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1 Introduction

Calogero—Sutherland model[fl]] and its various generalizations[l, f] have been extensively
studied and these 1/r? type models are known to describe systems with the generalized
exclusion principle in 1+ 1 dimension[ff]. Calogero—Sutherland model describes a system
of non-relativistic particles on a circle under the inverse square potential. Its Hamiltonian

and momentum are

Mo1/1 0N\ w2 B(B-1) M1 0
Hcs—j;§<;a—q]) +(Z) ”zz:l —siHQ%(qi—qj)’ Pcs—jz::lza—qj. (1.1)

i<j

where (8 is a coupling constant. This Calogero—Sutherland model is related to many
branches of low—dimensional physics and mathematics; quantum Hall effect[ff], 2D Yang-
Mills theory[B, [1], matrix model[f, |, Yangian symmetry[[[(, [1], Virasoro symmetry 2],
B2, B3], Wiioo symmetry[[3], Laplace-Beltrami operator [[J, [4], etc. One of the recent
remarkable development was the evaluation of some dynamical correlation functions[,
[T, [G, [7, [§. In these calculation the Jack symmetric functions|[[d, play a central
role, because they describe the excited states of the Calogero-Sutherland model. In the
previous works[R1l, B2, B3|, 4], the free field realization of the wave functions, in other
words, the integral representations of the Jack symmetric functions is discussed.

Several years ago, Ruijsenaars constructed a relativistic (or lattice regularized) version
of the Calogero system[R5]. That model is integrable, since it has mutually commuting
hermitian operators Sy (k=1,2,---, Ny):

. 10 1
Se= > IIMg —a)?-exp <PZ _»—,> I g — q5)z, (1.2)
IC{1,,Ng} i€l jer b a% iel

|I|=k JEI JET

=

where h(q) = o(q + p)/o(q) and p € R, p € C. Here o(z) denotes the Weierstrass
o-function defined by

2 2 22
olz)=z ]] <1_Q )exp(Q —|—2Q ),

m,n€Z
(m,n)#(0,0)

where Q,, ,, = 2mw; + 2nws and 2w; and 2wz denote primitive periods. The relation to

the Calogero-Sutherland model is the following:

.1 S+ Syt SN Noo1/1 9 \2 No
}%?( . _NO) = Y5(5g,) +H6-D X vla-a). 03
O No
fim L (LSS} gR L0 (14)
p=0p 2 j:lzaqj
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where we set = i8p and p(z) is the Weierstrass p-function given by p(z) = —((2),
((2) = Lo(z)/o(2). If we consider the case 2w; = L, w3 = ico, we have

T2 1 1
p(z) = (Z) (sin2 T2 a g) .
Thus the system reduces to the model defined by ([]).

To solve Ruijsenaars’ system, we need an explicit formula for the simultaneous eigen-
functions of Si’s. When the p-function degenerates to the trigonometric function, the
commuting operators Si's essentially degenerate Macdonald’s operators[J]. Therefore,
the eigenfunctions are given by the Macdonald symmetric functions. (As for definitions
of the Macdonald symmetric functions, see the following sections.) In this article, we con-
struct integral representations of the Macdonald symmetric functions and construct some
boson realization schemes of the integral formula. These results are considered as natural
deformation theories of the previous works on the Jack symmetric functions|R1, P4, B3, B4].
We hope that the general elliptic case may be treated in a similar manner.

This paper is organized as follows. In section 2 we give a short summary of the
Macdonald symmetric functions. In section 3 we derive multiple integral representation
formulas for the Macdonald symmetric functions by using two types of maps. Moreover
using the isomorphism between the ring of symmetric functions and the boson Fock space,
we derive the integral representations of the skew Macdonald functions and the Kostka
matrix. In section 4 we construct two bosonization formulas for the integral representation
of the Macdonald symmetric functions obtained in the section 3. Two cases (8 € Zs
and € C) are discussed separately. A-type structure and finite temperature calculation

method are used respectively. Section 5 is devoted to discussions.

