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Abstract

On the basis of the collective field method, we analyze the Calogero–
Sutherland model (CSM) and the Selberg–Aomoto integral, which de-
fines, in particular case, the partition function of the matrix mod-
els. Vertex operator realizations for some of the eigenstates (the Jack
polynomials) of the CSM Hamiltonian are obtained. We derive Vira-
soro constraint for the generalized matrix models and indicate rela-
tions with the CSM operators. Similar results are presented for the
q–deformed case (the Macdonald operator and polynomials), which
gives the generating functional of infinitely many conserved charges in
the CSM.
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1 Introduction

The purpose of this letter is to discuss some common properties which are
shared by the Calogero–Sutherland model (CSM) [1] described by the Hamil-
tonian and momentum,

H̃ =
1

2

N∑

j=1

(
1

i

∂

∂qj

)2

+
1

2

(π
L

)2∑

i 6=j

β(β − 1)

sin2 π
L
(qi − qj)

, P̃ =
N∑

j=1

1

i

∂

∂qj
, (1)

and the “generalized matrix model” whose partition function is defined by
the following integral,

Zβ([g]) ≡
∫ M∏

i=1

dti |∆(t)|2β e
∑∞

n=0
gn
∑M

i=1
tn
i , ∆(t) ≡

∏

i<j

(ti − tj). (2)

For some specific values of β, the latter integral is related to the usual matrix
models[2]; the hermitian matrix model (β = 1)[3], the orthogonal matrix
model (β = 1

2
)[4] and the symplectic matrix model (β = 2)[5]. The integral

of this type, called the Selberg–Aomoto integral, was studied in [6] as a
multivariate generalization of the hypergeometric integral and has been used
recently for calculating the correlation functions of the CSM [7][8].

In the present letter, we apply the collective field methods [9][10][11][12] to
these two models. Firstly, in the CSM, by using a collective field Hamiltonian,
we derive some of the eigenstates as the vertex operators. Mathematically,
they are known as Jack symmetric polynomials [13] and are classified by the
Young diagrams. Furthermore, the mutually commutative conserved charges
of the CSM are known to be realized as the Cartan generators of the W1+∞

algebra [14]. These properties strongly indicates that the system has the
W1+∞ symmetry [15][16][17].

Secondly, we study the integral (2) and show the appearance of the Vi-
rasoro constraint [18]. Although they are defined by the Virasoro generators
with the mode n ≥ −1, they have a unique relativistic extension with the
following central charge,

c = 1− 6(1− β)2

β
. (3)

This formula satisfies the duality symmetry, β ↔ 1
β
, which is the known

property of the Jack polynomials [13].
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The CSM and the Selberg–Aomoto integral might be related by the inte-
gral representation of the Jack polynomials. We show, through this relation,
the vertex operators used in the CSM are the primary fields with dimension
1, i.e. the screening currents.

Finally, we refer to a q–deformation of the foregoing discussions. Math-
ematically, the corresponding Hamiltonian operator and the eigenstates are
known as the Macdonald operator and the Macdonald polynomials. They
are useful in obtaining the higher conservative charges of the CSM.

2 Hamiltonian and Collective coordinates

To fix some notations, we start from summarizing the collective field descrip-
tion of the CSM. Let us make the coordinate transformation, xj ≡ e2πiqj/L.
The eigenfunctions ψλ(x) of the CSM are then factorized as,

ψλ(x) = Jλ(x)∆̃(x)β,

∆̃(x) =
∏

i<j

sin
π

L
(qi − qj) ∝

∏

i

x
−(N−1)/2
i

∏

i<j

(xi − xj), (4)

where Jλ(x) is the symmetric polynomial of the coordinates xi (i = 1, 2, · · · , N).
The Hamiltonian itself is modified when it is acted on Jλ(x),

∆̃(x)−βH̃∆̃(x)β = 2
(π
L

)2H + E0,

H ≡
N∑

i=1

D2
i + β

∑

i<j

xi + xj
xi − xj

(Di −Dj), (5)

where Di ≡ xi
∂
∂xi

and E0 =
1
6
( π
L
)2β2(N3−N) is the eigenvalue of the ground-

state ∆̃(x)β . Similarly, the momentum is modified as,

∆̃(x)−βP̃∆̃(x)β = 2
π

L
P, P ≡

N∑

i=1

Di. (6)

