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1 Introduction

The conformal field theory (CFT)[6], whose examples are string theories as a world sheet

theory and statistical critical phenomena, has made remarkable progress contacting with

various branches of mathematics. CFT is a massless theory and its infinitely many con-

served quantities are controlled by the its symmetry algebra, the Virasoro algebra. By

perturbing CFT, it becomes a massive theory and there does not exist the Virasoro al-

gebra any longer. However, if we add a good perturbation, the theory has still infinitely

many conserved quantities and they are called massive integrable theory (MIT). Behind

the conserved quantities, there exist symmetries. So we would like to clarify

What symmetry ensures the integrability of MIT?

In some cases the quantum group, Yangian, degenerate affine Hecke algebra, etc. have an

important role. For example[8], in spin one-half XXZ spin chain, its correlation functions

were derived by using the quantum affine Lie algebra symmetry Uq(ŝl2). However these

symmetries correspond to the current algebra (affine Lie algebra) symmetry in CFT, not

to the Virasoro algebra. Naively, “quantum deformation” (q-deformation) of the Virasoro

algebra has been expected. After the name of the quantum group had been known to

physicists, several attempts to construct q-deformed Virasoro algebra have been made.

But satisfactory q-deformation of the Virasoro algebra had not been obtained(at least to

the talker)1, because of the lack of definite guiding principle.

Last summer reasonable q-deformation of the Virasoro andWN algebras was obtained[23,

3, 11] (see also important works [13, 19]). Here we will review these q-deformation. Putting

aside the above physical motivation, we take the following point of view,

Algebra, Representation Theory, Free Field Realization.

Our guiding principle is the following. First we note the two facts:

1. In the free field realization, the singular vectors of the Virasoro and WN algebras

realize the Jack symmetric polynomials[22, 4].

2. The Jack symmetric polynomials have the good q-deformation, the Macdonald sym-

metric polynomials[21].

Based on these, setting up the following question seems to be natural;

1 Generally speaking, what is q-deformation? Although there is no precise definition of q-deformation,
we would like to define q-deformation in the following way; (i) Theory deformed by adding one parameter
q, which reduces to the original theory in the q → 1 limit, (ii) (Some) Properties of the original theory
remains in the q-world. The condition (ii) is obscure and arbitrary. So q-deformation is not unique.
There exist “good” q-deformation, “bad” q-deformation and “usual” q-deformation.
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• Construct the algebras whose singular vectors in the free field realization realize the

Macdonald symmetric polynomials.

The resultant algebra are worth being called quantum deformation (q-deformation) of the

Virasoro and WN algebras in this sense. We call these as q-Virasoro and q-WN algebras.

We illustrate this scenario by a figure,
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singular vector
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singular vector
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.

A priori these algebras have nothing to do with the symmetry of massive integrable

models. But we believe that they are related very closely. In fact their relations have

been revealed gradually[18, 10, 20, 16, 2, 1, 15, 14].

In this talk we would like to review the WN and q-WN algebras based on free field

realizations. In section 2 the WN algebra is defined by the Miura transformation, and

singular vectors realize the Jack symmetric polynomials. In section 3 q-WN algebra is

introduced in a similar manner. We show that singular vectors realize the Macdonald

symmetric polynomials and q-WN reduces to WN in the q → 1 limit. Section 4 is devoted

to the discussion. In appendix we present explicit examples.

Before going section 2, we recall the parameters of the Jack and Macdonald symmetric

polynomials (for precise definitions of these polynomials, see other talks in this meeting).

The Jack symmetric polynomials Jλ(x; β) have one parameter β, and the Macdonald

symmetric polynomials Pλ(x; q, t) have two parameters q and t. The relation among the

Macdonald, Jack, Hall-Littlewood and Schur symmetric polynomials is[21],

Macdonald
q, t

Schur

Jack
β

Hall-Littlewood
t

��������

HHHHHHHj

HHHHHHHj

��������
?

t = qβ, q → 1 q → 0

β → 1 t→ 0

q = t .
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2 WN Algebra

In this section we recapitulate the WN algebra[12] from the free filed realization point of

view. For comprehensive review of W algebras, see [7].

The WN algebra (AN−1 type W algebra) is an associative algebra generated by spin

k currents2 W̄ k(z) =
∑
n∈Z

W̄ k
nz
−n−k (k = 2, · · · , N) and the central charge c. To define

its relations it is convenient to use a free field realization. Let us introduce free bosons

h̄i(z) = Qi
h + hi0 log z −

∑
n6=0

1
n
h̄inz

−n (i = 1, · · · , N), whose relations are given by

[h̄in, h̄
j
m] = (δij − 1

N
)nδn+m,0, h̄i0 = hi0,

[h̄in, Q
j
h] = (δij − 1

N
)δn0, [Qi

h, Q
j
h] = 0,

N∑
i=1

h̄in = 0,
N∑
i=1

Qi
h = 0. (1)

These h̄i(z)’s correspond to the weights of the vector representation of AN−1 algebra, hi.

If we introduce an orthonormal set of free bosons ϕ(z)tϕ(w) ∼ 1 log(z − w), and project

them on the root space, φ(z) = ϕ(z)
∣∣∣
root space

, then h̄i is expressed as h̄i(z) = hi · φ(z).

