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1 Introduction

Symmetry is one of the most important concepts in modern physics, e.g. SU(3) symme-

try in quark model, gauge symmetry in gauge theory, conformal symmetry in conformal

field theory. To study physical system from symmetry point of view, we need the repre-

sentation theory of the corresponding symmetry algebra; finite dimensional Lie algebra

for quark model or gauge theory, infinite dimensional Lie algebra (the Virasoro algebra)

for two-dimensional conformal field theory. Conformal symmetry restricts theories very

severely due to its infinite dimensionality[13]. In fact, by combining the knowledge of the

representation theory of the Virasoro algebra and the requirement of the modular invari-

ance, the field contents of the minimal models were completely classified[16]. Another

example of the powerfulness of the symmetry argument is that correlation functions of

the XXZ model were determined by using the representation theory of affine quantum

algebra Uq ŝl2[18].

When conformal field theory has some extra symmetry, the Virasoro algebra must be

extended, i.e. semi-direct products of the Virasoro algebra with Kac-Moody algebras,

superconformal algebras, the W algebras and parafermions. The WN algebra is generated

by currents of conformal spin 2, 3, · · · , N , and their commutation relation has non-linear

terms[45, 14]. The W infinity algebras are Lie algebras obtained by taking N → ∞ limit

of the WN algebra.

The W infinity algebras naturally arise in various physical systems, such as two-

dimensional quantum gravity[23, 21, 28, 31, 41, 25], the quantum Hall effects[17, 27], the

membrane[15, 22], the large N QCD[26, 20], and also in the construction of gravitational

instantons[43, 44, 36](see also [9]). To study these systems we first need to prepare the

representation theory of W infinity algebras, especially the most fundamental one, the

W1+∞ algebra.

To begin with, we present a short review of the history of the W infinity algebras

before the appearance of ref.[30]. By taking an appropriate N → ∞ limit of the WN

algebra, we can obtain a Lie algebra with infinite number of currents. Depending on

how the background charge scales with N , there are many kinds of W infinity algebras.

The first example is the w∞ algebra[6]. Its generators wk
n (k, n ∈ Z, k ≥ 2) have the

commutation relation,

[
wk

n, w
ℓ
m

]
=
(
(ℓ − 1)n − (k − 1)m

)
wk+ℓ−2

n+m . (1.1)

w2
n generates the Virasoro algebra without center and wk

n has conformal spin k. This w∞

algebra has a geometrical interpretation as the algebra of area-preserving diffeomorphisms

of two-dimensional phase space. However, w∞ admits a central extension only in the
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Virasoro sector,
[
wk

n, wℓ
m

]
=
(
(ℓ − 1)n − (k − 1)m

)
wk+ℓ−2

n+m +
c

12
(n3 − n)δn+m,0δ

kℓδk2. (1.2)

To introduce a central extension in all spin sectors, we must take another type of the limit

N → ∞ or the deformation of the w∞ algebra. By deforming w∞, Pope, Romans and

Shen constructed such algebra, the W∞ algebra, in algebraic way by requiring linearity,

closure and the Jacobi identity[37]. The W∞ algebra is generated by W̃ k
n (k, n ∈ Z, k ≥ 2)

and its commutation relation is given by
[
W̃ k

n , W̃ ℓ
m

]
=

∞∑

r=0

g̃kℓ
2r(n, m)W̃ k+ℓ−2−2r

n+m

+c̃δkℓδn+m,0
1

k − 1

(
2(k − 1)

k − 1

)−1(
2k

k

)−1 k−1∏

j=−(k−1)

(n + j), (1.3)

where c̃ is the central charge of the Virasoro algebra generated by W̃ 2
n , and the structure

constant g̃kℓ
r is given by

g̃kℓ
r (n, m) =

1

22r+1(r + 1)!
φkℓ

r (0, 0)Nk,ℓ
r (n, m), (1.4)

Nx,y
r (n, m) =

r+1∑

s=0

(−1)s

(
r + 1

s

)
[x − 1 + n]r+1−s[x − 1 − n]s

×[y − 1 − m]r+1−s[y − 1 + m]s, (1.5)

φkℓ
r (x, y) = 4F 3

[
−1

2
− x − 2y, 3

2
− x + 2y,−r+1

2
+ x,− r

2
+ x

−k + 3
2
,−ℓ + 3

2
, k + ℓ − r − 3

2

; 1

]
, (1.6)

4F 3

[
a1, a2, a3, a4

b1, b2, b3

; z
]

=
∞∑

n=0

(a1)n(a2)n(a3)n(a4)n

(b1)n(b2)n(b3)n

zn

n!
, (1.7)

[x]n =
n−1∏

j=0

(x − j), (x)n =
n−1∏

j=0

(x + j),

(
x

n

)
=

[x]n
n!

. (1.8)

The w∞ algebra is obtained from W∞ by contraction; we take the q → 0 limit after

rescaling W̃ k
n → q2−kW̃ k

n . Furthermore they constructed the W1+∞ algebra which contains

a spin 1 current[38]. The W1+∞ algebra is generated by W k
n (k, n ∈ Z, k ≥ 1) and its

commutation relation is given by
[
W k

n , W ℓ
m

]
=

∞∑

r=0

gkℓ
2r(n, m)W k+ℓ−2−2r

n+m

+cδkℓδn+m,0
2

k

(
2(k − 1)

k − 1

)−1(
2k

k

)−1 k−1∏

j=−(k−1)

(n + j), (1.9)

where c is the central charge of the Virasoro algebra generated by W 2
n , and the structure

constant gkℓ
r is given by

gkℓ
r (n, m) =

1

22r+1(r + 1)!
φkℓ

r (0,−1
2
)Nk,ℓ

r (n, m). (1.10)
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Since g̃kℓ
r (n, m) = 0 for k+ℓ−r < 4 and gkℓ

r (n, m) = 0 for k+ℓ−r < 3, the summations over

r are finite sum and the algebras close. These commutation relations are consistent with

the hermitian conjugation W̃ k†
n = W̃ k

−n, W k†
n = W k

−n, and have diagonalized central terms.

The W1+∞ algebra contains the W∞ algebra as a subalgebra[39], but it is nontrivial in

these basis. Moreover various extensions were constructed; super extension (W 1,1
∞ )[12, 7],

u(M) matrix version of W∞ (W M
∞ )[8], u(N) matrix version of W1+∞ (W N

1+∞)[35], and

they were unified as W M,N
∞ [34]. Based on the coset model SL(2, R)k/U(1), a nonlinear

deformation of W∞, Ŵ∞(k), was also constructed[10].

When we study the representation theory of W infinity algebras, we encounter the

difficulty that infinitely many states possibly appear at each energy level, reflecting the

infinite number of currents. For example, even at level 1, there are infinite number of

states W k
−1|hws〉 (k = 1, 2, 3, · · ·) for generic representation, so we could not treat these

states, e.g. computation of the Kac determinant. Moreover they are not the simultaneous

eigenstates of the Cartan generators W k
0 (k = 1, 2, · · ·). Only restricted class of the

representation were studied by using Z∞ parafermion and coset model[8] or free field

realizations[34]. In the free field realization, there are only finite number of states at each

energy level because the number of oscillators is finite at each level.

Last year Kac and Radul overcame this difficulty of infiniteness[30]. They proposed

the quasifinite representation, which has only finite number of states at each energy level,

and studied this class of representations in detail. From physicist point of view, this

notion is the abstraction of the property that the free field realizations have.

In this article, we would like to review the recently developed representation theory

of the W infinity algebras, mainly the W1+∞ algebra[30, 32, 5, 1, 2, 3, 4, 24]. In section 2

we give the definition of the W1+∞ algebra and its (super)matrix generalizations. Various

subalgebras of W1+∞ are also given. In section 3 free field realizations of W1+∞ and W M,N
1+∞

are given. Using these we derive the full character formulae for those representations. In

section 4 the quasifinite representation is introduced, and its general properties are pre-

sented. In section 5, after describing the Verma module, we compute the Kac determinant

at lower levels for some representations (its results are given in appendix A). On the ba-

sis of this computation we derive the analytic form of the Kac determinant and the full

character formulae. Appendix B is devoted to the description of the Schur function.

2 W infinity algebras

In this section we define the W1+∞ algebra and its (super)matrix generalization W M,N
1+∞ .

We also give a systematic method to construct a family of subalgebras of W1+∞.
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2.1 The W1+∞ algebra

Since the W algebras were originally introduced as extensions of the Virasoro algebra, we

first recall the Virasoro algebra. Let us consider the Lie algebra of the diffeomorphism

group on the circle whose coordinate is z. The generator of this Lie algebra is ln = −zn+1 d
dz

and its commutation relation is

[ln, lm] = (n − m)ln+m.

The Virasoro algebra, whose generators are denoted as Ln, is the central extension of this

algebra,

[Ln, Lm] = (n − m)Ln+m +
c

12
(n3 − n)δn+m,0.

