
ar
X

iv
:h

ep
-t

h/
94

06
11

1v
1 

 1
7 

Ju
n 

19
94

RIMS-985
YITP/K-1076
YITP/U-94-22
SULDP-1994-4
June 1994

Subalgebras of W1+∞ and Their Quasifinite Representations

Hidetoshi AWATA∗1, Masafumi FUKUMA2 , Yutaka MATSUO3

and Satoru ODAKE4

1Research Institute for Mathematical Sciences

Kyoto University, Kyoto 606, Japan

2Yukawa Institute for Theoretical Physics

Kyoto University, Kyoto 606, Japan

3Uji Research Center, Yukawa Institute for Theoretical Physics

Kyoto University, Uji 611, Japan

4Department of Physics, Faculty of Liberal Arts

Shinshu University, Matsumoto 390, Japan

Abstract

We propose a series of new subalgebras of the W1+∞ algebra parametrized by

polynomials p(w), and study their quasifinite representations. We also investigate

the relation between such subalgebras and the ĝl(∞) algebra. As an example, we

investigate the W∞ algebra which corresponds to the case p(w) = w, presenting its

free field realizations and Kac determinants at lower levels.
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1 Introduction

It is known that there are several types of W infinity algebras, including the w∞ algebra

as the algebra of area preserving diffeomorphism of two-dimensional cylinder [1], the W∞

algebra as its deformation [2], and the W1+∞ algebra by adding a spin-1 current to W∞

[3]. The W1+∞ algebra may be regarded as the most fundamental because all other W

infinity algebras are obtained as its subalgebras [4].

The representation theories of these algebras had not been developed after the early

works [5, 6], because of the difficulty that there might exist infinitely many states at each

energy level reflecting the infinite number of currents. The requirement that there exist

only a finite number of states at each energy level is quite natural from the view point

of the free-field realization, since such quasifiniteness condition is actually ensured when

states are generated by (a finite number of) free-field oscillators. Recently Kac and Radul

gave an elegant framework to set up the quasifinite condition for the W1+∞ algebra, and

studied such representations in detail [7]. On the basis of their analysis, further studies

were made for the W1+∞ algebra [8, 9, 10, 11] and the super W1+∞ algebra [12].

In this letter, we propose a systematic method to construct a family of subalgebras

of the W1+∞ algebra, and then study their quasifinite representations. In particular, we

investigate the W∞ algebra as a special case, and present the free field realizations and

the Kac determinant formula at lower levels.

2 Subalgebras of W1+∞

The W1+∞ algebra is defined as a one-dimensional central extension of the Lie algebra of

differential operators on the circle whose classical generators are znDk (D ≡ z d
dz
, n ∈ Z,

k ∈ Z≥0). We denote the corresponding generators in the W1+∞ algebra by W (znDk) and

the central charge by C. The commutation relations are defined by [7]

[W (znf(D)),W (zmg(D))]

= W (zn+mf(D +m)g(D))−W (zn+mf(D)g(D + n))

+Cδn+m,0


θ(n ≥ 1)

n∑

j=1

f(−j)g(n− j)− θ(m ≥ 1)
m∑

j=1

f(m− j)g(−j)


 , (1)

where θ(P ) = 1 (or 0) when the proposition P is true (or false).

In the above expression, f(D) and g(D) are arbitrary polynomials. However, the

commutation relations still close even for a class of the polynomials which can be divided

by a polynomial p(D). In fact, if we set

W̃ (znDk) = W (znDkp(D)), (2)
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then their commutation relations will be written as

[
W̃ (znf(D)), W̃ (zmg(D))

]

= W̃ (zn+mp(D +m)f(D +m)g(D))− W̃ (zn+mp(D + n)f(D)g(D + n))

+Cδn+m,0

(
θ(n ≥ 1)

n∑

j=1

p(−j)p(n− j)f(−j)g(n− j)

−θ(m ≥ 1)
m∑

j=1

p(−j)p(m− j)f(m− j)g(−j)
)
. (3)

We call the obtained subalgebra W1+∞[p(D)]. The motivation for our construction of

such subalgebras is as follows. In the W∞ algebra, there is no spin-1 current. Since the

current is expressed as W (zn) in W1+∞, the W∞ algebra will be obtained from W1+∞

simply by omitting this current. However, it is equivalent to taking p(D) = D in the

above expression.

