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Abstract

We diagonalize the Hilbert space of some subclass of the quasifinite
module of the W1+∞ algebra. States are classified according to their
eigenvalues for infinitely many commuting charges and the Young dia-
grams. The parameter dependence of their norms is explicitly derived.
The full character formulae of the degenerate representations are given
as summation of the bilinear combinations of the Schur polynomials.
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1 Introduction

The detailed study of (infinite dimensional) Lie algebras has been sometimes
very essential in theoretical physics. The representation theory of finite di-
mensional Lie algebra is indispensable to understand quantum mechanics
or gauge theories. If we extend the dimension by one, the loop algebras
such as Virasoro [1] or Kac-Moody algebras are essential tools to describe
two-dimensional statistical systems or string theories.

Recently, in many places such as two-dimensional quantum gravity [2]–
[5], the quantum Hall effects [6][7], the membrane [8][9], or the large N
QCD [10][11], the W1+∞ algebra is regarded as the fundamental symmetry
of system.

As a member of loop algebras, the W1+∞ algebra has a unique character
in that the number of currents is infinite. In a sense, it may be regarded as
the symmetry of three-dimensional system since it is closely connected with
the area-preserving diffeomorphism [12][13]. Due to this fact, the detailed
representation theory was not fully developed until now although some at-
tempts were made [14]. The situation is also similar in the extensions of the
W1+∞ algebra [15]–[20]. One of the confusing feature of the W1+∞ algebra
is its hybrid nature in dimensions. We remark that it has also definite “two-
dimensional” aspects since we already knew the explicit realization in terms
of two-dimensional free fields [13][21]. Furthermore, this symmetry is found
even in instanton physics in four dimensions [22]–[24].

Last year, Kac and Radul [25] discovered a way to avert from the difficulty
and proved that the Hilbert space at each energy level can be finite dimen-
sional if we choose the weight vector properly. In our previous letter [26],
we give the computer calculation of the Kac formula of the W1+∞ algebra
at lower degree. In this article, we would like to give its analytical formula.
Actually, we can go further to give the explicit form of the diagonal basis of
the Hilbert space with respect to the inner product and give their param-
eter dependence. As corollaries, we give the full character formulae [27] of
any degenerate representations. This will be the basis for the application of
the representation theory of the W1+∞ algebra to physical systems, such as
quantum gravity, the quantum Hall effects, the two-dimensional QCD which
we would like to report in our future issues.

The plan of this paper is as follows. In section 2, we give a brief review of
the result of Kac and Radul, and also a summary of our computer calculation
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of the determinant formula. The parameters of the system can be roughly
classified into two groups, the central charges and the spins. Our determinant
formula is factorized into functions which depend only on either of them. In
section 3, we give the detailed account of the relation with the gl(∞) algebra.
This is an essential step to understand the determinant formula. As we see in
the following sections, the trasformation from the basis of the W1+∞ algebra
to the corresponding ones of the gl(∞) algebra gives the spin dependent part
of the determinant formula. On the other hand, the determinant of the gl(∞)
algebra explains the central charges dependence. In section 4, we first derive
the spin dependence from this viewpoint. In section 5, the central charge
dependence is derived. There, the knowledge of the permutation group is
essential to classifying the Hilbert space. Indeed, we derive the explicit form
of the diagonal basis with respect to the inner product by using the Young
diagrams. In section 6, we give the character formula for the degenerate
representation as a bilinear form of the Schur polynomials. In appendix
A, we give tables of the determinant formula which we previously derived
by computer analysis. In appendix B, we explain the free-fermion method
which was essential to calculating the inner product formula. In the W1+∞
algebra, there are an infinite number of “modular parameters” because the
number of Cartan elements is infinite. The fermion which appears here is
the “fermionization” of those modular parameters.

2 Brief review of the W1+∞ algebra

The W1+∞ algebra is a central extension of the Lie algebra of the (higher
order) differential operators on the circle, which is generated by zrDk with r ∈
Z, k ∈ Z≥0 and D ≡ z ∂

∂z
. We write the generator of the W1+∞ algebra which

correspond to the differential operator zrDk as W (zrDk). The commutation
relations are,

[W (zrf(D)),W (zsg(D))] =

W (zr+sf(D + s)g(D))−W (zr+sf(D)g(D + r))

+CΨ(zrf(D), zsg(D)), (1)

where f(D) and g(D) are polynomials of D and we introduce the two-cocycle
Ψ,

Ψ(zrf(D), zsg(D)) = −Ψ(zsg(D), zrf(D))
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=

{ ∑
1≤j≤r f(−j)g(r − j) if r = −s > 0

0 if r + s ̸= 0 or r = s = 0.
(2)

The principal gradation of the W1+∞ algebra is

W1+∞ =
⊕
r∈Z

(W1+∞)r

(W1+∞)r = {zrf(D)|f(w) ∈ C[w]} (3)

It is defined in terms of the eigenvalue of the “energy operator” L0 ≡ −W (D).
The highest weight state of the W1+∞ module is defined in terms of this
gradation,

W (zrDk)|λ⟩ = 0, r ≥ 1, k ≥ 0,
W (Dk)|λ⟩ = ∆k|λ⟩, k ≥ 0.

(4)

We introduce,

∆(x) ≡ −
∞∑
k=0

xk

k!
∆k, (5)

to rewrite the (infinite dimensional) weight vector, which will be called the
weight function. The Verma module is spanned by the vectors which are
obtained by applying the generators of negative gradation to the highest
weight state,

W (z−r1f1(D)) · · ·W (z−rNfN(D))|λ⟩,

and we define the energy level of this state by the sum,
∑N

i=1 ri.
A representation of W1+∞ is called quasifinite if and only if there are only

finite number of states at each energy level. The quasifinite module has the
following properties [25]:

1. For each level r , there are infinitely many null generators of the form
W (z−rbr(D)g(D)), where br(D) is a monic, finite degree polynomial of
operator D.

2. The polynomial br(D) with r > 1 is related to level-1 polynomial
b(D) ≡ b1(D) as

• br(D) is divided by l.c.m.(b(D), b(D − 1), · · · b(D − r + 1)).

• b(D)b(D − 1) · · · b(D − r + 1) is divided by br(D).
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If the difference of any two distinct roots is not an integer, br can be
uniquely determined as br(D) =

∏r−1
s=0 b(D − s).

3. The function ∆(x) satisfies a differential equation,

b( d
dx
) ((ex − 1)∆(x) + C) = 0. (6)

When b(w) = (w − λ1)
K1 · · · (w − λℓ)

Kℓ , the solutions are

∆(x) =

∑ℓ
i=1 pKi

(x)eλix − C

ex − 1
, deg pKi

= Ki − 1, (7)

with
∑ℓ

i=1 pKi
(0) = C.

In this article, we analyze the irreducibility of the quasifinite module. We
introduce,

Definition 1 Generalized Verma Module and Kac Determinant
The second property of the quasifinite representation means that there are at
most rK independent generators at level r (W (r−rDs) with s = 0, 1, · · · , rK−
1) if the characteristic polynomial b(w) has degree K. We call the module
freely generated by those generators as the generalized Verma module. The
number of states at each level is given by the generating function [26],

∞∏
r=1

1

(1− qr)rK
≡

∞∑
ℓ=0

nℓq
ℓ. (8)

At level ℓ, we define the determinant of the nℓ × nℓ matrix which consists of
the inner products of the basis of the module as the Kac Determinant.