Besides ln, we may consider the higher order differential operators on the circle,

zn( d
dz

)m (n, m ∈ Z, m ≥ 0). Instead of zn( d
dz

)m, we take a basis znDk (n, k ∈ Z, k ≥ 0)

with D = z d
dz

. Since f(D)zn = znf(D + n), the commutation relation of the differential

operators is

[
znf(D), zmg(D)

]
= zn+mf(D + m)g(D) − zn+mf(D)g(D + n), (2.1)

where f and g are polynomials. The W1+∞ algebra is the central extension of this Lie

algebra of differential operators on the circle[39, 11, 30]. We denote the corresponding

generators by W (znDk) and the central charge by C. The commutation relation is[30]

[
W (znf(D)), W (zmg(D))

]

= W (zn+mf(D + m)g(D)) − W (zn+mf(D)g(D + n)) + CΨ(znf(D), zmg(D)).(2.2)

Here the 2-cocycle Ψ is defined by

Ψ(znf(D), zmg(D))

= δn+m,0

(
θ(n ≥ 1)

n∑

j=1

f(−j)g(n − j) − θ(m ≥ 1)
m∑

j=1

f(m − j)g(−j)
)
, (2.3)

where θ(P ) = 1 (or 0) when the proposition P is true (or false). The 2-cocycle is unique

up to coboundary[29]. By introducing znexD as a generating series for znDk, the above

2-cocycle and commutation relation can be rewritten in a simpler form:

Ψ(znexD, zmeyD) = −
emx − eny

ex+y − 1
δn+m,0, (2.4)

[
W (znexD), W (zmeyD)

]
= (emx − eny) W (zn+me(x+y)D) − C

emx − eny

ex+y − 1
δn+m,0. (2.5)
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Since W1+∞ is a Lie algebra, we can take any invertible linear combination of W (znDk)

as a basis. The basis W k
n in section 1, eq. (1.9), is expressed as

W k+1
n = W (znfk

n(D)) (k ≥ 0), c = C,

fk
n(D) =

(
2k

k

)−1 k∑

j=0

(−1)j

(
k

j

)2

[−D − n − 1]k−j[D]j = (−1)kDk + · · · . (2.6)

W1+∞ contains the û(1) subalgebra generated by Jn = W (zn) and the Virasoro sub-

algebra generated by Ln = −W (znD) with the central charge cV ir = −2C. L0 counts

the energy level; [L0, W (znf(D))] = −nW (znf(D)). We will regard W (znf(D)) with

n > 0 (n < 0) as annihilation (creation) operators, respectively. The Cartan subalgebra

of W1+∞ is generated by W (Dk) (k ≥ 0), so it is infinite dimensional. W 2
n = Ln − n+1

2
Jn

also generates the Virasoro algebra with cV ir = C. Moreover there are two one-parameter

families of the Virasoro subalgebras generated by[24]

Ln − (αn + β)Jn, (α = β, 1 − β; β ∈ C), (2.7)

whose central charge is

cV ir = 2(−1 + 6β − 6β2)C. (2.8)

The û(1) current Jn is anomalous except for β = 1
2
.

Since W1+∞ contains the û(1) subalgebra, W1+∞ has a one-parameter family of au-

tomorphisms which we call the spectral flow[42, 12]. The transformation rule is given

by[1]

W ′(znexD) = W (znex(D+λ)) − C
eλx − 1

ex − 1
δn0, (2.9)

where λ ∈ C is an arbitrary parameter. For lower components, for example, it is expressed

as

J ′
n = Jn − λCδn0,

L′
n = Ln − λJn + 1

2
λ(λ − 1)Cδn0. (2.10)

One can easily check that new generator W ′(·) satisfies the same commutation relation

as the original one W (·), eq. (2.5).

The Hermitian conjugation † is defined by

W (znDk)† = W (z−n(D − n)k), (2.11)

and (aA + bB)† = āA† + b̄B†, (AB)† = B†A†. The commutation relation eq. (2.5) is

invariant under †. fk
n(D), eq. (2.6), satisfies fk

n(D − n) = fk
−n(D), which implies W k†

n =

W k
−n.

Finally we remark that W1+∞ is generated by W (z±1) and W (D2), namely W (znDk)

is expressed as a commutator of W (z±1) and W (D2).
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2.2 (Super)Matrix generalization of W1+∞

We can construct a (super)matrix generalization of W1+∞. Let us consider the (M +N)×

(M + N) supermatrices M(M |N ; C). An element of M(M |N ; C) has the following form:

A =


 A(0) A(+)

A(−) A(1)


 , (2.12)

where A(0), A(1), A(+), A(−) are M × M , N × N , M × N , N × M matrices, respectively,

with complex entries. Z2-gradation is denoted by |A|; |A| = 0 for Z2-even and |A| = 1 for

Z2-odd. A(0) and A(1) are Z2-even and A(+) and A(−) are Z2-odd. Z2-graded commutator

is

[A, B} = AB − (−1)|A||B|BA. (2.13)

The supertrace is

str A = tr A(0) − trA(1), (2.14)

and satisfies str (AB) = (−1)|A||B|str (BA).

M(M |N ; C) generalization of W1+∞, whose generators are W (znDkA) (n, k ∈ Z, k ≥

0, A ∈ M(M |N ; C)) and the center C, is defined by the following (anti-)commutation

relation:
[
W (znf(D)A), W (zmg(D)B)

}

= W (zn+mf(D + m)g(D)AB) − (−1)|A||B|W (zn+mf(D)g(D + n)BA)

−CΨ(znf(D), zmg(D))str(AB). (2.15)

We call this (Z2-graded) Lie algebra the W M,N
1+∞ algebra, which satisfies the Jacobi identity

(−1)|A1||A3|
[
W (zn1f1(D)A1),

[
W (zn2f2(D)A2), W (zn3f3(D)A3)

}}

+ cyclic permutation = 0. (2.16)

The original W1+∞ algebra corresponds to M = 0, N = 1. M = 0 case was constructed

in [35], and M = N = 1 case in [2].

The W M,N
1+∞ algebra contains M(M |N ; C) current algebra generated by W (znA). For

M = 0, it is the ĝl(N) (or û(N)) algebra with level C. Since W M,N
1+∞ contains M + N û(1)

subalgebras, W M,N
1+∞ has (M + N)-parameter family of automorphisms (spectral flow). Its

transformation rule is

W ′(znexDE
(0)
ab ) = W (zn−µa+µb

ex(D+µb)E
(0)
ab ) + C

eµax − 1

ex − 1
δabδn0,

W ′(znexDE
(1)
ij ) = W (zn−λi+λj

ex(D+λj)E
(1)
ij ) − C

eλix − 1

ex − 1
δijδn0,

W ′(znexDE
(+)
aj ) = W (zn−µa+λj

ex(D+λj)E
(+)
aj ),

W ′(znexDE
(−)
ib ) = W (zn−λi+µb

ex(D+µb)E
(−)
ib ), (2.17)
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where µa (a = 1, · · · , M) and λi (i = 1, · · · , N) are arbitrary parameters, and E(α)
pq is a

matrix unit, (E(α)
pq )p′q′ = δpp′δqq′.

Ln = −W (znD · 1) generates the Virasoro algebra with the central charge cV ir =

2(M − N)C. L0 counts the energy level. The Cartan subalgebra of W M,N
1+∞ is generated

by W (DkE(0)
aa ) (k ≥ 0, a = 1, · · · , M) and W (DkE

(1)
ii ) (k ≥ 0, i = 1, · · · , N).

2.3 Subalgebras of W1+∞

Although W1+∞ was constructed from W∞ by adding a spin-1 current historically, it is

natural to regard that W∞ is obtained from W1+∞ by truncating a spin-1 current[39].

The higher spin truncation of W1+∞ was also constructed[11]. We will give a systematic

method to construct a family of subalgebras of the W1+∞ algebra[4].

Let us choose a polynomial p(D) and set

W̃ (znDk) = W (znDkp(D)), (n, k ∈ Z, k ≥ 0). (2.18)

Then commutator of W̃ (znDk) closes:

[
W̃ (znf(D)), W̃ (zmg(D))

]

= W̃ (zn+mf(D + m)g(D)p(D + m)) − W̃ (zn+mf(D)g(D + n)p(D + n))

+CΨ(znf(D)p(D), zmg(D)p(D)), (2.19)

or equivalently

[
W̃ (znexD), W̃ (zmeyD)

]
=
(
p( d

dx
)emx − p( d

dy
)eny

)
W̃ (zn+me(x+y)D)

−Cp( d
dx

)p( d
dy

)
emx − eny

ex+y − 1
δn+m,0. (2.20)

We call this subalgebra W1+∞[p(D)].

In this subalgebra there are no currents with spin ≤ deg p(D). The W∞ algebra

corresponds to the choice p(D) = D. The basis W̃ k
n eq. (1.3) is expressed as

W̃ k+2
n = W̃ (znf̃k

n(D)) (k ≥ 0),

f̃k
n(D) = −

(
2(k + 1)

k + 1

)−1 k∑

j=0

(−1)j

(
k

j

)(
k + 2

j + 1

)
[−D − n − 1]k−j[D − 1]j

= (−1)k−1Dk + · · · . (2.21)

We remark that the Virasoro generators exist only if deg p(w) ≤ 1. In the case of W∞,

the Virasoro generator Ln is given by Ln = −W̃ (zn) whose central charge, c̃V ir, is related

to C as c̃V ir = −2C [39]. For deg p(w) ≥ 2, we extend the algebra introducing the L0

operator such as to count the energy level,
[
L0, W̃ (znf(D))

]
= −nW̃ (znf(D)).

8



Next we give another type of subalgebra of W1+∞. For any positive integer p, W1+∞

with the central charge C contains W1+∞ with the central charge pC[23]. We denote its

generator by W̄ (znDk) (n, k ∈ Z, k ≥ 0). W̄ (·) is given by

W̄ (znexD) = W (zpnex 1
p
D) − C

(
1

e
1
p
x − 1

−
p

ex − 1

)
δn0

= W (zpnex 1
p
D) − C

p−1∑

j=0

e
j
p
x − 1

ex − 1
δn0. (2.22)

Essentially this is interpreted as the change of variable, ζ = zp, ζ d
dζ

= 1
p
D.

For W M,N
1+∞ , these type of subalgebras such as W M

∞ [8] and W M,N
∞ [34, 2] can be treated

similarly.

3 Free field realizations

In this section we give the free field realizations of W1+∞ and W M,N
1+∞ . Using these realiza-

tions, we give their full character formulae.