We will also use free bosons φa(z) = αa · φ(z), which correspond to the simple roots

αa (a = 1, · · · , N − 1). φa(z) has the form φa(z) = Qa
α + αa0 log z −

∑
n6=0

1
n
ᾱanz

−n and

αa = ha − ha+1 implies

[ᾱan, ᾱ
b
m] = Aabnδn+m,0, ᾱa0 = αa0, [ᾱan, Q

b
α] = Aabδn0, [Qa

α, Q
b
α] = 0, (2)

where A = (Aab) is the Cartan matrix of AN−1 algebra. Note that hi · hj = δij − 1
N

,

αa · αb = Aab and Λa · Λb = (A−1)ab, where Λa =
∑a
i=1 hi is the fundamental weight,

αa · Λb = δab.

The following Miura transformation gives the realization of the WN algebra (this is

just the definition of the WN algebra by ref.[12]);

:
(
α0∂z + ∂h̄1(z)

)(
α0∂z + ∂h̄2(z)

)
· · ·
(
α0∂z + ∂h̄N(z)

)
: =

N∑
k=0

W̄ k(z)
(
α0∂z

)N−k
. (3)

Here : ∗ : stands for the normal ordering (i.e., non-negative mode oscillators are moved to

the right for negative mode oscillators and Q), and α0 is a parameter which determines

the central charge. For later convenience we parameterize α0 as

α0 =
√
β − 1√

β
. (4)

We have W 0(z) = 1, W 1(z) = 0, and

−W 2(z) = L(z) =
∑
n∈Z

Lnz
−n−2 = 1

2
: ∂φ(z) · ∂φ(z) : +α0ρ · ∂2φ(z). (5)

2 Bar (¯) indicates non-q-deformed quantity.
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This L(z) generates the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0, (6)

with the central charge,

c = N − 1− 12α2
0ρ

2, (7)

where ρ is the half sum of the positive roots ρ =
∑N−1
a=1 Λa and ρ2 = 1

12
N(N2 − 1).

WN generators satisfy quadratic relations. Symbolically it is

[W̄ k
n , W̄

`
m] =

∑
((W̄W̄ ) + W̄ + 1). (8)

Here quadratic terms should be normal-ordered; For operators A(z) =
∑

n∈Z−hA
Anz

−n−hA

and B(z) =
∑

n∈Z−hB
Bnz

−n−hB , normal ordering (AB)(z) is defined by

(AB)(w) =
∮
w

dz

2πi

1

z − wA(z)B(w)

=
∮

0

dz

2πiz

(
1

1− w
z

A(z)B(w) +
z
w

1− z
w

B(w)A(z)

)
(9)

=
∑

n∈Z−hA−hB

( ∑
m≤−hA

AmBn−m +
∑

m>−hA
Bn−mAm

)
· w−n−hA−hB .

We consider the highest weight representations. The highest weight state |hws̄〉 is

characterized by

W̄ k
n |hws̄〉 = 0 (n > 0), W̄ k

0 |hws〉̄ = w̄k|hws〉̄ (w̄k ∈ C). (10)

The Verma module is obtained by successive action of W̄ k
−n (n > 0) on |hws̄〉. We remark

that only finite number of terms in (WW ) of (8) survives on |hws〉̄. If there exists a

singular vector |χ̄〉̄, which is characterized by

W̄ k
n |χ̄〉̄ = 0 (n > 0), W̄ k

0 |χ̄〉̄ = (w̄k + N̄k)|χ̄〉̄ = 0 (N̄k ∈ C), (11)

then the Verma module is reducible. To obtain an irreducible module, the submodule on

|χ̄〉̄ has to be factored out.

In the following we consider the representations realized in the boson Fock space. The

Fock vacuum |γ〉̄ is characterized by

ᾱan|γ〉̄ = 0 (n > 0), αa0|γ〉̄ = γa|γ〉̄, (12)

where γ =
∑N−1
a=1 γ

aΛa (γa ∈ C). |γ〉̄ can be obtained from |0〉̄ (ᾱn|0〉̄ = 0 for n ≥ 0),

|γ〉̄ = exp
(N−1∑
a=1

γaQa
Λ

)
· |0〉̄, Qa

Λ =
a∑
j=1

Qj
h. (13)
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The Fock space F̄γ is a linear span of ᾱa1
−n1

ᾱa2
−n2
· · · |γ〉̄ (n1, n2, · · · > 0). Dual Fock space

is defined similarly ( 〈̄γ|ᾱan = 〈̄γ|γaδn0 (n ≤ 0), with normalization 〈̄γ|γ′〉̄ = δγγ′). For

studying representations in the Fock space, the most important tool is the screening

current. Let us introduce the screening currents S̄a±(z) (a = 1, · · ·N − 1),

S̄a±(z) = :eα±φ
a(z) :, α+ =

√
β, α− =

−1√
β
. (14)

The operator product expansion between WN currents and the screening currents is

:
(
α0∂z + ∂h̄1(z)

)
· · ·

(
α0∂z + ∂h̄N(z)

)
: S̄a±(w) ∼ ∂

∂w

(
· · ·
)

+ reg. (15)

Therefore the screening charge
∮
dzS̄a±(z) commutes with WN algebra,[
WN ,

∮
dzS̄a±(z)

]
= 0. (16)

We must comment that this proposition holds only on a suitable state on which the

contour closes. To study representation in more detail, we have to construct the BRST

charge and analyze the BRST cohomology[9]. Here we do not get into this direction any

more.