2 Brief Review of Macdonald Symmetric Functions

In this section we review some basic facts about the Macdonald symmetric functions [[[J].
2.1 Notations and the scalar product {, ),
Let ¢, t be independent indeterminates and A,.q(. be the ring of symmetric functions
in n variables (z;) over the field of rational functions in ¢ and ¢t. We sometimes write
t = ¢®. In the limit of ¢ — 1 this 8 is understood as the coupling constant of the
Calogero-Sutherland model. The ring of symmetric functions Aq(g,) is defined by

Aqen = lim As g,

where the projective limit is given by the following homomorphism:
Atraan = A

f(xlv"'axnaxn-l-l) = f(xlv"'uxnvo)‘
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There are various bases of the ring Aq(q,+). They are indexed by partitions. A partition
A is a sequence A = (A1, \g, Az, - - -) of non-negative integers, such that Ay > Ay > -+ and
|A| = >3 Ai < 0o. The nonzero \;’s are called the parts of A, and the number of parts is
the length ¢(\) of A\. For two partitions A, p, we define A + u = (A + p1, Ao + pio, -+ *).

The natural partial ordering is defined as follows:
A>ps M =pland Ay + -+ X > pg + - -+, forall r > 1. (2.1)

A partition is identified with the Young diagram. The conjugate partition of A, whose

diagram is obtained by interchanging rows and columns, is denoted by \. z* stands for

the monomial z* = 2}'23? - - .. We give some bases of Aq :
(i) my = > 2%  (monomial symmetric function).

« : distinct
permutation of A\

(ii) px = papr, - -+,  (the r-th power sum p, = > af).
(iii) ex = ex, €, - -+,  (the r-th elementary symmetric function e, = > @y, -+ a;,).
1< <ip
We endow Aq(qs) with the following scalar product:
(Pxs Pu)ar = Orpuoa(a,t), (2.2)
where
Z(A) 1 _ q)\i
= 1lmme- 1= A= 2. (2.3)

r>1
with m, = #{i|\; = r}.
The Macdonald symmetric function is characterized by the following existence theo-

rem:

Theorem 2.1 [I9] For each partition A\ there is a unique symmetric function Py =
Py\(w;q,t) € Aqqp) such that

(A) Py =m)+ Z UnpMMy,  Unyg € Q(q,t), (24)
p<A
(B) (PLPlu=0 ifA£p (2.5)

Even though this definition is concise, it is more useful to define the Macdonald sym-
metric function by introducing an operator which can be regarded as a natural defor-
mation of the Calogero-Sutherland Hamiltonian. The following operator is called as the
Macdonald operator:

Dy = i (H i Ij) Ty, (2.6)
i=1 \j#i Vi T
where T, .. is the ¢-shift operator defined by (T} ., f)(x1,- -, xn) = f(z1, -, qTi, -+, Tn).

The other way to define the Macdonald symmetric functions is the following:
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Theorem 2.2 [I9] For each partition A (of length < n), there is a unique symmetric
function P\(x;q,t) € A, g Satisfying the two conditions:

(A) P)\ =my + Z Unp My Uy € Q(Q> t)a (27)
p<A
(C)  DiPy=>_t""g" P (2.8)
i=1

It was shown by Macdonald that D; can be included in a family of mutually commuting
operators {D,|r = 1,---,n}. The operator D, is defined by

D= Y e PN T, (2.9)

1C{1,2,,n} ier Li =i ey
|I|=r JEI

Theorem 2.3 [[9] The operators D, (r = 1,---,n) commute with each other and the
Macdonald symmetric function Py is the simultaneous eigenvector of these operators with
the eigenvalues given by the coefficient of X"~ in [1, (X + t""ig").

One can notice that Macdonald’s D, and Ruisenaars’ S’k have similar structure.
Here we list some particular cases of the Macdonald symmetric function Py(q,t).

i) When t = ¢, P\(q,q) is the Schur function s,.

ii) When g = 0, P,(0,t) is the Hall-Littlewood function Pj(t).

iii) hm Pi(q, ¢”) is the Jack symmetric function Jy(5).

iv) When t =1, P\(¢g,1) = m,.

v) When g =1, Py(1,t) = ey.

vi) Po(g L tY) = Pa(g,t).
Let )’s be the dual basis of P,’s, that is

(
(
(
(
(
(

(Qx(q,1), Pu(q, 1)) gt = Oxpi- (2.10)

The following proposition is easily proved:

Proposition 2.4 We have the following equation:
Y Pazq, )@y 0, 1) = T(z, 954, 1), (2.11)
A

where

(t:Y5; @)oo
U(z,y) =M(z,y;q.t) = || ——— (2.12)
1_][ (Zi¥55 @)oo



Here we have used the following notation:
H 1 —aq®) for a € C. (2.13)

