB)− (−1)|PA||PB | eyn W (zn+me(x+y)DPBPA)

+ C
exm − eyn

ex+y − 1
δn+m,0 strPAPB .

(3.3)

We remark that the indices n and m need not be integers in this expression.

The bosonic part of this algebra is the direct sum of two W1+∞ algebras with

central charges C and −C.

3.5. The principal gradation in SW1+∞ may be introduced with half–integer labels

α ∈ Z/2 as SW1+∞ =
⊕

α∈Z/2 (SW1+∞ )α, where

(SW1+∞ )α=n ≡
{

W
(
zn
(
f0(D)P0 + f1(D)P1

) ) ∣∣ f0,1(w) ∈ C[w]
}
,

(SW1+∞ )α=n+1/2 ≡
{

W
(
znf+(D)P+ + zn+1f−(D)P−

) ∣∣ f±(w) ∈ C[w]
}
.

In fact, one can easily show that
[
(SW1+∞ )α , (SW1+∞ )β

}
⊂ (SW1+∞ )α+β with

α, β ∈ Z/2. We notice that the Cartan subalgebra of SW1+∞ is given by (SW1+∞ )0.

3.6. We let θ be a Grassmann number, and identify

[
P0 P+

P− P1

]
=

[
θ∂θ θ
∂θ ∂θθ

]
.

Then the multiplication (fA(D)PA) · (gB(D)PB) as superderivatives corresponds to the

multiplication [
f0(D) f+(D)
f−(D) f1(D)

]
·
[
g0(D) g+(D)
g−(D) g1(D)

]
as matrices.

The (anti–) commutation relations of superderivatives (with central terms) are now
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easily obtained. For example, setting n > 0, we obtain†

[W ( znf(D)Pa ) , W ( zmg(D)Pa ) ] = W ( [ znf(D)Pa, z
mg(D)Pa ] )

−(−1)a C
n∑

j=1

f(−j)g(n− j)δn+m,0, (a = 0, 1),

{W ( znf(D)P± ) , W ( zmg(D)P∓ ) } = W ( { znf(D)P±, z
mg(D)P∓ } )

∓ C
n∑

j=1

f(−j)g(n− j)δn+m,0.

Other (anti–) commutation relations have no central terms.

4. Quasifinite Representations

4.1. Let V (λ) be a highest weight module over SW1+∞ with the highest weight

λ. The highest weight vector |λ 〉 ∈ V (λ) is characterized via the principal gradation

as (SW1+∞ )α |λ 〉 = 0 for α ≥ 1/2 and (SW1+∞ )0 |λ 〉 ⊂ C|λ 〉. Explicitly, these

conditions are written as

W
(
znfA(D)PA

)
|λ 〉 = 0

(
n ≥ 1 ; ∀fA(w) ∈ C[w]

)
,

W ( f(D)P+ ) |λ 〉 = 0
( ∀f(w) ∈ C[w]

)
,

W (DsPa ) |λ 〉 = ∆(s)
a |λ 〉 (s ≥ 0 ; a = 0, 1)

(4.1)

for some functions ∆
(s)
a of λ.

It is convenient to introduce the generating functions ∆a(x) of highest weights

∆
(s)
a (a = 0, 1): ∆a(x) ≡ −

∑∞
s=0 ∆

(s)
a xs/s!. Note that they are formally given as the

eigenvalues of the operators −W
(
exDPa

)
:

W
(
exDPa

)
|λ 〉 = −∆a(x)|λ 〉 (a = 0, 1).

4.2. Let U(λ) be a subspace of V (λ) which is obtained from the highest weight state

|λ 〉 by acting on it SW1+∞ once: U(λ) = SW1+∞|λ 〉. The principal gradation of

SW1+∞ naturally induces the labeling of U(λ): U(λ) =
⊕

α≥0 U−α(λ).

† [X,Y ] ≡ XY − Y X , {X,Y } ≡ XY + Y X .
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The SW1+∞ module V (λ) is called quasifinite if U−α(λ) is finite dimensional for

each α ≥ 0. This condition is equivalent to the statement that

UA
−k(λ) ≡

{
W (z−kf(D)PA)|λ 〉

∣∣ f(w) ∈ C[w]
}

is finite dimensional for each k ≥ 0 and A = 0, 1,±. It is straightforward to see that

the following subsets of C[w] are all ideals of C[w]:

I−0 ≡ { f(w) ∈ C[w] | W ( f(D)P− ) |λ 〉 = 0 } ,

IA−k ≡
{
f(w) ∈ C[w] | W

(
z−kf(D)PA

)
|λ 〉 = 0

}
(k ≥ 1 ; A = 0, 1,±).

Thus, if UA
−k(λ) is finite dimensional, all of I−0 and IA−k are different from {0}, so that

I−0 and IA−k are generated by some monic polynomials a−(w) and bAk (w), respectively:

I−0 = ( a−(w) ) and IA−k =
(
bAk (w)

)
. Conversely, if I−0 and IA−k are generated by monic

polynomials, then UA
−k(λ) become finite dimensional since

dimUA
−k(λ) = dimC[w]/IA−k = deg bAk (w) < ∞.

Thus, we have proved the following theorem:

Theorem. The highest weight module V (λ) of SW1+∞ is quasifinite if and only if the

subsets I−0 and IA−k of C[w] are generated by monic polynomials;

I−0 =
(
a−(w)

)
IA−k =

(
bAk (w)

)
(k ≥ 1 ; A = 0, 1,±). (4.2)

We will call a−(w), bAk (w) the characteristic polynomials for the highest weight module

V (λ).

For later convenience, we introduce the symbol

Bk(w) ≡ bAk (w)PA =

[
b0k(w) b+k (w)
b−k (w) b1k(w)

]
,

and further denote bA(w) ≡ bA1 (w), B(w) ≡ B1(w). In the following discussions, we

will see that a−(w) and b+(w) play the central role in the quasifinite representations of

SW1+∞.
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4.3. Theorem. Characteristic polynomials a−(w), bA(w) (A = 0, 1,±) are related to

each other in the following manner:

a−(w) | b0(w),

a−(w − 1) | b1(w),

a−(w), a−(w − 1) | b−(w),

(4.3)

and
b+(w) | b0(w), b1(w),

b0(w) | a−(w)b+(w), b−(w),

b1(w) | a−(w − 1)b+(w), b−(w),

b−(w) | a−(w − 1)b0(w), a−(w)b1(w).

(4.4)

Here f1(w), · · · , fr(w) | g1(w), · · · , gs(w) implies that any fi(w) divides all gj(w)’s.

Proof .† We start from the identity[
W

(
z

[
ε0 ε+

ε− ε1

])
,W

(
z−1

[
αb0(D) βb+(D)
γb−(D) δb1(D)

])}
|λ 〉 = 0

which holds for arbitrary constants α, β, γ, δ and εA (A = 0, 1,±). Suitably choosing

these constants, we can derive the following equations:

W

([
0 0

b0(D) 0

])
|λ 〉 = 0,

W

([
0 0

b1(D + 1) 0

])
|λ 〉 = 0,

W

([
0 0

b−(D) 0

])
|λ 〉 = W

([
0 0

b−(D + 1) 0

])
|λ 〉 = 0,

which assert the first statement, eq. (4.3). The second statement, eq. (4.4), can be

similarly proved, by using the identity[
W

([
0 ε+

ε−a−(D) 0

])
,W

(
z−1

[
αb0(D) βb+(D)
γb−(D) δb1(D)

])}
|λ 〉 = 0,

and taking a suitable choice of the constants α, β, γ, δ and ε±.

