
ar
X

iv
:q

-a
lg

/9
50

60
06

v4
  2

 N
ov

 1
99

5

YITP/U-95-19
DPSU-95-1
UT-706
May 1995

Integral Representations

of
the Macdonald Symmetric Functions

Hidetoshi AWATA∗1, Satoru ODAKE2

and Jun’ichi SHIRAISHI∗3

1Uji Research Center, Yukawa Institute for Theoretical Physics

Kyoto University, Uji 611, Japan

2Department of Physics, Faculty of Science

Shinshu University, Matsumoto 390, Japan

3Department of Physics, Faculty of Science

University of Tokyo, Tokyo 113, Japan

Abstract

Multiple-integral representations of the (skew-)Macdonald symmetric functions

are obtained. Some bosonization schemes for the integral representations are also

constructed.

q-alg/9506006

∗JSPS fellow
1 e-mail address : awata@yisun1.yukawa.kyoto-u.ac.jp
2 e-mail address : odake@yukawa.kyoto-u.ac.jp
3 e-mail address : shiraish@danjuro.phys.s.u-tokyo.ac.jp

1

http://arxiv.org/abs/q-alg/9506006v4
http://arxiv.org/abs/q-alg/9506006


1 Introduction

Calogero–Sutherland model[1] and its various generalizations[2, 3] have been extensively

studied and these 1/r2 type models are known to describe systems with the generalized

exclusion principle in 1 + 1 dimension[4]. Calogero–Sutherland model describes a system

of non–relativistic particles on a circle under the inverse square potential. Its Hamiltonian

and momentum are

HCS =
N0∑

j=1

1

2

(
1

i

∂

∂qj

)2

+
(π
L

)2 N0∑

i,j=1
i<j

β(β − 1)

sin2 π
L
(qi − qj)

, PCS =
N0∑

j=1

1

i

∂

∂qj
. (1.1)

where β is a coupling constant. This Calogero–Sutherland model is related to many

branches of low–dimensional physics and mathematics; quantum Hall effect[5], 2D Yang-

Mills theory[6, 7], matrix model[8, 9], Yangian symmetry[10, 11], Virasoro symmetry[21,

22, 23], W1+∞ symmetry[12], Laplace-Beltrami operator [13, 14], etc. One of the recent

remarkable development was the evaluation of some dynamical correlation functions[9,

15, 16, 17, 18]. In these calculation the Jack symmetric functions[19, 20] play a central

role, because they describe the excited states of the Calogero-Sutherland model. In the

previous works[21, 22, 23, 24], the free field realization of the wave functions, in other

words, the integral representations of the Jack symmetric functions is discussed.

Several years ago, Ruijsenaars constructed a relativistic (or lattice regularized) version

of the Calogero system[25]. That model is integrable, since it has mutually commuting

hermitian operators Ŝk (k = 1, 2, · · · , N0):

Ŝk =
∑

I⊂{1,···,N0}
|I|=k

∏

i∈I

j 6∈I

h(qj − qi)
1
2 · exp

(
ρ
∑

j∈I

1

i

∂

∂qj

)
∏

i∈I

j 6∈I

h(qi − qj)
1
2 , (1.2)

where h(q) = σ(q + µ)/σ(q) and ρ ∈ R, µ ∈ C. Here σ(z) denotes the Weierstrass

σ-function defined by

σ(z) = z
∏

m,n∈Z

(m,n) 6=(0,0)

(
1−

z

Ωm,n

)
exp

(
z

Ωm,n
+

z2

2Ωm,n

)
,

where Ωm,n = 2mω1 + 2nω3 and 2ω1 and 2ω3 denote primitive periods. The relation to

the Calogero-Sutherland model is the following:

lim
ρ→0

1

ρ2


 Ŝ1 + Ŝ−1N0

ŜN0−1

2
−N0


 =

N0∑

j=1

1

2

(
1

i

∂

∂qj

)2

+ β(β − 1)
N0∑

i,j=1
i<j

℘(qi − qj), (1.3)

lim
ρ→0

1

ρ


 Ŝ1 − Ŝ−1N0

ŜN0−1

2


 =

N0∑

j=1

1

i

∂

∂qj
, (1.4)
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where we set µ = iβρ and ℘(z) is the Weierstrass ℘-function given by ℘(z) = − d
dz
ζ(z),

ζ(z) = d
dz
σ(z)/σ(z). If we consider the case 2ω1 = L, ω3 = i∞, we have

℘(z) =
(π
L

)2
(

1

sin2 π
L
z
−

1

3

)
.

Thus the system reduces to the model defined by (1.1).

To solve Ruijsenaars’ system, we need an explicit formula for the simultaneous eigen-

functions of Ŝk’s. When the ℘-function degenerates to the trigonometric function, the

commuting operators Ŝk’s essentially degenerate Macdonald’s operators[19]. Therefore,

the eigenfunctions are given by the Macdonald symmetric functions. (As for definitions

of the Macdonald symmetric functions, see the following sections.) In this article, we con-

struct integral representations of the Macdonald symmetric functions and construct some

boson realization schemes of the integral formula. These results are considered as natural

deformation theories of the previous works on the Jack symmetric functions[21, 22, 23, 24].

We hope that the general elliptic case may be treated in a similar manner.

This paper is organized as follows. In section 2 we give a short summary of the

Macdonald symmetric functions. In section 3 we derive multiple integral representation

formulas for the Macdonald symmetric functions by using two types of maps. Moreover

using the isomorphism between the ring of symmetric functions and the boson Fock space,

we derive the integral representations of the skew Macdonald functions and the Kostka

matrix. In section 4 we construct two bosonization formulas for the integral representation

of the Macdonald symmetric functions obtained in the section 3. Two cases (β ∈ Z>0

and β ∈ C) are discussed separately. A-type structure and finite temperature calculation

method are used respectively. Section 5 is devoted to discussions.

2 Brief Review of Macdonald Symmetric Functions

In this section we review some basic facts about the Macdonald symmetric functions [19].