Eigenfunctions Jλ(x) of H are known as the Jack symmetric polynomials
[13]. They are parametrized by the Young diagrams and the eigenvalue
associated with the diagram λ = (λ1, · · · , λM) is given by,

ǫλ =
M∑

i=1

(
λ2i + β(N + 1− 2i)λi

)
=

M ′∑

i=1

(
−βλ′2i + (βN + 2i− 1)λ′i

)
, (7)
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where tλ = (λ′1, · · · , λ′M ′) is the conjugate of λ.
Because Jλ(x) is symmetric with respect to xi’s, it can be written out

by using the power sum polynomials pn ≡ ∑
i x

n
i . Let us denote a†n as the

“creation operator” which gives rise to this pn. The “annihilation operator”
associated with it is defined by the commutation relation,

[
an, a

†
m

]
=

1

β
nδn,m, (n,m > 0). (8)

We introduce the vacuum states by an|0〉 = 〈0|a†n = 0 (n > 0). One may
translate the collective field Hilbert space and the space of symmetric poly-
nomials by the formula,

〈0|eβ
∑

i
A(xi)a†n1

· · · a†nm
|0〉 = pn1

· · · pnm
, A(x) ≡

∞∑

n=1

1

n
anx

n. (9)

These operators are related with the conventional collective field opera-
tors, ρ(x) =

∑N
i=1 δ(x− xi), by

∫
dx xnρ(x) = pn. Use of these combinations

has the benefit to illuminate the relation with the matrix–type integral (2)
more directly.

The convention of the definition of (8) is to reproduce the standard inner
product between the symmetric polynomials [13][8], i.e.,

〈pr11 · · · prnn , psmm · · · ps11 〉 ≡ 〈0|ar11 · · · arnn a†m
sm · · ·a†1

s1|0〉,
= δ{r},{s}β

−
∑n

i=1
ri
∏

i≥1

iriri!. (10)

One may derive the collective coordinate representation of the Hamilto-
nian and the momentum in a usual way. The Hamiltonian in terms of the
collective coordinates, Ĥ, is defined by the transformation in (9) as,

H〈0|eβ
∑

i
A(xi) = 〈0|eβ

∑
i
A(xi)Ĥ. (11)

For example, the momentum operator is obtained as follows,

∑

i

Di〈0|eβ
∑

i
A(xi) =

∑

i

〈0|eβ
∑

i
A(xi)β

∞∑

n=1

xni an = 〈0|eβ
∑

i
A(xi)

∑

n

(βa†nan),
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which gives, P̂ = β
∑∞

n=1 a
†
nan. Similarly the Hamiltonian is given by,

Ĥ = β2
∞∑

n,m=1

(a†n+manam + a†na
†
man+m)

+β(1− β)
∞∑

n=1

na†nan + β2N
∞∑

n=1

a†nan. (12)

This particular form of the Hamiltonian appeared previously, for example,
in [11] (see also the recent work [20]).

3 Vertex operators and Energy eigenstates

Some of the simpler eigenfunctions (the Jack polynomials) of the Hamiltonian
can be explicitly written down by using the vertex operators. As is known,
they are parametrized by the Young diagrams. In this section, we give their
bosonized forms when the Young diagram has, (i) one or two rows (columns)
or (ii) one row and one column (one “hook”).

Define, A†(t) ≡ ∑∞
n=1

1
n
a†nt

n. There are two types of the vertex operators

which are diagonalized by the action of the Hamiltonian Ĥ as,

ĤeγA†(t)|0〉 =
(
β

γ
D2 + (βN − γ)D

)
eγA

†(t)|0〉, (13)

where γ = β,−1 and D = t ∂
∂t
. Therefore, by expanding these vertex opera-

tors in terms of t,

eγA
†(t) =

∞∑

n=0

Ĵ (γ)
n (a†)tn, (14)

Ĵ (β)
n (a†)|0〉 and Ĵ (−1)

n (a†)|0〉 become the eigenstates of the Hamiltonian. In-
deed, the symmetric polynomials associated with them are the Jack poly-
nomials of the Young diagram with single row (n) and single column (1n),
respectively.