3.1 W1+∞

The W1+∞ algebra is known to be realized by free fermion[12] or bc ghost[32]

b(z) =
∑

r∈Z

brz
−r−λ−1, c(z) =

∑

s∈Z

csz
−s+λ, b(z)c(w) ∼

ǫ

z − w
,

br|λ〉 = cs|λ〉 = 0 (r ≥ 0, s ≥ 1), c†s = b−s, (3.1)

where ǫ = 1 for fermionic ghost bc or ǫ = −1 for bosonic ghost βγ. The W1+∞ algebra

with C = ǫ is realized by sandwiching a differential operator between bc:

W (znexD) =
∮

dz

2πi
◦
◦b(z)znexDc(z)◦◦

=
∮

dz

2πi
: b(z)znexDc(z) : −ǫ

eλx − 1

ex − 1
δn0

=
∑

r,s∈Z
r+s=n

ex(λ−s)E(r, s) − ǫ
eλx − 1

ex − 1
δn0. (3.2)

Here the normal ordering ◦
◦

◦
◦ means subtracting the singular part and another normal

ordering : brcs : means brcs if r ≤ −1 and ǫcsbr if r ≥ 0. E(r, s) is defined by

E(r, s) = : brcs :, (3.3)

9



and generates the ĝl(∞) algebra:

[
E(r, s), E(r′, s′)

]
= δr′+s,0E(r, s′) − δr+s′,0E(r′, s)

+Cδr+s′,0δr′+s,0

(
θ(r ≥ 0) − θ(r′ ≥ 0)

)
, (3.4)

where C = ǫ in this case. We remark that the spectral flow transformation eq. (2.9) with

parameter λ′ is obtained by replacing b, c in eq. (3.2) with b′(z) = z−λ′

b(z), c′(z) =

zλ′

c(z).

From eq. (3.2) we obtain

W (znDk)|λ〉 = 0 (n ≥ 1, k ≥ 0),

−W (exD)|λ〉 = ǫ
eλx − 1

ex − 1
|λ〉. (3.5)

This means that |λ〉 is the highest weight state of W1+∞ and its weight is

W (Dk)|λ〉 = ǫ∆λ
k |λ〉, (3.6)

where ∆λ
k is the Bernoulli polynomial defined by

−
eλx − 1

ex − 1
=

∞∑

k=0

∆λ
k

xk

k!
. (3.7)

To express how many states exist in the simultaneous eigenspace of the Cartan gen-

erators W (Dk), the full character formula is introduced as

ch = tr exp
( ∞∑

k=0

gkW (Dk)
)
, (3.8)

where the trace is taken over the irreducible representation space and gk are parameters.

The states in the representation space are linear combinations of the following states:

W (z−n1Dk1) · · ·W (z−nmDkm)|λ〉.

This state, however, is not the simultaneous eigenstate of W (Dk), because

[
W (Dk), W (z−nf(D))

]
= W (z−n((D − n)k − Dk)f(D)). (3.9)

On the other hand, the states in the Fock space of bc ghosts are linear combinations of

the following states:

b−r1 · · ·b−rk
c−s1 · · · c−sℓ

|λ〉,

which are simultaneous eigenstates of W (Dk), because

[
W (Dk),b−r

]
= (λ − r)kb−r,

[
W (Dk), c−s

]
= −(λ + s)kc−s. (3.10)
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Using this property, we derive the full character formula[5, 1]. For the fermionic

case (ǫ = 1), it is well known that the fermion Fock space can be decomposed into the

irreducible representation spaces of û(1) current algebra (cf. eq. (B.3)). Since W1+∞-

generator does not change the U(1)–charge and W1+∞ contains û(1) as a subalgebra, each

û(1) representation space is also the representation space of W1+∞ and irreducible[34, 5].

For the bosonic case (ǫ = −1), the sector of vanishing U(1)–charge in the Fock space

is the irreducible representation space of W1+∞ [1]. By taking a trace over whole Fock

space, we define Sλ;ǫ
m as follows:

∑

m∈Z

Sλ;ǫ
m t−m = eǫ

∑
∞

k=0
gk∆λ

k

∞∏

r=1

(
1 + ǫtur(λ)

)ǫ
∞∏

s=0

(
1 + ǫt−1vs(λ)

)ǫ
, (3.11)

where t counts the U(1)–charge and ur(λ), vs(λ) are

ur(λ) = e
∑

∞

k=0
gk(λ−r)k

, vs(λ) = e−
∑

∞

k=0
gk(λ+s)k

. (3.12)

Then the full character for |λ〉 is given by

ch = Sλ;ǫ
0 . (3.13)

We remark that Sλ;1
m = Sλ+m;1

0 by the above statement. So we abbreviate Sλ = Sλ;1
0 .

Products in eq. (3.11) can be written as

∞∏

r=1

(
1 + ǫtur(λ)

)ǫ
= e−ǫ

∑
∞

ℓ=1
xℓ(λ)(−ǫt)ℓ

,
∞∏

s=0

(
1 + ǫt−1vs(λ)

)ǫ
= e−ǫ

∑
∞

ℓ=1
yℓ(λ)(−ǫt)−ℓ

, (3.14)

where

xℓ(λ) =
1

ℓ

∞∑

r=1

ur(λ)ℓ, yℓ(λ) =
1

ℓ

∞∑

s=0

vs(λ)ℓ. (3.15)

By introducing the elementary Schur polynomials Pn (see appendix B, eq. (B.18)), Sλ;ǫ
m is

expressed as

Sλ;ǫ
m = (−ǫ)meǫ

∑
∞

k=0
gk∆λ

k

∑

a∈Z

Pa(−ǫx(λ))Pa+m(−ǫy(λ)). (3.16)

To understand the full character formula, we specialize the parameters gk as

gk = −2πiτδk1, (q = e2πiτ ), (3.17)

which correspond to tr qL0 . For this choice, eq. (3.15) becomes

xℓ(λ) =
1

ℓ

q(1−λ)ℓ

1 − qℓ
, yℓ(λ) =

1

ℓ

qλℓ

1 − qℓ
. (3.18)
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Then the specialized character is given by

Sλ = q
1
2
λ(λ−1)

∞∑

m=0

qm2
m∏

j=1

1

(1 − qj)2
(3.19)

= q
1
2
λ(λ−1)

∞∏

j=1

1

1 − qj
, (3.20)

Sλ;−1
0 = q−

1
2
λ(λ−1)

∞∑

m=0

qm
m∏

j=1

1

(1 − qj)2
(3.21)

= q−
1
2
λ(λ−1)

∞∏

j=1

1

(1 − qj)2
·

∞∑

m=0

(−1)mq
1
2
m(m+1). (3.22)

Eqs. (3.19,3.21) are derived by eq. (3.16) and eqs. (B.32,B.33) in Appendix B. Eqs. (3.20,3.22)

are derived by eq. (3.11) and Jacobi’s triple product identity or characters of W∞ with

c = 2 [34, 1].

By tensoring the above free field realizations, we obtain free field realizations of W1+∞

with integer C;

C =
∑

i

ǫi, −W (exD)|λ〉 =
∑

i

ǫi
eλix − 1

ex − 1
|λ〉. (3.23)

However, the character for this representation can not be obtained by the method given

in this section. We will give another method in section 5.

Free field realization of W1+∞[p(D)] is obtained from that of W1+∞ [4].

3.2 WM,N
1+∞

Results in the previous section are generalized easily[2]. Let us introduce M pairs of βγ

ghosts and N pairs of bc ghosts:

βa(z) =
∑

r∈Z

βa
r z−r−µa−1, γa(z) =

∑

s∈Z

γa
s z−s+µa , (a = 1, · · · , M),

bi(z) =
∑

r∈Z

bi
rz

−r−λi−1, ci(z) =
∑

s∈Z

ci
sz

−s+λi , (i = 1, · · · , N),

βa
r , γa

s , b
i
r, c

i
s|µ, λ〉 = 0 (r ≥ 0, s ≥ 1), (3.24)

where some conditions will be imposed on µa and λi later. Then the W M,N
1+∞ algebra with

C = 1 is realized as follows:

W (znexDA) =
∮

dz

2πi
◦
◦(β(z), b(z))znexD


 A(0) A(+)

A(−) A(1)



(
γ(z)

c(z)

)
◦
◦

=
∮

dz

2πi
: (β(z), b(z))znexD


 A(0) A(+)

A(−) A(1)



(
γ(z)

c(z)

)
:

12



+1 ·
( M∑

a=1

eµax − 1

ex − 1
A(0)

aa −
N∑

i=1

eλix − 1

ex − 1
A

(1)
ii

)
δn0

=
M∑

a=1

M∑

b=1

∑

r,s∈Z
r+s=n−µa+µb

A
(0)
ab ex(µb−s)Eab

0 (r, s) + 1 ·
M∑

a=1

eµax − 1

ex − 1
A(0)

aa δn0

+
N∑

i=1

N∑

j=1

∑

r,s∈Z
r+s=n−λi+λj

A
(1)
ij ex(λj−s)Eij

1 (r, s) − 1 ·
N∑

i=1

eλix − 1

ex − 1
A

(1)
ii δn0

+
M∑

a=1

N∑

j=1

∑

r,s∈Z
r+s=n−µa+λj

A
(+)
aj ex(λj−s)Eaj

+ (r, s)

+
N∑

i=1

M∑

b=1

∑

r,s∈Z
r+s=n−λi+µb

A
(−)
ib ex(µb−s)Eib

−(r, s). (3.25)

Here E’s are defined by

Eab
0 (r, s) = : βa

r γ
b
s :, Eaj

+ (r, s) = βa
r c

j
s,

Eib
−(r, s) = bi

rγ
b
s, Eij

1 (r, s) = : bi
rc

j
s :, (3.26)

and they generate (super)matrix generalization of ĝl(∞):

[
Eab

0 (r, s), Ea′b′

0 (r′, s′)
]

= δa′bδr′+s,0E
ab′

0 (r, s′) − δab′δr+s′,0E
a′b
0 (r′, s)

−Cδab′δa′bδr+s′,0δr′+s,0

(
θ(r ≥ 0) − θ(r′ ≥ 0)

)
,

[
Eij

1 (r, s), Ei′j′

1 (r′, s′)
]

= δi′jδr′+s,0E
ij′

1 (r, s′) − δij′δr+s′,0E
i′j
1 (r′, s)

+Cδij′δi′jδr+s′,0δr′+s,0

(
θ(r ≥ 0) − θ(r′ ≥ 0)

)
,

{
Eaj

+ (r, s), Eib
−(r′, s′)

}
= δijδr′+s,0E

ab
0 (r, s′) + δabδr+s′,0E

ij
1 (r′, s)

−Cδabδijδr+s′,0δr′+s,0

(
θ(r ≥ 0) − θ(r′ ≥ 0)

)
,

[
Eab

0 (r, s), Ea′j
+ (r′, s′)

]
= δa′bδr′+s,0E

aj
+ (r, s′),

[
Eab

0 (r, s), Eib′

− (r′, s′)
]

= −δab′δr+s′,0E
ib
−(r′, s),

[
Eij

1 (r, s), Eaj′

+ (r′, s′)
]

= −δij′δr+s′,0E
aj
+ (r′, s),

[
Eij

1 (r, s), Ei′b
− (r′, s′)

]
= δi′jδr′+s,0E

ib
−(r, s′), (3.27)

where C = 1 in this case and the other (anti-)commutation relations vanish.