2.1 Notations and the scalar product 〈 , 〉q,t

Let q, t be independent indeterminates and Λn;Q(q,t) be the ring of symmetric functions

in n variables (xi) over the field of rational functions in q and t. We sometimes write

t = qβ. In the limit of q → 1 this β is understood as the coupling constant of the

Calogero-Sutherland model. The ring of symmetric functions ΛQ(q,t) is defined by

ΛQ(q,t) = lim
←−
n

Λn,Q(q,t),

where the projective limit is given by the following homomorphism:

Λn+1;Q(q,t) → Λn;Q(q,t),

f(x1, · · · , xn, xn+1) 7→ f(x1, · · · , xn, 0).

3



There are various bases of the ring ΛQ(q,t). They are indexed by partitions. A partition

λ is a sequence λ = (λ1, λ2, λ3, · · ·) of non-negative integers, such that λ1 ≥ λ2 ≥ · · · and

|λ| =
∑

i λi < ∞. The nonzero λi’s are called the parts of λ, and the number of parts is

the length ℓ(λ) of λ. For two partitions λ, µ, we define λ + µ = (λ1 + µ1, λ2 + µ2, · · ·).

The natural partial ordering is defined as follows:

λ ≥ µ ⇔ |λ| = |µ| and λ1 + · · ·+ λr ≥ µ1 + · · ·+ µr for all r ≥ 1. (2.1)

A partition is identified with the Young diagram. The conjugate partition of λ, whose

diagram is obtained by interchanging rows and columns, is denoted by λ′. xλ stands for

the monomial xλ = xλ1
1 xλ2

2 · · ·. We give some bases of ΛQ(q,t) :

(i) mλ =
∑

α : distinct
permutation of λ

xα, (monomial symmetric function).

(ii) pλ = pλ1pλ2 · · · , (the r-th power sum pr =
∑

i

xr
i ).

(iii) eλ = eλ1eλ2 · · · , (the r-th elementary symmetric function er =
∑

i1<···<ir

xi1 · · ·xir).

We endow ΛQ(q,t) with the following scalar product:

〈pλ, pµ〉q,t = δλ,µzλ(q, t), (2.2)

where

zλ(q, t) =
∏

r≥1

rmrmr! ·
ℓ(λ)∏

i=1

1− qλi

1− tλi
, λ = (1m12m2 · · ·). (2.3)

with mr ≡ #{i | λi = r}.

The Macdonald symmetric function is characterized by the following existence theo-

rem:

Theorem 2.1 [19] For each partition λ there is a unique symmetric function Pλ =

Pλ(x; q, t) ∈ ΛQ(q,t) such that

(A) Pλ = mλ +
∑

µ<λ

uλµmµ, uλµ ∈ Q(q, t), (2.4)

(B) 〈Pλ, Pµ〉q,t = 0 if λ 6= µ. (2.5)

Even though this definition is concise, it is more useful to define the Macdonald sym-

metric function by introducing an operator which can be regarded as a natural defor-

mation of the Calogero-Sutherland Hamiltonian. The following operator is called as the

Macdonald operator:

D1 =
n∑

i=1


∏

j 6=i

txi − xj

xi − xj


Tq,xi

, (2.6)

where Tq,xi
is the q-shift operator defined by (Tq,xi

f)(x1, · · · , xn) = f(x1, · · · , qxi, · · · , xn).

The other way to define the Macdonald symmetric functions is the following:
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Theorem 2.2 [19] For each partition λ (of length ≤ n), there is a unique symmetric

function Pλ(x; q, t) ∈ Λn,Q(q,t) satisfying the two conditions:

(A) Pλ = mλ +
∑

µ<λ

uλµmµ, uλµ ∈ Q(q, t), (2.7)

(C) D1Pλ =
n∑

i=1

tn−iqλi · Pλ. (2.8)

It was shown by Macdonald thatD1 can be included in a family of mutually commuting

operators {Dr|r = 1, · · · , n}. The operator Dr is defined by

Dr =
∑

I⊂{1,2,···,n}
|I|=r

tr(r−1)/2
∏

i∈I

j 6∈I

txi − xj

xi − xj
·
∏

i∈I

Tq,xi
. (2.9)

Theorem 2.3 [19] The operators Dr (r = 1, · · · , n) commute with each other and the

Macdonald symmetric function Pλ is the simultaneous eigenvector of these operators with

the eigenvalues given by the coefficient of Xn−r in
∏n

i=1(X + tn−iqλi).

One can notice that Macdonald’s Dr and Ruisenaars’ Ŝk have similar structure.

Here we list some particular cases of the Macdonald symmetric function Pλ(q, t).

(i) When t = q, Pλ(q, q) is the Schur function sλ.

(ii) When q = 0, Pλ(0, t) is the Hall-Littlewood function Pλ(t).

(iii) lim
q→1

Pλ(q, q
β) is the Jack symmetric function Jλ(β).

(iv) When t = 1, Pλ(q, 1) = mλ.

(v) When q = 1, Pλ(1, t) = eλ′ .

(vi) Pλ(q
−1, t−1) = Pλ(q, t).

Let Qλ’s be the dual basis of Pλ’s, that is

〈Qλ(q, t), Pµ(q, t)〉q,t = δλ,µ. (2.10)

The following proposition is easily proved:

Proposition 2.4 We have the following equation:

∑

λ

Pλ(x; q, t)Qλ(y; q, t) = Π(x, y; q, t), (2.11)

where

Π(x, y) = Π(x, y; q, t) =
∏

i,j

(txiyj; q)∞
(xiyj; q)∞

. (2.12)
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Here we have used the following notation:

(a; q)∞ =
∞∏

k=0

(1− aqk) for a ∈ C. (2.13)

We remark that Π(x, y) = Π(y, x) is a Taylor series in xi and yj in the region |xiyj| < 1.