The purpose of this paper is to calculate this determinant, and with this
knowledge, to give the character formula. We restrict ourselves to consider
the special cases,

b(w) =
K∏
i=1

(w − λi), ∆(x) =
K∑
i=1

Ci
eλix − 1

ex − 1
. (9)

In other word, we postulate first that there are only simple zeros in b(w) = 0
and the difference of their roots are not integers. In our previous letter [26],
we made the computer calculation of the determinant formulae at lower levels
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with this assumption. We summarize our results in appendix A [26]. The
determinant formula for general cases can be obtained by taking a suitable
limit of the parameters. It may be symbolically written in the following form,

det[r] =
∏
i

Ar(Ci)
∏
i<j

Br(λi − λj). (10)

The functions Ar and Br have zero only when λi−λj or Ci is integer. In the
following sections, we derive these functions analytically.

3 Relation with the gl(∞) algebra

Some of the essential features of the W1+∞ algebra can be more clearly eluci-
dated if we use the connection with its simpler cousin, the gl(∞) algebra. As
explained in [25], we may construct a quasifinite representation of the gl(∞)
algebra which is deeply connected with the corresponding one of the W1+∞
algebra. We here would like to explain the full detail of this correspondence
since it illuminates the λ dependence of the determinant formula and also is
essential to calculating the C dependence.

3.1 The gl(∞) algebra and its representation

The gl(∞) algebra is generated by the operators, Ē(µ)(i, j) (µ = 0, 1, · · · ,m),

which act on the infinite dimensional space spanned by the basis, v
(µ)
k with

k ∈ Z,
Ē(µ)(i, j)v

(ν)
k = θ(m− µ− ν)δj+k,0v

(µ+ν)
i . (11)

Here θ(i) = 1 for i ≥ 0 and θ(i) = 0 for i < 0. The commutation relation is,[
Ē(µ)(i, j), Ē(ν)(k, ℓ)

]
= θ(m− µ− ν)

(
δj+k,0Ē

(µ+ν)(i, ℓ)− δℓ+i,0Ē
(µ+ν)(k, j)

)
. (12)

As usual, the highest weight state is defined by using the gradation,
deg Ē(µ)(i, j) = i+ j,

Ē(µ)(i, j)|λ⟩ = 0, i+ j > 0,

Ē(µ)(i,−i)|λ⟩ = q̄
(µ)
i |λ⟩. (13)
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For the finite dimensional case, the parameters q̄
(µ)
i are arbitrary. However,

as the W1+∞ algebra, there should be severe constraint on them once we
require the quasifiniteness.

Define,
h
(µ)
k ≡ q̄

(µ)
k − q̄

(µ)
k−1. (14)

We introduce the set,

S(µ) ≡
{
k |h(ν)

k ̸= 0 for some ν ≥ µ
}
,

which satisfies the inclusion relation,

S(0) ⊇ S(1) ⊇ · · · ⊇ S(m). (15)

A quasifinite representation is then obtained [25] if and only if S(µ) is a finite
set for each µ.

Let us count the non-vanishing elements in the Hilbert space. At level 1,
the Hilbert space consists of the vectors of the form, Ē(µ)(k − 1,−k)|λ⟩. To
see if they are null, we compute,

Ē(ν)(k,−k + 1)Ē(µ)(k − 1,−k)|λ⟩ = θ(m− µ− ν)h
(µ+ν)
k |λ⟩.

It shows that it becomes non-vanishing only if k ∈ S(µ). Similar computation
shows that more general state Ē(µ)(ℓ,−k)|λ⟩ becomes non-vanishing only if
there exist an integer s ∈ S(µ) such that k ≥ s > ℓ. In the figure below, we
show the elements which become non-vanishing for this case.

E(i,j)
j

i

Figure: Surviving Generators
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3.2 Definition of the ĝl(∞) algebra

In order to prevent the appearance of infinity once we try to relate it with
W1+∞ , we need to modify the generators of gl(∞) as follows:

E(µ)(i, j) = Ē(µ)(i, j)− c(µ)δi+j,0θ(i). (16)

Here the “central charges” are defined by,

c(µ) =
∑

k∈S(µ)

h
(µ)
k . (17)

The algebra (12) and the highest weight condition (13) are also modified,[
E(µ)(i, j), E(ν)(k, ℓ)

]
= θ(m− µ− ν)×(

δj+k,0E
(µ+ν)(i, ℓ)− δi+ℓ,0E

(µ+ν)(k, j)

+c(µ+ν)δj+k,0δℓ+i,0(θ(i)− θ(k))
)
, (18)

and, E(µ)(i,−i)|λ⟩ = q
(µ)
i |λ⟩ with q

(µ)
i = q̄

(µ)
i − c(µ)θ(i). We can also easily

prove,
h
(µ)
k = q

(µ)
k − q

(µ)
k−1 + c(µ)δk,0

We call the modified algebra (18) as the ĝl(∞) algebra. We remark that
the quasifinite representations of gl(∞) and ĝl(∞) are identical since there
appear no infinite sum in the definition.

3.3 Relation with the W1+∞ algebra

To find a relation between ĝl(∞) and W1+∞ , we take the Hilbert space
spanned by vk as the space of functions on the circle spanned by zλ+k+t

with λ ∈ C, k ∈ Z. Here the formal parameter t is defined by nilpotency
condition, tm+1 ≡ 0. The action of differential operators on this basis is then
given by,

zrf(D)zλ+k+t = f(λ+ k + t)zλ+k+r+t

=

 m∑
µ=0

tµ

µ!
f (µ)(λ+ k)

 zλ+k+r+t. (19)
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By the identification, v
(µ)
k ↔ tµzλ+k+t, we define the correspondence between

the generators,

W (zrf(D)) =
∑
k∈Z

m∑
µ=0

f (µ)(λ+ k)

µ!
E(µ)(r + k,−k), (20)

for r ̸= 0. Special care is needed to find the relation between the zero modes,

W (exD) =
∑
k∈Z

m∑
µ=0

xµexk

µ!

(
eλxĒ(µ)(k,−k)− δµ,0c

(0)θ(k)
)

=
∑
k∈Z

m∑
µ=0

xµexk

µ!
eλxE(µ)(k,−k)

−c(0)
eλx − 1

ex − 1
−

m∑
µ=1

xµc(µ)eλx

µ!(ex − 1)
. (21)

The central charges of the both algebras (C for W1+∞ and c(0) for ĝl(∞) )
are related by,

C = c(0). (22)

The other central charges of ĝl(∞) , c(µ), can be related to the coefficients of
xµ in the polynomial pKi

(x) in (7) as we see in the next subsection.

3.4 Relation between the representations

In the correspondence (20), λ is a free parameter. This arbitrariness is re-
moved once we consider the relation between the (quasifinite) representations
of W1+∞ and ĝl(∞) .

