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Abstract

We review some recent results on the Calogero-Sutherland model with
emphasis upon its algebraic aspects. We give integral formulae for excited
states (Jack polynomials) of this model and their relations with Wn singular
vectors and generalized matrix models.

1. Introduction

The Calogero-Sutherland models1 is a quantum mechanical system with a
long-range interaction. It has been actively studied as a solvable system with
anyonic statistics in 1 + 1 dimensions. Recently, it is greatly developed with
the calculations of dynamical correlation functions2,3,4. To evaluate more
general ones, we may need to express the wave-functions of the excited states
explicitly. In this note, we will present their algebraic construction by integral
transformations5,6.

For a special value of the coupling constant, the system reduces to that
of free fermion. In this case, it has deep relations with theW algebras, matrix
models, 2D quantum gravities and also 2D QCD. Such connections should
remain even for the general cases. Indeed, we will demonstrate that the wave-
functions of excited states are identified with the Wn singular vectors5,7.
Furthermore, the Wn structure thus obtained causes the W constraints in
the generalized matrix models.

† Based on the talk in the work shop at YITP on Dec. 6–9, 1994.
‡ JSPS fellow
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2. Calogero-Sutherland model and Jack polynomial.

We start with recapitulating some important properties of the Calogero-
Sutherland Hamiltonian and momentum.

2.1. We consider a N–body problem on a unit circle. Denote their coordi-
nates q1, q2, · · · , qN . Hamiltonian and momentum are given by

HCS =

N∑

j=1

(
1

i

∂

∂qj

)2

+
1

2

∑

i<j

β(β − 1)

sin2(qi − qj)/2
, P =

N∑

j=1

1

i

∂

∂qj
. (2.1)

Here β is a coupling constant with a reflection symmetry β ↔ 1 − β. It
is known that when β is a real number, i.e., β(β − 1) ≥ −1/4, the system
becomes stable and has no bound states.

Define an inner-product (f, g) ≡
∫ 2π

0

∏
j dqj f(q)

∗ g(q). Notice that HCS

and P are self-adjoint H†
CS = HCS and P † = P under † defined by (f,O g) ≡(

O†f, g
)
.

Since the Hamiltonian is rewritten as

HCS =
∑

j

hj(β)
† hj(β) + ε0,

hj(β) =
1

i

∂

∂qj
+ β

∑

i(6=j)

cot

(
qj − qi

2

)
,

with a vacuum energy ε0, the energy is bounded from below and there are
two minimal-energy states characterized as the states annihilated by hj(β)
or hj(1− β). We restrict ourselves to the former vacuum, which is

∆β ≡
∏

i<j

sinβ
(
qi − qj

2

)
.

The statistic of the particle is governed by the coupling β: if β is even (odd)
then the particles become bosonic (fermionic).

2.2. We will write the excited states in the factorized form J(q)∆(q)β and
change the variables to xj ≡ exp(iqj) on a complex plane. In these new
variables, J(x) has to be a symmetric function, to possess the same statistic
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as the vacuum. Define new Hamiltonian and momentum acted directly on
J(x) as follows: H ≡ ∆−βHCS∆

β − ε0 and P ≡ ∆−βP∆β , then

H =
N∑

i=1

D2
i + β

∑

i<j

xi + xj

xi − xj
(Di −Dj), P =

N∑

i=1

Di, (2.2)

with Di = xi
∂

∂xi
. The vacuum wave-function becomes ∆β =

∏
i6=j(1 −

xi/xj)
β/2.

The eigenstate is labeled by a decreasing set of non-negative integers,
λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0), which is identified with a Young diagram
with λi(≥ 1) squares in ith row. The corresponding eigenvalue of HCS and
P can be written in terms of the momenta kj of pseudo-particles as

ελ =
N∑

i=1

k2i , pλ =
N∑

i=1

ki, kj ≡ λj +
β

2
(N + 1− 2j),

respectively. The wave-function Jλ(x) is called the Jack symmetric poly-
nomial in mathematical literatures1,8,9. The neighboring pseudo-momenta
should satisfy, ki − ki+1 ≥ β, which exhibits the nature of fractional statis-
tics of this system. When β = 1, the Jack polynomial reduces to the Schur
polynomial.

