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1. Introduction One of the interesting topics in two dimensional systems in-

cluding the conformal field theory (CFT) [1] and solvable lattice models, is to develop

methods for calculating correlation functions of physical observables. In these solvable

models, infinite dimensional symmetries play an essential role. The most fundamental

symmetries of the CFT are the Virasoro algebra, the Kac-Moody algebra or their super-

symmetric counterparts. For the six vertex model and XXZ quantum spin chain, it is

well recognized that the quantum affine algebra Uq(ŝl2) takes place. However, applica-

tions of this approach to lattice models had been restricted to a class of models which are

defined by trigonometric solutions of the Yang-Baxter equation. For some models, this is

because we lack the techniques of bosonizing the vertex operators (intertwining operators

of the symmetry algebras) and for others, the characterization of their infinite symmetries

are still missing.

Recently the symmetry of the Andrews-Baxter-Forrester (ABF) model [2] was pro-

posed in the work [3, 8]. On the other hand, some of the authors found a Virasoro-like

symmetry in a q-deformation of the Calogero-Sutherland model associated with the Mac-

donald symmetric polynomials [4] (see also [6, 5]). A bosonization formula of the deformed

Virasoro generator and the screening operators was also constructed to study the struc-

ture of the highest weight modules of the deformed Virasoro algebra. It is astonishing

that this deformed Virasoro algebra was identified with the symmetry of the ABF model

in [7, 8]. The important objects in the calculation of the correlation functions of the ABF

model are the vertex operators which can be regarded as q-deformations of the (2, 1) and

(1, 2) operators φ2,1(z), φ1,2(z) of the Virasoro minimal model.

In this letter, we will study a natural way to deform (ℓ + 1, k + 1) operators. For

this end, (ℓ + 1, 1) and (1, ℓ + 1) (ℓ = 1, 2, · · ·) operators will be considered in detail.

Using that, some properties of the (ℓ + 1, k + 1) operators will be derived. One of our

requirements for deformed vertex operators is that some simple cases of their four point

functions can be expressed by the q-hypergeometric functions, that makes it possible to

have their connection matrices give the Boltzmann weights of the fusion ABF model. This

is a straightforward extension of the idea in [8]. This assumption, however, does not fix

answers to this problem uniquely. Therefore, another principle must be needed to fix our

goal. In the CFT, we can define an adjoint action of the energy-momentum tensor on the

primary fields, and that gives us the c = 0 action of the Virasoro algebra: Ln = −zn+1 d
dz
.

We expect that we are also able to define an adjoint action of the deformed Virasoro alge-

bra on the deformed vertex operators. So as to obtain this property, it is desirable to have

the commutation relation between the vertex operator V (z) and the deformed Virasoro

current T (z) as follows: g(w/z)T (z)V (w) − V (w)T (z)g(z/w) =
∑

i ciδ(αiw/z)V (βiw),

where g(x) is a structure function and ci, αi and βi represent the coefficients, the place of
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the singularity and the shift of the vertex operator respectively. Our solution for (ℓ+1, 1)

and (1, ℓ+1) operator have this property, but for general (ℓ+1, k+1) operators (ℓ, k ≥ 1),

this does not hold. For these operators, on the other hand, we have commutation rela-

tions: g(w/z)T (z)V (w) − V (w)T (z)g(z/w) =
∑

i ciδ(αiw/z)(V (w)T (z)g̃i(w/z)), where

g̃(x)’s are some functions.

The plan of this letter is the following. In Section 2, a brief summary of the deformed

Virasoro algebra and the definition of the vertex operators are given. Commutation

relations between the deformed Virasoro current and these vertex operators are studied.

A shift operator representation of the deformed Virasoro current is derived by studying

a deformed adjoint action acting on the vertex operators of type (ℓ+ 1, 1) and (1, ℓ+ 1).

In Section 3, four-point functions of the vertex operators with one screening operator are

calculated explicitly. In section 4 is devoted to discussion.