The Fock vacuum |γ〉̄ satisfies the highest weight state condition of the WN algebra. If

we choose γ as special values, the Verma module contains singular vectors. Let us define

α±rs and α̃±rs as

α+
rs =

N−1∑
a=1

(√
β(1 + ra − ra−1) +

−1√
β

(1 + sa)
)
Λa, α̃+

rs = α+
rs −

√
β
N−1∑
a=1

raα
a,

α−rs =
N−1∑
a=1

(−1√
β

(1 + ra − ra−1) +
√
β(1 + sa)

)
Λa, α̃−rs = α−rs −

−1√
β

N−1∑
a=1

raα
a, (17)

where ra, sa are positive integers such that r1 > r2 > · · · > rN−1 and r0 = 0. The Verma

module on |α+
rs〉 contains a singular vector |χ̄+

rs〉̄,

�
�
�
�
�
�
�
�

@
@

@
@

@
@
@
@

�
�
�
�

@
@

@
@

�

|α+
rs〉̄

|χ̄+
rs〉̄

Verma module

|χ̄+
rs〉̄ =

∮ N−1∏
a=1

ra∏
j=1

dxaj
2πi
· S̄1

+(x1
1) · · · S̄1

+(x1
r1

) · · · S̄N−1
+ (xN−1

1 ) · · · S̄N−1
+ (xN−1

rN−1
)|α̃+

rs〉̄

=
∮ N−1∏

a=1

ra∏
j=1

dxaj
2πixaj

·
N−1∏
a=1

π̄
( 1

xa
, xa+1

)
∆̄(xa)

ra∏
j=1

(
xaj
)−sa[

S̄a+(xaj)
]
−
· |α+

rs〉̄, (18)
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where ∆̄(x) and π̄(x, y) are

∆̄(x) =
∏
i6=j

(
1− xi

xj

)β
, π̄(x, y) =

∏
i,j

(1− xiyj)−β , (19)

and [∗]− stands for the negative mode oscillator part.

This singular vector is related to the Jack symmetric polynomial. To see this, we

consider a map from the Fock space to the ring of symmetric function;

F̄γ 3 |f 〉̄ 7→ f(x) = 〈̄γ| exp
(√

β
∑
n>0

1
n
h̄1
npn

)
|f 〉̄, (20)

where pn is a power sum symmetric polynomial pn =
∑
i(xi)

n. By this map, ᾱa−n is

replaced by δa1
√
βpn. We remark that exp(

√
β
∑
n>0

1
n
h̄1
nz
−n) is the positive oscillator

part of the vertex operator corresponding to the vector representation. Then the singular

vector |χ̄+
rs〉̄ is mapped to the Jack symmetric polynomial,

〈̄α+
rs| exp

(√
β
∑
n>0

1
n
h̄1
npn

)
|χ̄+
rs〉̄

=
∮ N−1∏

a=1

ra∏
j=1

dxaj
2πixaj

· π̄(x, x1)
N−1∏
a=1

π̄
( 1

xa
, xa+1

)
∆̄(xa)

ra∏
j=1

(
xaj
)−sa

(21)

∝ Jλ(x; β).

In the last equation we have changed the integration variable xa → 1
xa

and used the

integral representation of the Jack symmetric polynomial[4]. Here the partition λ is

λ′ = ((r1)s1 , (r2)s2, · · · , (rN−1)sN−1), namely, corresponds to the following Young diagram

s1 s2 · · · · sN−2 sN−1

λ = r1 r2 · · · · rN−2 rN−1 .

Therefore, in the free field realization, the singular vector of the WN algebra realizes

the Jack symmetric polynomial with the Young diagram composed of N − 1 rectangles.

Similarly we have singular vectors |χ̄−rs〉̄ =
∮
S̄− · · · S̄−|α̃−rs〉̄, and another type of integral

representation of the Jack polynomial[4].

3 Quantum Deformed WN Algebra

In this section we define and explain the quantum deformed WN algebra[3, 11] along the

line of WN in section 2.
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The quantum deformed WN algebra, q-WN , is an associative algebra generated by

W i(z) =
∑
n∈Z

W i
nz
−n (i = 1, · · · , N − 1) and contains two parameters q and t (q, t ∈ C).

We will often use the following notation,

p = qt−1, q = eh̄ = e
1√
β
h̄′

, t = qβ = e
√
βh̄′. (22)

To define the relations of q-WN generators, we first introduce fundamental bosons hin
(n ∈ Z) and Qi

h (i = 1, · · · , N),

[hin, h
j
m] =

1

n
(q

n
2 − q−n2 )(t

n
2 − t−n2 )

p
n
2
N(δij− 1

N
) − p−n2N(δij− 1

N
)

p
n
2
N − p−n2N

p
n
2
Nsgn(j−i)δn+m,0,

[hin, Q
j
h] = (δij − 1

N
)δn0, [Qi

h, Q
j
h] = 0,

N∑
i=1

pinhin = 0,
N∑
i=1

Qi
h = 0, (23)

where sgn(x) is sgn(x) = 1(for x > 0), 0(for x = 0),−1(for x < 0). We remark that the

fractional part containing p is a p-analogue of δij − 1
N

. Let us define transformations θ,

ω, and ω′ = θω as follows:

θ ω ω′

q q−1 t t−1

t t−1 q q−1

hin (n 6= 0) hN+1−i
n hN+1−i

n hin
hi0 −hN+1−i

0 hN+1−i
0 −hi0

Qi
h −QN+1−i

h QN+1−i
h −Qi

h

(24)