It may be instructive to illustrate the spectrum of the system for a
positive integer β. We fill the momentum occupied by the pseudo-particle
with “1” and the vacant state with “0” in the integer-valued momentum
space. We denote the origin (p = 0) by “ : ”. For example, the 4–particles
and β = 3 case, (1) the vacuum; and (2) the excited state with λ = (3, 1, 1, 0)
are respectively

(1), · · · 0 1 0 0 1 0 : 0 1 0 0 1 0 0 0 0 · · · ,
(2), · · · 0 1 0 0 0 1 : 0 0 1 0 0 0 0 1 0 · · · .

2.3. Since H and P are symmetric in xi’s, they can be expressed by the
power-sums pn ≡ ∑N

i=1 x
n
i and their derivatives ∂n ≡ n

β
∂

∂pn
as follows9:

H = β2
∑

n,m>0

(pn+m∂n∂m + pn pm∂n+m) + β
∑

n>0

(n− nβ +Nβ) pn∂n,
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P = β
∑

n>0

pn∂n. (2.3)

Here we must treat pn’s as formally independent variables, i.e., ∂n pm =
n
β δn,m for all n,m > 0. Since this H and P do not depend on the number
N of particles up to the last term of H, they are useful in analizing N–
independent properties.

Define another inner-product 〈f, g〉 ≡
∮ ∏

j
dpj

pj
f(p) g(p), with pn ≡ ∂n.

This is nothing but that of free bosons. Notice that H and P have a duality
pn ↔ ∂n, i.e., they are self-adjoint H‡ = H and P ‡ = P under ‡ defined by
〈f,O g〉 ≡ 〈O‡f, g〉.

There exists a following relation between H and the non-relativistic Vi-
rasoro generators Ln:

H = β
∑

n>0

pn Ln + (β − 1 + βN)P,

Ln = β

n−1∑

m=1

∂m∂n−m + β
∑

m>0

pm∂n+m − (n+ 1) (β − 1) ∂n.

(2.4)

These relations with free bosons or Virasoro generators suggest algebraic
aspects of the model.

3. Integral formula for the wave-functions of excited states

We next try to derive the explicit expression of all excited states. Our strat-
egy is as follows: we introduce two types of (integral) transformations which
maps the eigenstate into another while changing its energy and the number
of particles. We can construct arbitrary state by applying them successively
to the vacuum.

First, we introduce the Galilean boost Gs, which uniformly shifts the
pseudo-momentum of the pseudo-particles from λ = (λ1, · · · , λr) to λ+ sr =
(λ1 + s, · · · , λr + s). It can be realized by multiplying the wave-function by∏

j e
iqjs =

∏
j x

s
j . When it is operated to the eigenstate, the Young diagram

is changed by adding a rectangle sr from the left:

Gs · Jλ(x1, · · · , xr) = Jλ+sr (x1, · · · , xr) =
r∏

i=1

xs
i · Jλ(x1, · · · , xr). (3.1)
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Gs : λ 7−→
r

s λ

.

The second integral transformation NNM changes the number of parti-
cles from M to N :

NNM · Jλ(t1, · · · , tM) = Jλ(x1, · · · , xN )

=

∮ M∏

j=1

dtj
tj

∏

i,j

(1− xi/tj)
−β

M∏

i6=j

(1− ti/tj)
β
Jλ(t1, · · · , tM ),

(3.2)

where the integration path is along the unit circle in the complex plane.
Proof. This is proved by using two self-dualities of Hamiltonians and mo-
mentum. Replace the variables tj of integration with t−1

j . Let

H̃(x) ≡ (H(x)− βNP (x)) ,

V ≡
∏

i,j

(1− xitj)
−β

= e
β
∑

n>0

1
n

∑
i,j

xn
i t

n
j .