Let us examine the null state conditions, W (z−rbr(D))|λ⟩ = 0 in the
language of ĝl(∞) . We first consider the case,

b(w) =
κ∏

i=1

(w − λ′ − ki)
µi , (23)

i.e. the differences of all the root of characteristic polynomial are integers.
We put m′ ≡ max(µi). We introduce the set of integers associated with b as,

T (µ) ≡
{
k ∈ Z|b(µ)(λ′ + k) = 0

}
.
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It is obvious that they are determined uniquely from b(w) and satisfy the
inclusion relation,

T (0) ⊇ T (1) ⊇ · · · ⊇ T (m′),

which is the same as (15).
Let λ in (20) be equal to λ′ and m′ = m, the null state condition,

0 = W (z−rbr(D))|λ⟩ =
∑
k∈Z

m∑
µ=0

b(µ)r (λ+ k)

µ!
E(µ)(−r + k,−k)|λ⟩ (24)

implies that only the states of the form,

E(µ)(k − 1,−k)|λ⟩

with k ∈ T (µ) may have non-vanishing norm since the coefficient in (20)
vanishes. This condition is identical with the quasifinite representation of
gl(∞) with,

S(µ) = T (µ). (25)

Another check to see the direct relation between the representations of
W1+∞ and ĝl(∞) is to calculate the function ∆(x) from the highest weight

of ĝl(∞) . We observe that the weight q
(µ)
k is given by,

q
(µ)
k =

∑
s∈S(µ)

h(µ)
s θ(k − s)− c(µ)θ(k).

Combine it with (21) and ∆(x)|λ⟩ = −W (exD)|λ⟩, we derive,

∆(x) =
∑

k∈S(0)

h
(0)
k (ex(λ+k) − 1)

ex − 1
+

m∑
µ=1

∑
k∈S(µ)

xµh
(µ)
k ex(λ+k)

µ!(ex − 1)
. (26)

This is exactly the solution of the differential equation (6) where T (µ) of b(w)
is given by S(µ).

In this way, the quasifinite representation of gl(∞) we have seen in section
3.1 can be identified with the representation of W1+∞ with the characteristic
polynomial (23).
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3.5 Characteristic polynomial for quasi-finite represen-
tation

By the correspondence with the gl(∞) module, the characteristic polyno-
mials at higher levels for the quasifinite representation should be uniquely
determined5. We claim,

Proposition 1 Irreducible qusifinite module
For the generic values of Ci, if the weight function ∆(x) satisfies (6), then
there exist a unique irreducible quasifinite module such that the characteristic
polynomial is

br(D) = l.c.m.(b(D), b(D − 1), · · · , b(D − r + 1)), (27)

where b(w) is a minimal degree monic polynomial satisfing (6).

Proof: This follows from the following lemma and the relation with the
gl(∞) given in this section. Q.E.D.

Lemma 1 Null state
If the weight function ∆(x) satisfies (6), then the state W (z−reyDf(D))|λ⟩
with

f(D) = l.c.m.(b(D), b(D − 1), · · · , b(D − r + 1)) (28)

is a null state.

Proof: By combining relations,

W (z−reyDf(D)) = f
(

d
dy

)
W (z−reyD)

and [
W (zsex(D+s)),W (z−reyD)

]
= (ex(s−r) − e(x+y)s)

{
W (zs−re(x+y)D) +

Cδs,r
1− ex+y

}
, (29)

5We have to remark that the definition of the characteristic polynomial br(D) in this
paper is slightly different from [25]. In [25], it is introduced associated with the parabolic
subalgebras. In this context, there are some arbitrariness from its consistency condition
alone. On the other hand, we define br(D) as the minimal monic polynomial that satisfies
W (z−rbr(D))|λ⟩ = null for the generic Cs.
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we can derive the following equation for all si, r ∈ Z>0 with
∑n

i=1 si = r:

⟨λ|W (zsnexn(D+sn)) · · ·W (zs1ex1(D+s1))W (z−reyDf(D))|λ⟩

= f
(

d
dy

) n∏
j=1

(
exj(s1,j−r) − e(x1,j+y)sj

){
−∆(x1,n + y) +

C

1− e(x1,n+y)

}
, (30)

where s1,j ≡ ∑j
i=1 si and x1,j ≡ ∑j

i=1 xi. If we set X = x1,n + y, then the
right hand side of eq. (30) reduces to

r−1∑
m=0

am(x, s) f
(

d
dX

)
emX(1− eX)

{
−∆(X) +

C

1− eX

}
, (31)

with some functions am(x, s) = am(x1, · · · , xn, s1, · · · , sn). On the other hand,
the differential equation (6) may be rewritten as

b( d
dx

− s)esx (1− ex)
(
−∆(x) +

C

1− ex

)
= 0. (32)

Hence, the right hand side of eq. (30) vanishes. Since any inner product with
W (z−reyDf(D))|λ⟩ is zero, it is a null state. Q.E.D.

4 λ dependence

We divide the derivation of the determinant formula (10) into two parts. As
we have reviewed in the previous section, at each level, the same is the dimen-
sions of the generalized Verma module of W1+∞ and gl(∞) algebras. Let us
consider the Hilbert space at a spcific energy level. We denote {u1, · · · , uN}
as the basis in terms of W1+∞ generators and {v1, · · · vN} as the basis in
terms of gl(∞) generators. The relation between the two basis may be writ-
ten as, ui =

∑
j Aijvj, with N ×N matrix A. The matrix A can be directly

derived from the relation (20) and it depends only on λis. The determinant
for the W1+∞ basis is rewritten as the determinant for the gl(∞) generators.

Det(⟨ui|uj⟩) = Det(A)2Det(⟨vi|vj⟩) (33)

In the representation of the gl(∞) algebra, the only parameters which appear
in the theory are Cis. This observation shows that (33) gives a natural
decomposition of the determinant into a part which depends only on λis
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(Det(A)2), and a part which depends only on Cis (Det(⟨vi|vj⟩)). In this
section, we derive the first factor.

The main theorem in this section is

Theorem 1 λ dependence
The factor Br in (10) is given by,

Br(λ) =

(
λµ

(r)
0

∞∏
s=1

(λ+ s)µ
(r)
s (λ− s)µ

(r)
s

)2

. (34)

Here the non-negative integers µ(r)
s can be derived from the generating func-

tion,

ϕs(q) ≡
∞∑
r=0

µ(r)
s qr =

∂

∂ζ

( ∞∏
r=1

1

(1− qr)r

)K ∞∏
t=s+1

(1− qt)t−s

(1− ζqt)t−s

∣∣∣∣∣∣
ζ=1

. (35)

For the simplest cases, K = 2 with λ1 − λ2 = 0,±1, (35) gives respectively,

2ϕ0(q) = 2q + 10q2 + 34q3 + 108q4 + 298q5 · · · ,
2ϕ1(q) = 2q2 + 8q3 + 30q4 + 88q5 + · · · ,

which correctly reproduce the table in appendix A.
Before we start the detailed proof, it may be useful in the future study

to give the intuitive proof of this theorem.
From (27), the factor t − s in (35) can be regarded as the number of

additional null generators at level t when a pair (λi, λj) satisfies the relation
λi − λj = ±s. More explicitly,

t− s = tK − degree (l.c.m(b(w), b(w− 1), b(w− 2), . . . , b(w− t+ 1))). (36)

If a state in the Verma module has the form, N(•)m ·W (•)n|λ⟩, where N(•)s
are any null operators, the inner product of this state with any bra state will
get a factor (λi − λj − s)m. In order to collect the power factor m for the
all state at energy level t, we attach a factor ζ with q in order to mark the
null generators. A state of the form, N(•)m ·W (•)n|λ⟩, will get a factor ζm.
We take a derivative with respect to ζ to pick up the multiplicity factor m.
Since the bra states should get the same factor, we multiply the coefficient
of qm by two. This argument shows that the determinant can be divisible by
the factor in (34).
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4.1 Relation betweem generators

The proof of the theorem is straightforward but a little lengthy. We will
divide the argument into small steps.

