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Abstract

We define a superconformal algebra with the central charge

c = 3d, which is the symmetry of the non-linear σ model on a
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complex d dimensional Calabi-Yau manifold. The c = 3d algebra

is an extended superconformal algebra obtained by adding the

spectral flow generators to the N = 2 superconformal algebra. We

study the representation theory and show that its representations

are invariant under the integer-shift spectral flow. We present the

character formulas and their modular transformation properties.

We also discuss the relation to the N = 4 superconformal algebra.
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1 Introduction

In the search for four dimensional realistic string theories, space-time

supersymmetry and world-sheet superconformal symmetry are the most im-

portant requirements and internal sector is restricted severely by them. If

internal sector is considered as the non-linear σ model on certain manifold,

from the study of the low energy supergravity, N = 1 space-time supersym-

metry implies the manifold must be a Calabi-Yau manifold [1,2]. This mani-

fold possesses a unique covariantly constant spinor and an (anti-)holomorphic

d-form, where d is the complex dimension of the manifold and, in the case

of four dimensional string theory, d is equal to 3. On the other hand, world-

sheet N = 2 superconformal symmetry and U(1) charge quantization are

equivalent to space-time N = 1 supersymmetry[3,4,5,6,7,8]. The N = 2 su-

perconformal algebra(SCA) has an automorphism (so-called spectral flow)

due to the U(1) Kac-Moody subalgebra[9], so that Neveu-Schwarz(NS) and

Ramond(R) sectors are mapped onto each other by the spectral flow which

are considered as space-time supersymmetry transformation. In previous

papers[10,11], we studied the extension of the N = 2 SCA by adding the flow

generators which generate the integer-shift spectral flow. Its representations

are invariant under the integer-shift spectral flow because such flow corre-

sponds to twice operation of space-time supersymmetry transformation. In

this context the covariantly constant spinor corresponds to Ramond ground

state and the (anti-)holomorphic d-forms correspond to the spectral flow
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generators.

In this paper we generalize the previous d = 3 result (the c = 9 algebra)

to arbitrary d case (the c = 3d algebra). Since space-time dimension of

string theory is 10 − 2d, d more than three case is not relevant to string

compactification. However, study of d > 3 case is interesting because it is the

symmetry of the non-linear σ model on a complex d dimensional Calabi-Yau

manifold (i.e. manifold with SU(d) holonomy, i.e. Ricci-flat Kähler manifold)

and finding modular invariant partition functions will give one method to

study the properties of Calabi-Yau manifold itself[6,8]. The N = 2 SCA,

which is the symmetry of the non-linear σ model on a Kähler manifold, is

invariant under the spectral flow but its representations are not so. We want

to find the extended algebra which representations are invariant under the

integer-shift spectral flow. For c > 3, its representation contains infinite many

representations of the N = 2 SCA because representation of the N = 2 SCA

never comes back to itself under the integer-shift spectral flow in contrast

to the rational case c < 3. The N = 4 SCA, which is the symmetry of

the non-linear σ model on a hyper-Kähler manifold, has this property but

it is too large from this point of view and we want the smallest one, i.e.

its representation contains only one highest weight state of the N = 2 SCA

modulo the spectral flow of the N = 2 SCA. This is the c = 3d algebra.

The c = 3d algebra is obtained from the N = 2 SCA by the addition of the

spectra flow generators and by the requirement that the cental charge c is

equal to 3d.
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This paper is organized as follows. We begin with the definition of the c =

3d algebra and its properties (degeneracy conditions, subalgebras, realization

and the spectral flow). Then, in section 3, we discuss the representation

theory. We present the conditions for the irreducible unitary highest weight

representations. These representations are invariant under the integer-shift

spectral flow and the structures of their representation spaces are derived.

Using this structure, in section 4, we present the character formulas and

derive their modular transformation properties. In section 5 we discuss the

decomposition of characters of one algebra into those of another algebra.

Representations of the N = 4 SCA with c > 6 are infinitely reducible with

respect to the c = 3d algebra.

2 c = 3d Algebra

In this section we present the c = 3d algebra. We start from the notations.