† Another proof of Theorems 4.3 and 4.4 is given in Appendix A, resorting to the embedding

of SW1+∞ into ĝl(∞|∞).
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4.4. Theorem. Characteristic polynomials bAk (w) for k ≥ 1 are related to each other

in the following manner:

b+k (w), b0k(w − 1), b1k(w), b+k (w − 1) | b+k+1(w),

b0k(w), b0k(w − 1), b−k (w), b+k (w − 1) | b0k+1(w),

b1k(w), b1k(w − 1), b+k (w), b−k (w − 1) | b1k+1(w),

b−k (w), b1k(w − 1), b0k(w), b−k (w − 1) | b−k+1(w),

(4.5)

and
b+k+ℓ(w) | b0k(w − `)b+ℓ (w), b+k (w − `)b1ℓ(w),

b0k+ℓ(w) | b0k(w − `)b0ℓ(w), b+k (w − `)b−ℓ (w),

b1k+ℓ(w) | b−k (w − `)b+ℓ (w), b1k(w − `)b1ℓ(w),

b−k+ℓ(w) | b−k (w − `)b0ℓ(w), b1k(w − `)b−ℓ (w).

(4.6)

Proof . The first statement, eq. (4.5), is obtained by combining the following two

identities:[
W

(
z

[
ε0 ε+

ε− ε1

])
,W

(
z−k−1

[
αb0k+1(D) βb+k+1(D)

γb−k+1(D) δb1k+1(D)

])}
|λ 〉 = 0,[

W

(
z

[
ε0 ε+

ε− ε1

])
,W

(
z−k−1D

[
αb0k+1(D) βb+k+1(D)

γb−k+1(D) δb1k+1(D)

])}
|λ 〉 = 0

which hold for arbitrary constants α, β, γ, δ and εA (A = 0, 1,±). The second statement,

eq. (4.6), is obtained by looking at the identities[
W

(
z−k

[
b0k(D) b+k (D)
b−k (D) b1k(D)

])
,W

(
z−ℓ

[
αb0ℓ(D) βb+ℓ (D)
γb−ℓ (D) δb1ℓ(D)

])}
|λ 〉 = 0,[

W

(
z−k

[
b0k(D) b+k (D)
b−k (D) b1k(D)

])
,W

(
z−ℓD

[
αb0ℓ(D) βb+ℓ (D)
γb−ℓ (D) δb1ℓ(D)

])}
|λ 〉 = 0.

Note that if we set b−0 (w) ≡ a−(w), b+0 (w) ≡ 1 and b00(w) ≡ b10(w) ≡ 0, then the

Theorem 4.4 reduces to the Theorem 4.3 with some suitable choices of k and `.

4.5. Iteratively using Theorems 4.3 and 4.4, we obtain the following Corollary:
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Corollary. Characteristic polynomials bAk (w) for k ≥ 1 are related to the polynomials

a−(w) and b+(w) as

`.c.m.
(
b+(w), a−(w − 1), b+(w − 1), a−(w − 2), · · · , b+(w − k + 1)

)
| b+k (w),

`.c.m.
(
a−(w), b+(w), a−(w − 1), b+(w − 1), · · · , b+(w − k + 1)

)
| b0k(w),

`.c.m.
(
b+(w), a−(w − 1), b+(w − 1), a−(w − 2), · · · , a−(w − k)

)
| b1k(w),

`.c.m.
(
a−(w), b+(w), a−(w − 1), b+(w − 1), · · · , a−(w − k)

)
| b−k (w),

(4.7a)

(4.7b)

(4.7c)

(4.7d)

and

b+k (w) | b+(w) a−(w − 1) b+(w − 1) a−(w − 2) · · · b+(w − k + 1),

b0k(w) | a−(w) b+(w) a−(w − 1) b+(w − 1) · · · b+(w − k + 1),

b1k(w) | b+(w) a−(w − 1) b+(w − 1) a−(w − 2) · · · a−(w − k),

b−k (w) | a−(w) b+(w) a−(w − 1) b+(w − 1) · · · a−(w − k).

(4.8a)

(4.8b)

(4.8c)

(4.8d)

Let a−(w) =
∏N−

i=1(w − λ−
i ) and b+(w) =

∏N+

j=1(w − λ+
j ). If difference of any two

distinct elements of the set {λ−
i }∪{λ

+
j } is not an integer, then a−(w), b+(w), a−(w−1),

b+(w − 1), · · · are all mutually prime. In this case, the characteristic plynomials bAk (w)

(k ≥ 1, A = 0, 1,±) are uniquely determined due to the above corollary as follows:†

Bk(w) =

(
k−1∏
ℓ=0

b+(w − `)

)[∏k−1
ℓ=0 a−(w − `)

∏k−1
ℓ=1 a−(w − `)∏k

ℓ=0 a
−(w − `)

∏k
ℓ=1 a

−(w − `)

]

=

(
k−1∏
ℓ=1

a−(w − `)b+(w − `)

)[
a−(w)b+(w) b+(w)

a−(w)a−(w − k)b+(w) a−(w − k)b+(w)

]
=

1

2k−1
B(w − k + 1) · · ·B(w − 1)B(w).

(4.9)

5. Differential Equations for Highest Weights

5.1. The structure of characteristic polynomials automatically determines that of

highest weights. In the following subsections, we derive the differential equations for

∆a(x) (a = 0, 1). Recall that W
(
exDPa

)
|λ 〉 = −∆a(x)|λ 〉.

† This equation is derived in a simpler way in Appendix.
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5.2. We first note that for arbitrary functions f(w) ∈ C[w], the following equation

holds: {
W

([
0 f(D)
0 0

])
,W

([
0 0

a−(D) 0

])}
|λ 〉 = 0.

The left–hand side can be rewritten as W ( f(D)a−(D)(P0 + P1) ) |λ 〉, and thus, by

setting f(D) = exp(xD), we obtain

a−
(

d

dx

)
[∆0(x) + ∆1(x) ] = 0. (5.1)

5.3. We then use the identity
[
W ( zG(D + 1) ) ,W

(
z−1B(D)

) ]
|λ 〉 = 0 which holds

for arbitrary element G(w) = gA(w)PA ∈ A. If we set gA(D) = αA exp(xD) and pick up

the coefficient of αA (A = 0, 1,±), we obtain the following set of differential equations:

b+
(

d

dx

)
[ ex∆0(x) + ∆1(x)− C ] = 0,

b0
(

d

dx

)
[ ( 1− ex )∆0(x) + C ] = 0,

b1
(

d

dx

)
[ ( 1− ex )∆1(x)− C ] = 0,

b−
(

d

dx

)
[∆0(x) + ex∆1(x) + C ] = 0.

(5.2a)

(5.2b)

(5.2c)

(5.2d)

Surprisingly, all of these four equations reduce to the first one if we use eq. (5.1).

To prove this, we first notice that eq. (5.1) can be rewritten as

a−
(

d

dx
− 1

)
[ ex∆0(x) + ex∆1(x) ] = 0. (5.3)

Since eq. (4.4) implies that b0(w), b1(w) and b−(w) are all divided by b+(w), we can

replace b+ ( d/dx ) in eq. (5.2a) by bA ( d/dx ) (A = 0, 1,±):

bA
(

d

dx

)
[ ex∆0(x) + ∆1(x)− C ] = 0 (A = 0, 1,±).