By introducing znexD as a generating series for znDk, the above commutation relation

can be rewritten in a simpler form:

[
W̃ (znexD), W̃ (zmeyD)

]
=
(
p( d

dx
)emx − p( d

dy
)eny

)
W̃ (zn+me(x+y)D)

−Cp( d
dx
)p( d

dy
)
emx − eny

ex+y − 1
δn+m,0. (4)

The basis of W1+∞ given in [3], V i
n = W i+2

n , is expressed as W k+1
n = W (znfk

n(D))

(k ≥ 0),

fk
n(D) =

(
2k

k

)−1 k∑

j=0

(−1)j
(
k

j

)2

[−D − n− 1]k−j[D]j , (5)

where [x]n =
∏n−1

j=0 (x− j) and
(
x

n

)
= [x]n/n!. On the other hand, the basis of W∞ given

in [2], Ṽ i
n = W̃ i+2

n , is now expressed as W̃ k+2
n = W̃ (znf̃k

n(D)) (k ≥ 0),

f̃k
n(D) = −

(
2(k + 1)

k + 1

)−1 k∑

j=0

(−1)j
(
k

j

)(
k + 2

j + 1

)
[−D − n− 1]k−j[D − 1]j. (6)

We remark that the Virasoro generators exist only if deg p(w) ≤ 1. In the case of

W∞, the Virasoro generator Ln is given by Ln = −W̃ (zn) whose central charge, c̃V ir, is

related to C as c̃V ir = −2C [4]. For deg p(w) ≥ 2, we extend the algebra introducing the

L0 operator such as to count the energy level,
[
L0, W̃ (znf(D))

]
= −nW̃ (znf(D)).

3 Quasifinite Representations

We consider the irreducible quasifinite highest weight representations of W1+∞[p(D)],

following [7].
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The highest weight state |λ〉 is characterized by

W̃ (znDk)|λ〉 = 0 (n ≥ 1, k ≥ 0),

W̃ (Dk)|λ〉 = ∆̃k|λ〉 (k ≥ 0). (7)

It is convenient to introduce the generating function for the highest weights ∆̃k,

∆̃(x) = −
∞∑

k=0

∆̃k

xk

k!
, (8)

which is the eigenvalue of −W̃ (exD); W̃ (exD)|λ〉 = −∆̃(x)|λ〉. By definition, ∆̃(x) must

be regular at x = 0. To study the representation of W1+∞[p(D)], we first consider the

representation of W1+∞ whose restriction agrees with the representation of W1+∞[p(D)].

Such a representation of W1+∞ always exists. The weight ∆(x), which is defined by

W (exD)|λ〉 = −∆(x)|λ〉, satisfies

p
(

d
dx

)
∆(x) = ∆̃(x). (9)

The representation of the W1+∞ associated with that of W1+∞[p(D)] is not uniquely

determined, and we will fix one representative ∆(x).

The quasifinite representation of W1+∞ with ∆(x) is characterized by characteristic

polynomials bn(w) (n = 1, 2, 3, · · ·) [7] (see also [10]):

bn(w) = lcm(b(w), b(w − 1), · · · , b(w − n + 1)), (10)

where b(w) = b1(w) is the minimal-degree monic polynomial satisfying the differential

equation,

b
(

d
dx

) (
(ex − 1)∆(x) + C

)
= 0. (11)

Quasifinite condition is the requirement that there exist a finite number of states at

each energy level. This means that W̃ (z−nf(D))|λ〉 is a null state for sufficiently high-

degree polynomial f(w). In other words, the set Ĩ−n =
{
f(w) ∈ C[w]|W̃ (z−nf(D))|λ〉 = null state

}

contains an ideal of C[w] generated by some polynomial. We can show that if there exist

a finite number of states at level 1, then this is also the case at any level. Suppose that

W̃ (z−1f(D))|λ〉 is a null state, then

0 = W̃ (zex(D+1))W̃ (z−1f(D))|λ〉

= f
(

d
dx

)((
p( d

dx
)ex − p( d

dx
− 1)

)
∆̃(x) + Cp(0)p(−1)

)
|λ〉

= f
(

d
dx

)
p
(

d
dx

)
p
(

d
dx

− 1
) (

(ex − 1)∆(x) + C
)
|λ〉. (12)

Therefore, ∆(x) is the weight for the quasifinite representation.
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For deg p(w) ≤ 2, we can prove that Ĩ−n is an ideal of C[w], as is the case for W1+∞.