For example θ · q = q−1, ω · hi0 = hN+1−i
0 . These are involutions, θ2 = ω2 = ω′ 2 = 1. Then

(23) is invariant under θ, ω and ω′. For later convenience we list up transformation rules

for various quantities (for their definitions see below):

θ ω ω′

h̄′ −h̄′ h̄′ −h̄′

β β β−1 β−1

p p−1 p−1 p

αan (n 6= 0) −αN−an −αN−an αan
αa0 αN−a0 −αN−a0 −αa0
Qa
α QN−a

α −QN−a
α −Qa

α

Λi(z) ΛN+1−i(z) ΛN+1−i(z) Λi(z)

W i(z) W i(z) W i(z) W i(z)

f ij(x) f ij(x) f ij(x) f ij(x)

Sa±(z) SN−a± (z) SN−a∓ (z) Sa∓(z)

(25)
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In the case of WN algebra, the building block of WN currents is a boson h̄i(z), and

the Miura transformation is an equation of differential operator. On the other hand the

building block of q-WN currents is an exponentiated boson Λi(z) (i = 1, · · · , N),

Λi(z) = : exp
(∑
n6=0

hinz
−n
)

: q
√
βhi0p

N+1
2
−i, (26)

and the differential operator (shift operator) ∂z is replaced by p-difference operator (p-

shift operator) pDz (Dz = z∂z); pDzf(z) = f(pz). q-deformed Miura transformation is

given by

:
(
pDz −Λ1(z)

)(
pDz − Λ2(p

−1z)
)
· · ·
(
pDz −ΛN (p1−Nz)

)
: =

N∑
i=0

(−1)iW i(p
1−i

2 z)p(N−i)Dz .

(27)

From this, W i(z) is expressed as

W i(z) =
∑

1≤j1<j2<···<ji≤N
:Λj1(p

i−1
2 z)Λj2(p

i−3
2 z) · · ·Λji(p

− i−1
2 z) :, (28)

and W 0(z) = WN(z) = 1. W i(z) is invariant under θ, ω and ω′. Eq.(27) is equivalent to

:
(
p−Dz−ΛN(z)

)(
p−Dz−ΛN−1(pz)

)
· · ·
(
p−Dz−Λ1(p

N−1z)
)

: =
N∑
i=0

(−1)iW i(p
i−1

2 z)p−(N−i)Dz ,

:
(
1− Λ1(z)p−Dz

)(
1− Λ2(z)p−Dz

)
· · ·
(
1−ΛN (z)p−Dz

)
: =

N∑
i=0

(−1)iW i(p
1−i

2 z)p−iDz, (29)

:
(
1− ΛN(z)pDz

)(
1−ΛN−1(z)pDz

)
· · ·

(
1− Λ1(z)pDz

)
: =

N∑
i=0

(−1)iW i(p
i−1

2 z)piDz .

The relation of q-WN algebra is quadratic. Symbolically it is

f ij(w
z
)W i(z)W j(w)−W j(w)W i(z)f ji( z

w
) =

∑(
◦
◦WW ◦

◦ +W + 1
)
. (30)

We remark that this relation is invariant under θ, ω and ω′. The structure function

f ij(x) =
∞∑
`=0

f ij` x
` is defined by

f ij(x) = exp
(
−
∑
n>0

1

n
(q

n
2 − q−n2 )(t

n
2 − t−n2 )

×p
n
2

min(i,j) − p−n2 min(i,j)

p
n
2 − p−n2

p
n
2

(N−max(i,j)) − p−n2 (N−max(i,j))

p
n
2
N − p−n2N

xn
)
. (31)

Note that the fractional part containing p is a p-analogue of (A−1)ij and f ij(x) = f ji(x) =

fN−i,N−j(x). Quadratic terms have to be normal-ordered,

◦
◦W

i(rw)W j(w)◦◦

=
∮ dz

2πiz

(
1

1− rw
z

f ij(w
z
)W i(z)W j(w) +

z
rw

1− z
rw

W j(w)W i(z)f ji( z
w

)

)

=
∑
n∈Z

∞∑
m=0

m∑
`=0

f ij`
(
rm−`W i

−mW
j
n+m + r`−m−1W j

n−m−1W
i
m+1

)
· w−n, (32)
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where (1− x)−1 stands for
∑
n≥0

xn. This normal ordering ◦◦ ∗
◦
◦ is a generalization of (9).

Here we present some examples of them. The relation of W 1(z) and W j(z) for j ≥ 1

is

f1j(w
z

)W 1(z)W j(w)−W j(w)W 1(z)f j1( z
w

)

= −(1− q)(1− t−1)

1− p

(
δ(p

j+1
2 w

z
)W j+1(p

1
2w)− δ(p−

j+1
2 w

z
)W j+1(p−

1
2w)

)
, (33)

with δ(x) =
∑
n∈Z

xn; and that of W 2(z) and W j(z) for j ≥ 2 is

f2j(w
z
)W 2(z)W j(w)−W j(w)W 2(z)f j2( z

w
)

= −(1− q)(1− t−1)

1− p
(1− qp)(1− t−1p)

(1− p)(1− p2)

(
δ(p

j
2

+1w
z

)W j+2(pw)− δ(p−
j
2
−1w

z
)W j+2(p−1w)