As for A = 0, ∆1(x) can be replaced by −∆0(x), since b0(w) is divided by a−(w). As

for A = 1, ex∆0(x) can be replaced by −ex∆1(x), since b1(w) is divided by a−(w − 1)

and so we can use eq. (5.3). Finally as for A = −, ex∆0(x) and ∆1(x) can be replaced
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by −ex∆1(x) and −∆0(x), respectively, since b−(w) is divided by both of a−(w − 1)

and a−(w).

We summarize the results obtained above in the following theorem:

Theorem. The generating functions ∆a(x) (a = 0, 1) of highest weights satisfy the

following differential equations:

a−
(

d

dx

)
[∆0(x) + ∆1(x) ] = 0,

b+
(

d

dx

)
[ ex∆0(x) + ∆1(x)− C ] = 0.

(5.4)

5.4. We assume that polynomials a−(w), b+(w) have the following form:

a−(w) =
M∏
i=1

(w − µi)
mi , b+(w) =

N∏
j=1

(w − νj)
nj , (5.5)

where µi 6= µi′ if i 6= i′, and νj 6= νj′ if j 6= j′. Then the differential equations (5.4)

may be solved as

∆0(x) + ∆1(x) =
M∑
i=1

pi(x)e
µix,

ex∆0(x) + ∆1(x)− C = −
N∑
j=1

qj(x)e
νjx.

Here pi(x) and qj(x) are, respectively, degree mi− 1 and nj − 1 polynomials of x. Since

these equations can be rewritten as

∆0(x) = −
∑M

i=1 pi(x)e
µix +

∑N
j=1 qj(x)e

νjx − C

ex − 1
,

∆1(x) = +

∑M
i=1 pi(x)e

(µi+1)x +
∑N

j=1 qj(x)e
νjx − C

ex − 1
,

(5.6)

we obtain four typical representations,

∆0(x) = −C
eλx − 1

ex − 1
,

∆0(x) = − qkx
keλx

ex − 1
,

∆0(x) = −C
eλx − 1

ex − 1
,

∆0(x) = − pkx
keλx

ex − 1
,

∆1(x) = +C
eλx − 1

ex − 1
,

∆1(x) = +
qkx

keλx

ex − 1
,

∆1(x) = +C
e(λ+1)x − 1

ex − 1
,

∆1(x) = +
pkx

ke(λ+1)x

ex − 1
,

(5.7a)

(5.7b)

(5.7c)

(5.7d)
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with k ∈ Z>0. Here eq. (5.7a) corresponds to the case where a−(w) = 1 and b+(w) =

w − λ, and eq. (5.7c) to the case where a−(w) = w − λ and b+(w) = 1. Eq. (5.7b)

corresponds to the special case where a−(w) = 1, b+(w) = (w−λ)k+1 and C = 0, while

eq. (5.7d) to the special case where a−(w) = (w−λ)k+1, b+(w) = 1 and C = 0 [M]. First

two solutions describe the system having no degeneracy in the vacuum (a−(w) = 1).

On the other hand, in the last two representations, we have several states at level 0.

6. Spectral Flow

6.1. Since SW1+∞ contains two u(1) Kac-Moody algebras as subalgebras, SW1+∞

has a two–parameter family of automorphisms which we will call the spectral flow.

Theorem. There exist the following automorphisms W (·) 7→ W ′(·):

W ′(znexDPa) = W (znex(D+λa)Pa)± C
eλ

ax − 1

ex − 1
δn0, a = {01,

W ′(znexDP±) = W (zn±(λ1−λ0)ex(D+λa)P±), a = {10,
(6.1)

with arbitrary parameters λa (a = 0, 1).

Proof . One can easily show that this new generators W ′(·) satisfy the same (anti–) com-

mutation relations as those for the original onesW (·), eq. (3.3).

6.2. Under the spectral flow, the highest weight state may change although the repre-

sentation space as a set is kept invariant. We illustrate this phenomena by taking the

N = 2 superconformal algebra [SS] as an example (see figure 1).
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J0

LL 00

h hq q ,

Figure 1. Spectral Flow for the N = 2 Superconformal Algebra

The generators of the N = 2 superconformal algebra consist of Jn (U(1)–current),

Ln (energy–momentum tensor) and G±
r (supercurrents), and satisfy the following (anti–

) commutation relation:

[Ln, Lm ] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0,[

Ln, G
±
r

]
=
( n

2
− r

)
G±

n+r,{
G+

r , G
−
s

}
= 2Lr+s + (r − s)Jr+s +

c

3

(
r2 − 1

4

)
δr+s,0,{

G±
r , G

±
s

}
= 0,

[ Jn, Jm ] =
c

3
nδn+m,0,

[Ln, Jm ] = −mJn+m,[
Jn, G

±
r

]
= ±G±

n+r.

Here n ∈ Z, and r ∈ Z+ 1/2 for Neveu–Schwarz (NS) sector or r ∈ Z for Ramond (R)

sector. The highest weight state |q, h 〉 is characterized by

Jn, Ln, G
+
r , G

−
s |q, h 〉 = 0 (n > 0, r ≥ 0, s > 0),

J0|q, h 〉 = q|q, h 〉,

L0|q, h 〉 = h|q, h 〉.

This algebra is invariant under the following transformation with arbitrary param-
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eter λ:
J ′
n = Jn +

c

3
λδn0,

L′
n = Ln + λJn +

c

6
λ2δn0,

G′±
r = G±

r±λ.

When λ is an integer (or half–odd integer), the spectral flow maps NS sector to NS

sector and R sector to R sector (or NS to R, R to NS).

We first consider the case of R to R with λ = 1. For h 6= c/24, |q, h 〉 is no longer the

highest weight state with respect to the new generators, because G′−
1 |h, q 〉 = G−

0 |q, h 〉

does not vanish. However, the new state G−
0 |q, h 〉 satisfies the highest weight condition,

and may be identified with the new highest weight state |q′, h′ 〉′. Here, the new u(1)

charge q′ and the new conformal weight h′ are

q′ = q − 1 + c/3 h′ = h+ q − 1 + c/6,

because J ′
0|q′, h′ 〉′ = (J0 + c/3)G−

0 |q, h 〉 = (q − 1 + c/3)G−
0 |q, h 〉 and L′

0|q′, h′ 〉′ =

(L0 + J0 + c/6)G−
0 |q, h 〉 = (h + q − 1 + c/6)G−

0 |q, h 〉. For h = c/24, the new highest

weight state is given by |q′, h′ 〉′ = |q, h 〉 with q′ = q + c/3 and h′ = h+ q + c/6.

Similarly, in the case of R to R with λ = −1, the new highest weight state for

h−q+c/8 6= 0 is given by |q′, h′ 〉′ = G+
−1|q, h 〉 with q′ = q+1−c/3 and h′ = h−q+c/6.