We remark that II(z,y) = II(y, ) is a Taylor series in z; and y; in the region |z;y,| < 1.
If we write

then we have the explicit formula for by(q,t). To state it we need the following notation;
For any s = (i, ) € A (i-th row, j-th column in Young diagram \), let us define arm-length
a(s), leg-length ¢(s), arm-colength a’(s) and leg-colength ¢'(s) as follows:

—N—j, d(s)=j—1,
ols) =N =, (s) = 2.15)
l(s) =N, —i, l'(s)=1—1.
Theorem 2.5 [I9] The explicit formula for the coefficient by(q,t) is
1 1— qa(s)tﬁ(s)—l—l
(g t) = ——— i B 2.16
(@.1) = (Px, Px)q. g 1 — qals)+1ths) (2.16)
2.2 The dual transformation
Let us define an automorphism
We,t - AQ(q,t) — AQ(%t) (2.17)
by fixing the action on p, as
rlzd
wou(pr) = (1) TP (2.18)

and extending it naturally. We have the following theorem which describes the duality

transformation of the Macdonald symmetric functions.

Theorem 2.6 [[J] For any partition X, we have

wetPr(q,t) = Qx(t,q) (or equivalently w,,;Qx(q,t) = Pyv(t, q)) (2.19)

It is easy to show

wi (2, y50,1) = [[(1 + zy;) = (z,y), (2.20)

i7j

where w}, acts on the variable y. Hence we have

> Pa(w;q.t)Py(yit, q) = T(z,y) (2.21)



2.3 The scalar product { , ).,

that will be defined

below. We shall work with a finite number of indeterminates x = (z1,---,x,). We set
the parameters g and t as 0 < ¢ < 1 and 0 < t < 1. Define

Next we consider the properties of another scalar product ( , ).,

Az) = A(z;q,t) = f[ {24/ T5i @)oo (2.22)

5o (/5 0) s
iAj

In the region ¢ < |z;/x;| < t7' (i # j), A is a Laurent series in z;’s. For f,g € A, qqn)
we definef]

-0 = gy f 1] 5 S@@)A w0 (2.23)

1 2miX;

= - (constant term in f(T)g (SL’)A(SC))

The following proposition is the most fundamental one.

Proposition 2.7 [[9 The operator Dy is self-adjoint with respect to this scalar product,

namely,
(D1f, g = (s D19t » (2.24)
for all f,9 € Ay, qg.)-
From this proposition we have
Proposition 2.8 [
(Px(q,1), Pu(q, 1)) .00 = 0 if A £ p. (2.25)

Furthermore we have the following conjecture:

Conjecture 2.9 (Macdonald’s constant term conjecture) [[J]

A | P e (2.2

1<i<j<n

o (iB) 1 — g¥®)gn=t'()
~UrmnG oy Uipompees %@,

i=1 SEA

where I'y(x) is the q-gamma function defined by

(@GP i
FII(:C> - (qm;q)oo(l Q) :

Y For f(z) = f(z1,22, ), we define f(Z) = f(1/z1,1/20, ).




3 Integral Representation of the Macdonald Sym-

metric Functions

In this section, we construct integral representation formulas for the Macdonald symmetric
functions. We adopt the same idea as that of the case of Jack symmetric functions[2]],
2,0, o).

3.1 Maps Gs, N, and an integral formula for Py(x;q,t)

Let us define the map G and N, ,,, as follows:

Gs + Mrqun = Araan (3.1)
F(a) - () () = H(az) (@)
Nom + A _>AnQ(qt)Z_ (3.2)
f@) = (Nomf)(2 (z, 74, t)Aly: ¢, ) f (y)-

Here r,m < oo and n can be equal to oo.

Proposition 3.1 The actions of Gs and N, ,, on the Macdonald symmetric function Py

are as follows:

(1) P(s")+A(xla"'7Ir;Q7t) = gsPA(xla"'axr;qvt)7 (33)

.. <P>\’P>\>qt
P ns 7t = 7 nmP ;s Ty 7t’ 3.4
) Pl i) = 2 BN P i), (6

Proof  As for (i), we can easily check the conditions (A) and (C) in theorem 2.2. The
statement (ii) can be proved as follows:
m dyj
27T'iyj

Py, P 7
(Prs P g 7{ (2,750, )A(y: ¢, 1) Pa(y; 4, 1)

m‘<P)\? A)énqt

(Px, Pr)q r dy;
= ~ 4] Qul Aly; ¢,t) Pa(y;
m| P)\, P)\ mqt H 2m'y] ; pu\T; qv ya qvt) (y7Q7t) )\(y? qvt)

= (Px, P\)q.:Qx (739, 1)
= P\(x;q,1). Q.E.D.