After finishing this work, a paper by Kadeishvili [9] appeared. His vertex operators

Vℓ,k(z) are different from ours. While we were seeking ‘good’ definitions of the vertex

operators, we also found a similar object as his and some algebraic structure of that. In

this work, however, we will discuss another possibility, because we are interested in the

adjoint action of the deformed Virasoro current.

2. Deformed vertex operators

2.1. Definition First we recall the defining relation of the q-Virasoro algebra [4] having

two parameters q and t. Set β = log t/ log q and p = qt−1. The relation is

f(w
z
)T (z)T (w)− T (w)T (z)f( z

w
) = −(q

1
2 − q−

1
2 )(t

1
2 − t−

1
2 )
δ(pw

z
)− δ(p−1w

z
)

p
1
2 − p−

1
2

, (1)

where the structure function f(x) is

f(x) = exp
(
−
∑

n>0

1

n

(q
n
2 − q−

n
2 )(t

n
2 − t−

n
2 )

p
n
2 + p−

n
2

xn
)
,

and the delta function is defined by δ(x) =
∑

n∈Z x
n. The relation (1) is invariant under

the following transformations,

(I) (q, t) → (q−1, t−1), (II) q ↔ t . (2)

In the following, we respect these symmetries in bosonization formulas.

2.2. Bosonization Let us introduce the fundamental Heisenberg algebra1 hn (n ∈ Z),

Qh having the commutation relations

[hn, hm] =
1

n

(q
n
2 − q−

n
2 )(t

n
2 − t−

n
2 )

p
n
2 + p−

n
2

δn+m,0, [hn, Qh] =
1

2
δn,0. (3)

1 The bosons an, Q in [4] are related to hn, Qh as an = −n 1

1−tn
hn (n > 0), a−n = n 1+pn

1−t−nh−n (n > 0),

a0 = 1√
β
h0, Q = 2√

β
Qh, and h1

n in [5] is hn = h1
np

−n
2 .
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The symmetries (2) are taken into account by the invariance of (3) under the isomorphisms

of the Heisenberg algebra:

(I′) θ : (q, t) 7→ (q−1, t−1), hn 7→ −hn (n 6= 0), h0 7→ h0, Qh 7→ Qh,

(II′) ω : q ↔ t , hn 7→ −hn, Qh 7→ −Qh. (4)

The q-Virasoro generator T (z) = Λ+(z) + Λ−(z) and screening currents2 S±(z) are

bosonized as follows:

Λ+(z) = : exp
(∑

n 6=0

hnp
n
2 z−n

)
: q

√
βh0p

1
2 , Λ−(z) = θ · Λ+(z) = ω · Λ+(z), (5)

S+(z) = : exp
(
−
∑

n 6=0

p
n
2 + p−

n
2

q
n
2 − q−

n
2
hnz

−n
)
: e2

√
βQhz2

√
βh0, S−(z) = ω · S+(z), (6)

where ω · β should be understood as 1/β. We also have θ · S±(z) = S±(z). The screening

current S+(z) enjoys the commutation relation

[T (z), S+(w)] = −(1− q)(1− t−1)
dq
dqw

(
w δ(q−

1
2 w
z
) : Λ−(q−

1
2w) S+(w) :

)
, (7)

where the difference operator is defined by
dξ
dξw

F (w) = F (w)−F (ξw)
(1−ξ)w

. A similar difference

formula for S−(z) can be derived from (7) by applying ω.

2.3. Simple vertex operators Now we define vertex operators (primary fields) Vℓ+1,1(z),

V1,ℓ+1(z) by

Vℓ+1,1(z) = : exp
(∑

n 6=0

1

q
n
2ℓ − q−

n
2ℓ
hnz

−n
)
: e−ℓ

√
βQhz−ℓ

√
βh0, (8)

and V1,ℓ+1(z) = ω · Vℓ+1,1(z) for ℓ = 1, 2, · · ·. They have the invariance V1,ℓ+1(z) =

θ · V1,ℓ+1(z) and Vℓ+1,1(z) = θ · Vℓ+1,1(z).