If we write

Qλ(x; q, t) = bλ(q, t)Pλ(x; q, t), (2.14)

then we have the explicit formula for bλ(q, t). To state it we need the following notation;

For any s = (i, j) ∈ λ (i-th row, j-th column in Young diagram λ), let us define arm-length

a(s), leg-length ℓ(s), arm-colength a′(s) and leg-colength ℓ′(s) as follows:




a(s) = λi − j, a′(s) = j − 1,

ℓ(s) = λ′j − i, ℓ′(s) = i− 1.
(2.15)

Theorem 2.5 [19] The explicit formula for the coefficient bλ(q, t) is

bλ(q, t) =
1

〈Pλ, Pλ〉q,t
=
∏

s∈λ

1− qa(s)tℓ(s)+1

1− qa(s)+1tℓ(s)
. (2.16)

2.2 The dual transformation

Let us define an automorphism

ωq,t : ΛQ(q,t) → ΛQ(q,t) (2.17)

by fixing the action on pr as

ωq,t(pr) = (−1)r−1
1− qr

1− tr
pr (2.18)

and extending it naturally. We have the following theorem which describes the duality

transformation of the Macdonald symmetric functions.

Theorem 2.6 [19] For any partition λ, we have

ωq,tPλ(q, t) = Qλ′(t, q)
(
or equivalently ωq,tQλ(q, t) = Pλ′(t, q)

)
. (2.19)

It is easy to show

ωy
q,tΠ(x, y; q, t) =

∏

i,j

(1 + xiyj) ≡ Π̃(x, y), (2.20)

where ωy
q,t acts on the variable y. Hence we have

∑

λ

Pλ(x; q, t)Pλ′(y; t, q) = Π̃(x, y) (2.21)

6



2.3 The scalar product 〈 , 〉′n;q,t
Next we consider the properties of another scalar product 〈 , 〉′n;q,t that will be defined

below. We shall work with a finite number of indeterminates x = (x1, · · · , xn). We set

the parameters q and t as 0 < q < 1 and 0 < t < 1. Define

∆(x) = ∆(x; q, t) =
n∏

i,j=1
i6=j

(xi/xj ; q)∞
(txi/xj; q)∞

. (2.22)

In the region t < |xi/xj | < t−1 (i 6= j), ∆ is a Laurent series in xi’s. For f, g ∈ Λn,Q(q,t),

we define1

〈f, g〉′n;q,t =
1

n!

∮ n∏

j=1

dxj

2πixj
· f(x)g(x)∆(x; q, t) (2.23)

=
1

n!

(
constant term in f(x)g(x)∆(x)

)
.

The following proposition is the most fundamental one.

Proposition 2.7 [19] The operator D1 is self-adjoint with respect to this scalar product,

namely,

〈D1f, g〉
′
n;q,t = 〈f,D1g〉

′
n;q,t , (2.24)

for all f, g ∈ Λn,Q(q,t).

From this proposition we have

Proposition 2.8 [19]

〈Pλ(q, t), Pµ(q, t)〉
′
n;q,t = 0 if λ 6= µ. (2.25)

Furthermore we have the following conjecture:

Conjecture 2.9 (Macdonald’s constant term conjecture) [19]

〈Pλ(q, t), Pλ(q, t)〉
′
n;q,t =

∏

1≤i<j≤n

(qλi−λj tj−i; q)∞(q
λi−λj+1tj−i; q)∞

(qλi−λj tj−i+1; q)∞(qλi−λj+1tj−i−1; q)∞
(2.26)

=
n∏

i=1

Γq(iβ)

Γq(β)Γq((i− 1)β + 1)
·
∏

s∈λ

1− qa
′(s)tn−ℓ

′(s)

1− qa′(s)+1tn−ℓ′(s)−1
· b−1λ (q, t),

where Γq(x) is the q-gamma function defined by

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x.

1 For f(x) = f(x1, x2, · · ·), we define f(x) = f(1/x1, 1/x2, · · ·).
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3 Integral Representation of the Macdonald Sym-

metric Functions

In this section, we construct integral representation formulas for the Macdonald symmetric

functions. We adopt the same idea as that of the case of Jack symmetric functions[21,

22, 23, 24].

3.1 Maps Gs, Nn,m and an integral formula for Pλ(x; q, t)

Let us define the map Gs and Nn,m as follows:

Gs : Λr,Q(q,t) → Λr,Q(q,t) (3.1)

f(x) 7→ (Gsf)(x) =
r∏

i=1

(xi)
s · f(x),

Nn,m : Λm,Q(q,t) → Λn,Q(q,t) (3.2)

f(x) 7→ (Nn,mf)(x) =
∮ m∏

j=1

dyj
2πiyj

·Π(x, y; q, t)∆(y; q, t)f(y).

Here r,m < ∞ and n can be equal to ∞.

Proposition 3.1 The actions of Gs and Nn,m on the Macdonald symmetric function Pλ

are as follows:

(i) P(sr)+λ(x1, · · · , xr; q, t) = GsPλ(x1, · · · , xr; q, t), (3.3)

(ii) Pλ(x1, · · · , xn; q, t) =
〈Pλ, Pλ〉q,t

m!〈Pλ, Pλ〉′m;q,t

Nn,mPλ(x1, · · · , xm; q, t). (3.4)

Proof As for (i), we can easily check the conditions (A) and (C) in theorem 2.2. The

statement (ii) can be proved as follows:

〈Pλ, Pλ〉q,t
m!〈Pλ, Pλ〉′m;q,t

∮ m∏

j=1

dyj
2πiyj

· Π(x, y; q, t)∆(y; q, t)Pλ(y; q, t)

=
〈Pλ, Pλ〉q,t

m!〈Pλ, Pλ〉′m;q,t

∮ m∏

j=1

dyj
2πiyj

·
∑

µ

Qµ(x; q, t)Pµ(y; q, t)∆(y; q, t)Pλ(y; q, t)

= 〈Pλ, Pλ〉q,tQλ(x; q, t)

= Pλ(x; q, t). Q.E.D.