When µa and λi satisfy the following condition,

µa − µb = 0,±1,

λi − λj = 0,±1,

µa − λi = 0,−1, (3.28)
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eq. (3.25) implies that |µ, λ〉 is the highest weight state of W M,N
1+∞ ,

W (znDkA)|µ, λ〉 = 0 (n ≥ 1, k ≥ 0),

W (DkA(+))|µ, λ〉 = 0 (k ≥ 0),

−W (exDE(0)
aa )|µ, λ〉 = −

eµax − 1

ex − 1
|µ, λ〉, i.e., W (DkE(0)

aa )|µ, λ〉 = −∆µa

k |µ, λ〉,

−W (exDE
(1)
ii )|µ, λ〉 =

eλix − 1

ex − 1
|µ, λ〉, i.e., W (DkE

(1)
ii )|µ, λ〉 = ∆λi

k |µ, λ〉. (3.29)

The full character is defined by

ch = tr exp
∞∑

k=0

( M∑

a=1

g′a
kW (DkE(0)

aa ) +
N∑

i=1

gi
kW (DkE

(1)
ii )

)
, (3.30)

where the trace is taken over the irreducible representation space. By taking a trace over

whole Fock space, we define Sµ1,···,µM ,λ1,···,λN

m′

1,···,m′

M
,m1,···,mN

as follows:

∑

m′

1,···,m′

M
m1,···,mN

∈Z

Sµ1,···,µM ,λ1,···,λN

m′

1,···,m′

M
,m1,···,mN

t′1
−m′

1 · · · t′N
−m′

N t−m1
1 · · · t−mN

N

= e
∑

∞

k=0
(−
∑M

a=1
g′ik∆µa

k
+
∑N

i=1
gi

k
∆

λi
k

)

×
M∏

a=1

∞∏

r=1

(
1 − t′aur(µa)

)−1
∞∏

s=0

(
1 − t′

−1
a vs(µa)

)−1
∣∣∣∣
gk=g′ak

×
N∏

i=1

∞∏

r=1

(
1 + tiur(λi)

) ∞∏

s=0

(
1 + t−1

i vs(λi)
)∣∣∣∣

gk=gi
k

, (3.31)

where we have used

[
W (DkE(0)

aa ), βb
−r

]
= δab(µa − r)kβb

−r,
[
W (DkE(0)

aa ), γb
−s

]
= −δab(µa + s)kγb

−s,
[
W (DkE

(1)
ii ), bj

−r

]
= δij(λi − r)kbj

−r,
[
W (DkE

(1)
ii ), cj

−s

]
= −δij(λi + s)kcj

−s. (3.32)

Sµ1,···,µM ,λ1,···,λN

m′

1,···,m′

M
,m1,···,mN

can be expressed in terms of Sλ;ǫ
m ,

Sµ1,···,µM ,λ1,···,λN

m′

1,···,m′

M
,m1,···,mN

=
M∏

a=1

Sµa;−1
m′

a

∣∣∣∣
gk=g′ak

·
N∏

i=1

Sλi;1
mi

∣∣∣∣
gk=gi

k

. (3.33)

Since the sector of vanishing U(1)–charge in the Fock space is again the irreducible rep-

resentation space of W M,N
1+∞ , the full character for the representation |µ, λ〉 is given by

ch =
∑

m′
a,mi∈Z∑

a
m′

a+
∑

i
mi=0

Sµ1,···,µM ,λ1,···,λN

m′

1,···,m′

M
,m1,···,mN

. (3.34)

Setting all g′a
k and gi

k to eq. (3.17), we obtain the specialized character. For example,

in the case of M = 0, the specialized character is essentially û(1) character times level 1
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ŝu(N) character[34]. For N = M = 1 and µ = λ, the specialized character is given by1

ch =
1

1 + q
1
2

∞∏

j=1

(
1 + qj− 1

2

1 − qj

)2

. (3.35)

By interchanging βγ with bc, we obtain the realization with C = −1. Although

realizations with integer C can be obtained by tensoring, the character can not be derived

by the method in this section.

4 Quasifinite representation of W1+∞

We study the highest weight representation of W1+∞. The highest weight state |λ〉 is

characterized by

W (znDk)|λ〉 = 0 (n ≥ 1, k ≥ 0),

W (Dk)|λ〉 = ∆k|λ〉 (k ≥ 0), (4.1)

where the weight ∆k is some complex number. It is convenient to introduce the generating

function ∆(x) for the weights ∆k:

∆(x) = −
∞∑

k=0

∆k
xk

k!
, (4.2)

which we call the weight function. It is formally given as the eigenvalue of the operator

−W (exD):

− W (exD)|λ〉 = ∆(x)|λ〉. (4.3)

The Verma module is spanned by the state

W (z−n1Dk1) · · ·W (z−nmDkm)|λ〉. (4.4)

The energy level, which is the relative L0 eigenvalue, of this state is
∑m

i=1 ni. Reflecting

the infinitely many generators, the Verma module has infinitely many states at each level.

The irreducible representation space is obtained by subtracting null states from the Verma

module. A null state is the state which can not be brought back to |λ〉 by any successive

actions of W1+∞ generators. Of course, in other words, a null state is the state which has

vanishing inner products with any states.

In the rest of this article, we will study the quasifinite representations[30]. A repre-

sentation is called quasifinite if there are only a finite number of non-vanishing states at

each energy level. The representations obtained by free field realizations in the previous

1 Eq.(79) in [34] can be expressed as ch
W 1,1

∞

n (θ, τ) = 1−q

(1+zq
n+ 1

2 )(1+z−1q
−n+1

2 )

∏∞
j=1

(1+zq
j− 1

2 )(1+z−1q
j− 1

2 )
(1−qj)2 .
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section have this property, because there are only finite number of oscillators at each

energy level. To achieve this, the weight function must be severely constrained. We will

show that if there are a finite number of states at level 1, then it is so at any level.

Let us assume that there are only a finite number of non-vanishing states at level n.

This means that the following linear relation exists:

W (z−nf(D))|λ〉 = null, (4.5)

where f is some polynomial. Acting W (ex(D+n)) to this state, we have

null = W (ex(D+n))W (z−nf(D))|λ〉

=
[
W (ex(D+n)), W (z−nf(D))

]
|λ〉 + null

= (1 − exn)W (z−nexDf(D))|λ〉+ null,

and thus the state W (z−nDkf(D))|λ〉 is also null for all k ≥ 0. In other words, the set

I−n =
{
f(w) ∈ C[w]

∣∣∣ W (z−nf(D))|λ〉 = null
}

(4.6)

is an ideal in the polynomial ring C[w]. Since C[w] is a principal ideal domain, I−n

is generated by a monic polynomial bn(w), i.e. I−n = {f(w)bn(w)|f(w) ∈ C[w]}. These

polynomials bn(w) (n = 1, 2, 3, · · ·) are called characteristic polynomials for the quasifinite

representation.

Let fn(w) be the minimal-degree monic polynomial satisfying the following differential

equation:

fn

(
d
dx

) n−1∑

j=0

ejx
(
(ex − 1)∆(x) + C

)
= 0. (4.7)

Then the characteristic polynomials bn(w) are related to each other as follows:2

(i) bn(w) divides both of bn+m(w + m) and bn+m(w) (m ≥ 1),

(ii) fn(w) divides bn(w).

The bn(w)’s are determined as the minimal-degree monic polynomials satisfying both (i)

and (ii). The property (i) is derived from the null state condition,

null = W (zmex(D+n+m))W (z−n−mbn+m(D))|λ〉

=
[
W (zmex(D+n+m)), W (z−n−mbn+m(D))

]
|λ〉

= W (z−n(exDbn+m(D) − ex(D+n+m)bn+m(D + m)))|λ〉.

2 We can also show that bn+m(w) divides bn(w −m)bm(w).
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The property (ii) is derived from the following null state condition,

0 = W (znex(D+n))W (z−nbn(D))|λ〉

=
[
W (znex(D+n)), W (z−nbn(D))

]
|λ〉

=
(
W (exDbn(D)) − W (ex(D+n)bn(D + n)) + C

n∑

j=1

ex(n−j)bn(n − j)
)
|λ〉

= bn

(
d
dx

) n−1∑

j=0

ejx
(
(ex − 1)∆(x) + C

)
|λ〉.

The solution of these conditions are given by[30, 3]

bn(w) = lcm(b(w), b(w − 1), · · · , b(w − n + 1)), (4.8)

where b(w) = b1(w) = f1(w) is the minimal-degree monic polynomial satisfying the

differential equation,

b
(

d
dx

)(
(ex − 1)∆(x) + C

)
= 0. (4.9)

Therefore, the necessary and sufficient condition for quasifiniteness is that the weight

function satisfies this type of differential equation. Moreover it has been shown that the

finiteness at level 1 (i.e. existence of b(w)) implies the finiteness at higher levels (i.e.

existence of bn(w)).