Any Young diagram A can be uniquely decomposed into rectangles:

SN SN—1 T S2 S1

A= |"N N-1 e | T2 ™




where ry > --- > ry > r1. Therefore the partition A is parametrized as follows:

A= (sN') 4+ (s5°) + (s1), (3.5)
where (s") = (5,s,---,5). For the partition \, we assign a set of partitions A@ (a =
1,--+,N) as follows:

A = (s7e) 4+ (s52) + (s7h). (3.6)

Here we state our main theorem:

Theorem 3.2 Let A\ be the partition given by (B.J). We have the following multiple

integral representation of the Macdonald symmetric function P\(x;q,t) € Agqu),

P)\(ZIZ', q, t) - +N7”N+1 rNgsN-/\/’rN,T’N,1 tee gsgNrg,rlgsl . 1

N Ta . _
= C+]{H 1 2m ( O T 7% g, 0A@% g,0),  (3.7)
a=1j=1 a=1
where x; = ¥, ryy = 0o and
N (P, Py
Ci =it =[] @) s Pr)) gt (3.8)

Ta! (Py@, Pyx@ ) roiat

a=1

Proof  Use proposition 3.1 iteratively. G, adds a rectangle and N, increases the
number of variables. Q.E.D.

3.2 Another integral formula for Py (x;t,q)

Next we consider another integral representation of the Macdonald symmetric function
Py (x;t,q) that is obtained from Q(x;¢,t) by applying the automorphism w,,. Let us
introduce one more map defined by

Nn,m . Am,Q(qt — An ,Q(g,t) (39)

@) Wnd ) = § T 500 D001

We can prove the following proposition 3.3 and theorem 3.4 in the same way as proposition
3.1 and theorem 3.2, respectively.
Proposition 3.3 The following equality holds:

1 -
Ny P s T, ). 3.10
m!<P)\7 P)\>;n;q,t 7 )\(xl Fma 4 ) ( )

P)\’(xlu"'vxn;t7q) =



Theorem 3.4 Let A\ be the partition given by (B.H). We have the following multiple
integral representation of the Macdonald symmetric function Py (x;t,q) € Aqg),

P)\/(ZIZ'; ta Q) = C)TNTN+1 T’NgsN-/\/rN rv_1 " gsgNrg,rlgsl -1

N rq

_ - j’{ a)® 3.11
A al_[ljl_ll 27rm ( ) ( )
N-1 N
x W 2N q,t) [ W, 2% q,1) - [T A% q,1),
a=1 a=1
where x; = N, ryy = 0o and
- Cx (1)
= = 12
C)\ C)\( ) <P)\, P)\>qt (3 )

3.3 An integral formula for the skew Macdonald functions

Now let us proceed to discuss how to obtain an integral representation of the skew Mac-
donald functions. To this end, let us start with introducing a boson Fock space F which is
isomorphic to the ring of the symmetric functions Aq+ [BA, B1]. Define the commutation

relations of the bosonic oscillators a,, (n € Zy) as follows:

7 0n+m0- (3.13)

Let |0) be the vacuum vector such that a,|0) = 0 for n < 0 and F be the Fock space
defined by F = Q(q,t)[a—1,a—a,---]|0). Let (0] be the dual of |0) i.e., (0|0) = 1. Define

= (01Q(g; V)]as, ag, - -]

We can construct an isomorphism ¢ between F and Aq(q as follows:

Lt . F— AQ(%t) (314)
) = flz) = 0[C(@)|f), (3.15)
and an isomorphism ¢* between F* and Aq(g,) by

*

L Y AQ(q,t) (3.16)
(fl = flzx) = {f]C*(x)]|0), (3.17)

where

C(z) = exp <i L= a"pn> , (3.18)

Q" n

— 1 —
C*(x) = exp <i1 P Gon ) (3.19)
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We recall that p, is the power sum p, = 2} + 25 + - - -

We will use the following notation. For any symmetric function f € Agy, we
assign an operator f € Q(q,t)[a_1,a_s,---] and a vector |f) € F such that (f]0)) =
u(|f)) = f(z). In the same way, we assign an operator f* € Q(g,t)[ai,as,---] and a
vector (f| € F* such that o*((0|f*) = *((f|) = f(z). For example, «(Px(q,1)[0)) =
t(|Pr(g,t))) = Pa(x;q,t) and L*(<0|p§(q, t)) = o ((Pa(a,t)]) = Px(w;q,1). For a product
f(x)g(x), the corresponding state is fg|0) = flg) = |f - g). We have the following

proposition:

Proposition 3.5
(i) Let (f| € F* and |g) € F. We have

(flg) = (f (@), 9(2))q (3.20)
(i) Let (f| € F* and |g-h) € F. We have
(flg - h) = ({f1C"(2)]g), (OIC(@)|h))g - (3.21)
Proof. We defined the commutation relations of a,, so that (i) holds.