The vertex operators Vℓ+1,1(z), V1,ℓ+1(z) are expressed as fusion of the fundamental

ones V2,1(z), V1,2(z):

Vℓ+1,1(z) = :
ℓ∏

j=1

V2,1(q
ℓ+1−2j

2ℓ z) :, V1,ℓ+1(z) = :
ℓ∏

j=1

V1,2(t
ℓ+1−2j

2ℓ z) : . (9)

Lemma 2.1. We obtain the fundamental commutation relation:3

g(ℓ+1,1)(w
z
)Λ+(z)Vℓ+1,1(w)− Vℓ+1,1(w)Λ

+(z)(− z
w
)2−ℓg(ℓ+1,1)( z

w
)

= p
1
2 t−

ℓ
2

ℓ−2∏

j=0

(
1− tq−

j

ℓ

)
· δ(p 1

2 q−
1
2ℓ w

z
)Vℓ+1,1(q

− 1
ℓw), (10)

2 Screening currents in [4] (say, Sold
± (z)) is related to S±(z) as S+(z) = Sold

+ (q−
1

2 z)q
√

βh0 , S−(z) =

Sold
− (t−

1

2 z)t
− 1√

β
h0

. This modification does not affect the important relations between singular vectors of

the q-Virasoro algebra and the Macdonald symmetric polynomials, because both of them give the same

OPE factors.
3 We use the standard convention

∏n−1

j=n ∗ = 1.
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where the structure function g(ℓ+1,1)(x) is given by

g(ℓ+1,1)(x) = exp
(∑

n>0

1

n
g(ℓ+1,1)
n xn

)
, (11)

g(ℓ+1,1)
n = − tn − t−n

q
n
2ℓ − q−

n
2ℓ

1

p
n
2 + p−

n
2
+

p−
n
2 q

n
ℓ − p

n
2 q−

n
ℓ

q
n
2ℓ − q−

n
2ℓ

. (12)

Note that the structure function g(ℓ+1,1)(x) is invariant under the transformation (2)-(I).

To prove (10), the identity

e
∑

n>0
1
n
(1−rn1 −···−rnm)xn − (−x)m−1

m∏

i=1

ri · e
∑

n>0
1
n
(1−r−n

1 −···−r−n
m )x−n

=
m∏

i=1

(1− ri) · δ(x),

may be useful. The commutation relations among T (z) and Vℓ+1,1(z), V1,ℓ+1(z) are derived

from (10) by applying θ and ω.

Proposition 2.1. For Vℓ+1,1(z), we have

g(ℓ+1,1)(w
z
)T (z)Vℓ+1,1(w)− Vℓ+1,1(w)T (z)(− z

w
)2−ℓg(ℓ+1,1)( z

w
)

=
ℓ−2∏

j=0

(
t−

1
2 q

j

2ℓ − t
1
2 q−

j

2ℓ

)(
p

1
2 t−

1
2 q−

(ℓ−1)(ℓ−2)
4ℓ δ(p

1
2 q−

1
2ℓ w

z
)Vℓ+1,1(q

− 1
ℓw) (13)

− (−1)ℓp−
1
2 t

1
2 q

(ℓ−1)(ℓ−2)
4ℓ δ(p−

1
2 q

1
2ℓ w

z
)Vℓ+1,1(q

1
ℓw)

)
.