However, this is no longer true when deg p(w) ≥ 3. In the following, we make an assump-

tion that Ĩ−n is an ideal of C[w]. Since C[w] is a principal ideal domain, Ĩ−n is generated

by a monic polynomial b̃n(w). We call the b̃n(w)’s (n = 1, 2, 3, ...) the characteristic

polynomials for the highest weight representation.

The characteristic polynomials b̃n(w) are related to each other as follows:1

(i) b̃n(w) divides both of p(w +m)b̃n+m(w +m) and p(w − n−m)b̃n+m(w)
∀m ∈ Z≥0,

(ii) p(w)p(w − n)b̃n(w) is divided by fn(w).

The b̃n(w)’s are determined as minimal-degree polynomials satisfying (i) and (ii). Here

fn(w) is the minimal-degree, monic polynomial satisfying the following differential equa-

tion:

fn
(

d
dx

) n−1∑

j=0

ejx
(
(ex − 1)∆(x) + C

)
= 0. (13)

Note that f1(w) = b(w), and bn(w) is divided by fn(w). The property (i) is derived from

the null state condition, W̃ (zmexD)W̃ (z−n−mb̃n+m(w))|λ〉 = null state. The property (ii)

is derived from the following null state condition,

0 = W̃ (znex(D+n))W̃ (z−nb̃(D))|λ〉

= b̃
(

d
dx

)
p
(

d
dx

)
p
(

d
dx

− n
) n−1∑

j=0

ejx
(
(ex − 1)∆(x) + C

)
|λ〉. (14)

In almost all cases, the relation fn(w) = bn(w) holds. Then, we can prove that the

characteristic polynomials b̃n(w) are given by

b̃n(w) =
bn(w)

gcd(bn(w), p(w)p(w − n))
. (15)

Although eq. (15) satisfies both (i) and (ii) in general, it might not be minimal-degree

polynomials. Therefore, for such special cases, we must solve (i) and (ii) directly. In

contrast to W1+∞, the b̃n(w)’s may not be determined by b̃1(w) (and p(w)) alone.

4 Correspondence with ĝl(∞)

As was demonstrated in [7, 10], the quasifinite representation of W∞ can be alternatively

expressed in terms of ĝl(∞) algebra. Since ĝl(∞) has a simpler structure, it is useful

to carry out some explicit calculation by using this correspondence. As we show in this

section, it is also useful to understand the structure of subalgebras in terms of ĝl(∞).

1 We can also show that b̃n+m(w) divides p(w −m)b̃n(w −m)b̃m(w).
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Let us start from the special case in which the differences of any roots of b̃(w) = 0

and p(w) = 0 are integers. We assume that b̃(w) has the following form:

b̃(w) =
N∏

i=1

(w − λ− ki)
µi

M∏

j=1

(w − λ− sj)
νj , p(w) =

M∏

j=1

(w − λ− sj)
ρj , (16)

where ki, sj ∈ Z and µi, νj , ρj are positive integers with m ≡ Max(µi, νj+ρj). We remark

that general cases can also be handled by making their tensor products.

The ĝl(∞) algebra we consider is defined by the commutation relation,

[
E(µ)(i, j), E(ν)(k, ℓ)

]
= θ(m− µ− ν ≥ 0)×

(
δj+k,0E

(µ+ν)(i, ℓ)− δi+ℓ,0E
(µ+ν)(k, j)

+c(µ+ν)δj+k,0δℓ+i,0(θ(i ≥ 0)− θ(k ≥ 0))
)
, (17)

where µ and ν run from 0 to m. The quasifinite representation of ĝl(∞) is defined by the

highest weight state,

E(µ)(i, j)|λ〉 = 0 (i+ j > 0) and E(µ)(i,−i)|λ〉 = q
(µ)
i |λ〉. (18)

If we introduce h
(µ)
i = q

(µ)
i − q

(µ)
i−1 + c(µ)δi,0, the quasifiniteness of the module is achieved

only when finite number of h
(µ)
i are non-vanishing [7].