For the state
∏M

i=1 e
γA†(ti)|0〉, we have,

Ĥ
M∏

i=1

eγA
†(ti)|0〉 =

( M∑

i=1

(β
γ
D2

i + (βN − γ)Di

)

+2γ
∑

i<j

1

1− tj
ti

(tj
ti
Di −Dj

)) M∏

i=1

eγA
†(ti)|0〉, (15)

4



where Di = ti
∂
∂ti

and |tj/ti| < 1 for i < j. In the case of β = 1 when the

Jack polynomial reduces to the Schur polynomial, the eigenstates of Ĥ are
given by

∮ ∏M
j=1

dtj
2πi
t
−λj−1
j

∏
i<j(1− tj

ti
)
∏M

i=1 e
±A†(ti)|0〉, which can be rewritten

in a determinant form, det(Ĵ
(γ)
λi−i+j)1≤i,j≤M |0〉. For β 6= 1, however, this is no

longer the case. Expanding (15), we obtain,

ĤĴ (γ)
n1

· · · Ĵ (γ)
nM

|0〉

=
M∑

i=1

(
β

γ
n2
i +

(
βN − γ(2i− 1)

)
ni

)
Ĵ (γ)
n1

· · · Ĵ (γ)
nM

|0〉

+2γ
∑

i<j

nj∑

r=1

(ni − nj + 2r)Ĵ (γ)
n1

· · · Ĵ (γ)
ni+r · · · Ĵ (γ)

nj−r · · · Ĵ (γ)
nM

|0〉. (16)

At this moment, we are successful in diagonalizing this equation only for the
cases M = 1, 2. For M = 2 case, the eigenstates correspond to the Young
diagram with two rows (γ = β) or two columns (γ = −1). The explicit form
of the diagonalized basis are given by,

Ĵ
(γ)
(λ1,λ2)

(a†)|0〉 =
λ2∑

ℓ=0

c(γ)(λ1 − λ2, ℓ)Ĵ
(γ)
λ1+ℓ(a

†)Ĵ
(γ)
λ2−ℓ(a

†)|0〉,

c(γ)(λ, ℓ) =
λ+ 2ℓ

λ+ ℓ

ℓ∏

j=1

λ+ j

j
·

ℓ∏

i=1

−γ + β
γ
(i− 1)

γ + β
γ
(λ+ i)

. (17)

One can easily show that the Jack polynomials of single hook (n, 1m) are,

Ĵ(n,1m)(a
†)|0〉 =

m∑

ℓ=0

(n+ ℓ+ β(m− ℓ )) Ĵ
(β)
n+ℓ(a

†)Ĵ
(−1)
m−ℓ (a

†)|0〉. (18)

4 Virasoro constraint

Let us go back to the Selberg–Aomoto integral (2). The collective field
method can be also applied here. Namely, the insertion of the operator,∑M

i=1 t
n
i , can be realized by taking a partial derivative with respect to the

coupling gn. These operators can be combined to give a single free collective
field,

∂φ(z) =
√
2β

∞∑

n=0

∂

∂gn
z−n−1 +

1√
2β

∞∑

n=1

ngnz
n−1. (19)
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The coefficients for the bosonic field is chosen for the later convenience.
The essential feature of the matrix–type integral can be extracted by

considering a set of differential equations. For the hermitian matrix case, it
is so–called the Virasoro constraint [18]. We may derive similar equations
for our generalized integral (2). The method we employ here is essentially
the same as the hermitian case, namely we start from the integral which is
trivially zero and rewrite it as the differential operator of the source term
acting on the original integral,

0 =
∫ M∏

i=1

dti
M∑

i=1

∂

∂ti

(
tn+1
i |∆(t)|2β e

∑∞

ℓ=0
gℓ
∑M

i=1
tℓ
i

)

= LnZ([g]), (n = −1, 0, 1, 2, . . .), (20)