)

−(1− q)(1− t−1)

1− p

(
δ(p

j
2 w
z
)◦◦W

1(p−
1
2z)W j+1(p

1
2w)◦◦ − δ(p

− j
2 w
z
)◦◦W

1(p
1
2z)W j+1(p−

1
2w)◦◦

)
+

(1− q)2(1− t−1)2

(1− p)2

(
δ(p

j
2 w
z

)
( p2

1− p2
W j+2(pw) +

1

1− pjW
j+2(w)

)
(34)

−δ(p−
j
2 w
z

)
( pj

1− pjW
j+2(w) +

1

1− p2
W j+2(p−1w)

))
,

with W i(z) = 0 for i > N . The main term of

f ij(w
z
)W i(z)W j(w)−W j(w)W i(z)f ji( z

w
) (i ≤ j)

is

−(1− q)(1− t−1)

1− p

min(i,N−j)∑
k=1

k−1∏
`=1

(1− qp`)(1− t−1p`)

(1− p`)(1− p`+1)
(35)

×
(
δ(p

j−i
2

+k w
z
)◦◦W

i−k(p−
k
2 z)W j+k(p

k
2w)◦◦ − δ(p

− j−i
2
−k w

z
)◦◦W

i−k(p
k
2 z)W j+k(p−

k
2w)◦◦

)
.

By taking β → 0 limit (q fixed), this main term reduces to q-deformedWN Poisson bracket

algebra in [13].

The highest weight state |hws〉 is characterized by

W i
n|hws〉 = 0 (n > 0), W i

0|hws〉 = wi|hws〉 (wi ∈ C). (36)

We remark that only finite number of terms in ◦
◦WW ◦

◦ of (30) are non-vanishing on

|hws〉. The boson Fock space Fγ is defined like as in section 2. To construct screening

currents we define root bosons αan (n ∈ Z) and Qa
α (a = 1, · · · , N − 1) as αan = han − ha+1

n ,

Qa
α = Qa

h −Qa+1
h . They satisfy

[αan, α
b
m] =

1

n
(q

n
2 − q−n2 )(t

n
2 − t−n2 )

p
n
2
Aab − p−n2Aab
p
n
2 − p−n2

p
n
2
sgn(b−a)δn+m,0,

[αan, Q
b
α] = Aabδn0, [Qa

α, Q
b
α] = 0. (37)
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The fractional part containing p is a p-analogue of Aab. Screening currents are defined by

Sa+(z) = : exp
(
−
∑
n6=0

αan
q
n
2 − q−n2

z−n
)

: e
√
βQaαz
√
βαa0 , (38)

Sa−(z) = : exp
(∑
n6=0

αan
t
n
2 − t−n2

z−n
)

: e
−1√
β
Qaα
z
−1√
β
αa0 . (39)

Commutation relation of W i(z) and Sa±(w) can be expressed as a total difference:[
:
(
pDz − Λ1(z)

)(
pDz − Λ2(p−1z)

)
· · ·

(
pDz − ΛN(p1−N z)

)
: , Sa±(w)

]
= (q

n
2 − q−n2 )(t

n
2 − t−n2 )

d

d q
t
w

(
:
(
pDz − Λ1(z)

)
· · ·
(
pDz − Λa−1(p2−az)

)
(40)

×wδ(pa−1w
z
)Aa
±(w)pDz ×

(
pDz − Λa+2(p−1−az)

)(
pDz − ΛN (p1−Nz)

)
:

)
,

where Aa
±(w) and d

dξw
are given by3

Aa
+(w) = : exp

(∑
n6=0

q
n
2 ha+1

n − q−n2 han
q
n
2 − q−n2

w−n
)

: e
√
βQaαw

√
βαa0q

1
2

√
β(ha0+ha+1

0 )p
N
2
−a,

Aa
−(w) = ω′ · Aa

+(w), (41)

d

dξw
f(w) =

f(ξ
1
2w)− f(ξ−

1
2w)

(ξ
1
2 − ξ−1

2 )w
=

d

dξ−1w
f(w). (42)

Then screening charge
∮
dzSa±(z) commutes with q-WN algebra,[

q-WN ,
∮
dzSa±(z)

]
= 0. (43)

Exactly speaking we have to include the zero mode factor[20, 1, 15] and study BRST

cohomology.

The Fock vacuum |γ〉 satisfies the highest weight condition of q-WN . In the Verma

module generated by |α+
rs〉 (α+

rs is given in (17)) we have a singular vector |χ+
rs〉,

|χ+
rs〉 =

∮ N−1∏
a=1

ra∏
j=1

dxaj
2πi
· S1

+(x1
1) · · ·S1

+(x1
r1

) · · ·SN−1
+ (xN−1

1 ) · · · SN−1
+ (xN−1

rN−1
)|α̃+

rs〉

=
∮ N−1∏

a=1

ra∏
j=1

dxaj
2πixaj

·
N−1∏
a=1

π
( 1

xa
, pxa+1

)
∆(xa)C(xa)

ra∏
j=1

(
xaj
)−sa[

Sa+(xaj )
]
−
· |α+

rs〉,(44)