The independent generators in the W1+∞ algebra at level r are W (z−rDs)
with s = 0, 1, · · · , rK − 1. On the other hand, those in the gl(∞) algebra
may be taken as Eλs(−r+ j,−j) with s = 1, · · · , K and j = 0, · · · , r− 1. We
denote the gl(∞) generator associated with parameter λ as Eλ(i, j). From
(20), those generators are related by rK × rK matrix Ar as, W (z−rDi) =∑K

s=1

∑r−1
j=0(Ar)i,(s−1)r+jEλs(−r + j,−j) with the matrix element,

(Ar)i,(s−1)r+j = (λs + j)i. (37)

The matrix Ar has the form of the Vandermonde matrix. It is hence quite
easy to derive its determinant as,

Lemma 2 Up to the multiplication of constant,

det(Ar) =
∏

1≤i<j≤K

r−1∏
k,ℓ=0

(λi − λj + k − ℓ)

=
∏

1≤i<j≤K

(λi − λj)
r
∏

ϵ=±1

r−1∏
s=1

(λi − λj + ϵs)r−s. (38)

4.2 Relation between Hilbert spaces

Let H(n1, n2, n3, · · ·) be the Hilbert space spanned by the product of n1

elements of level 1 generators, n2 elements of level 2 generators, n3 elements
of level 3 generators and so on, which are acting on the highest weight state.
Here, nis are the non-negative integers. In order to consider the determinant
at finite level, only finite number of them can be non-vanishing. The energy
level can be written out of them as,

N =
∞∑
ℓ=1

ℓnℓ. (39)

The basis of this Hilbert space may be written either in terms of the
W1+∞ generators or in terms of the gl(∞) generators. The transformation
matrix between those basis can be constructed out of the matrices Ar which
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is introduced in the previous subsection. For the Hilbert space H(n1, n2, · · ·),
it is given by,

A
(n1)
1 ⊗ A

(n2)
2 ⊗ A

(n3)
3 ⊗ · · · =

∞⊗
r=1

A(nr)
r , (40)

where A(nr)
r is the transformation matrix between the nr-th symmetrized

product of the original rK basis. In this case, Anr
r becomes(

rK + nr − 1
nr

)
×
(

rK + nr − 1
nr

)
matrix.

To derive the determinant for the matrix (40), we need to remark some
identities of the linear algebra, which can be proved easily.

Lemma 3 (1) Let Br be an arbitrary Nr×Nr matrix (r = 1, 2, · · · ,M). The
determinant for the direct product matrix is given by,

det(B1 ⊗ · · · ⊗ BM) =
M∏
r=1

(detBr)
νr , νr = (

M∏
s=1

ns)/nr. (41)

(2) Let B be an arbitrary N ×N matrix. If we denote B(M) as the represen-
tation of B in terms of M th symmetric basis. Then,

detB(M) = (detB)σM , σM =

(
N +M − 1

N

)
. (42)

The determinant formula for the space H(n1, n2, n3, · · ·) is derived as,

Lemma 4

det(
∞⊗
r=1

A(nr)
r ) =

∞∏
r=1

(detAr)
qr([n]), (43)

with

qr([n]) =

(
nr + rK − 1

rK

) ∞∏
s=1
s ̸=r

(
ns + sK − 1

ns

)
.

If we use (38), this formula becomes,∏
i<j

(
(λi − λj)

α0([n])
∞∏
s=1

((λi − λj + s)(λi − λj + s))αs([n])

)
(44)

with

αs([n]) =
∞∑

t=s+1

(t− s)

(
nt + tK − 1

tK

) ∞∏
u=1
u ̸=t

(
nu + uK − 1

nu

)
. (45)
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4.3 Generating function

Finally, to derive the generating functional (35), we take the summation over
infinite indices (n1, n2, · · ·) with parameter q,

ϕs(q) =
∑

n1,n2,···
αs([n])q

∑∞
j=1

jnj . (46)

Combining it with (45), and by using the Taylor expansions,

1

(1− qu)Ku
=

∞∑
n=0

(
n+ uK − 1

n

)
qun

qt

(1− qt)Kt+1
=

∞∑
n=1

(
n+ tK − 1

tK

)
qtn, (47)

we get the explicit form of the summation,

ϕs(q) =
∞∑

t=s+1

(t− s)qt

(1− qt)Kt+1

∞∏
u=1
u ̸=t

1

(1− qu)Ku

=
∂

∂ζ

( ∞∏
r=1

1

(1− qr)r

)K ∞∏
t=s+1

(1− qt)t−s

(1− ζqt)t−s

∣∣∣∣∣∣
ζ=1

. (48)

It completes our derivation of theorem 1. Q.E.D.

5 C dependence

In the following section, we derive the C dependence of the determinant
formula for the case, K = 1, b(w) = w−λ, ∆(x) = C eλx−1

ex−1
. The computation

is basically carried out by using the ĝl(∞) generators. The relation between
the nonvanishing generators contain the dependence on λ but it will disappear
if we take the determinant. Hence the determinant formula of ĝl(∞) is
identical with that of W1+∞ .

Computation for K = 1 is sufficient for understanding the result in our
previous computation appendix A, since they are the direct product of K = 1
representations.

Unfortunately, the determinant formula for more non-trivial cases, where
the characteristic polynomial has roots whose mutual difference is an integer,
is still beyond the scope of the present paper.
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5.1 Classification by the complete Cartan elements

There are an infinite number of commuting charges (forming the Cartan
subalgebra) in theW1+∞ algebra, W (Dk) with k = 0, 1, 2, . . .. In our previous
computation, we used only L0 ≡ −W (D) to classify states. However, much
more detailed analysis should be possible if we diagonalize the Hilbert state
with respect to the action of all the Cartan elements.

In the framework of the W1+∞ algebra, however, the construction of the
Weyl basis is not so straightforward since a simple commutation shows that[

W (Dk),W (zrf(D))
]
= W (zr((D + r)k −Dk)f(D)). (49)

It is obvious that we need to diagonalize the operator Q which acts on the
W1+∞ generator as

Q[W (zrf(D))] = W (zrDf(D)).

If we restrict f(D) to be a polynomial, we can not find any solution to this
equation.

The construction of the diagonal basis becomes possible if we view the
W1+∞ algebra from the equivalent ĝl(∞) algebra. In [25], they proved that
the quasifinite representation of those algebras coincide.