6.3. Let us go back to SW1+∞. We would like to derive the modification of the weights

and the characteristic polynomials under the spectral flow. We restrict ourselves to the

case λ1 − λ0 ∈ Z. Thus, it is sufficient to consider three cases λ1 − λ0 = 0,±1, because,

for example, the flow with λ1 − λ0 = 2 is obtained by taking twice the flow with

λ1 − λ0 = 1. We have the following Theorem:

Theorem. Under the spectral flow, the new weights, ∆′
a(x), and the new characteristic

polynomials, a′−(w) and b′+(w), are given as follows, for generic values of C and ∆a(x):

(i) If λ1 − λ0 = 0, then

∆′
a(x) = eλ

ax∆a(x)∓ C
eλ

ax − 1

ex − 1
, a = {01, (6.2)

and a′−(w) = a−(w − λ0), b′+(w) = b+(w − λ1).
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(ii) If λ1 − λ0 = 1, then

∆′
a(x) = eλ

ax∆a(x)∓ C
eλ

ax − 1

ex − 1
±

N−∑
i=1

e(λ
−
i
+λa)x, a = {01, (6.3)

and a′−(w) = b−(w − λ0), b′+(w) = a−(w − λ1).

(iii) If λ1 − λ0 = −1, then

∆′
a(x) = eλ

ax∆a(x)∓ C
eλ

ax − 1

ex − 1
∓

N+∑
j=1

e(λ
+
j
+λ1)x, a = {01, (6.4)

and a′−(w) = b+(w − λ0 + 1), b′+(w) = b+2 (w − λ1).

Eq. (6.2) is identical with the formula in the bosonic case [AFMO1].

Proof .

(i) λ1 − λ0 = 0.

The highest weight state |λ 〉 with respect to the original generators W is also the highest

weight state |λ′ 〉′ with respect to the new ones W ′, |λ′ 〉′ = |λ 〉. Hence, the new weights,

∆′
a(x), are given by eq. (6.2). Since |λ′ 〉′ = |λ 〉, we also have the following equation:

W ′(a−(D − λ0)P−)|λ′ 〉′ = W (a−(D)P−)|λ′ 〉′ = 0,

W ′(z−1b+(D − λ1)P+)|λ′ 〉′ = W (z−1b+(D)P+)|λ′ 〉′ = 0.

Therefore, the new characteristic polynomials are given by a′−(w) = a−(w − λ0) and

b′+(w) = b+(w − λ1).

(ii) λ1 − λ0 = 1.

In this case |λ 〉 is not the highest weight state with respect to the new generators W ′.

In generic situations†, the new highest weight state is given by

|λ′ 〉′ =
N−−1∏
k=0

W (DkP−)|λ 〉, (6.5)

if a−(w) =
∏N−

i=1(w − λ−
i ). To prove it, we first remark that W ′(zn+1f(D)P0),

W ′(zn+1f(D)P1), W
′(znf(D)P+) and W ′(zn+2f(D)P−) with n ≥ 0 annihilate |λ′ 〉′

† When eq. (6.5) is a null state, we must replace the upper bound of the product by a

smaller number.

20



in a trivial way. On the other hand, W ′(zf(D)P−) annihilates |λ′ 〉′ since the state

W ′(zf(D)P−)|λ′ 〉′ can be rewritten in the following form:

W ′(zf(D)P−)|λ′ 〉′ = (−1)N−

N−−1∏
k=0

W (DkP−) ·W (f(D + λ0)P−)|λ 〉

= (−1)N−

N−−1∏
k=0

W (DkP−) ·
N−−1∑
ℓ=0

cℓW (DℓP−)|λ 〉,

where cℓ are some constants. In this expression, we have replaced f(D+λ0) by a polyno-

mial with degree less than N−, making use of the quasifinite condition W (a−(D)P−)|λ 〉

= 0. This state vanishes because W (DkP−)
2 = 0.

The weights of this new highest weight state |λ′ 〉′ are calculated as follows. First,

we note the following equation:

−W ′(exDPa)|λ′ 〉′

=

N−−1∏
k=0

W (DkP−) ·
(
−W (e(D+λa)xPa)∓ C

eλ
ax − 1

ex − 1

)
|λ 〉

±
N−−1∑
k=0

N−−1∏
k2=k+1

W (Dk2P−) ·W (ex(D+λa)DkP−) ·
k−1∏
k1=0

W (Dk1P−)|λ 〉

=

(
eλ

ax∆a(x)∓ C
eλ

ax − 1

ex − 1

)
|λ′ 〉′

±
N−−1∑
k=0

N−−1∏
k2=k+1

W (Dk2P−) · eλ
axW (r−k (D,x)P−) ·

k−1∏
k1=0

W (Dk1P−)|λ 〉.

Here we first moved W (ex(D+λA)DkP−) to the right, and then, after reducing the degree

in D using the quasifinite condition W (a−(D)P−)|λ 〉 = 0, we substituted it into the

original position. The function r−k (D,x) =
∑N−−1

ℓ=0 r−k,ℓ(x)D
ℓ is defined as a remainder

of exDDk by a−(D): exDDk = a−(D)q−k (D,x) + r−k (D,x). Note that only Dk term

in r−k (D,x) contributes because W (DℓP−)
2 = 0. Furthermore, we can also show that

r−k,k(x) = ( d
dx )

kr−0,k(x) and
∑N−−1

k=0 ( d
dx )

kr−0,k(x) =
∑N−

i=1 e
λ−
i
x. We thus obtain eq. (6.3).

Moreover, one may show that W (z−1b−(D)P−)|λ′ 〉′ = 0 and W (a−(D)P+)|λ′ 〉′ =

0 if and only if W (z−1b−(D)P−)|λ 〉 = 0 and a−
(

d
dx

)
[∆0(x) +∆1(x)] = 0, respectivly.
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This can be proved as follows: First, since {W (zmf(D)P−),W (zng(D)P−) } = 0,

W (z−1b−(D)P−)|λ′ 〉′ = (−1)N−

N−−1∏
k=0

W (DkP−)W (z−1b−(D)P−)|λ 〉.

Second, since [W ( f(D)(P0 + P1) ) ,W (g(D)P−) ] = 0,

W (a−(D)P+)|λ′ 〉′ =
N−−1∑
ℓ=0

(−1)N−−1−ℓ

N−−1∏
k=0
k ̸=ℓ

W (DkP−) ·W
(
a−(D)Dℓ(P0 + P1)

)
|λ 〉

=

N−−1∑
ℓ=0

(−1)N−−ℓ

N−−1∏
k=0
k ̸=ℓ

W (DkP−)|λ 〉 a−
(

d

dx

)(
d

dx

)ℓ

[∆0(x) + ∆1(x) ]
∣∣∣
x=0

.

Hence,
W ′(b−(D − λ0)P−)|λ′ 〉′ = W (z−1b−(D)P−)|λ′ 〉′ = 0,

W ′(z−1a−(D − λ1)P+)|λ′ 〉′ = W (a−(D)P+)|λ′ 〉′ = 0.

Therefore, the new characteristic polynomials are given by a′−(w) = b−(w − λ0) and

b′+(w) = a−(w − λ1).

(iii) λ1 − λ0 = −1.

Similarly to the case (ii), in generic situations the new highest weight state is given by

|λ′ 〉′ =
N+−1∏
k=0

W (z−1DkP+)|λ 〉, (6.6)

if b+(w) =
∏N+

j=1(w − λ+
j ). The weights of this new state are also similarly calculated.