(ii) is proved as follows:

{(flg-h) = (flglh) = (ilh)
= (T (2)|0), IC(@)[h)) g = ({F19C™(2)]0), (OIC()[h))g.0
= ((f1C"(@)lg), OIC(x)|h))q.,
where we have set (i| = (f|g € F* (which may be 0), and used (i) and §C*(z) = C*(x)g.

Q.E.D.
We remark that in this boson language, for example, proposition 2.4 is a consequence of
the completeness condition >, |Py\){Q\] = 1.

By theorems 3.2 and 3.4, we have the following bosonization formulas for the Mac-

donald symmetric function Py (x;q,t):

?{ N ;j]j F (z;q, t);ljlexp <§ i :ZL%(%)_”) (3.22)
- s s an oo (<X 520n). G2
= n—
Aot = 15 a0 oo (S5 %@0) 62
= -
= j{jjl ;j;j - Fy (23 q, t);ljlexp <— ni::l %(—9@)‘") . (3.25)
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Namely, (0|C(z)Py(q,t)|0) = (0| P;(q,t)C*(2)]|0) = Py(2:q,t). Here Fi is defined by

Ff(a™;q.t) = Cf(g.)A@Y;q.6) [ (=)™
j=1
N—1 rq s N-1
’ (2", 2% q, ) A(2% ¢, 1),  (3.26
faHUHlQm ()" - LG 7% 000G .0), - (326)
N N I ()N
Fy(aViq.t) = C5(tg)A@EY:t,q) [] («))
j=1
]\ﬁl Ta dl’(; ( )Sa N-1 "
x% —(xf) - Mz 2% t, ) A(x% t,q).  (3.27)
a=1 j=1 277'7,1’]- ’ a=1
Let u and v be two partitions. We define the structure constants f, of the ring Aq(q,)
by
PM(ZIZ', qat [L’ Q> Z uv qa P)\ [L’ q, ) (328)
or equivalently,
o = fa (@, 1) = (Qx, FuP)os € Q(ast). (3.29)
The skew @-function is defined by
Q)\/u Z; Q> Z.f/,u/ q,t Qu(z q, ) (330)
This is equivalent to the following condition:
<Q>\/u= Pu>q,t = <Q>\= PHPV>Q¢‘ (3-31)

The skew P-function is given by P/, = b;lbuQ)\/u.

Now we are ready to state the boson representation of the skew Q-function.
Theorem 3.7 We have the following boson realization of the skew Q-function.
Qx/u(;q,1) = (@aC™(2)|Pu) = (Pu|C(2)|Qx). (3.32)
Proof. From propositions 3.5 and 3.6 we have the following;:

{QAC*(@)[P), Pu)gr = ((@aCT(2)|Bu), (O1C(2)[F)) g
= <Q)\>Pupu>q,t~

This proves the first equality. The second equality can be proved in the same way.
Q.E.D.
As a corollary of this theorem and proposition 3.6, we obtain integral representation

formulas for the skew ()-function.

12



Corollary 3.8 Let A be the partition given by (B.H) and p be another partition u =
(oht')+---+(af"). We have the integral representation formulas for Q. (x;q,t) € Aqy

as follows:

b(q )3 Quu(; q,1)

™ ] PM d II(z,Z;q,t
j{H “ W - F (259, 0) F (w; g, O)TL(Z, W5 ¢, 1) X { HEIE,Z,.Q’ ) (3.33)

27rzzj 27rzwj

Gy B dw : fi(e.2)
B ' F (50, )F (w; ¢, 01z, @ ’ 3.34
%H 2miz; 1;[1 2miw; % (#5¢,1) I (w; ¢, )IL(Z, W) X { (2, @; g, ) ( )
TN dzj pM dUJj B ~ H(:L’ Z:q t)
. . F+ ca. ) F 0. DIz T A= '
% 27-(-7[2] Jl;ll 27.‘.7le A (Z7 q, ) I (w, q, ) (Z, w) X { H(x’w) (3 35)
o e fi(e. 2
— . . F . t F . t H — _t . '
% H 277'7,2] Jl;[l 27_‘_7le A (Z7 q, ) o (w, q, ) (Z7 wy 7q) X { H(x’w) (3 36)