Any Young diagram λ can be uniquely decomposed into rectangles:

sN sN−1 · · · · s2 s1

λ = rN rN−1 · · · · r2 r1 ,
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where rN > · · · > r2 > r1. Therefore the partition λ is parametrized as follows:

λ = (srNN ) + · · ·+ (sr22 ) + (sr11 ), (3.5)

where (sr) = (
r︷ ︸︸ ︷

s, s, · · · , s). For the partition λ, we assign a set of partitions λ(a) (a =

1, · · · , N) as follows:

λ(a) = (sraa ) + · · ·+ (sr22 ) + (sr11 ). (3.6)

Here we state our main theorem:

Theorem 3.2 Let λ be the partition given by (3.5). We have the following multiple

integral representation of the Macdonald symmetric function Pλ(x; q, t) ∈ ΛQ(q,t),

Pλ(x; q, t) = C+
λ NrN+1,rNGsNNrN ,rN−1

· · · Gs2Nr2,r1Gs1 · 1

= C+
λ

∮ N∏

a=1

ra∏

j=1

dxa
j

2πixa
j

(
xa
j

)sa
·

N∏

a=1

Π(xa+1, xa; q, t)∆(xa; q, t), (3.7)

where xi = xN+1
i , rN+1 = ∞ and

C+
λ = C+

λ (q, t) =
N∏

a=1

〈Pλ(a), Pλ(a)〉q,t
ra!〈Pλ(a), Pλ(a)〉′ra;q,t

. (3.8)

Proof Use proposition 3.1 iteratively. Gs adds a rectangle and Nn,m increases the

number of variables. Q.E.D.

3.2 Another integral formula for Pλ′(x; t, q)

Next we consider another integral representation of the Macdonald symmetric function

Pλ′(x; t, q) that is obtained from Qλ(x; q, t) by applying the automorphism ωq,t. Let us

introduce one more map defined by

Ñn,m : Λm,Q(q,t) → Λn,Q(q,t) (3.9)

f(x) 7→ (Ñn,mf)(x) =
∮ m∏

j=1

dyj
2πiyj

· Π̃(x, y)∆(y; q, t)f(y).

We can prove the following proposition 3.3 and theorem 3.4 in the same way as proposition

3.1 and theorem 3.2, respectively.

Proposition 3.3 The following equality holds:

Pλ′(x1, · · · , xn; t, q) =
1

m!〈Pλ, Pλ〉′m;q,t

Ñn,mPλ(x1, · · · , xm; q, t). (3.10)

9



Theorem 3.4 Let λ be the partition given by (3.5). We have the following multiple

integral representation of the Macdonald symmetric function Pλ′(x; t, q) ∈ ΛQ(q,t),

Pλ′(x; t, q) = C−λ ÑrN+1,rNGsNNrN ,rN−1
· · · Gs2Nr2,r1Gs1 · 1

= C−λ

∮ N∏

a=1

ra∏

j=1

dxa
j

2πixa
j

(
xa
j

)sa
(3.11)

× Π̃(xN+1, xN ; q, t)
N−1∏

a=1

Π(xa+1, xa; q, t) ·
N∏

a=1

∆(xa; q, t),

where xi = xN+1
i , rN+1 = ∞ and

C−λ = C−λ (q, t) =
C+

λ (q, t)

〈Pλ, Pλ〉q,t
. (3.12)

3.3 An integral formula for the skew Macdonald functions

Now let us proceed to discuss how to obtain an integral representation of the skew Mac-

donald functions. To this end, let us start with introducing a boson Fock space F which is

isomorphic to the ring of the symmetric functions ΛQ(q,t) [26, 21]. Define the commutation

relations of the bosonic oscillators an (n ∈ Z6=0) as follows:

[an, am] = n
1− q|n|

1− t|n|
δn+m,0. (3.13)

Let |0〉 be the vacuum vector such that an|0〉 = 0 for n < 0 and F be the Fock space

defined by F = Q(q, t)[a−1, a−2, · · ·]|0〉. Let 〈0| be the dual of |0〉 i.e., 〈0|0〉 = 1. Define

F∗ = 〈0|Q(q, t)[a1, a2, · · ·].

We can construct an isomorphism ι between F and ΛQ(q,t) as follows:

ι : F → ΛQ(q,t) (3.14)

|f〉 7→ f(x) = 〈0|C(x)|f〉, (3.15)

and an isomorphism ι∗ between F∗ and ΛQ(q,t) by

ι∗ : F∗ → ΛQ(q,t) (3.16)

〈f | 7→ f(x) = 〈f |C∗(x)|0〉, (3.17)

where

C(x) = exp

(
∞∑

n=1

1− tn

1− qn
an
n
pn

)
, (3.18)

C∗(x) = exp

(
∞∑

n=1

1− tn

1− qn
a−n
n

pn

)
. (3.19)
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We recall that pn is the power sum pn = xn
1 + xn

2 + · · ·.

We will use the following notation. For any symmetric function f ∈ ΛQ(q,t), we

assign an operator f̂ ∈ Q(q, t)[a−1, a−2, · · ·] and a vector |f〉 ∈ F such that ι(f̂ |0〉) =

ι(|f〉) = f(x). In the same way, we assign an operator f̂ ∗ ∈ Q(q, t)[a1, a2, · · ·] and a

vector 〈f | ∈ F∗ such that ι∗(〈0|f̂ ∗) = ι∗(〈f |) = f(x). For example, ι(P̂λ(q, t)|0〉) =

ι(|Pλ(q, t)〉) = Pλ(x; q, t) and ι∗(〈0|P̂ ∗λ(q, t)) = ι∗(〈Pλ(q, t)|) = Pλ(x; q, t). For a product

f(x)g(x), the corresponding state is f̂ ĝ|0〉 = f̂ |g〉 = |f · g〉. We have the following

proposition:

Proposition 3.5

(i) Let 〈f | ∈ F∗ and |g〉 ∈ F . We have

〈f |g〉 = 〈f(x), g(x)〉q,t. (3.20)

(ii) Let 〈f | ∈ F∗ and |g · h〉 ∈ F . We have

〈f |g · h〉 = 〈〈f |C∗(x)|g〉, 〈0|C(x)|h〉〉q,t. (3.21)

Proof. We defined the commutation relations of an so that (i) holds.