A field operator A(z) with conformal weight h has a mode expansion: A(z) =∑
nAnz

−n−h (except T (z) =
∑

n Lnz
−n−2), where n ∈ Z − h for NS sector

and n ∈ Z for R sector and A
†
n = Ā−n. Normal ordering (AB)(z) of the

mutually local two fields A(z) and B(z) is defined by

(AB)(z) =
∮
z

dx

2πi

1

x− z
A(x)B(z). (2.1)

In NS sector or in R sector with hA ∈ Z, mode expansion of (AB)(z) is

(AB)n =
∑

p≤−hA

ApBn−p + (−1)AB
∑

p>−hA

Bn−pAp. (2.2)
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In the following we will consider NS sector only unless it is explicitly men-

tioned. The state |A⟩ is given by |A⟩ = limz→0A(z)|0⟩ = A−h|0⟩, where the

vacuum |0⟩ is defined by An|0⟩ = 0 for n > −h.

In [10], for each positive integer d which was denoted as ñ, we studied

the extension of the N = 2 SCA by the addition of the spectral flow gen-

erators X(z) and X̄(z), which has h = d
2
and U(1) charge Q = ±d, and

their superpartners Y (z) and Ȳ (z). There we treated central charge c and

dimension d as independent parameters. Assumptions of [10] are (i) X(z) is

a primary field with (h,Q) = (d
2
, d) with respect to Virasoro generator T (z)

and U(1) Kac-Moody current I(z), (ii) operator product expansion(OPE) of

supercurrent G and X is regular and OPE of Ḡ and X has only simple pole

term whose residue will be denoted as Y , (iii) the N = 2 SCA generators

and X, X̄, Y and Ȳ generate a closed associative algebra. OPE of X and Ȳ

or Y and Ȳ is obtained from OPE of X and X̄ by supertransformation. If

OPE of X and X̄ is expressed by the N = 2 SCA generators, closure of the

extended algebra is ensured by this fact. Unknown OPE is OPE of X and

X̄ only.

In this paper we require center c is equal to 3d. By bosonizing the U(1)

current I(z) as I(z) =
√
di∂ϕ(z), the spectral flow generator X(z) with U(1)

charge d is expressed as : ei
√
dϕ(z) : X̃(z). Since X(z) has conformal weight

d
2
and : ei

√
dϕ(z) : has already conformal weight d

2
, X̃(z) is a constant. We

take the normalization X̃ = 1 (this normalization is different from [10,11]).

OPE of G(z) =: e
i 1√

d
ϕ(z)

: G̃(z) and X(z) are regular and OPE of Ḡ(z) =
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: e
−i 1√

d
ϕ(z)

: ˜̄G(z) and X(z) has only simple pole term, so that assumptions (i)

and (ii) are satisfied. From this bosonized form, OPE of X and X̄ is uniquely

expressed by the differential polynomial of I(z), so that closure of the algebra

is satisfied. Therefore the extended algebra is uniquely determined. We call

this extended algebra as the c = 3d algebra. OPEs of generators of the c = 3d

algebra are as follows:

c = 3d

T (z)T (w) =
c

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ regular term

I(z)I(w) =
c

3(z − w)2
+ reg.

G(z)Ḡ(w) =
2c

3(z − w)3
+

2I(w)

(z − w)2
+
∂I(w) + 2T (w)

z − w
+ reg.

A = I
G

Ḡ

X

X̄

Y

Ȳ

T (z)A(w) =
hA(w)

(z − w)2
+
∂A(w)

z − w
+ reg. h = 1 3

2
d
2

d+1
2

I(z)A(w) =
QA(w)

z − w
+ reg. Q = ∗ ±1 ±d ±(d− 1)

Ḡ(z)X(w) =
2Y (w)

z − w
+ reg.

G(z)Y (w) =
dX(w)

(z − w)2
+
∂X(w)

z − w
+ reg.

X(z)|X̄⟩ =
d∑

p=1

z−p
∑

{ik≥0}k≥1∑
k≥1

kik=d−p

∏
k≥1

1

ik!kik
I ik−k|0⟩+ reg.