Moreover, one may show thatW (zb+(D+1)P−)|λ′ 〉′ = 0 andW (z−2b+2 (D)P+)|λ′ 〉′

= 0 if and only if b+
(

d
dx

)
[ ex∆0(x) + ∆1(x)− C ] = 0 andW (z−2b+2 (D)P+)|λ 〉 = 0, re-

spectivly. This can be proved by using the facts that {W (zmf(D)P+),W (zng(D)P+) }

= 0 and
[
W ( f(D)P1 + f(D + 1)P0) ) ,W (z−1g(D)P+)

]
= 0. Hence,

W ′(b+(D − λ1)P−)|λ′ 〉′ = W (zb+(D + 1)P−)|λ′ 〉′ = 0,

W ′(z−1b+2 (D − λ1)P+)|λ′ 〉′ = W (z−2b+2 (D)P+)|λ′ 〉′ = 0.

Therefore, the new characteristic polynomials are given by a′−(w) = b+(w − λ1) and

b′+(w) = b+2 (w − λ1).
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This completes the proof of Theorem 6.3.

6.4. The figure 2 illustrates the W (P±) part of the SW1+∞ module: (i), (ii) and (iii)

correspond to the cases λ1 − λ0 = 0, 1 and −1, respectively.

(iii)

a

a b
b

a

b

b

a

c

a
b

d

b

λλ λ λ λ

λ
a

(i) (ii)

Figure 2. Spectral Flow for the SW1+∞ Algebra

The arrow a corresponds to the generator W (DkP−), b to W (z−1DkP+), c to

W (z−1DkP−), d to W (z−2DkP+), a′ to W ′(DkP−), and b′ to W ′(z−1DkP+). We

can easily understand that if λ1 − λ0 = 0, then

W ′(a′−(w)P−) = W (a−(w)P−), W ′(z−1b′+(w)P+) = W (z−1b+(w)P+);

if λ1 − λ0 = 1, then

W ′(a′−(w)P−) = W (z−1b−(w)P−), W ′(z−1b′+(w)P+) = W (a−(w)P+);

if λ1 − λ0 = −1, then

W ′(a′−(w)P−) = W (zb+(w + 1)P−), W ′(z−1b′+(w)P+) = W (z−2b+2 (w)P+).

7. Example: the (B,C)–system

7.1. In this section, we give the free-field realization of SW1+∞ by using the (B,C)–

system. Here the superfields B(z, θ) = β(z) + θb(w) and C(z, θ) = c(z) + θγ(w) are

defined by the following OPE:

γ(z)β(0) ∼ −β(z)γ(0) ∼ 1

z
, c(z)b(0) ∼ b(z)c(0) ∼ 1

z
, (7.1)

23



and the conformal weights of (β, γ, b, c) are assigned as (λ+1, −λ, µ + 1, −µ) with

λ, µ ∈ C. Conformal dimension of θ is thus λ− µ− 1/2.

7.2. For explicit calculation, it may be useful to “bosonize” the (B,C)–system as

follows [FMS]. First we introduce free bosons φ(x), σ(x) and free fermions ξ(z), η(z)

with the following OPE:

φ(z)φ(0) ∼ + log z, σ(z)σ(0) ∼ − log z,

η(z)ξ(0) ∼ ξ(z)η(0) ∼ 1

z
.

Then β(z), γ(z), b(z) and c(z) are expressed by φ(x), σ(x), ξ(z) and η(z) as

β(z) ≡: e−σ(z) : ∂ξ(z) =
∑
n∈Z

βnz
−n−λ−1,

γ(z) ≡: eσ(z) : η(z) =
∑
n∈Z

γnz
−n+λ,

b(z) ≡: eϕ(z) :=
∑
n∈Z

bnz
−n−µ−1,

c(z) ≡: e−ϕ(z) :=
∑
n∈Z

cnz
−n+µ.

It is easy to show that the OPE (7.1) is actually reproduced in this representation.

Let the mode expansions of σ(z) and φ(z) be as follows:

σ(z) = −
∑

n∈Z ̸=0

αn

n
z−n + α0 log z + σ0,

φ(z) = −
∑

n∈Z ̸=0

an
n
z−n + a0 log z + φ0.

Introducing the bosonic vacuum |0 〉 satisfying αn|0 〉 = an|0 〉 = 0 for n ≥ 0, we define

the (λ, µ)–vacuum |λ, µ 〉 by

|λ, µ 〉 ≡: e−λσ(0)−µϕ(0) : |0 〉 = e−λσ0−µϕ0 |0 〉. (7.2)

Note that it satisfies the following equation:

βn|λ, µ 〉 = γn+1|λ, µ 〉 = bn|λ, µ 〉 = cn+1|λ, µ 〉 = 0 (n ≥ 0). (7.3)
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7.3. Here we discuss the free–field realization of the fundamental representations of

SW1+∞, eqs. (5.7a) and (5.7c): Recall that eq. (5.7a) corresponds to the case where

a−(w) = 1 and b+(w) = w − λ, while eq. (5.7c) to the case where a−(w) = w − λ and

b+(w) = 1.

Using the correspondence in sect. 3.6, we define the representation of SW1+∞ over

the (B,C)–system by

W (znF (D)) ≡
∮

dzdθ

2πi
: B(z, θ)znfA(D)PAC(z, θ) :

=

∮
dz

2πi
: β(z)znf0(D)γ(z) : +

∮
dz

2πi
β(z)znf+(D)c(z)

+

∮
dz

2πi
b(z)znf−(D)γ(z) +

∮
dz

2πi
: b(z)znf1(D)c(z) : .

(7.4)

Explicit calculation shows that the central charge C = 1, and W (znF (D)) has the

following mode expansions:

W (znF (D)) =
∑
ℓ∈Z

f0(λ+ `) : βn+ℓγ−ℓ : +
∑
ℓ∈Z

f+(µ+ `)βn+ℓ−λ+µc−ℓ

+
∑
ℓ∈Z

f−(λ+ `)bn+ℓ+λ−µγ−ℓ +
∑
ℓ∈Z

f1(µ+ `) : bn+ℓc−ℓ : .
(7.5)

Thus, using eqs. (7.3) and (7.5), we can prove that |λ, µ 〉 is a highest weight vector if

µ− λ = 0 or 1:

W (znF (D))|λ, µ 〉 = 0 (n ≥ 1 ; ∀F (w) ∈ A),

W (f(D)P+)|λ, µ 〉 = 0 (∀f(w) ∈ C[w]),

W (f0(D)P0 + f1(D)P1)|λ, µ 〉 ∈ C|λ, µ 〉 (∀f0,1(w) ∈ C[w]).

7.4. When µ − λ = 0, eq. (7.3) implies that W (P−)|λ, λ 〉 =
∑

ℓ b−ℓγℓ|λ, λ 〉 = 0, and

thus we know that in this representation a−(w) = 1. For characteristic polynomials

bAk (w) (k ≥ 1 ; A = 0, 1,±), one can prove the following equation as in the free field

realization of the C = ±1 W1+∞ algebra [M]:

bAk (λ+ `) = 0 (` = 0, 1, · · · , k − 1 ; A = 0, 1,±). (7.6)
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As for A = −, for example, eq. (7.6) is obtained from the following equation by setting

` = 0, 1, · · · , k − 1, and picking up the coefficient of b−(k−ℓ)|λ, λ 〉:

0 =
[
W
(
z−kb−k (D)P−

)
, βℓ

]
|λ, λ 〉

= b−k (λ+ `) b−(k−ℓ)|λ, λ 〉.

Here we have used the fact that b−n|λ, λ 〉 (n ≥ 1) does not vanish. Thus, solving eq.