The relation between the generators of ĝl(∞) and W1+∞ is given by,

W (zrf(D)) =
∑

k∈Z

m∑

µ=0

f (µ)(λ+ k)

µ!
E(µ)(r + k,−k), (19)

for r 6= 0 [7]. For zero modes, we need to introduce c-number corrections [7, 10].

Since we are considering a subalgebra of W1+∞, we need to find a proper subalgebra

of ĝl(∞) associated with it. Let us replace f(D) in (19) by f̃(D)p(D). We recognize that

the coefficients of

E(µ)(r,−sj) (r ∈ Z, µ = 0, · · · , ρj−1), (20)

vanish on the right hand side of (19). This means that these generators will not appear

in the image of the mapping (19). Thus, if we remove (20) from the algebra, we also have

to remove the generators of the following form:2

E(µ)(sj , r) (r ∈ Z, µ = m−ρj+1, · · · , m). (21)

2 To prove this, we first remark that generators of the form, E(ν)(∗,−sj) with ν = ρj , · · · ,m, still

remain in the algebra. The generators which has non-vanishing inner product with them are given in

the form, E(ν)(sj , ∗) with ν = 0, · · · ,m−ρj. The other generators (21) have zero inner product with any

states.
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The remaining generators will form a subalgebra of ĝl(∞), which will be called ĝl(∞)({s})

in the following.

The next step is to find a relation between the quasifinite representations ofW1+∞[p(D)]

and ĝl(∞)({s}). This is again carried out by studying the relation (19) carefully. By

putting f(D) = b̃(D)p(D), r = −1, it should become a null field when acting on

the highest weight state. The only generators which may give nonvanishing states are,

E(µ)(−1 + ki,−ki) (µ = 0, · · · , µi − 1) and E(µ)(−1 + sj,−sj) (µ = ρj, · · · , ρj + νj − 1).

Thus, applying the argument in [7], we can show that nonvanishing h(µ) are given by

h
(µ)
ki

(µ = 0, · · · , µi − 1) and h(µ)
sj

(µ = ρj , · · · , ρj + νj − 1). This information is enough

for constructing a ĝl(∞)({s}) module from the highest weight state, which can be shown

to be equivalent to the W1+∞[p(D)] module we gave in section 3.

5 Free Field Realization of the W∞ Algebra

In this section, we investigate the W∞ algebra (p(D) = D) as an example.

We first consider the free-field realization of W∞, introducing complex bosons, ϕ̄(z) =

q̄ + ᾱ0 log z −
∑

n 6=0
1
n
ᾱnz

−n, ϕ(z) = q + α0 log z −
∑

n 6=0
1
n
αnz

−n with commutation rela-

tions: [ᾱn, αm] = nδn+m,0, [ᾱ0, q] = 1, [α0, q̄] = 1, i.e., with the propagator ϕ̄(z)ϕ(w) ∼

log(z−w). The W∞ algebra with C = −1 (c̃V ir = 2) is then realized in the following way

[5]:

W̃ (znf(D)) = −
∮

dz

2πi
: ∂ϕ̄(z)zn+1f(D + 1)∂ϕ(z) : = −

∑

m∈Z

f(−m) : ᾱn−mαm : . (22)

We remark that
[
W̃ (znf(D)), ᾱm

]
= mf(m)ᾱn+m,

[
W̃ (znf(D)), αm

]
= mf(−n−m)αn+m. (23)

There are two kinds of highest weight states for such realization [5, 6]:

|p, p̄〉 = : exp (pϕ̄(0) + p̄ϕ(0)) : |0〉, (24)

|N〉 =





(α−1)
N |0〉 (N ≥ 1)

|0〉 (N = 0)

(ᾱ−1)
−N |0〉 (N ≤ −1),

(25)

where p, p̄ ∈ C, N ∈ Z and |0〉 is defined by ᾱn|0〉 = αn|0〉 = 0 (n ≥ 0). Using eq. (23),

we can show that the weight ∆̃(x) and the characteristic polynomials b̃n(w) are given by

the following: for |p, p̄〉

∆̃(x) = pp̄, (26)

b̃n(w) =





[w − 1]n−1 if pp̄ = 0

[w]n+1 if pp̄ 6= 0,
(27)
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and for |N〉

∆̃(x) = |N |esgn(N)x, (28)

b̃n(w) =





[w − 1]n−1 · (w − n− 1) if N ≥ 1

[w − 1]n−1 if N = 0

[w − 1]n−1 · (w + 1) if N ≤ −1,

(29)

We can illustrate our general theory given in the previous section from this example.