Remark. More generally, one can directly prove that the skew Macdonald polynomial

can be written in the integral transformation N, ,, of eq. (3.2) or in the power-sums p,

as follows:
<Q aQ >q,t D .
Q1) = D gy Mm@ P) (:.0),
Qxu(p;q,t) = Pu(@;q,t) Qxa(p;q,t) - 1, (3.37)

for all m > ¢(X\). Here P,(z) = P, (%) and p,, = n%a%.
3.4 The Kostka matrix
As another application of the bosonization constructed in the last subsection, we will give

integral representations of the Kostka matrix K,(q,t). Let

ha(gt) = L1 =g, (3.38)
SEA
Pi(g,t) = ] —¢OH)) = hy(t,q). (3.39)
SEN
So, we have
ba(q,t) = ha(q. t)/R5(q. 1) (3.40)
Let us define
My(z;q,t) = ha(gq, t)Pa(z;q,t) = h\(q,t)Qx(z; ¢, 1). (3.41)

The g-analogue of the Kostka-Foulks polynomial K),(g,t) introduced by Macdonald is
defined by

M, (25q,t) =Y Kyu(q,t)Sa(z;t), (3.42)

13



where S)(x;t) is the dual base of the Schur function s)(x) with respect to the scalar
product (, )o Further let us define the dual base of Sy(x;t) with respect to the scalar
product (, )+ by Sx(z;q,t) .

We have the following:

Proposition 3.9 For a partition A\, we have

L) i L(N) a,
15) ?{H M 10 - )y exp(Z—:L'j"> 10), (3.43)

2mix; i< i ~n
1) dl‘ bV () 1 —ta
I53(8) 7{ oy T10 = ifay) - T] exp < ;"ff-‘n> 10), (3.44)
H | 2mix; L Zl;[] J ]1;[1 72 1 n i
W dx; “) 1 a
S)\ Q> % J )\-7 . ]_ —:L'Z €X:) - exp< ;n —n) O ’ 345
| HQma:j] E( /])]1;[1 T;)l_qnn j 10}, ( )

LT[ -y /) - 0\H6Xp<zn ) (3.46)

1<j n>0

o, '-H<1_g;j/x,.>.<0|_1_11exp

i<j

" dn x;?> . (3.47)
an

=
(Sx(@.1)] = § 50 ‘-H<1—xj/xi>-<owj(1jjexp ( ) (3.48)

| 2mix; i<5
Proof. An integral representation of the Schur function is well known[2q]:
A) dyj bV 1
]{H 5y IO = wi/y) - 1T = ify;) ™" (3.49)
iy, i i

Therefore (B.43) and (B.46) are correct states. Since <SA|3u>’t = 0y, we have
=q

(\ ¢
7§H) B Ty T10 =3 fa) - T TT(1 = /1) = Sr (3:50)
2mix; i i 2miy; 77 %5 J i 1—x;/y; <5 J o

Note that Sy(x;t) is independent of ¢. Using above identity and proposition 3.5, we can

show the following:

(a(1), suas = (Sa ()]s _o= One
(53(0.1): Su())ae = (Sr(@.0)ISu(t) = br. QE.D.

We remark that we obtain another expressions of these states by using another integral

representation of the Schur function[2q],

svla) = (~)P f Hmyﬂj TI0 = w/w) - TIO = wfu). (35D)

1<j ,J
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Since Ky,(q,t) = (Sx(q,t), M,(q,t))qs, by using propositions 3.5, 3.6 and 3.9, we can

show the following theorem:

Theorem 3.10 Let \, p be partitions; p = (of}') + -+ -+ (o7'). Kostka matriz K,,(g,t)

1s represented as follows:

£(N) dr PM o 1
—Aj y] +
ST 1=l | (| (FREIARS | (PR
a j1;112mxj J jl;[12myj ZI;IJ I g(xi/yj;q)oo ”
dxj o dy; -
= hu(q,t ]{ Y — - | (L =5 /@) - | [ (=i /y;5t)ee - F (450, 0).
IEE | EET | (BRSNS AT

4 Bosonizations of the Integral Formula

In the last section, we introduced the Fock space of the boson field to discuss how to
obtain integral formulas for the skew Macdonald functions. One may notice, however, the
bosonization is something partial compared with the case of the Schur functions[2§] and
the Hall-Littlewood functions[27], because we only bosonized the variable z = 2N 1. We
consider some total bosonization schemes of the integral representation formula for the
Macdonald symmetric functions which was obtained in the last section.