Then H̃ commutes with NNM as

H̃(x1, · · · , xN )NNM = NNM H̃(t1, · · · , tM ),

which is deduced as follows: first we change the action with H̃(x) on V to

that with H̃(t) as H̃(x)V = H̃(t)‡V = H̃(t)V ; next we perform the inte-
gration by parts and pass the Hamiltonian through ∆2β as ∆−2βH†∆2β =
∆−βH†

CS∆
β−ε0 = H. Momentum P also commutes with it⋆.

Therefore, starting from the vacuum with s1 particles and combining
these two transformations Gs and Nnm, we obtain all excited states of N
particles5,6

Jλ(x) = Nrn,rn−1
Gsn−1

Nrn−1,rn−2
· · · · · · Gs2Nr2,r1Gs1 · 1

=

∮ n−1∏

a=1

ra∏

j

dt
(a)
j

t
(a)
j

∏

i,j

(
1− t

(a+1)
i /t

(a)
j

)−β
ra∏

i6=j

(
1− t

(a)
i /t

(a)
j

)β
ra∏

j=1

(
t
(a)
j

)sa
,

(3.3)

⋆ Since the energy degenerates, we need one more condition to define the
Jack polynomial uniquely. However, (3.2) is also compatible with it5.
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with xj ≡ t
(n)
j , N = rn and λ =

∑n−1
a=1 (sa

ra) such that

λ = rn−1

sn−1

rn−2

sn−2 · · · r2

s2
r1
s1

.

This formula reveals new algebraic aspects of the model as the following two
sections.

4. Relation with Wn singular vectors and WZNW correlation

functions

The integrand of eq. (3.3) reminds us of a sl(n) type chain from t(1) to t(n−1).

Indeed, they are realized by the sl(n) type boson ~φ(z) such that

~αa · ~φ(z) ~αb · ~φ(w) ∼ Aab log(z − w),

~φ(z) ≡ −
∑

m 6=0

1

m
~amz−m + ~a0 log z + ~Q,

with simple roots ~α1, · · · , ~αn−1 and the sl(n) type Cartan matrix Aab.
Through this correspondence, we show that the Jack polynomials are identi-
fied with Wn singular vectors after a projection defined below.

Let us consider the bosonic Fock space generated by the highest weight
state |~h〉 such that ~αa · ~a0|~h〉 = ha|~h〉 and ~am|~h〉 = 0 (m > 0). For the Wn

algebra with a Virasoro central charge

c = (n− 1)

{
1− n(n+ 1)

(√
β − 1√

β

)2
}
,

there exists a singular vector on the Fock space of the highest weight

hn−a
r,s = (1 + ra − ra+1)

√
β − (1 + sa)

1√
β
,

with positive-integers ra < ra+1 and sa. Its Virasoro grade is
∑n−1

a=1 rasa. It

is constructed from the screening currents : exp
{√

β~αa · ~φ(t)
}
: as follows10

|χr,s〉 =
∮ ∏

a,j

dt
(a)
j : e

√
β~αa·~φ(t

(a)
j

) : |~h′
r,s〉. (4.1)
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If we perform a OPE of this singular vector, then the OPE factor is almost
the same as the integrand of eq. (3.3). In fact, the excited state and the
singular vector relate as follows5 (ref. [7] for the Virasoro case):

Jλ(x) = 〈~hr,s|V1 |χr,s〉. (4.2)

Here

〈~h|V1 ≡ 〈~h|e
√

β
∑

m>0

1
m

~Λ1·~am pm ,

with fundamental weights ~Λa such that ~αa · ~Λb = δab . It gives a projection
from n− 1 bosons to power-sums as

〈~h|V1 ~α
a · ~a−m = δa1

√
βpm〈~h|V1, 〈~h|V1

~Λ1 · ~am =
m√
β

∂

∂pm
〈~h|V1,

for a positive integer m.
By using eq. (2.3) and the above projection, one can consider a bosonic