(7.6), we obtain the explicit form of characteristic polynomials:

bAk (w) = (w − λ)(w − λ− 1) · · · (w − λ− k + 1) (A = 0, 1,±). (7.7)

In particular, noticing that b+(w) (= b+1 (w)) = w−λ, we can rewrite eq. (7.7) into the

form bAk (w) =
∏k−1

ℓ=0 b+(w − `), which is consistent with eq. (4.9) for a−(w) = 1.

When µ− λ = 1, we can similarly show that a−(w) = w − λ and b+(w) = 1.

7.5. The eigenvalue ∆0(x) of the operator −W
(
exDP0

)
is calculated as follows [M]:

−W
(
exDP0

)
|λ, µ 〉

= −
∮

dz

2πi
: β(z)exDγ(z) : |λ, µ 〉

= −
∮

dz

2πi
: β(z)γ(exz) : |λ, µ 〉

= −
∮

dz

2πi

[
: e−σ(z) : ∂ξ(z) : eσ(e

xz) : η(exz) +
1

z − exz

]
: e−λσ(0)−µϕ(0) : |0 〉

=
−1

ex − 1

∮
dz

2πi

1

z

[
: e−σ(z)+σ(exz) : −1

]
: e−λσ(0)−µϕ(0) : |0 〉

= − eλx − 1

ex − 1
|λ, µ 〉.

Namely, we obtain

∆0(x) = − eλx − 1

ex − 1
. (7.8)

Similarly we can calculate ∆1(x) as

−W
(
exDP1

)
|λ, µ 〉 = −

∮
dz

2πi
: b(z)c(exz) : |λ, µ 〉

= +
eµx − 1

ex − 1
|λ, µ 〉,
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i.e.,

∆1(x) = +
eµx − 1

ex − 1
. (7.9)

7.6. If µ−λ = 0, then the generating functions ∆a(x) (a = 0, 1) given in eqs. (7.8) and

(7.9) actually satisfy the differential equations in the previous section with a−(w) = 1,

b+(w) = w − λ and C = 1:

∆0(x) + ∆1(x) = 0,(
d

dx
− λ

)
[ ex∆0(x) + ∆1(x)− 1 ] = 0.

If µ−λ = 1, then they satisfy the differential equations with a−(w) = w−λ, b+(w) = 1

and C = 1.

8. Conclusion and Discussion

In this paper we have formulated the super W1+∞ algebra, SW1+∞, as a central ex-

tension of the Lie super algebra of superdifferential operators acting on the polynomial

algebra over 2 × 2 supermatrices. We then have studied the quasifinite highest weight

modules over SW1+∞. Our discussion is parallel with Kac and Radul’s one. The

quasifiniteness of the modules is characterized by polynomials, and the generating func-

tions of highest weights, ∆a(x) (a = 0, 1), satisfy a set of differential equations.

Mathematically, there are many things to be clarified. In the bosonic counterpart,

we have already obtained the determinant formulae of the W1+∞ module and the charac-

ter formulae of the degenerate representations [AFOQ,AFMO1,AFMO2]. Furthermore,

we study the structure of subalgebras of the W1+∞ algebra [AFMO3], especially, the

W∞ algebra (algebra without spin one current). The supersymmetric extension of these

analysis seems to be of some interest.

Since SW1+∞ contains the N = 2 superconformal algebra as a subalgebra, SW1+∞

has another interesting application, geometry. In fact, geometry of complex manifolds

(especially the Calabi–Yau manifolds and their mirrors), and topological field theory

have been studied by using the N = 2 superconformal algebra. For example, the
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Calabi–Yau manifolds are described by the N = 2 supersymmetric non-linear σ model

or by Landau–Ginzburg orbifolds, whose elliptic genera have been computed recently

in refs. [EOTY, KYY]. SW1+∞ naturally appears there through the free field realiza-

tion, and thus, using SW1+∞ we may obtain more information than using the N = 2

superconformal algebra only. We hope to report on these subjects in our future com-

munication.

Finally we comment on the family of (super) W infinity algebras. The super W∞

algebra given in ref. [BPRSS] is a subalgebra of SW1+∞, which corresponds to the rela-

tion between W1+∞ and W∞ [AFMO3]. The super W∞ (W1,1
∞ ) was extended to WM,N

∞

[O]. Similarly, by replacing 2× 2 supermatrices by (M +N)× (M +N) supermatrices,

one can easy extend SW1+∞ (W1,1
1+∞) to WM,N

1+∞, which contains WM,N
∞ as a subalgebra.
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Appendix A. Embedding into ĝl(∞|∞)

A.1. Let Emn (m,n ∈ Z) denote the matrix unit of infinite size: Emn = (δimδjn)i,j∈Z.

An infinite dimensional Lie algebra gl(∞) is then defined as

gl(∞) ≡

 ∑
m,n∈Z

amnEmn

∣∣∣∣∣∣ amn = 0 for |m− n| � 0

 .

We further define gl(∞|∞) ≡ gl(∞)⊗CA with A the algebra over (2×2) supermatrices

A ≡
{ [

f1(m) f−(m)
f+(m) f0(m)

] ∣∣∣∣ fA(m) ∈ C[m] ; A = 0, 1,±
}
,

with the same Z2–gradation as eq. (3.1). We have changed the arrangement of matrix

elements from eq. (3.1) for later convenience.
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A.2. Let θ be a Grassmann number and znF (D) =
∑

A znfA(D)PA ∈ sw1+∞. The

embedding map ϕ : sw1+∞ ↪→ gl(∞|∞) is defined through the action of sw1+∞ on

C[z, z−1]⊕ C[z, z−1]θ as follows:

znF (D) · zm(1, θ) ≡
∑
ℓ∈Z

zℓ(1, θ) · ϕ ( znF (D) )ℓ,m . (A.1)

Since the action of PA’s on (1, θ) is given as[
P1 P−
P+ P0

]
· 1 =

[
1 0
θ 0

]
,

[
P1 P−
P+ P0

]
· θ =

[
0 1
0 θ

]
,

the left hand side of eq. (A.1) reduces to

zm+n(1, θ) ·
[
f1(m) f−(m)
f+(m) f0(m)

]
=
∑
ℓ

zℓ(1, θ) · δℓ,m+n

[
f1(m) f−(m)
f+(m) f0(m)

]
.

Thus, we obtain

ϕ ( znF (D) )ℓ,m = δℓ,m+n

[
f1(m) f−(m)
f+(m) f0(m)

]
≡ ( Λn[F (d)] )ℓ,m .

Here Λ and [F (d)] stand for the following infinite matrices:

Λ =
∑
m∈Z

Em,m−1, [F (d)] =
∑
m∈Z

F (m)Emm, F (m) =

[
f1(m) f−(m)
f+(m) f0(m)

]
.

By definition, the map ϕ : sw1+∞ → gl(∞|∞) is homomorphic, i.e.,

ϕ(AB) = ϕ(A)ϕ(B).

A.3. Let us introduce new variables µ = θ+ z∂θ and µ−1 = z−1θ+ ∂θ. Note that they

satisfy µ2 = z, µµ−1 = µ−1µ = 1, and also that[
P1 P−
P+ P0

]
=

[
P1 µ−1P0

µP1 P0

]
.

Thus, we can think of the diagonal elements P0 and P1 as the fundamental elements.