Ln =
∞∑

m=1

mgm
∂

∂gn+m
+ β

n∑

m=0

∂2

∂gm∂gn−m
+ (1− β)(n+ 1)

∂

∂gn
. (21)

The Virasoro generators appearing here have the mode n greater than−1.
Hence there is no central extension in the commutation relations between
these operators. However, we may uniquely extend them as the components
of the relativistic energy–momentum tensor,

T (z) =
∞∑

n=−∞

Lnz
−n−2 =

1

2
: (∂φ(z))2 : −1− β√

2β
∂2φ(z). (22)

This energy–momentum tensor satisfies the Virasoro algebra with central
charge (3).

At this moment, the physical meaning of this central charge is obscure.
For the hermitian case, the double scaling limit is described by the KP–
hierarchy. The partition function is identified as the τ–function. Since KP–
hierarchy is essentially the free fermion system with c = 1, the central charge
(3) looks plausible. The nontrivial values for other matrix models, (for or-
thogonal or symplectic case, c = −2), may indicate that the double scaling
limit for those models is described by interacting system.
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5 Integral representation and Virasoro sym-

metry

We now present the relations between two models defined by (1) and (2).
The original Selberg–Aomoto integral studied in [6] is as follows,

S̃M,N(λ1, λ2, λ, µ; [x]) =
∫

[0,1]M

M∏

i=1

dti ·
M∏

i=1

N∏

k=1

(1− tixk)
µDλ1,λ2,λ([t]),

Dλ1,λ2,λ([t]) =
M∏

i=1

tλ1

i (1− ti)
λ2

∏

i<j

|ti − tj|λ. (23)

This integral satisfies the multivariate generalization of the hypergeometric
differential equation when µ = −λ/2 or 1. Furthermore, it can be expanded
by Jack polynomials with β = 2µ2/λ in the similar way as the Taylor expan-
sion of the hypergeometric function. This fact has been used [7] for discussing
the correlation functions of the CSM.

The correspondence between (23) and our integral (2) is given when we
make the transformation of variables, i.e. from xk to pn =

∑N
k=1 x

n
k ,

M∏

i=1

N∏

k=1

(1− tixk)
µ =

M∏

i=1

e−µ
∑∞

n=1

1

n
pntni . (24)

The “Vertex operators” which appear on the right hand side are exactly the
same as those which appeared in (13).

The Virasoro symmetry considered in the previous section is related to
the CSM in this context. Indeed,

Ĥ = β
∞∑

n=1

a†nLn + (β(N + 1− 2a0)− 1)P̂, (25)

where an = ∂
∂gn

for n ≥ 0 and a†n = n
β
gn for n > 0. Furthermore, the vertex

operators (13) are nothing but the screening currents in terms of the Virasoro
generators,

Lne
γA†(t)|0〉 = ∂t

(
tn+1eγA

†(t)
)
|0〉. (26)

for n ≥ −1.
Although linear combinations of the Jack polynomials can be obtained

by the integral (23), it is interesting if one may derive the direct integral
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representation of the Jack polynomials. However, it is still difficult to find
the general form of such integral representation, some of the simpler ones
can be written as follows,

∮ M∏

j=1

dtj
2πi

M∏

i=1

N∏

k=1

(1− tixk)
−γ
∏

i<j

(ti − tj)
2γ2

β

M∏

i=1

t
−λi−1− γ2

β
(M−1)

i , (27)

where,

λi =

{
λ+ 1 (1 ≤ i ≤ m)
λ (m+ 1 ≤ i ≤M)

, 0 ≤ m ≤M − 1. (28)

These Jack polynomials correspond to the Young diagram λ = (λ1, · · · , λM)
and tλ = (λ1, · · · , λM) for γ = β and −1, respectively.

6 q-Deformation and Macdonald polynomi-

als

Finally, we briefly discuss the q–deformation and the Macdonald polynomials
Qλ [19] by using the method developed in the previous sections. The detail
will appear elsewhere. The Macdonald operator,

Dq,t =
N∑

i=1

∏

j 6=i

txi − xj
xi − xj

Tq,xi
, (29)

plays the same role as the CSM Hamiltonian H, where Tq,xi
is the q-shift

operator,
Tq,xi

f(x1, · · · , xN) = f(x1, · · · , qxi, · · · , xN). (30)

Here, a new complex deformation parameter q is introduced and t is related
to β by t = qβ.