(ii) is proved as follows:

〈f |g · h〉 = 〈f |ĝ|h〉 = 〈i|h〉

= 〈〈i|C∗(x)|0〉, 〈0|C(x)|h〉〉q,t = 〈〈f |ĝC∗(x)|0〉, 〈0|C(x)|h〉〉q,t

= 〈〈f |C∗(x)|g〉, 〈0|C(x)|h〉〉q,t,

where we have set 〈i| = 〈f |ĝ ∈ F∗ (which may be 0), and used (i) and ĝC∗(x) = C∗(x)ĝ.

Q.E.D.

We remark that in this boson language, for example, proposition 2.4 is a consequence of

the completeness condition
∑

λ |Pλ〉〈Qλ| = 1.

By theorems 3.2 and 3.4, we have the following bosonization formulas for the Mac-

donald symmetric function Pλ(x; q, t):

Proposition 3.6 Let λ be the partition given by (3.5). We have

P̂λ(q, t) =
∮ rN∏

j=1

dxj

2πixj
· F+

λ (x; q, t)
rN∏

j=1

exp

(
∞∑

n=1

1− tn

1− qn
a−n
n

(xj)
−n

)
(3.22)

=
∮ rN∏

j=1

dxj

2πixj
· F−λ (x; q, t)

rN∏

j=1

exp

(
−
∞∑

n=1

a−n
n

(−xj)
−n

)
, (3.23)

P̂ ∗λ (q, t) =
∮ rN∏

j=1

dxj

2πixj
· F+

λ (x; q, t)
rN∏

j=1

exp

(
∞∑

n=1

1− tn

1− qn
an
n
(xj)

−n

)
(3.24)

=
∮ rN∏

j=1

dxj

2πixj
· F−λ (x; q, t)

rN∏

j=1

exp

(
−
∞∑

n=1

an
n
(−xj)

−n

)
. (3.25)
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Namely, 〈0|C(x)P̂λ(q, t)|0〉 = 〈0|P̂ ∗λ(q, t)C
∗(x)|0〉 = Pλ(x; q, t). Here F±λ is defined by

F+
λ (xN ; q, t) = C+

λ (q, t)∆(xN ; q, t)
rN∏

j=1

(
xN
j

)sN

×
∮ N−1∏

a=1

ra∏

j=1

dxa
j

2πixa
j

(
xa
j

)sa
·
N−1∏

a=1

Π(xa+1, xa; q, t)∆(xa; q, t), (3.26)

F−λ′ (xN ; q, t) = C−λ (t, q)∆(xN ; t, q)
rN∏

j=1

(
xN
j

)sN

×
∮ N−1∏

a=1

ra∏

j=1

dxa
j

2πixa
j

(
xa
j

)sa
·
N−1∏

a=1

Π(xa+1, xa; t, q)∆(xa; t, q). (3.27)

Let µ and ν be two partitions. We define the structure constants fλ
µν of the ring ΛQ(q,t)

by

Pµ(x; q, t)Pν(x; q, t) =
∑

λ

fλ
µν(q, t)Pλ(x; q, t), (3.28)

or equivalently,

fλ
µν = fλ

µν(q, t) = 〈Qλ, PµPν〉q,t ∈ Q(q, t). (3.29)

The skew Q-function is defined by

Qλ/µ(x; q, t) =
∑

ν

fλ
µν(q, t)Qν(x; q, t). (3.30)

This is equivalent to the following condition:

〈Qλ/µ, Pν〉q,t = 〈Qλ, PµPν〉q,t. (3.31)

The skew P -function is given by Pλ/µ = b−1λ bµQλ/µ.

Now we are ready to state the boson representation of the skew Q-function.

Theorem 3.7 We have the following boson realization of the skew Q-function.

Qλ/µ(x; q, t) = 〈Qλ|C
∗(x)|Pµ〉 = 〈Pµ|C(x)|Qλ〉. (3.32)

Proof. From propositions 3.5 and 3.6 we have the following:

〈〈Qλ|C
∗(x)|Pµ〉, Pν〉q,t = 〈〈Qλ|C

∗(x)|Pµ〉, 〈0|C(x)|Pν〉〉q,t

= 〈Qλ, PµPν〉q,t.

This proves the first equality. The second equality can be proved in the same way.

Q.E.D.

As a corollary of this theorem and proposition 3.6, we obtain integral representation

formulas for the skew Q-function.
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Corollary 3.8 Let λ be the partition given by (3.5) and µ be another partition µ =

(σρM
M )+ · · ·+(σρ1

1 ). We have the integral representation formulas for Qλ/µ(x; q, t) ∈ ΛQ(q,t)

as follows:

b(q, t)−1λ Qλ/µ(x; q, t)

=
∮ rN∏

j=1

dzj
2πizj

·
ρM∏

j=1

dwj

2πiwj

· F+
λ (z; q, t)F+

µ (w; q, t)Π(z, w; q, t)×





Π(x, z; q, t)

Π(x, w; q, t)
(3.33)

=
∮ rN∏

j=1

dzj
2πizj

·
ρM∏

j=1

dwj

2πiwj

· F−λ (z; q, t)F+
µ (w; q, t)Π̃(z, w)×





Π̃(x, z)

Π(x, w; q, t)
(3.34)

=
∮ rN∏

j=1

dzj
2πizj

·
ρM∏

j=1

dwj

2πiwj
· F+

λ (z; q, t)F−µ (w; q, t)Π̃(z, w)×





Π(x, z; q, t)

Π̃(x, w)
(3.35)