4.1

Firstly we treat the case of § € Z~(. In this case, we can bosonize the integral formula by
using a similar method to the Jack symmetric function’s case discussed in our previous

paper [B4]. Let us introduce the following bosonic oscillators having A-type like symmetry:

0 for A% =0,

1 — ¢t "
nmcsmrmo for A® = —1, (41)

1—t"+1—t_”
1—qg® 1—¢q™

b

n»-m

) Snimo for At =2,

and [a2, Q"] = BA®, where n,m € Z and a,b € {1,---,N + 1}. Here, A% = 25%b —
§ob+l — §ab=1 is the Cartan matrix of Ay, type. Let us define A-type boson fields as

follows:
S = X
5(2) = Bolz) + 0o(2), wh . (42)
L0(2) = —Z — 2"+ ag log 2.
n>0
The normal ordering :  : is defined as moving ¢>¢ to the right of ¢<,. The operator

15



product expansion (in the region |w/z| < ¢°~1) is given as follows:

0 for A% =0,
55_1 k -t b
“ lo <z_ 1—q¢"w/z > for A% = —1,
o)~ | B ()
1 il
10g<(—2w)6q_55(6_1) 11 (1 — qkw/z) (1 — qkz/w)> for A% =2
k=0
(4.3)
For a = (a',---, @), let |a) = exp(3 S a (AT Q")[0), where |0) satisfies

a0y =0(a=1,---,N+1and n > 0). This |a> satisfies a%|a) =0 (a=1,---, N+ 1 and
n > 0) and af|a) = a®|a). We also introduce (| as the dual of |), i.e. (a|a/) = dp0-

We can state our result as follows:f]

Proposition 4.1 Let A be defined by (B.H). We have the following A-type bosonic real-

1zation of the Macdonald symmetric function for 8 € Ziq:

lip_ lBZi\; ra(ra—1)
Py(z;q,t) = C;_(q,t)(_qz(ﬁ 1))2 .

N 1rq

T o

a=1j=1

T

~ N e aw leNl
(@ T IT e He¢*<-*>|a>, (4.4)
a=1j=1

27rzx

where a® = Braiy — o+ 1) + 50, (rvga = 0), 3% = o + BLNL A%y, and ;= 22

rne1 = 00 ( after calculation ).

Proof First we remark that for 8 € Z+ (t = ¢°),

A(z;q,t H H —q x,/xj (z,y;q,t H H (4.5)

i#j k=0 ij k= 0 q xzy

A straightforward calculation of the operator product expansion shows that this integrand
agrees with that of theorem 3.1. Q.E.D.

4.2

Next we construct another bosonization scheme which is applicable for the case of § €
C. We utilize Jing’s boson field which was introduced to consider the Hall-Littlewood
symmetric function P(z;t) having one parameter ¢ [£7]. Notice that in this case we
will not utilize Ay structure but derive a bosonization formula for P(z;q,t) using finite
temperature calculation regarding the parameter ¢ as playing the role of temperature.
Let us introduce N copy of boson oscillators a% (a = 1,2,---, N), whose commutation
relations are given as follows:

1
b S
las, a ]_nl—tW

n’ m
2 We use the convention H?:1 0; = 0,05 - -- O, for non-commuting O;’s.

5n+m,05ab- (46)
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Let F be the Fock space of these boson fields: F = Q(q,t)[a”,,a%,, - --]|0).
ordering : :is defined as moving af to the right of a
operator Lg as

Normal
(n > 0). We define the grading

=SS0 et

%l (4.7)
a=1n=1
which satisfies [Lo, al] = We introduce boson fields as follows
=— > (1—1¢") n _", Pr(z)=> (1—t")—= ©on n, (4.8)
nEZ¢0 n>0 n
Here we state another bosonization formula

Proposition 4.2 Let A\ be defined by (B.H), and let 5 € C. We have the following
bosonization formula for the Macdonald symmetric function

N_SN
Py(z;q,t) = CY(q,t)(q;q)oo 2 “(tg; q

H?“aH
a=1
N rq

(4.9)
j{aHlel%m:c (J) Tl"f( Lo ﬁﬁ o® N Tat1

Do)
a=1j=1

a=1 j=1
= Q.