Hamiltonian Ĥ acted directly on the bosonic Fock space. Although it is not
uniquely detemined, the nontrivial part of Ĥ is a cubic form11 similar to
Ishibashi-Kawai Hamiltonian of string fields12. Furthermore, Ĥ is expressed
by using Virasoro generators Lm as (2.4):

Ĥ ∼
∑

m>0

~α1 · ~a−m Lm + · · · ,

which has a similaritiy with the BRST-operator of the two dimensional quan-
tum gravity. Here · · · are the Cartan parts and the trivial ones that are
annihilated by the projection. Therefore, we obtain another view point for
the integral formula (3.3): the Wn singular vectors in terms of bosons always
become the eigenstates of the Calogero-Sutherland model because they are
annihilated by the cubic part of the Hamiltonian Ĥ.

There is also a relation with the correlation function of the WZNW
model. Let us consider the Kac-Moody algebra ŝl(n) with a level κ ≡ k+ n.
The vertex operator V1 in the projection operator corresponds to the product∏N

i=1 : exp
{√

1/κ~Λ1 · ~φ(xi)
}

: of N–vertex operators of ŝl(n) with funda-

mental representations. Furthermore, the screening current of the Wn alge-

bra is nothing but the φ–part (without βγ–part) : exp
{
−
√

1/κ~αa · ~φ(t)
}

:

of that of ŝl(n). If we decompose the Young diagram as ra = a and allow
sa’s to vanish, then N = n and the integrand of (3.3) is just the φ–part of
the integral formula for a weight zero N–point function with fundamental
representations of the WZNW model up to a non-symmetric part.
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5. Generalized matrix model and Virasoro constraint

The excited state (3.3) has also some similarity to the partition function of
the matrix model. Indeed, when n = 2 and s1 = (

¯
1 − r1) − 1, which is no

longer a positive integers in general, then Z1(g) ≡ Jλ(x) is

Z1(g) =

∫ r1∏

i=1

dti
∏

i<j

(ti − tj)
2βe

∑
n>0

∑
r1

i=1
gnt

n
i , (5.1)

with gn ≡ β
npn. The orthogonal, hermitian and symplectic matrix models

correspond to when β = 1/2, 1 and 2, respectively.
Moreover, since the Jack polynomial is constructed from the screening

current, this integral also satisfies Virasoro constraint Lm(g)Z1(g) = 0 for
m = −1, 0, · · ·. This Virasoro generator is that of n = 2 in the last section

with a central charge c = 1 − 6
(√

β − 1/
√
β
)2
. Hence, this integral is a

generalization of one-matrix model for a general coupling constant β 13.
Although our correspondence between bosons and power-sums is a pro-

jection unless the Virasoro case, one can make it an invertible map by intro-
ducing many kinds of power-sums. In fact, the operator

〈~h|Vn−1 ≡ 〈~h|
n−1∏

b=1

e
√

β
∑

m>0

1
m

~Λb·~am g(b)
m ,

gives that from bosons to n− 1 kinds of power-sums g
(a)
n by

〈~h|Vn−1 ~α
a · ~a−m =

√
βg(a)m 〈~h|Vn−1, 〈~h|Vn−1

~Λa · ~am =
m√
β

∂

∂g
(a)
m

〈~h|Vn−1,

for a positive integer m. When sa = β(1− ra + ra+1)− 1 with rn = 0,

Zn−1(g) ≡ 〈~hr,s|Vn−1 |χr,s〉

=

∫ n−1∏

a=1

ra∏

j=1

dt
(a)
j e

∑
n>0

g(a)
n (t

(a)
j

)n
∏

i<j

(t
(a)
i − t

(a)
j )2β

n−2∏

a=1

∏

i,j

(t
(a)
i − t

(a+1)
j )−β.

(5.2)
Since Zn−1(g) now saticefies a Wn constraint, it is regarded as a generaliza-
tion of the partition function of the conformal matrix model14 of β = 1.
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