Hence, elements of gl(∞|∞) can be represented by matrices with half–integer indices as

follows:

gl(∞|∞) =

 ∑
α,β∈Z/2

aαβEαβ

∣∣∣∣∣∣ aαβ = 0 for |α− β| � 0

 ,
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where we denote Eαβ = (δµαδνβ)µ,ν∈Z/2. The Z2–gradation is assigned as gl(∞|∞) =

gl(∞|∞)
(0) ⊕ gl(∞|∞)

(1)
and Eαβ ∈ gl(∞|∞)

(0)
if and only if α − β ∈ Z, otherwise

Eαβ ∈ gl(∞|∞)
(1)

.

A.4. Denoting by W̃ (A) the element in ĝl(∞|∞) which corresponds to an element A in

gl(∞|∞), we introduce ĝl(∞|∞) as the central extension of gl(∞|∞) with the following

(anti–) commutation relation:

[
W̃ (A), W̃ (B)

}
≡ W̃ ([A,B })− CΨ̃(A,B), Ψ̃(A,B) = strJ [A,B } ,

where J =
∑

α≥0 Eαα and strA = −
∑

α∈Z/2(−1)2α(A)αα. The fundamental (anti–)

commutation relation for ĝl(∞|∞) is[
W̃ (Eαβ), W̃ (Eγδ)

}
= δβγW̃ (Eαδ)− (−1)2(α−β)2(γ−δ)δδαW̃ (Eγβ)

+ Cδβγδδα(−1)2α ( θ(α)− θ(γ) ) ,

where θ(α) = 1 if α ≥ 0 and otherwise θ(α) = 0. The (anti–) commutation relation for

SW1+∞ embedded in ĝl(∞|∞) is thus given by[
W̃ (ϕ ( znF (D) )), W̃ (ϕ ( zmG(D) ))

}
≡ W̃ ( [ϕ ( znF (D) ) , ϕ ( zmG(D) ) } )

+ Cδn+m,0

(∑
j≥0 −

∑
j≥n

){
h11(j) + h−+(j)− h+−(j)− h00(j)

}
,

with hA,B(j) = fA(j +m)gB(j), which is the same as that in eq. (3.2).

A.5. We can easily understand automorphisms of SW1+∞ in eq. (6.1) as the ones of

ĝl(∞|∞) as follows.

Since any automorphisms πw : sw1+∞ → sw1+∞ and πg : gl(∞|∞) → gl(∞|∞) are

realized by the basis transformation πz : C[z, z−1, θ] → C[z, z−1, θ] as

znF (D) · πz ( z
m(1, θ) ) =

∑
ℓ

πz

(
zℓ(1, θ)

)
· πg (ϕ ( znF (D) ) )ℓ,m ,

πw ( znF (D) ) · π−1
z ( zm(1, θ) ) =

∑
ℓ

π−1
z

(
zℓ(1, θ)

)
· ϕ ( znF (D) )ℓ,m ,

we have

πw ( znF (D) ) · zm(1, θ) =
∑
ℓ

zℓ(1, θ) · πg (ϕ ( znF (D) ) )ℓ,m .
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Furthermore, one can also easily obtain the induced automorphisms πw : SW1+∞→

SW1+∞ and πg : ĝl(∞|∞) → ĝl(∞|∞) with some modifications coming from central

terms. For example, for the transformation πz ( z
m(1, θ) ) = zm(zλ

1

, zλ
0

θ), the auto-

morphisms are given by

πg

(
W̃ (ϕ ( znF (D) ) )

)
= W̃

([
δℓ,m+nf

1(m+ λ1) δℓ,m+n+λ0−λ1f−(m+ λ0)
δℓ,m+n+λ1−λ0f+(m+ λ1) δℓ,m+nf

0(m+ λ0)

]
ℓ,m∈Z

)
+ Cδn,0

{(∑
j≥λ1 −

∑
j≥0

)
f1(j)−

(∑
j≥λ0 −

∑
j≥0

)
f0(j)

}
,

πw (W ( znF (D) ) ) = W
(
zn{f1(D + λ1)P1 + zλ

0−λ1

f−(D + λ0)P−

+zλ
1−λ0

f+(D + λ1)P+ + f0(D + λ0)P0}
)

+ Cδn,0

{(∑
j≥λ1 −

∑
j≥0

)
f1(j)−

(∑
j≥λ0 −

∑
j≥0

)
f0(j)

}
,

which corresponds to the spectral flow in eq. (6.1).

A.6. We can reformulate the quasifinite highest weight representation of SW1+∞

in terms of ĝl(∞|∞). We denote Âα = M−2αAα with a diagonal matrix Aα and

M =
∑

α∈Z/2 Eα,α−1/2, Λ = M2.

We define Iα ≡
{
Âα

∣∣∣ W̃ (Âα)|̃λ 〉 = 0
}
, where |̃λ 〉 is the highest weight vector

such that W̃ (Âα)|̃λ 〉 = 0 for all Âα with α > 0. Then we can show that Iα is an ideal,

i.e., if Âα ∈ Iα, then HÂα ∈ Iα for any diagonal matrix H. Hence, Iα is generated by

a characteristic matrix Ĉα, i.e., if Âα ∈ Iα, then there exists a diagonal matrix H such

that Âα = HĈα. The relation between Cα and the characteristic polynomials a−(w)

and bAk (w) in eq. (4.2) is

[
(Cn)kk (Cn+ 1

2
)k+ 1

2 ,k+
1
2

(Cn− 1
2
)kk (Cn)k+ 1

2 ,k+
1
2

]
=

[
b1n(k) b−n (k)
b+n (k) b0n(k)

]
,

where n ≥ 0, k ∈ Z, and we set b−0 (k) = a−(k), b00(k) = b10(k) = b+0 (k) = 0. The matrix
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(∑
α>0 Ĉα

)
µ,ν∈Z/2

is arranged explicitly as follows:

µ\ν · · ·
−2
⌣

− 3
2

⌣

−1
⌣

− 1
2

⌣

0
⌣

1
2
⌣

· · ·

...
−3)
− 5

2 )

−2)
− 3

2 )

−1)
− 1

2 )

0)
1
2 )
...



. . .
b1(−2) b−(−2)
b+(−2) b0(−2)

b12(−1) b−2 (−1)
b+2 (−1) b02(−1)

b13(0) b−3 (0)
b+3 (0) b03(0)

0 a−(−2)
0 0

b1(−1) b−(−1)
b+(−1) b0(−1)

b12(0) b−2 (0)
b+2 (0) b02(0)

0 0
0 0

0 a−(−1)
0 0

b1(0) b−(0)
b+(0) b0(0)

0 0
0 0

0 0
0 0

0 a−(0)
0 0

. . .



.

We can show that there exist diagonal matrices Hn (n = 1, 2, 3) such that

Ĉα+ 1
2
= (M−1H1)Ĉα = Ĉα(M

−1H2),

ĈαĈβ = H3Ĉα+β .

This equation can be solved recursively, and we obtain

`.c.m.
(
(Ĉ 1

2
)µ,µ+ 1

2
, (Ĉ 1

2
)µ+ 1

2 ,µ+1, · · · , (Ĉ 1
2
)µ+α− 1

2 ,µ+α

)
| (Ĉα)µ,µ+α,

(Ĉα)µ,µ+α | (Ĉ 1
2
)µ,µ+ 1

2
(Ĉ 1

2
)µ+ 1

2 ,µ+1 · · · (Ĉ 1
2
)µ+α− 1

2 ,µ+α.

for all µ, α ∈ Z/2. This is equivalent to the relations in eqs. (4.3)–(4.6). Furthermore, if

the elements of Ĉ 1
2
are mutually prime, then we have the relation Ĉα = (Ĉ 1

2
)2α, which

is the same as eq. (4.9). Note that if we set

(Ĉℓcm
α )µ,µ+α = `.c.m.