In the language of ĝl(∞) , the generators E(0)(i, j) are already diagonal
with respect to the action of the Cartan elements6,[

W (Dk), E(i, j)
]
= ((λ+ i)k − (λ− j)k)E(i, j). (50)

The state E(−i1,−j1) · · ·E(−in,−jn)|λ⟩ has the eigenvalue,

n∑
a=1

[
(λ− ia)

k − (λ+ ja)
k
]
+ ∆k, (51)

with respect to the action of W (Dk). To summarize, we may claim (for
K = 1 case),

Proposition 2 Classification of states
Let I ≡ {i1, · · · , in} (resp. J ≡ {j1, · · · , jn}) be a set of positive (resp. non-
negative) integers and σ be a permutation of the set of integers 1, · · · , n. The

6Here and in the following discussion, we omit the superscript (0) in E(i, j) since we
are only considering K = 1 cases.
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eigenvectors with respect to all W (Dk) are given as the linear combinations
of the form, ∑

σ

cσ
n∏

a=1

E(−ia,−jσ(a))|λ⟩, (52)

with cσ ∈ C.

5.2 Explicit calculation of inner product

Due to the above theorem, we understand that we need to consider only the
class of states of the form (52) to diagonalize the Hilbert space. For that
purpose, we would like to prove the explicit form of inner product between
those states,

⟨λ|
n∏

a=1

(E(jσ(a), ia)
n∏

b=1

E(−ib,−jσ′(b)))|λ⟩ = (−1)n(−C)L(σ
−1σ′). (53)

This equation is valid if all the indices i (or j) are given by different integers.
The function L(σ) is the “depth” of the permutation σ. It is known that any
element of the permutation group can be written as the product of cycles.
For example, (

1 2 3 4 5 6
3 6 4 1 5 2

)
= (134)(26)(5). (54)

The function L(σ) is then given by the number of the cycles (including trivial
one cycle). In the above example, L(σ) = 3.

In order to prove (53), we observe that, due to the nature of the ĝl(∞)
algebra, the indices which appear in (53) may be replaced by other integers,

⟨λ|
n∏

a=1

E(a, a)
n∏

b=1

E(−b,−σ−1σ′(b))|λ⟩.

In the following, we will write σ−1σ′ as σ for simplicity. Let us first consider
the case L(σ) = 1. We postulate that the inner product that consists of
a cycle of length m is given by (−1)m(−C) up to m = n − 1 and prove
the statement by induction. This assumption is straightforwardly proved
for m = 1 since the only non-vanishing contribution comes from the central
charge of the algebra. The typical element which consists of one cycle with
n element may be taken as,

⟨λ|E(n, n) · · ·E(1, 1)E(−1,−2)E(−2,−3) · · ·E(−n,−1)|λ⟩.
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We move the element E(1, 1) to the right. Non-vanishing commutation re-
lation happens only with E(−1,−2) and E(−n,−1), generating E(1,−2)
and −E(−n, 1), respectively. However, the latter one vanishes after it is
operated on the vacuum. Next, we move thus obtained element E(1,−2)
to the right. This time, only nontrivial element is the commutation with
E(−n,−1). It gives the contribution −E(−n,−2). In this way, one arrives
at the expression,

−⟨λ|E(n, n) · · ·E(2, 2)E(−2,−3) · · ·E(−n,−2)|λ⟩.

However, this is the inner product which consists of one cycle with n − 1
element. By induction assumption, it is equal to (−1)n(−C).

If there are several cycles, the argument similar to the above can be used
to reduce the inner product to the product of cycles. Therefore, we have,∏

cycles

(−1)m(−C) = (−1)n(−C)L(σ)

5.3 Young Diagram Classification

Since the inner product formula is written in terms of the permutation group
and its representation, we can easily believe that the diagonal basis is explic-
itly constructed by organizing them such as to give the irreducible represen-
tation of the permutation group. To accomplish this, we first prepare some
notations.

Let Sn be the permutation group for n objects. Conjugacy classes of Sn

are classified according to the type of cycle decomposition (as in eq. (54)).
Denoting by kj the number of length-j cycles, we represent a conjugacy
class as (k) = 1k12k2 · · ·nkn . Note that k1 + 2k2 + · · · + nkn = n, and the
number of elements in the class (k) is N(k) ≡ n!/(1k1k1!2

k2k2! · · ·nknkn!). Ir-
reducible representations are classified by Young diagrams Y , and we denote
the character and dimension of irreducible representation Y by χY and dY ,
respectively.

We define the action of σ ∈ Sn on the state
∏n

a=1 E(−ia,−ja)|λ⟩ by

σ
n∏

a=1

E(−ia,−ja)|λ⟩ ≡
n∏

a=1

E(−ia,−jσ(a))|λ⟩. (55)
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We then introduce the operator

BY
αβ ≡ dY

n!

∑
σ∈Sn

DY (σ)αβσ. (56)

Here DY (σ)αβ (α, β = 1, 2, ..., dY ) is the (real-valued) representation matrix
of element σ. Since σ† = σ−1, we obtain the following relations (see, for
example, [31] for the proof):

BY
αβ

†
= BY

βα, (57)

BY
αβB

Y ′

µν = δY Y ′δβµB
Y
αν . (58)

With this operator we define new vectors as follows:

|Y ;αβ⟩ ≡ BY
αβ

n∏
a=1

E(−ia,−ja)|λ⟩. (59)

In the following, we will restrict our discussion to the case where no degen-
eracy exists in the set of indices, {ja} (and also in {ia}).

We are now in a position to prove the following theorem:

Theorem 2 Young Diagram Classification
The vectors |Y ;αβ⟩ form an orthogonal basis in the subspace spanned by (52):

⟨Y ;αβ|Y ′;µν⟩ = δY Y ′δαµδβνa
Y
n , aYn =

dY
n!

∏
b∈Y

(C − Cb). (60)

Here to each box b in the Young diagram, we assign a number Cb as,

0 1 2 3 · · ·
−1 0 1 2 · · ·
−2 −1 0 1 · · ·
−3 −2 −1 0 · · ·
...

...
...

...
. . .

(61)

Proof: By using eqs. (57) and (58), the left-hand side of eq. (60) is rewritten
as

⟨Y ;αβ|Y ′;µν⟩

= δY Y ′δαµ
dY
n!

∑
σ∈Sn

DY (σ)βν⟨λ|
∏
a

E(ja, ia)σ
∏
b

E(−ib,−jb)|λ⟩. (62)
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Due to eq. (53), ⟨λ|∏a E(ja, ia)σ
∏

b E(−ib,−jb)|λ⟩ = (−1)n(−C)L(σ). Since
L(σ) is a class function, we may denote it by L(k) if σ ∈ (k). We thus obtain

⟨Y ;αβ|Y ′;µν⟩ = δY Y ′δαµ
dY
n!

(−1)n
∑
(k)

(−C)L(k)
∑
σ∈(k)

DY (σ)βν . (63)

Here we can show that the matrix
∑

σ∈(k) D
Y (σ) always commutes with the

actions of any elements in Sn, and thus, due to Schur’s lemma, we conclude
that

∑
σ∈(k) D

Y (σ) is proportional to the unit matrix. The coefficient is easily
calculated by taking its trace, and we obtain

∑
σ∈(k)

DY (σ)βν =
N(k)

dY
χY (k)δβν . (64)

Substituting this expression into eq. (63), we obtain

⟨Y ;αβ|Y ′;µν⟩ = δY Y ′δαµδβν
(−1)n

n!