X(z)|Ȳ ⟩ = −1
2
G− 1

2
X(z)|X̄⟩

Y (z)|Ȳ ⟩ = 1
2
X(z)|∂X̄⟩+ 1

2
Ḡ− 1

2
X(z)|Ȳ ⟩

(2.3)

and their hermitian conjugates. Other OPE is regular. Last two equations
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mean that OPE of X and Ȳ or Y and Ȳ is obtained by moving G− 1
2
or Ḡ− 1

2

right until they annihilate the vacuum |0⟩, for example, in the case of d = 3,

X(z)|Ȳ ⟩ = −1
2
G− 1

2
(z−3 + z−2I−1 + z−1 1

2
(I2−1 + I−2))|0⟩+ reg.

= 1
2
(z−2G− 3

2
+ z−1I−1G− 3

2
)|0⟩+ reg.

i.e. X(z)Ȳ (w) = 1
2
( G(w)
(z−w)2

+ (IG)(w)
z−w ) + reg. The c = 3 algebra is an algebra

generated by one pair of complex free boson and fermion and the c = 6

algebra is the N = 4 SCA with c = 6[12,8,10]. For d ≥ 3, the c = 3d algebra

is not a Lie algebra but an analogue of the W algebra[13].

Associativity requires some operator relations (degeneracy conditions)

and among them

(IX)(z) = ∂X(z) (2.4)

and its hermitian conjugate are the most important. Other relations, for

example,

(IY )(z)− ∂Y (z) + 1
2
(ḠX)(z) = 0 (2.5)

(GY )(z) + 1
2
(∂IX)(z)− (TX)(z) = 0

(∂jXX)(z) = 0 j = 0, 1, · · · , d− 1

(∂jXY )(z) = (∂jY Y )(z) = 0 j = 0, 1, · · · , d− 2 (2.6)

are derived from eq. (2.4).

The c = 3d algebra has free field realizations. One of them is given by d

pairs of complex free bosons and fermions:

G(z) =
√
2

d∑
j=1

ψj(z)i∂φj(z)
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X(z) =
1

d!

d∑
i1,···,id=1

εi1···idψ
i1(z) · · ·ψid(z) = ψ1ψ2 · · ·ψd(z). (2.7)

Existence of a free field realization ensures associativity of the c = 3d algebra

and degeneracy conditions are also checked. The non-linear σ model on a

complex d dimensional Calabi-Yau manifold has a symmetry characterized

by the presence of an (anti-)holomorphic d-form[10]. Spectral flow generator

X corresponds to a holomorphic d-form and the c = 3d algebra is just this

symmetry.

The c = 3d algebra contains two important subalgebras. One is the

N = 2 SCA with c = 3d generated by T, I,G and Ḡ. The other is generated

by 1
2d
(I2), I,X and X̄. Using eq. (2.4), we can show that X is a primary

field with conformal weight d
2
with respect to 1

2d
(I2), which is the Sugawara

type Virasoro generator with c = 1. We will call this algebra as the c = 1

subalgebra. From the OPE of X and X̄ or Y and Ȳ , (anti-)commutator of

X and X̄ contains I only and (anti-)commutator of Y and Ȳ contains N = 2

generators only. Using this (anti-)commutators and combinatorial identities

∑
{ik≥0}k≥1∑

k≥1
kik=n

∏
k≥1

xik

ik!kik
=

(
x+ n− 1

n

)

n∑
p=0

(
x+ p

p

)(
y + n− p
n− p

)
=

(
x+ y + n+ 1

n

)
,

we can show that

⟨Q|[Xn, X̄−n}|Q⟩ =

(
Q+ n+ d

2
− 1

d− 1

)
(2.8)
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N=2⟨h,Q|[Yn, Ȳ−n}|h,Q⟩N=2 =


1
2
(h+ n(n+Q)

d−1 −
d−1
4
)
(
Q+n+ d−3

2
d−2

)
d ≥ 2

1
2
n d = 1,

(2.9)

where |Q⟩ is the highest weight state of I(z) and |h,Q⟩N=2 is the highest

weight state of the N = 2 SCA and
(
x
r

)
= x(x−1)···(x−r+1)

r!
.