where ∆(x), π(x, y) and C(x) are given by

∆(x) =
∏
i6=j

exp
(
−
∑
n>0

1

n

t
n
2 − t−n2
q
n
2 − q−n2

p−
n
2
xnj
xni

)
, π(x, y) =

∏
i,j

exp
(∑
n>0

1

n

t
n
2 − t−n2
q
n
2 − q−n2

p−
n
2 xni y

n
j

)
,

3 We have used the slightly different notation from that of [3] (say ‘old’);
Sa+(w) = Sa,old

+ (q−
1
2w)q

1
2

√
βαa0 , Sa−(w) = Sa,old

− (t−
1
2w)q−

1
2

√
βαa0 , Aa+(w) = Aa,old

+ (w)q
1
2

√
βαa0p

1
2 ,

Aa−(w) = Aa,old
− (w)q−

1
2

√
βαa0p−

1
2 , d

dξw
f(w) = ξ

1
2

(
d
dξw

)old
f(ξ−

1
2w)
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C(x) =
r∏
i<j

exp
(∑
n>0

1

n

t
n
2 − t−n2
q
n
2 − q−n2

(
p−

n
2
xni
xnj
− pn2

xnj
xni

))
·
r∏
i=1

x(r+1−2i)β
i . (45)

We remark that C(x) is a pseudo-constant under q-shift; qDxiC(x) = C(x) (∀i).
What we want to show is that this singular vector |χ+

rs〉 is related to the Macdonald

symmetric polynomial. To establish this relation, we consider a map from the Fock space

to the ring of symmetric function;

Fγ 3 |f〉 7→ f(x) = 〈γ| exp
(∑
n>0

h1
n

q
n
2 − q−n2

pn

)
|f〉, pn =

∑
i

(xi)
n. (46)

This map replaces αa−n with δa1 1
n
(t

n
2 − t−n2 )p

n
2 pn. We remark that exp(

∑
n>0

h1
n

q
n
2 −q−

n
2
z−n)

is the positive oscillator part of the vertex operator corresponding to the vector represen-

tation. The singular vector |χ+
rs〉 is mapped to the Macdonald symmetric polynomial,

〈α+
rs| exp

(∑
n>0

h1
n

q
n
2 − q−n2

pn

)
|χ+
rs〉

=
∮ N−1∏

a=1

ra∏
j=1

dxaj
2πixaj

· π(x, px1)
N−1∏
a=1

π
( 1

xa
, pxa+1

)
∆(xa)C(xa)

ra∏
j=1

(
xaj
)−sa

(47)

∝ Pλ(x; q, t).

In the last equation we have changed the integration variable xa → (paxa)−1 and used

the integral representation of the Macdonald symmetric polynomial[4, 5]. Here the par-

tition λ is same as in section 2, λ′ = ((r1)s1 , (r2)s2 , · · · , (rN−1)sN−1). Therefore, in the

free field realization, the singular vector of the q-WN algebra realizes the Macdonald sym-

metric polynomial with the Young diagram composed of N − 1 rectangles. Similarly we

have singular vectors |χ−rs〉 = ω′ · |χ+
rs〉 =

∮
S− · · · S−|α̃−rs〉, and another type of integral

representation of the Macdonald polynomial[3].

We have shown the condition (ii) of q-deformation (see footnote 1). Next let us check

the condition (i); the classical limit, i.e., q → 1 limit (h̄′ → 0, β fixed). The fundamental

boson hin can be expressed in a linear combination of h̄in,

hin = h̄′
N∑
j=1

dijn h̄
j
n = h̄′h̄in +O(h̄′ 2) (n 6= 0), (48)

where dijn ∈ C. Then Λi(z) and pDz have the following h̄′ expansion,

Λi(z) = 1 + h̄′
(
Dh̄i(z)− (N+1

2
− i)α0

)
+O(h̄′ 2),

pDz = 1− h̄′α0Dz +O(h̄′ 2), (49)

pDz − Λi(p
1−iz) = −h̄′zN+1

2
−i+1

(
α0∂z + ∂h̄i(z)

)
z−(N+1

2
−i) +O(h̄′ 2).

12



Thus L.H.S. of (27) is

(−h̄′)NzN+1
2 :

(
α0∂z + ∂h̄1(z)

)(
α0∂z + ∂h̄2(z)

)
· · ·
(
α0∂z + ∂h̄N(z)

)
: z

N−1
2 ×

(
1 +O(h̄′)

)
.

(50)

This is nothing but (3). So q-WN algebra reduces to WN algebra with central charge

(7). However relation between W i(z) and W̄ k(z) is nontrivial. R.H.S. of (27) contains

h̄′ ` (` < N) terms which must vanish, and h̄′N term yields the WN algebra. We will

demonstrate these for explicit examples in the Appendix.

For other quantities, q → 1 limit is straightforward,

αan = h̄′ᾱan ×
(
1 +O(h̄)

)
(n 6= 0), |γ〉 = |γ〉̄,

Sa±(z) = S̄a±(z)×
(
1 +O(h̄)

)
, |χ±rs〉 = |χ̄±rs〉̄ ×

(
1 +O(h̄)

)
, (51)

∆(x) = ∆̄(x)×
(
1 +O(h̄)

)
, π(x, y) = π̄(x, y)×

(
1 +O(h̄)

)
, etc.

4 Discussion

We have defined a quantum deformed WN algebra, q-WN . There are many interesting

points to be clarified in the future study; representation theory and applications to physics.

Here we write down some of them.