∑
(k)

(−C)L(k)N(k)χY (k). (65)

Since we have the following identity as is proved in appendix B.3:

(−1)n

n!

∑
(k)

(−C)L(k)N(k)χY (k) =
dY
n!

∏
b∈Y

(C − Cb), (66)

we finally obtain eq. (60). Q.E.D.
As a simple corollary of the inner product formula, we may derive the con-

dition for the unitarity. The positivity of the Hilbert space may be rephrased
as the positivity of the factor aYn for any Y and n. From the table (61), we
can immediately prove that this condition is achieved only when C is positive
integer.

6 Character formulae for K = 1 module

In the previous section, we get the explicit form of the norm of diagonal
basis in terms of the Young diagrams. To understand the structure of the
Hilbert space, we need to count the number of the states which belong to
each diagram and have the same eigenvalues for all the Cartan elements.
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The generating functional for such degeneracy is neatly expressed by in-
troducing the full character,

χ([g]) ≡ TrH exp

( ∞∑
k=0

gkW (Dk)

)
. (67)

For the K = 1 module, if there are no null states aside from those coming
from characteristic polynomial, the non-vanishing generators are given by
E(−r,−s) with r ≥ 1, s ≥ 0. If we combine it with (50), we get the following
theorem

Theorem 3 Full character for the generalized Verma module
The full character for the generalized Verma module is

χ([g]) = e
∑∞

k=0
gk∆k

∞∏
r=1

∞∏
s=0

1

1− urvs
, (68)

= e
∑∞

k=0
gk∆k

∑
Y

τY (x)τY (y), (69)

where
ur ≡ e

∑∞
k=0

gk(λ−r)k , vs ≡ e−
∑∞

k=0
gk(λ+s)k , (70)

τY is the character of irreducible representation Y of gl(∞), (see appendix
B.1), and the parameters x and y are the Miwa variables for u and v, respec-
tively:

xℓ =
1

ℓ

∞∑
r=1

uℓ
r, yℓ =

1

ℓ

∞∑
s=0

vℓs, ℓ = 1, 2, 3, · · · . (71)

∆k is defined in (5) with ∆(x) = C eλx−1
ex−1

. The proof of (69) is given in
appendix B.2.

If we expand (68) in (infinitely many) parameters ur and vs as

∞∑
n=0

∑
In,Jn

N(In, Jn)
∏
i∈In

ui

∏
j∈Jn

vj,

then N(In, Jn) gives the number of the states of the form (52). If we expand
each factor in the summation of (69), we can get the degeneracy with respect
to each Young diagram Y , and the eigenvalues.
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For example, some of the simpler Schur polynomials are expanded as
follows:

τ2(x) =
x2
1

2
+ x2 =

∑
i<j

uiuj +
∑
i

u2
i ,

τ11(x) =
x2
1

2
− x2 =

∑
i<j

uiuj,

τ3(x) =
x3
1

6
+ x1x2 + x3 =

∑
i<j<k

uiujuk +
∑
i ̸=j

u2
iuj +

∑
i

u3
i ,

τ21(x) =
x3
1

3
− x3 = 2

∑
i<j<k

uiujuk +
∑
i ̸=j

u2
iuj,

τ111(x) =
x3
1

6
− x1x2 + x3 =

∑
i<j<k

uiujuk. (72)

The result in the previous section shows that the generalized Verma mod-
ule for K = 1 becomes reducible when C = integer. We call this represe-
natation as the degenerate representation. The full character formula for
the irreducible module can be obtained by combining previous theorem with
(60).

Theorem 4 Full Character of Degenerate Representations
Let Vn (resp. Hn) be the set of the Young diagrams the number of whose
columns (resp. rows) does not exceed n, then the full characters of C = ±n
are given by,

χC=n = e
∑∞

k=0
gk∆k

∑
Y ∈Vn

τY (x)τY (y),

χC=−n = e
∑∞

k=0
gk∆k

∑
Y ∈Hn

τY (x)τY (y). (73)

In the character formula for non-integer C (69), the summation is over
every Young diagram, or in other words, the two-dimensional sum. On the
other hand, the character formula for degenerate representation (73), the
summation is restricted to one-dimensional indices. The degeneracy of the
Hilbert space reduces the dimensionality of the system from three to two,
which naturally explains the hybrid nature of W1+∞ symmetry.
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To make our formula (73) into more familiar form, we give the explicit
form of the characters which depend only on the parameter q associated with
the eigenvalue of L0 ≡ −W (D). For this restriction, we replace

ur = qr, vr = qr. (74)

Namely, we put gk = −2πiτδk,1 with q = e2πiτ . The Miwa variables (71) are
then rewritten as,

xℓ =
1

ℓ

qℓ

1− qℓ
, yℓ =

1

ℓ

1

1− qℓ
. (75)

After these replacements, a compact form of the Schur polynomial can be
given. We introduce,

fk(q;m1, · · · ,mk)

≡
mk∏
j=1

1

(1− qj)(1− qmk−1+1+j) · · · (1− qmk−1+···+m1+k−1+j)

=
mk∏
j=1

k−1∏
s=0

(
1− q

∑s

t=1
mk−t+s+j

)−1
. (76)

for non-negative integers mi. When mk = 0, we put fk(q;m1, · · · , 0) = 1.
The Schur polynomial is then rewritten as,

τY (x) = q
∑n

j=1

j(j+1)
2

mj

n∏
k=1

fk(q;m1, · · · ,mk)

τY (y) = q
∑n

j=1

j(j−1)
2

mj

n∏
k=1

fk(q;m1, · · · ,mk)

τY ′(x) = q
1
2

∑n

j=1
(
∑n

s=j
ms)(

∑n

s=j
ms+1)

n∏
k=1

fk(q;m1, · · · ,mk)

τY ′(y) = q
1
2

∑n

j=1
(
∑n

s=j
ms)(

∑n

s=j
ms−1)

n∏
k=1

fk(q;m1, · · · ,mk). (77)

where Y = {m1 + · · ·+mn,m2 + · · ·+mn, · · · ,mn}, and Y ′ is the transpose
of the Young diagram Y .
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The full character formulae (73) then give,

χC=n(q) = qnλ(λ−1)/2
∞∑

m1=0

· · ·
∞∑

mn=0

q
∑n

j=1
(
∑n

s=j
ms)2

n∏
k=1

fk(q;m1, · · · ,mk)
2,

χC=−n(q) = q−nλ(λ−1)/2
∞∑

m1=0

· · ·
∞∑

mn=0

q
∑n

j=1
j2mj

n∏
k=1

fk(q;m1, · · · ,mk)
2, (78)

with positive integer n.
In our previous letter [26], we gave the character formulae for C = ±1

and C = n > 0. For C = ±1 cases, our general formula (78) gives,

χC=1(q) = qλ(λ−1)/2
∞∑

m=0

qm
2

m∏
j=1

1

(1− qj)2
,

χC=−1(q) = q−λ(λ−1)/2
∞∑

m=0

qm
m∏
j=1

1

(1− qj)2
, (79)

which are exactly same as our previous formulae. For C = n > 0 cases, what
we derived previously were,

χC=n(q) = qnλ(λ−1)/2
∞∏
j=1

n∏
k=1

(1− qj+k−1)−1. (80)

We have confirmed that it is equivalent to (78) by Taylor expansion up to
q30.