=
∮ rN∏

j=1

dzj
2πizj

·
ρM∏

j=1

dwj

2πiwj
· F−λ (z; q, t)F−µ (w; q, t)Π(z, w; t, q)×





Π̃(x, z)

Π̃(x, w).
(3.36)

Remark. More generally, one can directly prove that the skew Macdonald polynomial

can be written in the integral transformation Nn,m of eq. (3.2) or in the power-sums pn

as follows:

Qλ/µ(x; q, t) =
〈Qλ, Qλ〉q,t

m!〈Qλ, Qλ〉′m;q,t

(
Nn,mQλ P µ

)
(x; q, t),

Qλ/µ(p ; q, t) = Pµ(p ; q, t) Qλ(p; q, t) · 1, (3.37)

for all m ≥ ℓ(λ). Here Pµ(x) ≡ Pµ

(
1
x

)
and pn ≡ n1−qn

1−tn
∂

∂pn
.

3.4 The Kostka matrix

As another application of the bosonization constructed in the last subsection, we will give

integral representations of the Kostka matrix Kλµ(q, t). Let

hλ(q, t) =
∏

s∈λ

(1− qa(s)tℓ(s)+1), (3.38)

h′λ(q, t) =
∏

s∈λ

(1− qa(s)+1tℓ(s)) = hλ(t, q). (3.39)

So, we have

bλ(q, t) = hλ(q, t)/h
′
λ(q, t). (3.40)

Let us define

Mλ(x; q, t) = hλ(q, t)Pλ(x; q, t) = h′λ(q, t)Qλ(x; q, t). (3.41)

The q-analogue of the Kostka-Foulks polynomial Kλµ(q, t) introduced by Macdonald is

defined by

Mµ(x; q, t) =
∑

λ

Kλµ(q, t)Sλ(x; t), (3.42)
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where Sλ(x; t) is the dual base of the Schur function sλ(x) with respect to the scalar

product 〈 , 〉0,t. Further let us define the dual base of Sλ(x; t) with respect to the scalar

product 〈 , 〉q,t by Sλ(x; q, t) .

We have the following:

Proposition 3.9 For a partition λ, we have

|sλ〉 =
∮ ℓ(λ)∏

j=1

dxj

2πixj
x
λj

j ·
∏

i<j

(1− xi/xj) ·
ℓ(λ)∏

j=1

exp

(
∑

n>0

a−n
n

x−nj

)
|0〉, (3.43)

|Sλ(t)〉 =
∮ ℓ(λ)∏

j=1

dxj

2πixj
x
λj

j ·
∏

i<j

(1− xi/xj) ·
ℓ(λ)∏

j=1

exp

(
∑

n>0

1− tn

1

a−n
n

x−nj

)
|0〉, (3.44)

|Sλ(q, t)〉 =
∮ ℓ(λ)∏

j=1

dxj

2πixj
x
λj

j ·
∏

i<j

(1− xi/xj) ·
ℓ(λ)∏

j=1

exp

(
∑

n>0

1

1− qn
a−n
n

x−nj

)
|0〉, (3.45)

〈sλ| =
∮ ℓ(λ)∏

j=1

dxj

2πixj
x
−λj

j ·
∏

i<j

(1− xj/xi) · 〈0|
ℓ(λ)∏

j=1

exp

(
∑

n>0

an
n
xn
j

)
, (3.46)

〈Sλ(t)| =
∮ ℓ(λ)∏

j=1

dxj

2πixj
x
−λj

j ·
∏

i<j

(1− xj/xi) · 〈0|
ℓ(λ)∏

j=1

exp

(
∑

n>0

1− tn

1

an
n
xn
j

)
, (3.47)

〈Sλ(q, t)| =
∮ ℓ(λ)∏

j=1

dxj

2πixj
x
−λj

j ·
∏

i<j

(1− xj/xi) · 〈0|
ℓ(λ)∏

j=1

exp

(
∑

n>0

1

1− qn
an
n
xn
j

)
. (3.48)

Proof. An integral representation of the Schur function is well known[26]:

sλ(x) =
∮ ℓ(λ)∏

j=1

dyj
2πiyj

y
λj

j ·
∏

i<j

(1− yi/yj) ·
∏

i,j

(1− xi/yj)
−1. (3.49)

Therefore (3.43) and (3.46) are correct states. Since 〈sλ|sµ〉
∣∣∣
t=q

= δλ,µ, we have

∮ ℓ(λ)∏

j=1

dxj

2πixj
x
−λj

j ·
ℓ(µ)∏

j=1

dyj
2πiyj

y
µj

j ·
∏

i<j

(1− xj/xi) ·
∏

i,j

1

1− xi/yj
·
∏

i<j

(1− yi/yj) = δλ,µ. (3.50)

Note that Sλ(x; t) is independent of q. Using above identity and proposition 3.5, we can

show the following:

〈Sλ(t), sµ〉0,t = 〈Sλ(t)|sµ〉
∣∣∣
q=0

= δλ,µ,

〈Sλ(q, t), Sµ(t)〉q,t = 〈Sλ(q, t)|Sµ(t)〉 = δλ,µ. Q.E.D.

We remark that we obtain another expressions of these states by using another integral

representation of the Schur function[26],

sλ′(x) = (−1)|λ|
∮ ℓ(λ)∏

j=1

dyj
2πiyj

y
λj

j ·
∏

i<j

(1− yi/yj) ·
∏

i,j

(1− xi/yj). (3.51)
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Since Kλµ(q, t) = 〈Sλ(q, t),Mµ(q, t)〉q,t, by using propositions 3.5, 3.6 and 3.9, we can

show the following theorem:

Theorem 3.10 Let λ, µ be partitions; µ = (σρM
M ) + · · ·+ (σρ1

1 ). Kostka matrix Kλµ(q, t)

is represented as follows:

Kλµ(q, t) = 〈Sλ(q, t)|Mµ(q, t)〉 (3.52)

= hµ(q, t)
∮ ℓ(λ)∏

j=1

dxj

2πixj
x
−λj

j ·
ρM∏

j=1

dyj
2πiyj

·
∏

i<j

(1− xj/xi) ·
∏

i,j

1

(xi/yj; q)∞
· F+

µ (y; q, t)

= hµ(q, t)
∮ ℓ(λ)∏

j=1

dxj

2πixj
x
−λj

j ·
ρM∏

j=1

dyj
2πiyj

·
∏

i<j

(1− xj/xi) ·
∏

i,j

(−xi/yj; t)∞ · F−µ (y; q, t).