If we factorize the characteristic polynomial b(w) as

b(w) =
K∏

i=1

(w − λi)
mi , (λi 6= λj), (4.10)

then the solution of eq. (4.9) is given by

∆(x) =

∑K
i=1 pi(x)eλix − C

ex − 1
, (4.11)

where pi(x) is a polynomial of degree mi − 13. Since ∆(x) is regular at x = 0 by defi-

nition, pi’s satisfy
∑K

i=1 pi(0) = C. Therefore ∆(x) has
∑K

i=1(mi + 1) parameters; C, λi

and coefficients in pi(x)’s. In contrast to the weight function for general (non-quasifinite)

representation, the weight function for quasifinite representation has thus only finite pa-

rameters. The representation realized by free field studied in section 3.1 has the weight

function ∆(x) = ǫeλx−1
ex−1

, which corresponds to the characteristic polynomial b(w) = w−λ.

We can explicitly check that bn(w) is given by eq. (4.8)[32].

Under the spectral flow eq. (2.9), the representation space as a set is kept invariant.

Furthermore the highest weight state with respect to the original generators W (·) is also

3 Since b(w) is minimal-degree, deg pi(x) is exactly mi − 1.
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the highest weight state with respect to the new generators W ′(·). On the other hand,

the weight function ∆(x) and the characteristic polynomial b(w) are replaced by the new

ones[1]:

∆′(x) = eλx∆(x) + C
eλx − 1

ex − 1
, (4.12)

b′(w) = b(w − λ). (4.13)

This implies that the spectral flow transforms λi in eq. (4.10) into λi + λ.

To study the structure of null states, let us introduce the inner product as

〈λ|λ〉 = 1,
(
〈λ|W

)
|λ〉 = 〈λ|

(
W |λ〉

)
= 〈λ|W |λ〉, (4.14)

and the corresponding bra state 〈λ| as

〈λ|W (znDk) = 0 (n ≤ −1, k ≥ 0),

〈λ|W (Dk) = ∆k〈λ| (k ≥ 0). (4.15)

Then the quasifinite condition for bra states is

〈λ|W (znbn(D + n)Dk) = null (n ≥ 1, k ≥ 0). (4.16)

These are consistent with the hermitian conjugation eq. (2.11) when ∆k ∈ R (or ∆k ∈ C

if † is modified, (aA + bB)† = aA† + bB†).

Unitary representation was studied in [30]. The necessary and sufficient condition for

unitary representation is that C is a non-negative integer and the weight function is

∆(x) =
C∑

i=1

eλix − 1

ex − 1
, λi ∈ R. (4.17)

This weight function corresponds to the characteristic polynomial b(w) =
∏′

i(w−λi) where

the product is taken over different λi. We remark that all the unitary representations can

be realized by tensoring C pairs of bc ghosts, eq. (3.23).

Quasifinite representations of W M,N
1+∞ and subalgebras can be treated similarly (For

M = N = 1, see [2], and for W1+∞[p(D)] see [4]).

5 Kac determinant and full character formulae of

W1+∞

In this section we compute the Kac determinant for some representations, on the basis of

which we derive the analytic form of the Kac determinant and full character formulae.
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5.1 The Verma module

Let us study the quasifinite representation of W1+∞ with central charge C and the weight

function ∆(x). Characteristic polynomials bn(w) are determined from ∆(x). Since there

are linear relations W (z−nDkbn(D))|λ〉 = null, only deg bn(w) states are independent in

the states {W (z−nDk)|λ〉}. We may take independent states as follows:

W (z−nDk)|λ〉 (k = 0, 1, · · · , deg bn(w) − 1). (5.1)

The Verma module for the quasifinite representation is defined as the space spanned by

these generators. Therefore the specialized character formula for the Verma module is

tr qL0 = q−∆1

∞∏

n=1

1

(1 − qn)deg bn(w)
. (5.2)

For example, for b(w) = w − λ, we have

tr qL0+∆λ
1 = χ(q) =

∞∏

n=1

1

(1 − qn)n
. (5.3)

This χ(q) has a close relationship with the partition function of three–dimensional free

field theory (see [1]).

5.2 Determinant formulae at lower levels

In this subsection we will present explicit computation of the Kac determinant for quasifi-

nite representations[1]. First let us consider the representation with ∆(x) = C eλx−1
ex−1

. The

characteristic polynomial is b(w) = w − λ (b(w) = 1 for C = λ = 0). For the first three

levels, the relevant ket states are,

Level 1 W (z−1)|λ〉,

Level 2 W (z−2)|λ〉, W (z−1)2|λ〉, W (z−2D)|λ〉,

Level 3 W (z−3)|λ〉, W (z−1)W (z−2)|λ〉, W (z−1)3|λ〉,

W (z−3D)|λ〉, W (z−1)W (z−2D)|λ〉, W (z−3D2)|λ〉. (5.4)

Corresponding bra states may be given by changing z−n into zn. The number of relevant

states grows as,

χ(q) = 1+ q +3q2 +6q3 +13q4 +24q5 +48q6 +86q7 +160q8 +282q9 +500q10 + · · · . (5.5)

Inner product matrices are straightforwardly calculated; for example, at level 2,



2C 0 (2λ + 1)C

0 2C2 −C

(2λ − 3)C −C (2λ2 − 2λ − 1)C


 .
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The determinant for this matrix is 2C3(C − 1). We computed the Kac determinant up to

level 8 by using computer[1]:

det[1] ∝ C,

det[2] ∝ C3(C − 1),

det[3] ∝ C6(C − 1)3(C − 2),

det[4] ∝ (C + 1)C13(C − 1)8(C − 2)3(C − 3),

det[5] ∝ (C + 1)3C24(C − 1)17(C − 2)8(C − 3)3(C − 4),

det[6] ∝ (C + 1)10C48(C − 1)37(C − 2)19(C − 3)8(C − 4)3(C − 5),

det[7] ∝ (C + 1)23C86(C − 1)71(C − 2)41(C − 3)19(C − 4)8(C − 5)3(C − 6),

det[8] ∝ (C + 1)54C161(C − 1)138(C − 2)85(C − 3)43(C − 4)19(C − 5)8(C − 6)3(C − 7).

We remark that λ-dependence disappears due to nontrivial cancellations. This is explained

by the spectral flow [1]. We computed also the corank of the inner product matrix:

cor[n] = det[n], (n = 1, · · · , 7),

cor[8] = (C + 1)54C160(C − 1)138(C − 2)85(C − 3)43(C − 4)19(C − 5)8(C − 6)3(C − 7),

where the exponent stands for a corank, i.e. a number of null states. Subtracting this

number from eq. (5.5), we get the specialized characters at lower levels. We will present

the determinant and full character formulae in section 5.3.

Next we take the representation with

∆(x) =
K∑

i=1

Ci
eλix − 1

ex − 1
, C =

K∑

i=1

Ci, (5.6)

where λi’s are all different numbers. The characteristic polynomial is given by

b(w) =
K∏

i=1

(w − λi) (5.7)

(if Ci = λi = 0, then the factor w − λi in b(w) should be omitted). Assuming that the

difference of any two λi’s is not an integer, we computed the Kac determinants at lower

levels for K = 1, · · · , 5, and they are given in appendix A[1]. The determinant formula

may be written in the following form:

det[n] ∝
∏

i

An(Ci)
∏

i<j

Bn(λi − λj). (5.8)

λi-dependence appears only through their differences due to the spectral flow symmetry

[1, 3]. The functions An and Bn have zero only when Ci or λi − λj is integer.
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We will give an analytic expression for Bn(λ). Let us consider the case when one pair

λi − λj is an integer ℓ. In this case the characteristic polynomial bn(w) may have degree

less than n deg b(w). The weight function becomes

∆′(x; ℓ) = ∆(x)

∣∣∣∣
λi−λj=ℓ

, (5.9)

and we denote the corresponding characteristic polynomial as b′(w; ℓ) and b′n(w; ℓ), and

the discrepancy of degree as

d(n; ℓ) = n deg b′(w; ℓ) − deg b′n(w; ℓ). (5.10)

Then Bn(λ) is

Bn(λ) =
∏

ℓ∈Z

(λ − ℓ)βn(ℓ), (5.11)

where βn(ℓ) is defined by

∞∑

n=0

βn(ℓ)qn = 2t
d

dt

∞∏

n=1

(1 − qn)d(n;ℓ)

(1 − tqn)d(n;ℓ)

∣∣∣∣
t=1

·χ(q)deg b′(w;ℓ). (5.12)

Its proof can be found in [3].

We remark that the determinant formula for the representation with ∆′(x; ℓ) is not

given by eq. (5.8), because eq. (5.8) is the determinant for the inner product matrix of size

given by eq. (5.2) with bn(w) not b′n(w, ℓ). Such a determinant has mixed Ci factors, e.g.

Ci + Cj + 1. We here give some examples in the λi − λi+1 = 1 case. When K = 2, the

determinant for the first five levels are

det[1] ∝ C1C2,

det[2] ∝ (C1 + C2 + 1)
∏

i=1,2

C3
i (Ci − 1),

det[3] ∝ (C1 + C2 + 1)4
∏

i=1,2

C8
i (Ci − 1)3(Ci − 2),

det[4] ∝ (C1 + C2 + 1)13(C1 + C2)
∏

i=1,2

C20
i (Ci − 1)9(Ci − 2)3(Ci − 3),

det[5] ∝ (C1 + C2 + 1)34(C1 + C2)
4
∏

i=1,2

C46
i (Ci − 1)22(Ci − 2)9(Ci − 3)3(Ci − 4),

and when K = 3, that of the first three levels are

det[1] ∝
∏

i=1,2,3

Ci,

det[2] ∝ (C1 + C2 + 1)(C2 + C3 + 1)
∏

i=1,2,3

C4
i (Ci − 1),

det[3] ∝ (C1 + C2 + 1)4(C2 + C3 + 1)4(C1 + C2 + C3 + 2)
∏

i=1,2,3

C13
i (Ci − 1)4(Ci − 2).
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5.3 ∆(x) = C eλx−1
ex−1 case

In this subsection we study the representation with ∆(x) = C eλx−1
ex−1

[3]. The corresponding

characteristic polynomial is b(w) = w − λ (b(w) = 1 for C = λ = 0, but in this case non-

vanishing states are |λ〉 only. So we do not care about this case). We have already known

the full character formula for C = ±1. The numbers of states, eqs. (3.20,3.22), are less

than that of the Verma module eq. (5.3). The determinant formula at lower levels given in

the previous section suggests that additional null states appear only when C is an integer.