(i) Explicit form of the defining relation. Even for theWN algebra, the explicit form of the

defining relation in terms of W̄ k
n has not been known for general N . It may be easier for

q-WN . We remark that when we study representation theory by free field realization and

BRST cohomology technique, the explicit form of the defining relation is not necessary

and what we need are q-Miura transformation, screening currents and vertex operators

just like as WN case.

(ii) Various limits. (a) q → 1: h̄′N term of (27) gives (3), but explicit relation between

W i(z) and W̄ k(z) are unknown for general N . What is the meaning of h̄′ ` (` > N) terms?

Are they related to conserved quantities in CFT? (b) q → 0: For quantum (affine) Lie

algebras, q → 0 limit yielded an important notion, crystal base[17]. For q-Vir, see our

another talk in this meeting.

(iii) Kac determinant. For N = 2 case (q-Vir), we calculated and conjectured the Kac

determinant of q-Vir[23]. It has same structure as that of the Virasoro algebra and extra

zeros when q (or t) is a root of unity. We guess that the Kac determinant of q-WN is also

so.

(iv) Tensor product representation. Tensor product representation of the Virasoro algebra

is trivial because the Virasoro algebra is a Lie algebra. But q-Vir (q-WN , WN ) satisfies

quadratic relation. So its tensor product representation is nontrivial.

13



(v) Relation to a quantum affine Lie algebra. Since the Virasoro algebra is obtained

from affine Lie algebra Ĝ by the Sugawara construction, we naively expect that q-Vir

is obtained from quantum affine Lie algebra Uq(Ĝ). In the critical level, the q-Virasoro

Poisson algebra was constructed through q-Sugawara form[13]. An interesting relation

between screening currents of q-WN and Uq(Ĝ) was pointed out in [11].

(vi) Various type of W algebras. q-WN is AN−1-type. The Hamiltonian reduction tech-

nique gives us various type of W algebra from affine Lie algebras[7]. Can we extend

this technique to the q-world? W1+∞ algebra is obtained from WN by taking a suitable

N → ∞ limit. What algebra is obtained from q-WN by N → ∞ limit? We remark

that for special value of β, q-Vir is related to W1+∞. Supersymmetric extension is also

important (see our another talk in this meeting).

(vii) Macdonald operators. The Macdonald operator can be bosonized and expressed in

terms of q-Vir generators[23]. Bosonized form of the higher Macdonald operators may be

expressed by q-WN generators.

(viii) Vertex operators. Vertex operators(primary fields) are indispensable for applica-

tions to physics. There are several proposals for vertex operators[3, 20, 16, 2, 1] but at

present general definition has not been obtained. The condition (i) of q-deformation (see

footnote 1) is of course satisfied but the problem exists in the condition (ii); what property

should we impose on vertex operators?

(ix) BRST cohomology. By using above vertex operators and screening currents, the

BRST property of the free field representation of q-WN can be studied. To construct BRST

charge and screened vertex operators, we should include zero mode factor[20, 16, 2, 1, 15].

(x) Correlation functions. By using vertex operators and screening currents, correlation

functions can be calculated[20, 2, 1]. In CFT correlation functions for the minimal model

are characterized by the differential equations. It is expected that correlation functions

for q-WN satisfy some q-difference equations[16, 2].

(xi) Application to solvable models. In the work[20], multi-point local hight probabilities

for the ABF model in the regime III were calculated, where the vertex operator of the ABF

model is identified with that of q-Vir. Its higher rank generalization was partially studied

in [1]. They constructed (type I) vertex operators of the RSOS model. To calculate its

correlation functions, however, the knowledge of BRST cohomology will be needed.

(xii) Applications to other physics. In the work[18], the q-Vir generator T (z) is identified

with the Zamolodchikov-Faddeev operator for the basic scalar particle in the XYZ model.

In the scaling limit XYZ model is described by the sine-Gordon model, and the two-

particle S-matrix of the basic scalar particle in the sine-Gordon model can be obtained

from the defining relation of q-Vir. We remark that in CFT the meaning of z in L(z) is

the local coordinate of the Riemann surface, but in this case z of T (z) corresponds to the

14



rapidity of particle.

Our original motivation is to find and study the symmetry of massive integrable mod-

els. We hope that q-WN will be found out to be a useful symmetry.
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Appendix: Explicit examples

We present explicit defining relations of q-WN and q → 1 limit for N = 2, 3 cases. To

check consistency of q → 1 limit (see below (50)), we need higher order terms of (48). We

set

hin = h̄′
N∑
j=1

dijn h̄
j
n (n 6= 0), dijn = d̃ijn

√√√√q
n
2 − q−n2
nh̄

t
n
2 − t−n2
nh̄β

. (A.1)

We remark that dijn is not uniquely determined because of
∑N
i=1 h̄

i
n = 0, and d̃ijn can be

chosen as a function of p only and d̃N+1−i,N+1−j
n = d̃ijn

∣∣∣
p→p−1

.

N = 2 case (q-Vir)4. q-Miura transformation is

:
(
pDz−Λ1(z)

)(
pDz−Λ2(p

−1z)
)

: = p2Dz−W 1(z)pDz+1, W 1(z) = Λ1(z)+Λ2(z), (A.2)

and the relation is

f(w
z

)T (z)T (w)− T (w)T (z)f( z
w

) = −(q
1
2 − q−1

2 )(t
1
2 − t−1

2 )

p
1
2 − p−1

2

(
δ(pw

z
) − δ(p−1w

z
)
)
, (A.3)

where T (z) = W 1(z) and f(x) = f11(x).