Let us define the adjoint action of the q-Virasoro generator on the vertex operator by

T ℓ
n · Vℓ+1,1(w) =

∮ dz

2πiz
zn
(
g(ℓ+1,1)(w

z
)T (z)Vℓ+1,1(w)

− Vℓ+1,1(w)T (z)(− z
w
)2−ℓg(ℓ+1,1)( z

w
)
)
. (14)

Then we obtain

Theorem 2.1. The operator T ℓ
n can be represented by the shift operator Θξ defined

by Θξf(z) = f(ξz) as

T ℓ
n =

ℓ−2∏

j=0

(
t−

1
2 q

j

2ℓ − t
1
2 q−

j

2ℓ

)
·
(
p

n+1
2 t−

1
2 q−

(ℓ−1)(ℓ−2)+2n
4ℓ wnΘ

q
−

1
ℓ

−(−1)ℓ p−
n+1
2 t

1
2 q

(ℓ−1)(ℓ−2)+2n
4ℓ wnΘ

q
1
ℓ

)
, (15)

on the vertex operator Vℓ+1,1(w).

2.4. General vertex operators The following lemma is helpful to construct general

vertex operators of type (ℓ+ 1, k + 1).

Lemma 2.2. The fundamental relation (10) can be written in another way,

g(ℓ+1,1)(w
z
)Λ+(z)Vℓ+1,1(w)− Vℓ+1,1(w)Λ

+(z)(− z
w
)2−ℓg(ℓ+1,1)( z

w
)

= t−
ℓ
2

ℓ−2∏

j=0

(
1− tq−

j

ℓ

)
· δ(p 1

2 q−
1
2ℓ z

w
)
(
g̃(ℓ+1,1)(w

z
)Vℓ+1,1(w)T (z)

)
, (16)
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where

g̃(ℓ+1,1)(x) = exp

(
−
∑

n>0

1

n

p−
n
2 (q

n
2 − q−

n
2 )(t

n
2 − t−

n
2 )

(q
n
2ℓ − q−

n
2ℓ )(p

n
2 + p−

n
2 )

xn

)
. (17)

To obtain (16) from (10), we used the identity Vℓ+1,1(q
− 1

ℓw) = p−
1
2 : Vℓ+1,1(w)Λ

+(p
1
2 q−

1
2ℓw) :.

It may be worth to make a comment on the R.H.S. The factor Vℓ+1,1(w)Λ
−(z) is regular at

z = p
1
2 q−

1
2ℓw, and Vℓ+1,1(w)Λ

+(z) has a simple pole at the point. However, the function

g̃(ℓ+1,1)(w/z) has a simple zero at the point. So, the R.H.S. is well defined in totality.

Let us define the vertex operator of type (ℓ+ 1, k + 1) by

Vℓ+1,k+1(z) = : Vℓ+1,1(z)V1,k+1(z) :, (18)

and introduce the structure functions: g(1,k+1)(x) = ω · g(k+1,1)(x), g̃(1,k+1)(x) = θ · ω ·
g̃(k+1,1)(x), g(ℓ+1,k+1)(x) = g(ℓ+1,1)(x)g(1,k+1)(x), and g̃(ℓ+1,k+1)(x) = g̃(ℓ+1,1)(x)g̃(1,k+1)(x).

Using Lemma 2.2. and the maps θ and ω, we have the commutation relation for this

vertex operator.

Proposition 2.2. The commutation relation between the deformed Virasoro current

and the vertex operator of type (ℓ + 1, k + 1) is given by the following relation and θ, ω

operations,

g(ℓ+1,k+1)(w
z
)Λ+(z)Vℓ+1,k+1(w)− Vℓ+1,k+1(w)Λ

+(z)(− z
w
)4−ℓ−kg(ℓ+1,k+1)( z

w
)

= Vℓ+1,k+1(w)T (z)g̃
(ℓ+1,k+1)( z

w
)q

k
2 t−

ℓ
2

×
(
δ(p

1
2 q−

1
2ℓ

w
z
)

1− q
1
2ℓ t

1
2k

ℓ−2∏

i=0

(1− tq−
i
ℓ ) ·

k−2∏

j=0

(1− q
1
2ℓ

−1t
1
2k

+ j

k ) (19)

+
δ(p

1
2 t

1
2k

w
z
)

1− q−
1
2ℓ t−

1
2k

k−2∏

j=0

(1− q−1t
j

k ) ·
ℓ−2∏

i=0

(1− t1−
1
2k q−

1
2ℓ

− i
ℓ )
)
.