4 Bosonizations of the Integral Formula

In the last section, we introduced the Fock space of the boson field to discuss how to

obtain integral formulas for the skew Macdonald functions. One may notice, however, the

bosonization is something partial compared with the case of the Schur functions[26] and

the Hall-Littlewood functions[27], because we only bosonized the variable x = xN+1. We

consider some total bosonization schemes of the integral representation formula for the

Macdonald symmetric functions which was obtained in the last section.

4.1
Firstly we treat the case of β ∈ Z>0. In this case, we can bosonize the integral formula by

using a similar method to the Jack symmetric function’s case discussed in our previous

paper [24]. Let us introduce the following bosonic oscillators having A-type like symmetry:

[aan, a
b
m] =





0 for Aab = 0,

−n
1− t|n|

1− q|n|
δn+m,0 for Aab = −1,

n

(
1− tn

1− qn
+

1− t−n

1− q−n

)
δn+m,0 for Aab = 2,

(4.1)

and [aa0, Q
b] = βAab, where n,m ∈ Z and a, b ∈ {1, · · · , N + 1}. Here, Aab = 2δa,b −

δa,b+1 − δa,b−1 is the Cartan matrix of AN+1 type. Let us define A-type boson fields as

follows:

φa(z) = φa
≤0(z) + φa

≥0(z),





φa
≤0(z) =

∑

n>0

aa−n
n

zn +Qa,

φa
≥0(z) = −

∑

n>0

aan
n
z−n + aa0 log z.

(4.2)

The normal ordering : : is defined as moving φ≥0 to the right of φ≤0. The operator
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product expansion (in the region |w/z| < qβ−1) is given as follows:

φa(z)φb(w) ∼





0 for Aab = 0,

log
(
z−β

β−1∏

k=0

(
1− qkw/z

)−1)
for Aab = −1,

log
(
(−zw)βq−

1
2
β(β−1)

β−1∏

k=0

(
1− qkw/z

)(
1− qkz/w

))
for Aab = 2.

(4.3)

For α = (α1, · · · , αN+1), let |α〉 = exp( 1
β

∑N+1
a,b=1 α

a(A−1)abQ
b)|0〉, where |0〉 satisfies

aan|0〉 = 0 (a = 1, · · · , N+1 and n ≥ 0). This |α〉 satisfies aan|α〉 = 0 (a = 1, · · · , N+1 and

n > 0) and aa0|α〉 = αa|α〉. We also introduce 〈α| as the dual of |α〉, i.e. 〈α|α′〉 = δα,α′ .

We can state our result as follows:2

Proposition 4.1 Let λ be defined by (3.5). We have the following A-type bosonic real-

ization of the Macdonald symmetric function for β ∈ Z>0:

Pλ(x; q, t) = C+
λ (q, t)

(
−q

1
2
(β−1)

) 1
2
β
∑N

a=1
ra(ra−1)

×
∮ N∏

a=1

ra∏

j=1

dxa
j

2πixa
j

· 〈α̃|
N∏

a=1

ra∏

j=1

:eφ
a(xa

j
) : ·

rN+1∏

i=1

eφ
N+1
≤0

(xN+1
i

)|α〉, (4.4)

where αa = β(ra+1 − ra + 1) + sa, (rN+2 = 0), α̃a = αa + β
∑N+1

b=1 Aabrb, and xi = xN+1
i ,

rN+1 = ∞ ( after calculation ).

Proof First we remark that for β ∈ Z>0 (t = qβ),

∆(x; q, t) =
∏

i 6=j

β−1∏

k=0

(1− qkxi/xj), Π(x, y; q, t) =
∏

i,j

β−1∏

k=0

1

1− qkxiyj
. (4.5)

A straightforward calculation of the operator product expansion shows that this integrand

agrees with that of theorem 3.1. Q.E.D.

4.2
Next we construct another bosonization scheme which is applicable for the case of β ∈

C. We utilize Jing’s boson field which was introduced to consider the Hall-Littlewood

symmetric function P (x; t) having one parameter t [27]. Notice that in this case we

will not utilize AN structure but derive a bosonization formula for P (x; q, t) using finite

temperature calculation regarding the parameter q as playing the role of temperature.

Let us introduce N copy of boson oscillators aan (a = 1, 2, · · · , N), whose commutation

relations are given as follows:

[aan, a
b
m] = n

1

1− t|n|
δn+m,0δ

ab. (4.6)

2 We use the convention
∏

n

i=1
Oi = O1O2 · · ·On for non-commuting Oi’s.
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Let F be the Fock space of these boson fields: F = Q(q, t)[aa−1, a
a
−2, · · ·]|0〉. Normal

ordering : : is defined as moving aan to the right of aa−n (n > 0). We define the grading

operator L0 as

L0 =
N∑

a=1

∞∑

n=1

(1− tn)aa−na
a
n, (4.7)

which satisfies [L0, a
a
n] = −naan. We introduce boson fields as follows:

φa(z) = −
∑

n∈Z 6=0

(1− t|n|)
aan
n
z−n, φa

−(z) =
∑

n>0

(1− tn)
aa−n
n

zn. (4.8)

Here we state another bosonization formula:

Proposition 4.2 Let λ be defined by (3.5), and let β ∈ C. We have the following

bosonization formula for the Macdonald symmetric function:

Pλ(x; q, t) = C+
λ (q, t)(q; q)

N−
∑N

a=1
ra

∞ (tq; q)
∑N

a=1
ra

∞

N∏

a=1

ra!
ra∏

k=1

1− t

1− tk
(4.9)

×
∮ N∏

a=1

ra∏

j=1

dxa
j

2πixa
j

(
xa
j

)sa
· TrF

(
qL0

N∏

a=1

ra∏

j=1

:eφ
a(xa

j
) : ·

N∏

a=1

ra+1∏

j=1

e−φ
a
−(xa+1

j
)

)
,

where xi = xN+1
i and rN+1 = ∞.