By multiplying z
1
2 from the left and z−

1
2 from the right, q-Miura transformation (27)

becomes (see (50))

(−h̄′)2z2 :
(
α0∂z + ∂h̄1(z)

)(
α0∂z + ∂h̄2(z)

)
: +O(h̄′ 3) = p2(Dz−1

2
) − T (z)pDz−

1
2 + 1. (A.4)

To check the consistency of this equation, we need d̃ijn , which is chosen as

d̃11
n =

1

2
p
n
2

√√√√2
p
n
2 − p−n2
pn − p−n , d̃12

n = −d̃11
n , d̃3−i,3−j

n = d̃ijn
∣∣∣
p→p−1

. (A.5)

4 Since h1
n + pnh2

n = 0, it is convenient to set hn = p−
n
2 h1

n.
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Then T (z) has the following h̄′ expansion,

T (z) = 2 + h̄′ 2
(
z2L(z) + 1

4
α2

0

)
+O(h̄′ 4), (A.6)

where L(z) is the Virasoro generator (5). We remark that T (z) is an even function of

h̄′. Using these, O(h̄′ `) terms (` < 2) of R.H.S. of (A.4) actually vanish and O(h̄′ 2) term

gives Miura transformation of L(z).

N = 3 case (q-W3). q-Miura transformation is

:
(
pDz−Λ1(z)

)(
pDz−Λ2(p

−1z)
)(
pDz−Λ3(p

−2z)
)

: = p3Dz−W 1(z)p2Dz +W 2(p−
1
2 z)pDz−1,

W 1(z) = Λ1(z) + Λ2(z) + Λ3(z), (A.7)

W 2(z) = :Λ1(p
1
2 z)Λ2(p

−1
2z) : + :Λ1(p

1
2z)Λ3(p−

1
2 z) : + :Λ2(p

1
2 z)Λ3(p

−1
2z) :,

and the relations are

f11(w
z
)W 1(z)W 1(w)−W 1(w)W 1(z)f11( z

w
)

= −(q
1
2 − q−1

2 )(t
1
2 − t−1

2 )

p
1
2 − p−1

2

(
δ(pw

z
)W 2(p

1
2w)− δ(p−1w

z
)W 2(p−

1
2w)

)
,

f22(w
z
)W 2(z)W 2(w)−W 2(w)W 2(z)f22( z

w
)

(
f22(x) = f11(x)

)
= −(q

1
2 − q−1

2 )(t
1
2 − t−1

2 )

p
1
2 − p−1

2

(
δ(pw

z
)W 1(p

1
2w)− δ(p−1w

z
)W 1(p−

1
2w)

)
, (A.8)

f12(w
z
)W 1(z)W 2(w)−W 2(w)W 1(z)f21( z

w
)

(
f21(x) = f12(x)

)
= −(q

1
2 − q−1

2 )(t
1
2 − t−1

2 )

p
1
2 − p−1

2

(
δ(p

3
2 w
z
)− δ(p−3

2 w
z
)
)
.

We remark that there is no distinction between W 1(z) and W 2(z) in algebraically.

By multiplying z from the left and z−1 from the right, q-Miura transformation (27)

becomes (see (50))

(−h̄′)3z3 :
(
α0∂z + ∂h̄1(z)

)(
α0∂z + ∂h̄2(z)

)(
α0∂z + ∂h̄3(z)

)
: +O(h̄′ 4)

= p3(Dz−1) −W 1(z)p2(Dz−1) +W 2(p−
1
2z)pDz−1 − 1. (A.9)

We choose d̃ijn as

d̃11
n = −d̃13

n =
1

2
pn

√√√√2
p
n
2 − p−n2
pn − p−n , d̃22

n = −d̃21
n =

1

2

√√√√3

2

pn − p−n
p

3
2
n − p−3

2
n
,

d̃12
n = −1

2
p

3
2
n

√√√√2
p
n
2 − p−n2
pn − p−n

√√√√3
p
n
2 − p−n2

p
3
2
n − p−3

2
n
, d̃4−i,4−j

n = d̃ijn
∣∣∣
p→p−1

. (A.10)
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Then W 1(z) and W 2(z) have the following h̄′ expansion,

W 1(z) = 3 + h̄′ 2
(
z2L(z) + α2

0

)
+h̄′ 3

(
1
2
z3
(
W (z) + 1

2
α0∂L(z)

)
+ 1

4
α0z

2
(
2X(z) +DX(z)

))
+O(h̄′ 4),

W 2(z) = 3 + h̄′ 2
(
z2L(z) + α2

0

)
(A.11)

+h̄′ 3
(
−1

2
z3
(
W (z) + 1

2
α0∂L(z)

)
+ 1

4
α0z

2
(
2X(z) +DX(z)

))
+O(h̄′ 4),

where L(z) = −W̄ 2(z), W (z) = W̄ 3(z), D = z d
dz

and X(z) is

X(z) = 1
2

:
(
∂φ1(z)

)2
: +α0∂

2φ1(z)− 1
2

:
(
∂φ2(z)

)2
: −α0∂

2φ2(z). (A.12)

We remark that the combination W (z) + 1
2
α0∂L(z) is an primary field of the Virasoro

algebra. Using these, O(h̄′ `) terms (` < 3) of R.H.S. of (A.9) actually vanish and O(h̄′ 3)

term gives the Miura transformation of the W3 algebra.
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