In the q → 1 limit, Vr,s(z) reduces to the usual vertex operator e
1
2
αr,sφ(z) where αr,s =√

β(1 − r) − 1√
β
(1 − s) and φ(z)φ(w) ∼ 2 log(z − w). This can be easily shown in the

bosonized form. (We remark that there are infinitely many operators which reduce to

e
1
2
αr,sφ(z) in the q → 1 limit.) However, it is rather nontrivial to derive the usual defining

relation of the primaly field of the Virasoro algebra from the commutation relations (19).

3. Correlation functions First we recall standard notations; (a; q1, · · · , qℓ)n =
∏n−1

k1,···,kℓ=0(1 − aqk11 · · · qkℓℓ ), (a1, · · · , am; q1, · · · , qℓ)n =
∏m

j=1(aj; q1, · · · , qℓ)n, Γq(z) = (1 −
q)1−z(q; q)∞/(qz; q)∞, Bq(x, y) = Γq(x)Γq(y)/Γq(x+ y), ϑq(z) = (q; q)∞(z; q)∞(qz−1; q)∞.

The Jackson integral is defined by
∫ a
0 dqzf(z)= a(1 − q)

∑∞
n=0 f(aq

n)qn,
∫ a∞
0 dqzf(z)=

a(1 − q)
∑∞

n=−∞ f(aqn)qn,
∫B
A dqzf(z)=

∫ B
0 dqzf(z) −

∫A
0 dqzf(z). The q-hypergeometric

6



function 2φ1 is defined by

2φ1(a, b; c; q, z) =
∞∑

n=0

(a; q)n(b; q)n
(q; q)n(c; q)n

zn. (20)

In the following we abbreviate Vℓ+1,1(z) as Vℓ(z). We will calculate the following four

point functions,

U+(z, w) =
∫ t

1
2 q

1
2ℓ z∞

t
1
2 q

1
2ℓ z

d
q
1
ℓ
µ〈∗|S+(µ)Vℓ(z)Vℓ(w)VL(0)|0〉, (21)

U−(z, w) =
∫ t−

1
2 q

1
2ℓw

0
d
q
1
ℓ
µ〈∗|Vℓ(z)Vℓ(w)S+(µ)VL(0)|0〉, (22)

where the momentum of the bra state ∗ is chosen such that 〈∗| : S+(µ)Vℓ(z)Vℓ(w)VL(0) :

|0〉 = 1. These four point functions are expressed as

U+(z, w)/〈Vℓ(z)Vℓ(w)〉
= (zw)

1
2
ℓLβB

q
1
ℓ
(2a− b, 1− a)(t

1
2 q−

1
2ℓ z)b−2a

2φ1(q
a
ℓ , q

2a−b
ℓ ; q

1+a−b
ℓ ; q

1
ℓ , q

1−a
ℓ

w
z
), (23)

U−(z, w)/〈Vℓ(z)Vℓ(w)〉
= (zw)

1
2
ℓLβB

q
1
ℓ
(b, 1− a)(zw)−a(t−

1
2 q

1
2ℓw)b2φ1(q

a
ℓ , q

b
ℓ ; q

1−a+b
ℓ ; q

1
ℓ , q

1−a
ℓ

w
z
), (24)

where a = ℓβ, b = 1− Lβ and

〈Vℓ(z)Vℓ(w)〉 = zℓ
2β/2

ℓ∏

j=1

(t−1qj/ℓw/z, pqj/ℓw/z; p2, q1/ℓ)∞
(qj/ℓw/z, t−1pqj/ℓw/z; p2, q1/ℓ)∞

. (25)