The situation in previous sections can be obtained by taking the limit
h̄ → 0 with q = eh̄. In this limit, the Macdonald operator behaves as
Dq,t =

∑
n≥0D

(n)
q,t h̄

n/n! with,

D
(0)
q,t = N, D

(1)
q,t = P +

β

2
N(N − 1),

D
(2)
q,t = H + β(N − 1)P +

β2

6
N(N − 1)(2N − 1). (31)
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here H and P are in (5) and (6). In this sense, the Macdonald operator can
be regarded as the generating functional of the infinitely many conserved
charges in the CSM.

Amazingly, one may find a closed form of collective field representation
for the Macdonald operator Dq,t as follows,

Dq,t〈0|e
∑∞

n=1

1−tn

1−qn
an
n

pn = 〈0|e
∑∞

n=1

1−tn

1−qn
an
n

pnD̂q,t,

D̂q,t =
tN

t− 1

∮
dz

2πi

1

z
e
∑∞

n=1

1−t−n

n
a†nz

n

e−
∑∞

n=1

1−tn

n
anz−n − 1

t− 1
, (32)

where the commutation relations for the bosonic oscillators are deformed
as [an, a

†
m] = n1−qn

1−tn
δn,m. Expanding this expression, we find the bosonized

momentum and Hamiltonian as the coefficients of h̄ and h̄2.
Similar to our discussion in section 3, we obtain the bosonized realization

for some of the eigenstates (the Macdonald polynomials) of the Macdonald
operator. Let,

exp

(
∞∑

n=1

1− qγn

1− qn
a†n
n
zn
)
=

∞∑

n=0

Q̂(γ)
n zn (33)

the states Q̂(γ)
n |0〉 with γ = β or −1 are the Macdonald polynomials corre-

sponding to the Young diagram with single row (n) or single column (1n),
respectively. That of two rows λ = (λ1, λ2) or two columns tλ = (λ1, λ2) are
given by,5

Q̂
(γ)
(λ1,λ2)

|0〉 =
λ2∑

ℓ=0

c(γ)(λ1 − λ2, ℓ)Q̂
(γ)
λ1+ℓQ̂

(γ)
λ2−ℓ|0〉,

c(γ)(λ, ℓ) =
1− q

β
γ
(λ+2ℓ)

1− q
β
γ
(λ+ℓ)

ℓ∏

j=1

1− q
β
γ
(λ+j)

1− q
β
γ
j

·
ℓ∏

i=1

qγ − q
β
γ
(i−1)

1− qγ+
β
γ
(λ+i)

, (34)

with γ = β or −1, respectively. The Macdonald polynomials of single hook
(n, 1m) are,

Q̂(n,1m)|0〉 =
m∑

ℓ=0

1− qn+ℓtm−ℓ

1− q
qm−ℓ Q̂

(β)
n+ℓQ̂

(−1)
m−ℓ|0〉. (35)

5A conjecture for the special case of this expression was derived during the discussion
with H. Kubo. We understand that this result is independently obtained by A. N. Kirillov.
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Note Added:

After we submitted this paper, we learned that Avan and Jevicki [21]
discussed the connection between c = 1 matrix model and the Calogero
Moser model. In this context, we have to mention the work by Simons et.
al. [22] where the matrix model technique was used to derive two-point
correlation functions for the CSM with β = 1, 2, 1

2
. We were also indicated

that G. Harris [23] studied the Virasoro constraint of the matrix model for
non-orientable surfaces. Although the purpose of these works is different
from ours, i.e. to relate the CSM with the conformal field theory with c < 1,
they give complementary viewpoints to the problem.

As for the approach which is the closest to ours, we would like to mention
the recent announcement by Mimachi and Yamada [24] where they expressed
the Virasoro singular vectors as the Jack polynomials of rectangular Young
diagrams, i.e. our equation (27).
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