Proof To calculate the trace, we apply the Clavelli-Shapiro’s trace technique[28].

We introduce the boson oscillators ban, which satisfy the same commutation relation as aan
and commutes with aam, and take the following combinations (n > 0):

ãan =
aan

1− qn
+ ba−n, ãa−n = aa−n +

qnban
1− qn

. (4.10)

Clavelli and Shapiro’s argument tells us that

TrF(q
L0O) =

〈0|Õ|0〉
∏∞

k=1(1− qk)N
, (4.11)

where O is an operator in aan, and Õ is defined as the operator obtained ¿from O by

replacing aan with ãan. Then we obtain

:eφ̃
a(z) : =

(q; q)∞
(qt; q)∞

exp

(
∑

n>0

(1− tn)
aa−n
n

zn
)
exp

(
−
∑

n>0

1− tn

1− qn
aan
n
z−n

)

× exp

(
−
∑

n>0

(1− tn)
ba−n
n

z−n
)
exp

(
∑

n>0

(1− tn)qn

1− qn
ban
n
zn
)
, (4.12)

and

:e−φ̃
a
−(z) : = exp

(
−
∑

n>0

(1− tn)
aa−n
n

zn
)
exp

(
−
∑

n>0

(1− tn)qn

1− qn
ban
n
zn
)
. (4.13)
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We have the following OPE’s; in the region q < |z2/z1| < 1,

:eφ̃
a(z1) : :eφ̃

b(z2) : =





:eφ̃
a(z1)+φ̃a(z2) :

(z2/z1; q)∞
(tz2/z1; q)∞

(qz1/z2; q)∞
(qtz1/z2; q)∞

for a = b,

:eφ̃
a(z1)+φ̃b(z2) : for a 6= b,

(4.14)

and in the region |w/z| < 1,

:eφ̃
a(z) : :e−φ̃

b
−(w) : =





:eφ̃
a(z)−φ̃a

−(w) :
(tw/z; q)∞
(w/z; q)∞

for a = b,

:eφ̃
a(z)−φ̃b

−(w) : for a 6= b.
(4.15)

By using these equations, (q; q)
N−
∑N

a=1
ra

∞ (tq; q)
∑N

a=1
ra

∞ TrF(· · ·) in (4.9) becomes

N∏

a=1

ra∏

i,j=1
i<j

(xa
j/x

a
i ; q)∞

(txa
j/x

a
i ; q)∞

(qxa
i /x

a
j ; q)∞

(qtxa
i /x

a
j ; q)∞

·
N∏

a=1

ra∏

i=1

ra+1∏

j=1

(txa+1
i /xa

j ; q)∞

(xa+1
i /xa

j ; q)∞

=
N∏

a=1

∆(xa; q, t)Π(xa+1, xa; q, t) ·
N∏

a=1

ra∏

i,j=1
i<j

(1− txa
i /x

a
j )

(1− xa
i /x

a
j )

. (4.16)

For each a and a permutation σ, we change the integration variables xa
i → xa

σ(i). Then by

using the identity[19]

∑

σ∈Sn

∏

1≤i<j≤n

xσ(i) − txσ(j)

xσ(i) − xσ(j)

=
n∏

k=1

1− tk

1− t
, (4.17)

where Sn is the n-th symmetric group, the integrand agrees with that of theorem 3.1.

Q.E.D.

5 Discussion

In this paper we have obtained integral representations of the (skew-)Macdonald symmet-

ric functions (theorems 3.2, 3.4 and corollary 3.8) and their boson realizations (propo-

sitions 4.1, 4.2 and theorem 3.7). The two maps in the proposition 3.1 have played an

essential role in our derivation.

Our first physical motivation for this study is calculation of the correlation functions of

the Calogero-Sutherland model. The results obtained in this paper and ref. [21, 22, 23, 24]

will help us to do it. In particular skew Jack symmetric functions will be useful for

higher point correlation functions. Of course, concerning the analysis for the Calogero-

Sutherland model, the Macdonald symmetric functions are unnecessary, but sometimes

calculation for q-deformed quantities is more transparent than the original ones. We have

also constructed free boson realizations for the integral representations. These realizations
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will also help us in calculation for correlation functions. However, in comparison with the

case of the Jack symmetric functions, these free field expressions are ad hoc in the sense

that they merely give the desired integrands of the integral representations (see the next

paragraph). Another motivation is to solve the Ruijsenaars model, i.e. model with elliptic

potential. At present this problem seems to be difficult yet.

For mathematical interest, we would like to mention the relation between free field

realizations and symmetry algebras. In the case of the Jack symmetric function[21, 22,

21, 24], this function is realized on the boson Fock space as the state obtained by the

action of screening currents : eα±φa(z) : on the vacuum. This state is the singular vector

of the WN algebra. On the other hand, in the free boson realization, the WN algebra is

the commutant of these screening currents : eα±φa(z) :. So we have the following natural

question; in the case of the Macdonald symmetric functions, what algebra appears as the

commutant of the vertex operators :eφ
a(x) : used in section 4 ?

After finishing this work, we knew that Frenkel and Reshetikhin constructed certain

q-deformations of the Virasoro and W -algebras [29] by utilizing the free boson realization

of the quantum affine algebra Uq(ŝlN ) studied in ref. [30]. It seems interesting to clarify

the connection between our vertex operators introduced in section 4 and the q-deformed

algebras.
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