For |p, p̄〉, we can take ∆(x) = pp̄x. Then fn(w) is equal to bn(w) = [w]n for pp̄ = 0. Thus

b̃n(w) are given by eq. (15). But for pp̄ 6= 0, fn(w) = [w]n+1w(w− n) does not agree with

bn(w) = ([w]n+1)
2. So the polynomials in eq. (15) may not be of minimal degree, and

actually they are not.

Using eq. (23) and a formula in [6, 13], we can write down the full character of the

representation |p, p̄〉 with pp̄ 6= 0 as

chp,p̄ = tre
∑

∞

k=0
gkW̃ (Dk) = e−pp̄g0

∞∏

n=1

(
1− e

∑
∞

k=0
gkn

k+1
)−1 (

1− e−
∑

∞

k=0
gk(−n)k+1

)−1
, (30)

and the generating function of the full characters of the representations |N〉, chN =

tre
∑

∞

k=0
gkW̃ (Dk) = e−

∑
∞

k=0
|N |(sgn(N))kgkch′

N , as

∑

N∈Z

tNch′
N =

∞∏

n=1

(
1− t−1e

∑
∞

k=0
gkn

k+1
)−1 (

1− te−
∑

∞

k=0
gk(−n)k+1

)−1
. (31)

We here make a comment. The W1+∞ algebra is known to be realized by free fermions

or bc ghosts [14, 8]. By restricting quasifinite representations of W1+∞, we obtain those

of W∞ or more generally W1+∞[p(D)].

6 Discussion

We have constructed a series of subalgebras of W1+∞ parametrized by polynomials p(w),

in which W∞ corresponds to p(w) = w, and studied their quasifinite representations.

Although W∞ is a subalgebra of W1+∞, its representation theory is nontrivial. There

exist more null states than the W1+∞ case. Although full character formulae of quasifinite

representations of W1+∞ were recently obtained [10, 11], it is difficult to derive the (full)

character formulae of W∞ directly from those of W1+∞. We would like to report on this

issue in our future communication.

Acknowledgments: S.O. would like to thank members of YITP for their hospitality.
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Appendix: Kac Determinant at Lower Degrees

In this appendix, we give the Kac determinant for the p(w) = w and b̃(w) = w − λ

case. In this case, the generating function for the highest weight can be written as

∆(x) = C1(e
λx − 1)/(ex − 1) with C1 some complex number.

For the first three levels, the relevant ket states are,

Level 1 W̃ (z−1)|λ〉,

Level 2 W̃ (z−2)|λ〉, W̃ (z−2D)|λ〉, W̃ (z−2D2)|λ〉, W̃ (z−1)2|λ〉,

Level 3 W̃ (z−3)|λ〉, W̃ (z−3D)|λ〉, W̃ (z−3D2)|λ〉, W̃ (z−3D3)|λ〉, W̃ (z−3D4)|λ〉,

W̃ (z−1)W̃ (z−2)|λ〉, W̃ (z−1)W̃ (z−2D)|λ〉,

W̃ (z−1)W̃ (z−2D2)|λ〉, W̃ (z−1)3|λ〉.

Corresponding bra states may be given by changing z−r into zr.

We compute the Kac determinant up to level 4, and the result is

det[1] ∝ C1λ(λ− 1),

det[2] ∝ C3
1(C1 + 1)C2(λ+ 1)λ5(λ− 1)5(λ− 2),

det[3] ∝ C7
1(C1 + 1)3(C1 − 2)C3

2(λ+ 2)(λ+ 1)4λ14(λ− 1)14(λ− 2)4(λ− 3),

det[4] ∝ (C1 + 1)C18
1 (C1 − 1)9(C1 − 2)3(C1 − 3)C9

2(C2 − 1)

× (λ+ 3)(λ+ 2)4(λ+ 1)13λ42(λ− 1)42(λ− 2)13(λ− 3)4(λ− 4),

where C2 ≡ C − C1.
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