7 Discussion

Although we understand the representation of W1+∞ to some extent, there
are still many things to be understood. In particular, the C dependence for
K > 1 is not still well-understood. We hope to report on the full detail in
our future issue. In the mathematical side, we are currently working on the
supersymmetric extension [20], the structure of the subalgebras [30]. Those
works will be related to the topological field theory and/or the matrix models.

The relation of the W1+∞ algebra with extended objects seems also inter-
esting from the geometrical viewpoint. In this work, we used the basis Dk to
parametrize the generators. However, as Kac and Radul observed, there is
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another parametrization of generators which leads to different representation.
One example is to use qkD basis. One may regard it as the representation
based on torus (instead of sphere). In general, one may imagine the possibil-
ity of the representation theories based on higher-genus Riemann surfaces. If
we want to apply the W1+∞ algebra to membranes, for example, we need to
consider the “degenerate” three manifolds where such Riemann surface may
appear. The hybrid nature of the W1+∞ algebra that we have observed in
this paper may be important to understand such phenomena.

After we submited this paper, the full character for the unitary represen-
tation has been given in [32]. One may check [33] that for the special case
(K = 1), the formula obtained there coincides with ours (73) with C = n > 0.

Appendix A: Determinant formulae at lower

degrees

In this appendix, we give the explicit form of the functions Ar(C) and Br(λ)
defined in (10) We can parametrize those functions in the form,

Ar(C) =
∏
ℓ∈Z

(C − ℓ)α(ℓ), Br(λ) =
∏
ℓ∈Z

(λ− ℓ)β(ℓ)

We make tables for the index α(ℓ) and β(ℓ). We note that β(ℓ) = β(−ℓ).
Hence we will write them only for ℓ ≥ 0.
K = 1: Br ≡ 1 due to the spectral flow symmetry [26].

r α(−1) α(0) α(1) α(2) α(3) α(4) α(5) α(6) α(7)
1 0 1 0 0 0 0 0 0 0
2 0 3 1 0 0 0 0 0 0
3 0 6 3 1 0 0 0 0 0
4 1 13 8 3 1 0 0 0 0
5 3 24 17 8 3 1 0 0 0
6 10 48 37 19 8 3 1 0 0
7 23 86 71 41 19 8 3 1 0
8 54 161 138 85 43 19 8 3 1

K = 2
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r α(−1) α(0) α(1) α(2) α(3) β(0) β(1) β(2) β(3)
1 0 1 0 0 0 2 0 0 0
2 0 4 1 0 0 10 2 0 0
3 0 12 4 1 0 34 8 2 0
4 1 34 14 4 1 108 30 8 2

K = 3

r α(−1) α(0) α(1) α(2) α(3) β(0) β(1) β(2) β(3)
1 0 1 0 0 0 2 0 0 0
2 0 5 1 0 0 12 2 0 0
3 0 19 5 1 0 50 10 2 0

K = 4

r α(−1) α(0) α(1) α(2) α(3) β(0) β(1) β(2) β(3)
1 0 1 0 0 0 2 0 0 0
2 0 6 1 0 0 14 2 0 0
3 0 27 6 1 0 68 12 2 0

K = 5

r α(−1) α(0) α(1) α(2) α(3) β(0) β(1) β(2) β(3)
1 0 1 0 0 0 2 0 0 0
2 0 7 1 0 0 16 2 0 0

Appendix B: Free-fermion representation of char-

acters for the permutation and the general lin-

ear groups

Characters of the permutation group and the general linear group can be
expressed in terms of free fermions [28][29]. In this appendix we summarize
the useful formulae.
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B.1

Free fermions7 ♭̄(z) =
∑

n∈Z ♭̄nz
−n−1, ♭(z) =

∑
n∈Z ♭nz

−n and the vacuum
state ∥0⟩⟩ are defined by

{♭̄m, ♭n} = δm+n,0, {♭̄m, ♭̄n} = {♭m, ♭n} = 0,

♭̄m∥0⟩⟩ = ♭n∥0⟩⟩ = 0, (m ≥ 0, n ≥ 1). (1)

The fermion Fock space is a linear span of
∏

i ♭̄−mi

∏
j ♭−nj

∥0⟩⟩. The U(1)

current J (z) =
∑

n∈Z Jnz
−n−1 is defined by J (z) =: ♭̄(z)♭(z) :, i.e., Jn =∑

m∈Z : ♭̄m♭n−m :, where the normal ordering : ♭̄m♭n : means ♭̄m♭n if m ≤ −1
and −♭n♭̄m if m ≥ 0. Their commutation relations are

[Jn,Jm] = nδn+m,0, [Jn, ♭̄m] = ♭̄n+m, [Jn, ♭m] = −♭n+m. (2)

To the Young diagram Y of the following form (m1 > · · · > mh ≥ 1,
n1 > · · · > nh ≥ 0):

h

m

m

1

n 1+1

n +1

h

we define the corresponding state ∥Y ⟩⟩ as

∥Y ⟩⟩ ≡
h∏

i=1

♭̄−mi
♭−ni

(−1)ni∥0⟩⟩. (3)

Note that the number of fermion bilinears, h, corresponds to that of hooks
in the Young diagram. Bra states are obtained from ket states by † oper-
ation (♭̄n

† = ♭−n) with the normalization ⟨⟨0∥0⟩⟩ = 1; for example, ⟨⟨Y ∥ =

7We use this notation to avoid a confusion with the free fermions used in the free-
field realization of W1+∞. Relation to usual free fermions ψ̄(z) =

∑
r∈Z+1/2 ψ̄rz

−r−1/2,

ψ(z) =
∑

r∈Z+1/2 ψrz
−r−1/2 is given by ♭̄n = ψ̄n+1/2, ♭n = ψn−1/2.
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∥Y ⟩⟩† = ⟨⟨0∥∏h
i=1 ♭̄ni

♭mi
(−1)ni and ⟨⟨Y ∥Y ′⟩⟩ = δY Y ′ . Note that {∥Y ⟩⟩} is an

orthonormal basis of the fermion Fock space with vanishing U(1) charge.
Irreducible representations of the permutation group Sn and the gen-

eral linear group GL(N) are both characterized by the Young diagrams Y .
We denote their characters by χY (k) and τY (x), respectively. Here (k) =
1k12k2 · · ·nkn stands for the conjugacy class of Sn; k1+2k2+· · ·+nkn = n =the
number of boxes in Y . x = [xℓ] (ℓ = 1, 2, 3, · · ·) stands for xℓ = 1

ℓ
tr gℓ =

1
ℓ

∑N
i=1 ϵ

ℓ
i for an element g of GL(N), and in this case the number of boxes

in Y is a rank of tensor for GL(N). In section 6, we consider the Lie algebra
of GL(N), gl(N), for sufficiently large N .

χY (k) and τY (x) are expressed as follows:

χY (k) = ⟨⟨0∥J k1
1 J k2

2 · · · J kn
n ∥Y ⟩⟩, (4)

τY (x) = ⟨⟨0∥ exp
( ∞∑
ℓ=1

xℓJℓ

)
∥Y ⟩⟩. (5)

We remark that they can also be written as χY (k) = ⟨⟨Y ∥J k1
−1J k2

−2 · · · J kn
−n∥0⟩⟩

and τY (x) = ⟨⟨Y ∥ exp (∑∞
ℓ=1 xℓJ−ℓ) ∥0⟩⟩.