where z; = N and vy 44

Proof

To calculate the trace, we apply the Clavelli-Shapiro’s trace technique[Pg]
We introduce the boson oscillators b¢, which satisfy the same commutation relation as a
and commutes with a?

a

and take the following combinations (n > 0)

~ a ~ qnba
@ =" b” ¢ =a” —— 4.1
Qy, 1 — qn + —n) a_y, a_, + 1— qn ( O>
Clavelli and Shapiro’s argument tells us that
0[0)0
Tl"}-(qLO O) — < | | >

(L~ )" 1y
where O is an operator in a
replacing a? with a

and O is defined as the operator obtained ;from O by
¢. Then we obtain

P (z). _ (q’ Q)oo < n ain n 1- tn ?L —-n
‘e = ———exp (1 —¢t")—2")exp | — —2
(4t ) %‘; n 2

n>01_q n

X exp <— > (1- t")b_—"z_"> exp (Z uiﬂz") , (4.12)
n>0 n
and

n>0 1—- qn n

a 1 — t")g™
e 9m ) = = exp < d(1- t")%z") exp <_ 3 (I—1t")g"b
n>0

L. 4.13
n>0 1- qn n ) ( )
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We have the following OPE’s; in the region ¢ < |29/21| < 1,

i) . (2221500 (021223 D)o

- } for a =0,
9" (2) L 90(=2) ) . " (t2a/71; @)oo (qt21/22; @) oo (4.14)
e ()47 (22) for a #0b,
and in the region |w/z| < 1,
~ @), W5
. - e L= for a=0b,
:6¢ (2) . :6—¢ll(w) - N . (w/z; q)oo (415)
e ()02 (w) . for a # 0.

e

N
By using these equations, (¢; ¢ tq; q)o%:GZIMTr]:(- -+) in (E.9) becomes

H H (@ /285 q)oo (27 /755 q)o ﬂﬂﬁl 29 1% )
a=1 i,j=1 txa/xz7q) (tha/xj7q a=1 1= 1J 1 a+1/1'j7(_I)oo

1<Jj

o (1 —taf/xg)

N
a—l—l —-a
x%q,t ;1% q,t . (4.16)
= 1 I =y
1<J
For each a and a permutation o, we change the integration variables ¢ — x% ... Then by
using the identity[[L9]
> o et pplet (417)

where S, is the n-th symmetric group, the integrand agrees with that of theorem 3.1.
Q.E.D.

5 Discussion

In this paper we have obtained integral representations of the (skew-)Macdonald symmet-
ric functions (theorems 3.2, 3.4 and corollary 3.8) and their boson realizations (propo-
sitions 4.1, 4.2 and theorem 3.7). The two maps in the proposition 3.1 have played an
essential role in our derivation.

Our first physical motivation for this study is calculation of the correlation functions of
the Calogero-Sutherland model. The results obtained in this paper and ref. [21, 22, 23, 4]
will help us to do it. In particular skew Jack symmetric functions will be useful for
higher point correlation functions. Of course, concerning the analysis for the Calogero-
Sutherland model, the Macdonald symmetric functions are unnecessary, but sometimes
calculation for ¢-deformed quantities is more transparent than the original ones. We have

also constructed free boson realizations for the integral representations. These realizations
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will also help us in calculation for correlation functions. However, in comparison with the
case of the Jack symmetric functions, these free field expressions are ad hoc in the sense
that they merely give the desired integrands of the integral representations (see the next
paragraph). Another motivation is to solve the Ruijsenaars model, i.e. model with elliptic
potential. At present this problem seems to be difficult yet.

For mathematical interest, we would like to mention the relation between free field
realizations and symmetry algebras. In the case of the Jack symmetric function[R1], 23,
R1], B4], this function is realized on the boson Fock space as the state obtained by the
action of screening currents : e®=%**) : on the vacuum. This state is the singular vector
of the Wy algebra. On the other hand, in the free boson realization, the Wy algebra is
the commutant of these screening currents : e®+%“(*) .. So we have the following natural
question; in the case of the Macdonald symmetric functions, what algebra appears as the
commutant of the vertex operators :e®*(®) : used in section 4 ?

After finishing this work, we knew that Frenkel and Reshetikhin constructed certain
g-deformations of the Virasoro and W-algebras [B9] by utilizing the free boson realization
of the quantum affine algebra U,(sly) studied in ref. [B{]. It seems interesting to clarify
the connection between our vertex operators introduced in section 4 and the g¢-deformed

algebras.
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