This is indeed the case, and we will derive the analytic form of the determinant and full

character formulae.

As we have shown, the basis eq. (4.4) is not a good basis because of eq. (3.9). The

construction of the diagonal basis becomes possible if we view the W1+∞ algebra from the

equivalent ĝl(∞) algebra, which is implicitly used in section 3.1. It was proved that the

quasifinite representations of those algebras coincide[30]. The ĝl(∞) algebra is defined by

eq. (3.4) and the relation with W1+∞ is4

W (znexD) =
∑

r,s∈Z
r+s=n

ex(λ−s)E(r, s) − C
eλx − 1

ex − 1
δn0. (5.13)

The highest weight state of ĝl(∞) is defined by

E(r, s)|λ〉 = 0 (r + s > 0),

E(r,−r)|λ〉 = qr|λ〉 (r ∈ Z). (5.14)

The quasifiniteness of the representation is achieved only when finite number of hr =

qr − qr−1 + Cδr0 are non-vanishing[30]. In this case the following E(r, s) annihilates the

highest weight state[3]:

E(r, s)|λ〉 = 0 (r ≥ 0, s ≥ 1). (5.15)

The generator E(r, s) is already diagonal with respect to the action of the Cartan

elements, [
W (Dk), E(r, s)

]
=
(
(λ + r)k − (λ − s)k

)
E(r, s). (5.16)

Therefore the state

E(−r1,−s1) · · ·E(−rn,−sn)|λ〉, (ra ≥ 1, sa ≥ 0), (5.17)

is the simultaneous eigenstate of W (Dk) with the eigenvalues

∆λ
k +

n∑

a=1

(
(λ − ra)

k − (λ + sa)
k
)
. (5.18)

4 This relation should be modified for different b(w). When b(w) = 0 has multiple roots, for example

b(w) = (w − λ)m, ĝl(∞) also need to be modified[30, 3].
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The representation space is decomposed into the eigenspace with above eigenvalues. So

we need to consider only this subspace, which is spanned by
n∏

a=1

E(−ra,−sσ(a))|λ〉, (ra ≥ 1, sa ≥ 0), (5.19)

where σ is a permutation of n objects. The number of these states is equal to the number

of onto-map from I = {r1, · · · , rn} to J = {s1, · · · , sn}.

We calculated the inner product matrix of these state[3]. By symmetrizing the indices

of eq. (5.19) according to the Young diagram with n boxes, this matrix can be block-

diagonalized. Each block can be further diagonalized. In fact, when ra’s and sa’s are all

different respectively, we obtained an explicit form |Y ; α, β〉 (see [3] for details). In general,

by taking appropriate linear combination of eq. (5.19), an orthogonal basis |Y ; α, β〉 (α =

1, · · · , dI
Y ; β = 1, · · · , dJ

Y ) is obtained:

〈Y ; α, β|Y ′; α′, β ′〉 = δY Y ′δαα′δββ′

√
dI

Y dJ
Y

n!

∏

b∈Y

(C − Cb). (5.20)

Here, to each box b in the Young diagram Y , we assign a number Cb as

0 1 2 3 · · ·

−1 0 1 2 · · ·

−2 −1 0 1 · · ·

−3 −2 −1 0 · · ·
...

...
...

...
. . .

. (5.21)

dI
Y is the number of assignment of ra to each box in the Young diagram Y with n boxes

such that ra’s are non-decreasing from left to right, and increasing from top to bottom.

When ra’s are all different, dI
Y is equal to dY , the dimension of irreducible representation

Y of permutation group Sn.

The determinant formula given in section 5.2 is reproduced from above results. For

example, at level 4,

det[4] ∝ (C + 1)C13(C − 1)8(C − 2)3(C − 3)

= C × C × C × C × C(C − 1) × C(C − 1)

×C(C − 1) · C(C + 1) × C(C − 1) × C(C − 1) × C(C − 1)(C − 2)

×C(C − 1)(C − 2) × C(C − 1)(C − 2)(C − 3),

where each factor comes from

(I, J) = ({4}, {0}), ({3}, {1}), ({2}, {2}), ({1}, {3}), ({3, 1}, {0, 0}), ({2, 2}, {0, 0}),

({2, 1}, {1, 0}), ({1, 1}, {2, 0}), ({1, 1}, {1, 1}), ({2, 1, 1}, {0, 0, 0}),

({1, 1, 1}, {1, 0, 0}), ({1, 1, 1, 1}, {0, 0, 0, 0}).
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As a simple corollary of the inner product formula, we may derive the condition for the

unitarity. The positivity of the representation space may be rephrased as the positivity

of the right hand side of eq. (5.20) for any Y . From eq. (5.21), we can immediately prove

that this condition is achieved only when C is non-negative integer.

The full character is defined by eq. (3.8). From above determinant formula, when C

is not an integer, there are no null states aside from those coming from characteristic

polynomials. Therefore combining eqs. (5.16,5.17) we get the full character formula for

non-integer C,

ch = eC
∑

∞

k=0
gk∆λ

k

∞∏

r=1

∞∏

s=0

1

1 − ur(λ)vs(λ)
, (5.22)

where ∆λ
k , ur(λ) and vs(λ) are defined by eq. (3.7),(3.12) respectively.

If we expand this product as
∞∑

n=0

∑

I,J
|I|=|J |=n

N(I, J)
∏

r∈I

ur(λ)
∏

s∈J

vs(λ),

then N(I, J) gives the number of the states of the form eq. (5.19). We need to go further to

classify those states after the Young diagram. The following result gives such classification

(see appendix B),

∞∏

r=1

∞∏

s=0

1

1 − ur(λ)vs(λ)
=
∑

Y

τY (x(λ))τY (y(λ)), (5.23)

where the summation is taken over all Young diagrams, and τY is the character of irre-

ducible representation Y of ĝl(∞), and the parameters x and y are the Miwa variables for

u and v defined by eq. (3.15). If we expand each factor in the summation, we can get the

degeneracy with respect to each Young diagram Y , and the eigenvalues. The coefficient

of
∏

r∈I ur(λ) in τY (x(λ)) is dI
Y , and N(I, J) =

∑
Y dI

Y dJ
Y .

Combining these Young diagram classification eqs. (5.20,5.23), we get the full character

formula with integer C [3],

chC=n = en
∑

∞

k=0
gk∆λ

k

∑

Y
wd(Y )≤n

τY (x(λ))τY (y(λ)), (5.24)

chC=−n = e−n
∑

∞

k=0
gk∆λ

k

∑

Y
ht(Y )≤n

τY (x(λ))τY (y(λ)), (5.25)

where n is an non-negative integer, and wd(Y ) (ht(Y )) stands for the number of columns

(rows) of Y . The full characters obtained in section 3.1 agree with this result.

By setting gk to eq. (3.17), we obtain the specialized character. In this case the Schur

polynomial is expressed as

τY (x(λ)) = q
(1−λ)

∑n

j=1
jmj+

∑n

j=1
1
2
j(j−1)mj

n∏

k=1

Fk(q; m1, · · · , mk),
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τY (y(λ)) = q
λ
∑n

j=1
jmj+

∑n

j=1
1
2
j(j−1)mj

n∏

k=1

Fk(q; m1, · · · , mk),

τtY (x(λ)) = q
(1−λ)

∑n

j=1
jmj+

1
2

∑n

j=1
(
∑n

s=j
ms)(

∑n

s=j
ms−1)

n∏

k=1

Fk(q; m1, · · · , mk),

τtY (y(λ)) = q
λ
∑n

j=1
jmj+

1
2

∑n

j=1
(
∑n

s=j
ms)(

∑n

s=j
ms−1)

n∏

k=1

Fk(q; m1, · · · , mk), (5.26)

where Y = (m1 + · · ·+ mn, m2 + · · ·+ mn, · · · , mn), and tY is the transpose of the Young

diagram Y , and Fk(q; m1, · · · , mk) is

Fk(q; m1, · · · , mk) =
mk∏

j=1

k−1∏

s=0

(
1 − q

∑s

t=1
mk−t+s+j

)−1
. (5.27)

This expression is obtained from eq. (B.36) by setting fi − fi+1 = mi (or eq. (B.37) by

setting gi − gi+1 = mi). The full characters eqs. (5.24,5.25) reduce to the specialized

characters,

chC=n = q
1
2
λ(λ−1)n

∞∑

m1=0

· · ·
∞∑

mn=0

q
∑n

j=1
(
∑n

s=j
ms)

2 n∏

k=1

Fk(q; m1, · · · , mk)
2, (5.28)

chC=−n = q−
1
2
λ(λ−1)n

∞∑

m1=0

· · ·
∞∑

mn=0

q
∑n

j=1
j2mj

n∏

k=1

Fk(q; m1, · · · , mk)
2. (5.29)

As we will show in the next subsection, eq. (5.28) can be rewritten in a product form:

chC=n = q
1
2
λ(λ−1)n

∞∏

j=1

n∏

k=1

1

1 − qj+k−1
. (5.30)

This character is consistent with the conjecture that the representation space is spanned

by W (z−jDk−1) with 1 ≤ k ≤ n (of course with j ≥ 1, 1 ≤ k ≤ j)[1].