(
(Ĉ 1

2
)µ,µ+ 1

2
, (Ĉ 1

2
)µ+ 1

2 ,µ+1, · · · , (Ĉ 1
2
)µ+α− 1

2 ,µ+α

)
,

then one may show that W̃ (Ĉℓcm
α )|̃λ 〉 is a null state. We will prove it in Appendix B.
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Appendix B. Null Vector Condition

B.1. We discussed the quasifinite highest weight module as the generalized Verma

module [KR], which is annihilated by the parabolic subalgebra. However, as seen in

Corollary 4.5, the characteristic polynomials bAk (w) are not fixed uniquely. Here we will

show that the characteristic polynomials are uniquely determined if we demand that

the quasifinite highest weight module be irreducible.

We first introduce a bilinear form. Recall that V (λ) is the Verma module over

SW1+∞, generated by the highest weight vector |λ 〉, such that

W (DkP+)|λ 〉 = 0, W (zn+1DkPA)|λ 〉 = 0, W (exDPa)|λ 〉 = −∆a(x)|λ 〉

with n, k ∈ Z≥0, A = 0, 1,± and a = 0, 1. The dual module V (λ)∗ is generated by 〈λ|

which satisfies

〈λ|W (DkP−) = 0, 〈λ|W (z−n−1DkPA) = 0, 〈λ|W (exDPa) = −∆a(x)〈λ|

with n, k ∈ Z≥0, A = 0, 1,± and a = 0, 1. The bilinear form V (λ)∗ ⊗ V (λ) → C is

uniquely defined by 〈λ|λ 〉 = 1 and ( 〈u|W ) |v 〉 = 〈u| (W |v 〉 ) for any 〈u| ∈ V (λ)∗,

|v 〉 ∈ V (λ) and W ∈ SW1+∞.

The null vector |χ 〉 is defined by the condition that 〈u|χ 〉 = 0 for all 〈u| ∈ V (λ)∗.

B.2. We let b−0 (w) = a−(w), bA0 (w) = 0 with A = 0, 1,+ and

b+k (w) = `.c.m.
(
b+(w), a−(w − 1), b+(w − 1), a−(w − 2), · · · , b+(w − k + 1)

)
,

b0k(w) = `.c.m.
(
a−(w), b+(w), a−(w − 1), b+(w − 1), · · · , b+(w − k + 1)

)
,

b1k(w) = `.c.m.
(
b+(w), a−(w − 1), b+(w − 1), a−(w − 2), · · · , a−(w − k)

)
,

b−k (w) = `.c.m.
(
a−(w), b+(w), a−(w − 1), b+(w − 1), · · · , a−(w − k)

)
,

(B.1)

for k ∈ Z>0. We will show the following Theorem:

Theorem. If the weight functions ∆0(x) and ∆1(x) satisfy the differential equation

(5.4), then |χA
k 〉 ≡ W (z−keyDbAk (D)PA)|λ 〉 is a null vector for all y ∈ C, k ∈ Z≥0 and

A ∈ {0, 1,+,−}.

33



To obtain the quasifinite irreducible highest weight module, we must factor out the null

vectors which are characterized by the polynomials in eq. (B.1). Since there possibly

exist additional null vectors for some special values of C and ∆a(x), we here discuss the

generic case.

B.3. Proof of the Theorem.

First we have the following Lemma:

Lemma. The subalgebra

SW+
1+∞ ≡

{
W (DkP+),W (zn+1DkPA) |n, k ∈ Z≥0, A = 0, 1,±

}
of SW1+∞ is generated by W (DkP+) and W (zDkP−) with k ∈ Z≥0.

†

Proof . W (zDkPa) with a = 0, 1 are obtained as follows:

W (zDkP0) = {W (DP+),W (zDkP−)} − {W (P+),W (zDk+1P−)},

W (zDkP1) = {W (P+),W (zDk(D + 1)P−)} − {W (DP+),W (zDkP−)}.

One can further obtainW (znDkPA) fromW (zn−1DℓPA) by taking (anti–) commutators

withW (zP0) orW (zP1).

Hence, to prove that |χ 〉 is a null vector, it is sufficient to show that W (exDP+)|χ 〉 and

W (zex(D+1)P−)|χ 〉 are null vectors or vanish for all x ∈ C.‡ The proof of the Theorem

is given by induction as follows:

Step 1. |χ−
0 〉 and |χ+

1 〉 are null vectors.

Proof . From the differential equation for ∆0(x) and ∆1(x), we obtain

W (exDP+)|χ−
0 〉 = a−

(
d

dX

)
[∆0(X) + ∆1(X) ] |λ 〉 = 0,

W (zex(D+1)P−)|χ+
1 〉 = b+

(
d

dX

)[
∆1(X) + eX∆0(X)− C

]
|λ 〉 = 0,

with X ≡ x + y. Moreover, W (zex(D+1)P−)|χ−
0 〉 = 0 and W (exDP+)|χ+

1 〉 = 0.

† Note that the whole algebra SW1+∞ is generated byW (P±), W (z±1P∓) andW (DP0).
‡ In the bosonic case, the W1+∞ is generated by W (z±1) and W (D2). To show the null

vector condition, it is sufficient that W (zex(D+1))|χ 〉 is a null vector or vanishes.
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Step 2. If |χ−
k−1 〉 and |χ+

k 〉 are null vectors for a positive integer k, then |χ0
k 〉 and |χ1

k 〉

are also null vectors.

Proof . Since b+k (w) | b0k(w), b1k(w), and b−k−1(w) | b0k(w), b1k(w + 1), the following four

vectors are null (here X ≡ x+ y):

W (exDP+)|χ0
k 〉 = −W (z−keXDb0k(D)P+)|λ 〉,

W (exDP+)|χ1
k 〉 = e−kxW (z−keXDb1k(D)P+)|λ 〉,

W (zex(D+1)P−)|χ0
k 〉 = e(−k+1)xW (z−k+1eXDb0k(D)P−)|λ 〉,

W (zex(D+1)P−)|χ1
k 〉 = −W (z−k+1eX(D+1)b1k(D + 1)P−)|λ 〉.

Step 3. If |χ0
k 〉 and |χ1

k 〉 are null vectors for a positive integer k, then |χ−
k 〉 and |χ+

k+1 〉

are also null vectors.

Proof . Since b0k(w), b
1
k(w) | b

−
k (w) and b1k(w) | b

+
k+1(w) and b0k(w) | b

+
k+1(w + 1), the

following two vectors are null:

W (exDP+)|χ−
k 〉 = W (z−k(e−kxeXDb−k (D)P0 + eXDb−k (D)P1))|λ 〉,

W (zex(D+1)P−)|χ+
k+1 〉 = W (z−k(e−kxeXDb+k+1(D)P1 + eX(D+1)b+k+1(D + 1)P0))|λ 〉.

Moreover,W (exDP+)|χ+
k 〉 = 0 andW (zex(D+1)P−)|χ−

k+1 〉 = 0.

Thus we have completed the proof of Theorem B.1.
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