We have used the formulas,

S+(µ)Vℓ(z) = : S+(µ)Vℓ(z) : µ
−ℓβ (t1/2q1/2ℓz/µ; q1/ℓ)∞

(t−1/2q1/2ℓz/µ; q1/ℓ)∞
, (26)

Vℓ(z)S+(µ) = : Vℓ(z)S+(µ) : z
−ℓβ (t1/2q1/2ℓµ/z; q1/ℓ)∞

(t−1/2q1/2ℓµ/z; q1/ℓ)∞
. (27)

We note that the ratio of the coefficients in the R.H.S.’s of (26) and (27) is a pseudo-

constant with respect to the shift z/µ → q1/ℓz/µ.

Introduce the notation x = q
1

2rℓ and the definition [u]=
√
2πr/εxr/4xu(u−r)/rϑx2r(x2u)

where ε = −2π2/ log x.

Proposition 3.1. The connection formula for the four point functions U±(z, w) can

be written as

 U+(z, w)

U−(z, w)


 =

〈Vℓ(z)Vℓ(w)〉
〈Vℓ(w)Vℓ(z)〉




[ℓ][−u+ℓ+L]
[ℓ+L][u+ℓ]

[L][−u]
[ℓ+L][u+ℓ]

[2ℓ+L][−u]
[ℓ+L][u+ℓ]

[ℓ][u+ℓ+L]
[ℓ+L][u+ℓ]




 U+(w, z)

U−(w, z)


 , (28)

where u is defined by w
z
= x2u.
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The elements of the connection matrix are identified with some of the Boltzmann

weights of the ℓ× ℓ fusion RSOS model [2]. We conjecture that the connection matrices

for the four point functions having arbitrary numbers of screening operators are expressible

in the same way by the Boltzmann weights of the ℓ× ℓ fusion ABF model.

4. Discussion

We constructed the vertex operators (primary fields) of the deformed Virasoro algebra.

Using the vertex operators, we obtained the adjoint action of the deformed Virasoro

current acting on the vertex operator of type (ℓ + 1, 1), (1, ℓ + 1). This kind of adjoint

action is found only for this simple cases, so far. Thus it is desirable having more general

definition of this kind of adjoint action.

Applications of the vertex operators might be possible to integrable systems; integrable

massive field theories, solvable lattice models and so on. One of these candidates is the

calculation of the correlation functions of the fusion ABF model, since we get some of the

Boltzmann weights of the ℓ × ℓ fusion ABF model in the connection formula of the four

point functions derived in Section 3. As is discussed by Lukyanov and Pugai [3, 8], the

vertex operators V2,1(z) and V1,2(z) act on the physical space of the ABF model. Then, it

may be natural to consider that our vertex operators Vℓ+1,1(z) and V1,ℓ+1(z)(ℓ ≥ 2) act on

some fusion ABF model. The situation is, however, slightly complicated i.e. the central

charge of this model in the regrme III, which is derived from the corner transfer matrix

method, is greater than one except for the special case: #of states = #of fusion+2. Thus

it seems impossible to represent the physical space of the general fusion ABF model by a

Fock space of single bosonic field. Therefore, the first task should be to identify the model

which our vertex operators are associated with, if there is any. To this end, it might be

suggestive to study the factor 〈Vℓ(z)Vℓ(w)〉
〈Vℓ(w)Vℓ(z)〉

, which appears in the connection matrix (28). In

the case ℓ = 1, it reduces to [u+1]/[1]
κ(u)

, where κ(u) is the free eneregy of the ABF model in

the regeme III.

In the definition of the correlation functions given in Section 3, the cycle of these

Jackson integrals are given by hand depending on the ordering of the vertex operators

and screening operators. In the conformal field theory, however, the screened vertex

operator is defined by the contour integral whose contour is independent of this kind of

ordering [11]. Thus, it would be desirable to obtain the screened vertex operator by a

contour integral [3, 8, 9].
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