5.4 Other cases

In ref.[24], the quasifinite representation with the weight function,

∆(x) =
N∑

i=1

eλ′

i
x − 1

ex − 1
, C = N, (5.31)

was studied. This representation is realized by bc ghost, eq. (3.23). We review their

results. Let us break the set {λ′
1, · · · , λ

′
N} in the following way:

{λ′
1, · · · , λ

′
N} = S1 ∪ · · · ∪ Sm,

Si = {λi + k
(i)
1 , · · · , λi + k(i)

ni
}, λi − λj 6∈ Z, k

(i)
1 ≥ · · · ≥ k(i)

ni
∈ Z. (5.32)
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Then the representation for the weight function ∆(x) is a direct product of the represen-

tations for ∆i(x) =
∑ni

j=1
e
(λi+k

(i)
j

)x
−1

ex−1
[30]. Therefore, the character is factorized as

ch =
m∏

i=1

chi, (5.33)

where chi is the character of the representation for ∆i(x), and we need to consider only

the quasifinite representations with

∆(x) =
n∑

i=1

e(λ+ki)x − 1

ex − 1
, C = n, k1 ≥ · · · ≥ kn ≥ 0 ∈ Z. (5.34)

The full characters for these representations are given by [24]

ch = det
(
Sλ+ki−i+j

)
1≤i,j≤n

, (5.35)

where Sλ is defined in section 3.1. By setting gk to eq. (3.17) and using eq. (3.20), eq. (5.35)

reduces to the specialized character,

ch = q
∑n

i=1
1
2
(λ+ki)(λ+ki−1)

∞∏

j=1

1

(1 − qj)n

∏

1≤i<j≤n

(1 − qki−kj−i+j). (5.36)

For C = n > 0, the weight function ∆(x) = C eλx−1
ex−1

studied in the previous section is

a special case of eq. (5.34); k1 = · · · = kn = 0. So the full character eq. (5.24) must be

obtained from eq. (5.35). In fact we can show that the full character eq. (5.35) is expressed

as a summation over all Young diagrams:

ch = det
(
Sλ+ki−i+j

)
1≤i,j≤n

= det
(
(−1)j−i+kie

∑
∞

k=0
gk∆λ

k

∑

m∈Z

Pm−n−1+i−ki
(−x(λ))Pm−n−1+j(−y(λ))

)

1≤i,j≤n

= (−1)|Y |en
∑

∞

k=0
gk∆λ

k

∑

h1≥···≥hn≥0

det
(
Phj−ki+i−j(−x(λ)

)
1≤i,j≤n

det
(
Pgi−i+j(−y(λ)

)
1≤i,j≤n

= en
∑

∞

k=0
gk∆λ

k

∑

Y
wd(Y )≤n

τY/Yk
(x(λ))τY (y(λ)), (5.37)

where Yk is a Young diagram with tYk = (k1, · · · , kn), and τY/Yk
is a skew S–function (see

appendix B). Here we have used the determinant formula for the product of non-square

matrices,

det
( N∑

m=1

aimbjm

)

1≤i,j≤n
=

∑

1≤m1<···<mn≤N

det
(
aimj

)
1≤i,j≤n

det
(
bimj

)
1≤i,j≤n

. (5.38)

For k1 = · · · = kn = 0, τY/Yk
reduces to τY . So we establish the equivalence of eq. (5.24)

and eq. (5.35) in this case. Eq. (5.30) is obtained from eq. (5.36).

Similarly we can rewrite the full character eq. (5.25) as

chC=−n = det
(
Sλ;−1

j−i

)
1≤i,j≤n

. (5.39)
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5.5 Differential equation for full characters

Finally we comment on the differential equation of the full character. From eq. (3.11),

Sλ;ǫ
m as a function of x and y satisfies the differential equation,

∂

∂xℓ

Sλ;ǫ
m = (−ǫ)ℓ+1Sλ;ǫ

m+ℓ,
∂

∂yℓ

Sλ;ǫ
m = (−ǫ)ℓ+1Sλ;ǫ

m−ℓ. (5.40)

Thus the full character eq. (5.35) satisfies the following differential equation,

∂

∂xℓ
Sλ
{k1,···,kn} = (−1)ℓ+1

n∑

i=1

Sλ
{k1,···,ki+ℓ,···,kn},

∂

∂yℓ
Sλ
{k1,···,kn} = (−1)ℓ+1

n∑

i=1

Sλ
{k1,···,ki−ℓ,···,kn}, (5.41)

where Sλ
{k1,···,kn}

= det(Sλ+ki−i+j)1≤i,j≤n.
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Appendix A: Determinant formulae at lower degrees

In this appendix, we give the explicit form of the functions An(C) and Bn(λ) defined in

eq. (5.8)[1]. We can parametrize those functions in the form,

An(C) =
∏

ℓ∈Z

(C − ℓ)α(ℓ), Bn(λ) =
∏

ℓ∈Z

(λ − ℓ)β(ℓ)

We make tables for the index α(ℓ) and β(ℓ). We note that β(ℓ) = β(−ℓ). Hence we will

write them only for ℓ ≥ 0.

K = 1: Bn = 1 due to the spectral flow symmetry [1].

n α(−1) α(0) α(1) α(2) α(3) α(4) α(5) α(6) α(7)

1 0 1 0 0 0 0 0 0 0

2 0 3 1 0 0 0 0 0 0

3 0 6 3 1 0 0 0 0 0

4 1 13 8 3 1 0 0 0 0

5 3 24 17 8 3 1 0 0 0

6 10 48 37 19 8 3 1 0 0

7 23 86 71 41 19 8 3 1 0

8 54 161 138 85 43 19 8 3 1
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K = 2

n α(−1) α(0) α(1) α(2) α(3) β(0) β(1) β(2) β(3)

1 0 1 0 0 0 2 0 0 0

2 0 4 1 0 0 10 2 0 0

3 0 12 4 1 0 34 8 2 0

4 1 34 14 4 1 108 30 8 2

K = 3

n α(−1) α(0) α(1) α(2) α(3) β(0) β(1) β(2) β(3)

1 0 1 0 0 0 2 0 0 0

2 0 5 1 0 0 12 2 0 0

3 0 19 5 1 0 50 10 2 0

K = 4

n α(−1) α(0) α(1) α(2) α(3) β(0) β(1) β(2) β(3)

1 0 1 0 0 0 2 0 0 0

2 0 6 1 0 0 14 2 0 0

3 0 27 6 1 0 68 12 2 0

K = 5

n α(−1) α(0) α(1) α(2) α(3) β(0) β(1) β(2) β(3)

1 0 1 0 0 0 2 0 0 0

2 0 7 1 0 0 16 2 0 0

B Appendix B: The Schur function

The Schur function, which is the character of the general linear group, can be expressed

in terms of free fermions [40, 19]. In this appendix we summarize the useful formulae( [3],

see also [33]).

B.1

Free fermions5 ♭̄(z), ♭(z) and the vacuum state ‖0〉〉 are defined by

♭̄(z) =
∑

n∈Z

♭̄nz−n−1, ♭(z) =
∑

n∈Z

♭nz−n,

{♭̄m, ♭n} = δm+n,0, {♭̄m, ♭̄n} = {♭m, ♭n} = 0,

♭̄m‖0〉〉 = ♭n‖0〉〉 = 0, (m ≥ 0, n ≥ 1). (B.1)
5 We use this notation to avoid a confusion with the free fermions used in the free-field realization of

W1+∞. Relation to usual free fermions ψ̄(z) =
∑

r∈Z+ 1
2

ψ̄rz
−r−1

2 , ψ(z) =
∑

r∈Z+ 1
2

ψrz
−r− 1

2 is given by

♭̄n = ψ̄n+ 1
2
, ♭n = ψn− 1

2
.
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The fermion Fock space is a linear span of
∏

i ♭̄−mi

∏
j ♭−nj

‖0〉〉. The U(1) current J (z) =
∑

n∈Z Jnz
−n−1 is defined by J (z) = : ♭̄(z)♭(z) :, i.e. Jn =

∑
m∈Z : ♭̄m♭n−m :, where the

normal ordering : ♭̄m♭n : means ♭̄m♭n if m ≤ −1 and −♭n♭̄m if m ≥ 0. Their commutation

relations are

[Jn,Jm] = nδn+m,0, [Jn, ♭̄m] = ♭̄n+m, [Jn, ♭m] = −♭n+m. (B.2)

The fermion Fock space is decomposed into the irreducible representations of û(1) with

the highest weight state ‖N〉〉 (N ∈ Z),

‖N〉〉 =





♭̄−N · · · ♭̄−2♭̄−1‖0〉〉 N ≥ 1

‖0〉〉 N = 0

♭N+1 · · · ♭−1♭0‖0〉〉 N ≤ −1.

(B.3)

A free boson φ(z) and the vacuum state ‖p〉〉B are defined by

φ(z) = q̂ + α0 log z −
∑

n 6=0

αn

n
z−n,

[αn, αm] = nδn+m,0, [α0, q̂] = 1,

αn‖p〉〉B = 0 (n > 0), α0‖p〉〉B = p‖p〉〉B. (B.4)

The boson Fock space is a linear span of
∏

i α−ni
‖p〉〉B. The normal ordering : : means

that αn (n ≥ 0) is moved to the right of αm (m < 0) and q̂. ‖p〉〉B is obtained from ‖0〉〉

as ‖p〉〉B = : epφ(0) : ‖p〉〉B. The vertex operator satisfies

: epφ(z) :: ep′φ(w) : = (z − w)pp′ : epφ(z)+p′φ(w) : . (B.5)

Boson-fermion correspondence is

♭̄(z) = : eφ(z) :, ♭(z) = : e−φ(z) :, ‖N〉〉 = ‖N〉〉B. (B.6)

U(1) current is J (z) = ∂φ(z).