B.2

For arbitrary parameters ur and vs such that the following (infinite) product
converges, we can show the following identity,

∏
r

∏
s

1

1− urvs
=
∑
Y

τY (x)τY (y), (6)

where the summation runs over all the Young diagrams and x, y are the Miwa
variables for u, v,

xℓ ≡
1

ℓ

∑
r

uℓ
r, yℓ ≡

1

ℓ

∑
s

vℓs, (ℓ = 1, 2, 3, · · ·). (7)

Proof:∏
r

∏
s

1

1− urvs
= exp

(∑
r

∑
s

log
1

1− urvs

)
= exp

(∑
r

∑
s

∞∑
ℓ=1

1

ℓ
(urvs)

ℓ
)

= exp
( ∞∑
ℓ=1

ℓxℓyℓ

)
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= ⟨⟨0∥ exp
( ∞∑
ℓ=1

xℓJℓ

)
exp

( ∞∑
ℓ=1

yℓJ−ℓ

)
∥0⟩⟩

=
∑
Y

⟨⟨0∥ exp
( ∞∑
ℓ=1

xℓJℓ

)
∥Y ⟩⟩⟨⟨Y ∥ exp

( ∞∑
ℓ=1

yℓJ−ℓ

)
∥0⟩⟩

=
∑
Y

τY (x)τY (y).

We have used the completeness of {∥Y ⟩⟩} in the fermion Fock space with
vanishing U(1) charge. Q.E.D.

B.3

In subsection 5.3 we need the following quantity for Sn,

aYn ≡ (−1)n

n!

∑
(k)

(−C)L(k)N(k)χY (k), (8)

where (k) = 1k12k2 · · ·nkn , k1+2k2+ · · ·+nkn = n, L(k) = k1+k2+ · · ·+kn
and N(k) = n!/(1k1k1!2

k2k2! · · ·nknkn!). We remark that aYn is a polynomial
of C with degree n,

aYn =
dY
n!

Cn + · · · .

To calculate aYn , we introduce its generating function aY (t) =
∑∞

n=0 a
Y
n t

n.
By eq. (4), aY (t) becomes

aY (t) = ⟨⟨0∥ exp
(
C

∞∑
ℓ=1

(−1)ℓ−1

ℓ
Jℓt

ℓ
)
∥Y ⟩⟩. (9)

By rewriting eq. (3) as

∥Y ⟩⟩ =
h∏

i=1

(−1)ni+i−1 · ♭̄−m1 · · · ♭̄−mh
♭−n1 · · · ♭−nh

∥0⟩⟩

=
∮ h∏

i=1

dzi
2πi

dwi

2πi

h∏
i=1

z−mi
i w−ni−1

i

×
h∏

i=1

(−1)ni+i−1 · ♭̄(z1) · · · ♭̄(zh)♭(w1) · · · ♭(wh)∥0⟩⟩,

29



aY (t) can be expressed as

aY (t) =
∮ h∏

i=1

dzi
2πi

dwi

2πi

h∏
i=1

z−mi
i w−ni−1

i

×
h∏

i=1

(1 + tzi)
C

(1 + twi)C
(−1)ni+i−1 · ⟨⟨0∥♭̄(z1) · · · ♭̄(zh)♭(w1) · · · ♭(wh)∥0⟩⟩.

Here we have used

exp
( ∞∑
ℓ=1

xℓJℓ

)
♭̄(z) exp

(
−

∞∑
ℓ=1

xℓJℓ

)
= exp

( ∞∑
ℓ=1

xℓz
ℓ
)
♭̄(z),

exp
( ∞∑
ℓ=1

xℓJℓ

)
♭(z) exp

(
−

∞∑
ℓ=1

xℓJℓ

)
= exp

(
−

∞∑
ℓ=1

xℓz
ℓ
)
♭(z), (10)

in particular, for U(C) = exp
(
C
∑∞

ℓ=1
(−1)ℓ−1

ℓ
Jℓt

ℓ
)

U(C)♭̄(z)U(−C) = (1 + tz)C ♭̄(z),

U(C)♭(z)U(−C) = (1 + tz)−C♭(z).

By expanding aY (t), we obtain

aYn =
∑
ri,si

h∏
i=1

(
C

mi + ri

)(
−C

ni − si

)
(−1)ni+i−1 · ⟨⟨0∥♭̄r1 · · · ♭̄rh♭−s1 · · · ♭−sh∥0⟩⟩,

where the summation runs over ri ≥ 0, 0 ≤ si ≤ ni,
∑h

i=1 ri =
∑h

i=1 si.
(
x
n

)
is defined by

(
x
n

)
= [x]n/n! and [x]n =

∏n−1
i=0 (x − i). Thus, aYn is divided by∏h

i=1

(
C
mi

)
as a polynomial of C. Similarly, starting from

∥Y ⟩⟩ =
∮ h∏

i=1

dzi
2πi

dwi

2πi

h∏
i=1

z−mi
i w−ni−1

i

×
h∏

i=1

(−1)ni+i−1+h · ♭(w1) · · · ♭(wh)♭̄(z1) · · · ♭̄(zh)∥0⟩⟩,

we obtain

aYn =
∑
ri,si

h∏
i=1

(
C

mi − ri

)(
−C

ni + si

)
(−1)ni+i−1+h · ⟨⟨0∥♭s1 · · · ♭sh ♭̄−r1 · · · ♭̄−rh∥0⟩⟩,
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where the summation runs over 1 ≤ ri ≤ mi, si ≥ 1,
∑h

i=1 ri =
∑h

i=1 si.

Therefore, aYn is divided by
∏h

i=1

(
−C
ni+1

)
as a polynomial of C. Combining

these results, we can conclude that aYn is
∏h

i=1

(
C
mi

)(
−C
ni+1

)
/Ch up to constant.

We thus finally obtain

aYn =
dY
n!

h∏
i=1

[C]mi
[−C − 1]ni

(−1)ni . (11)

This result can be converted into a simpler form as given in subsection 5.3:

aYn =
dY
n!

∏
b∈Y

(C − Cb). (12)

We can give another easy proof of the above result. The relation between
the transformed basis U(C)♭̄−mU(−C) with the original ones ♭̄−m can be
obtained if we expand the factor (1 + tz)C in z around 0. For non-integer
C, U(C)♭̄−mU(−C) is written by infinite sum with respect to ♭̄−m+ℓ with
ℓ = 0, 1, 2, 3, · · ·. However, if C ∈ Z, truncation of the summation happens.
We move each operator ♭̄−m♭−n in (3) to the left of U(C). When it is acted
on the bra vacuum, it vanishes when C = −n,−n + 1, · · · ,m − 2,m − 1.
It gives the following assignment of the polynomial of C to each pair of the
fermion operators:

♭̄−m♭−n ⇐⇒ (C + n)(C + n− 1) . . . (C −m+ 2)(C −m+ 1). (13)

Combining these factors for each hook, we get the assignment in (61).
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