A Young diagram has various parametrization:

Y =

m1

n1

· ·
mh

nh

=

f1

·
·

·

fr

=

g1

·
·
·

gc

(B.7)

where m1 > · · · > mh ≥ 1, n1 > · · · > nh ≥ 0, f1 ≥ · · · ≥ fr ≥ 1, g1 ≥ · · · ≥

gc ≥ 1. According to these parametrizations, we denote the Young diagram Y by
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Y = (m1, · · · , mh; n1, · · · , nh), Y = (f1, · · · , fr) or tY = (g1, · · · , gc) respectively, and

the number of boxes as |Y | =
∑h

i=1(mi + ni) =
∑r

i=1 fi =
∑c

i=1 gi. Corresponding to the

Young diagram eq. (B.7), we define a state ‖N ; Y 〉〉 as follows:

‖N ; Y 〉〉 =
h∏

i=1

♭̄−mi−N♭−ni+N(−1)ni‖N〉〉 (B.8)

= ♭̄−f̄1−N ♭̄−f̄2−N · · · ♭̄−f̄r−N‖N − r〉〉 (B.9)

= (−1)|Y |♭−ḡ1+N♭−ḡ2+N · · · ♭−ḡr+N‖N + c〉〉, (B.10)

where

f̄i = fi − i + 1, ḡi = gi − i. (B.11)

These states ‖N ; Y 〉〉 with all Young diagrams are a basis of û(1) representation space of

the highest weight ‖N〉〉. We abbreviate ‖0; Y 〉〉 as ‖Y 〉〉.

Bra states are obtained from ket states by † operation (♭̄n
† = ♭−n) with the normal-

ization 〈〈0‖0〉〉 = 1; for example, 〈〈N‖ = ‖N〉〉† and 〈〈N‖N ′〉〉 = δNN ′ , 〈〈Y ‖ = ‖Y 〉〉† =

〈〈0‖
∏h

i=1 ♭̄ni
♭mi

(−1)ni and 〈〈Y ‖Y ′〉〉 = δY Y ′. Note that {‖N ; Y 〉〉} is an orthonormal basis

of the fermion Fock space with U(1)–charge N .

Irreducible representations of the permutation group Sn and the general linear group

GL(N) are both characterized by the Young diagrams Y . We denote their characters by

χY (k) and τY (x), respectively. Here (k) = 1k12k2 · · ·nkn stands for the conjugacy class

of Sn; k1 + 2k2 + · · · + nkn = n =the number of boxes in Y . x = [xℓ] (ℓ = 1, 2, 3, · · ·)

stands for xℓ = 1
ℓ
tr gℓ = 1

ℓ

∑N
i=1 ǫℓ

i for an element g of GL(N) whose diagonalized form

is g = diag[ǫ1, ǫ2, · · · , ǫN ]. In this case the number of boxes in Y is a rank of tensor for

GL(N). We take N → ∞ limit formally. τY is called the Schur function. The skew

S-function τY/Y ′ is defined by

τY/Y ′(x) =
∑

Y ′′

CY
Y ′Y ′′τY ′′(x), (B.12)

where the Clebsch-Gordan coefficients CY
Y ′Y ′′ are

τY ′(x)τY ′′(x) =
∑

Y

CY
Y ′Y ′′τY (x), (B.13)

namely decomposition of the tensor product of representations Y ′ and Y ′′; Y ′ ⊗ Y ′′ =
⊕

Y CY
Y ′Y ′′Y . τY/Y ′(x) is non-vanishing only for Y ′ ⊆ Y .

χY (k), τY (x) and τY/Y ′(x) are expressed in terms of free fermion as follows:

χY (k) = 〈〈0‖J k1
1 J k2

2 · · · J kn
n ‖Y 〉〉, (B.14)

τY (x) = 〈〈0‖ exp
( ∞∑

ℓ=1

xℓJℓ

)
‖Y 〉〉, (B.15)

τY/Y ′(x) = 〈〈Y ′‖ exp
( ∞∑

ℓ=1

xℓJℓ

)
‖Y 〉〉. (B.16)
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We remark that they can also be written as χY (k) = 〈〈Y ‖J k1
−1J

k2
−2 · · · J

kn
−n‖0〉〉, τY (x) =

〈〈Y ‖ exp(
∑∞

ℓ=1 xℓJ−ℓ)‖0〉〉 and τY/Y ′(x) = 〈〈Y ‖ exp(
∑∞

ℓ=1 xℓJ−ℓ)‖Y
′〉〉.

Under the adjoint action of exp(
∑∞

ℓ=1 xℓJℓ), ♭̄(z) and ♭(z) transform as

exp
( ∞∑

ℓ=1

xℓJℓ

)
♭̄(z) exp

(
−

∞∑

ℓ=1

xℓJℓ

)
= exp

( ∞∑

ℓ=1

xℓz
ℓ
)
♭̄(z),

exp
( ∞∑

ℓ=1

xℓJℓ

)
♭(z) exp

(
−

∞∑

ℓ=1

xℓJℓ

)
= exp

(
−

∞∑

ℓ=1

xℓz
ℓ
)
♭(z). (B.17)

B.2

Let us introduce the elementary Schur polynomial Pn(x),

exp
( ∞∑

ℓ=1

xℓz
ℓ
)

=
∑

n∈Z

Pn(x)zn. (B.18)

Note that Pn(x) = 0 for n < 0. Then the Schur functions with one row, one column and

one hook are respectively given by

τf (x) = Pf(x), (B.19)

τ1g(x) = (−1)gPg(−x), (B.20)

τm;n(x) = (−1)n
∞∑

ℓ=0

Pm+ℓ(x)Pn−ℓ(−x)

= (−1)n−1
∞∑

ℓ=0

Pm−1−ℓ(x)Pn+1+ℓ(−x). (B.21)

Using this, the Schur function with the Young diagram eq. (B.7) is given by

τY (x) = det
(
τmi;nj

(x)
)

1≤i,j≤h
(B.22)

= det
(
Pfi−i+j(x)

)
1≤i,j≤r

(B.23)

= (−1)|Y | det
(
Pgi−i+j(−x)

)
1≤i,j≤c

. (B.24)

The Schur function with the transposed Young diagram tY is

τtY (x) = (−1)|Y |τY (−x). (B.25)

The skew S-function with Young diagrams parametrized in the second and third form of

eq. (B.7), is given by

τY/Y ′(x) = det
(
Pfi−f ′

j
−i+j(x)

)
1≤i,j≤r

(B.26)

= (−1)|Y |−|Y ′| det
(
Pgi−g′

j
−i+j(−x)

)
1≤i,j≤c

. (B.27)
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Since τY ’s are a basis of the space of symmetric functions, we have

∏

r

∏

s

1

1 − urvs
=
∑

Y

τY (x)τY (y), (B.28)

where the summation runs over all the Young diagrams and x, y are the Miwa variables

for u, v,

xℓ =
1

ℓ

∑

r

uℓ
r, yℓ =

1

ℓ

∑

s

vℓ
s. (B.29)

Similarly we have ∑

Y

τY/Y ′(x)τY (y) =
∑

Y

τY (x)τY (y)τY ′(y). (B.30)

Those formulae are easily proved by using free field expression eqs. (B.15,B.16) and

bosonization. For example, eq. (B.23) is obtained as follows. By rewriting ‖Y 〉〉 eq. (B.9)

as

‖Y 〉〉 =
∮ r∏

i=1

dzi

2πi
z−f̄i

i · ♭̄(z1) · · · ♭̄(zr)‖ − r〉〉,

eq. (B.15) becomes

τY (x) =
∮ r∏

i=1

dzi

2πi
z−f̄i

i e
∑

∞

ℓ=1
xℓz

ℓ
i · 〈〈0‖♭̄(z1) · · · ♭̄(zr)‖ − r〉〉.

Bosonization tells us that

〈〈0‖♭̄(z1) · · · ♭̄(zr)‖ − r〉〉 =
∏

i<j

(zi − zj) ·
r∏

i=1

z−r
i .

Since
∏

i<j(zi−zj) is the Vandermonde determinant (−1)
1
2
r(r−1) det(zj−1

i )1≤i,j≤r, we obtain

eq. (B.23) after picking up residues.

Eq. (B.28) is proved as follows:

∏

r

∏

s

1

1 − urvs
= exp

(∑

r

∑

s

log
1

1 − urvs

)
= exp

(∑

r

∑

s

∞∑

ℓ=1

1

ℓ
(urvs)

ℓ
)

= exp
( ∞∑

ℓ=1

ℓxℓyℓ

)
= 〈〈0‖ exp

( ∞∑

ℓ=1

xℓJℓ

)
exp

( ∞∑

ℓ=1

yℓJ−ℓ

)
‖0〉〉

=
∑

Y

〈〈0‖ exp
( ∞∑

ℓ=1

xℓJℓ

)
‖Y 〉〉〈〈Y ‖ exp

( ∞∑

ℓ=1

yℓJ−ℓ

)
‖0〉〉 =

∑

Y

τY (x)τY (y).

Here we have used the completeness of {‖Y 〉〉} in the fermion Fock space with vanishing

U(1)–charge.
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B.3

In this subsection we set xℓ as follows:

xℓ =
1

ℓ

qaℓ

1 − qℓ
. (B.31)

Then the Schur functions with one row and one column are given by

Pn(x) =
n∏

j=1

qa

1 − qj
, (B.32)

(−1)nPn(−x) =
n∏

j=1

qj−1+a

1 − qj
. (B.33)

From eq. (B.21), the Schur function with one hook becomes

τm;n(x) = qa(m+n)+ 1
2
n(n+1)

m−1∏

j=1

1

1 − qj

n∏

j=1

1

1 − qj
·

1

1 − qm+n
. (B.34)

By combining those and eqs. (B.22,B.23,B.24), the Schur function with the Young diagram

eq. (B.7) is given by

τY (x) = qa|Y |+
∑h

i=1
( 1

2
ni(ni+1)+(i−1)(mi+ni))

×
h∏

i=1

(mi−1∏

j=1

1

1 − qj

ni∏

j=1

1

1 − qj

)
·

∏
i<j(1 − qmi−mj )(1 − qni−nj )

∏
i,j(1 − qmi+nj)

(B.35)

= qa|Y |+
∑r

i=1
(i−1)fi

r∏

i=1

fi−i+r∏

j=1

1

1 − qj
·
∏

i<j

(1 − qfi−fj−i+j) (B.36)

= qa|Y |+
∑r

i=1
1
2
gi(gi−1)

c∏

i=1

gi−i+c∏

j=1

1

1 − qj
·
∏

i<j

(1 − qgi−gj−i+j). (B.37)
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