The c = 3d algebra is invariant under the spectral flow, i.e. (anti-)

commutators obtained from eq. (2.3) are invariant under the transformation:
L′n = Ln + ηIn +

d
2
η2δn0

I ′n = In + dηδn0 A = G Ḡ X X̄ Y Ȳ

A′n = An+Qη Q = 1 −1 d −d d− 1 −(d− 1),

(2.10)

where η is an arbitrary real parameter and this transformation is achieved by

the momentum shift of bosonized U(1) current. Normal ordering (∂iG′∂jḠ′)(z)

is defined by OPE of ∂i(zηG(z)) and ∂j(w−ηḠ(w)) and eq. (2.1).

3 Representation Theory

The highest weight state of the c = 3d algebra |h,Q⟩ is an eigenstate

of L0 and I0 and annihilated by generators of positive mode:

L0|h,Q⟩ = h|h,Q⟩, I0|h,Q⟩ = Q|h,Q⟩

An|h,Q⟩ = 0 (n > 0) A = L, I,G, Ḡ,X, X̄, Y, Ȳ (3.1)

and conditions on the other zero mode are determined by consistency and

irreducibility. |h,Q⟩ is also the highest weight state of the two subalgebras,
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the N = 2 SCA |h,Q⟩N=2 and the c = 1 subalgebra |Q⟩c=1 (hc=1 = Q2

2d
).

We start from the representation theory of the c = 1 subalgebra. For

even d, operating the zero mode of eq. (2.4) to |Q⟩c=1, we obtain

0 = ((IX)− ∂X)0|Q⟩c=1

= (
∑
p≤−1

IpX−p +
∑
p>−1

X−pIp +
d

2
X0)|Q⟩c=1

= (Q+
d

2
)X0|Q⟩c=1,

i.e. X0|Q⟩c=1 = 0 for Q ̸= −d
2
. Similarly, hermitian conjugate of eq. (2.4)

implies X̄0|Q⟩c=1 = 0 for Q ̸= d
2
. Eq. (2.8) says

c=1⟨Q|[X0, X̄0]|Q⟩c=1 =
1

(d− 1)!

r= d
2
−1∏

r=−( d
2
−1)

(Q− r).

If Q ̸= ±d
2
, these relations require that U(1) charge Q must be quantized

to 0,±1,±2, · · · , ±(d
2
− 1). If Q = ±d

2
, these relations mean that norms

of the states X̄0|d2⟩
c=1 and X0| − d

2
⟩c=1 are equal to 1 and these states are

mapped each other | − d
2
⟩c=1 = X̄0|d2⟩

c=1. Consequently irreducible unitary

highest weight representations of the c = 1 subalgebra for even d exist if

and only if Q = 0,±1, · · · ,±(d
2
− 1), d

2
. Sufficiency is easily checked by a

free field realization. For odd d, by operating the −1
2
mode of eq. (2.4)

to |Q⟩c=1, similar argument show that necessary and sufficient condition is

Q = 0,±1, · · · ,±d−1
2
. We remark that Q takes integer value and number of

the representations is d.

Now we come back to the c = 3d algebra and we first consider d ≥ 2

case and denote k = d − 1. By the c = 1 subalgebra, allowed U(1) charges
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have been determined. Norms of states G− 1
2
|h,Q⟩ and Ḡ− 1

2
|h,Q⟩, which

must be non-negative, require h ≥ |Q|
2
. For even d and Q = d

2
, operating −1

2

mode of eq. (2.5) to |h, d
2
⟩, we obtain Y− 1

2
|h, d

2
⟩ = 0. On the other hand,

from eq. (2.9), square norm of Y− 1
2
|h, d

2
⟩ is equal to 1

2
(h − d

4
). Therefore h

must be d
4
for Q = d

2
. For odd d, operating the zero mode of eq. (2.5) and

its hermitian conjugate to |h,Q⟩, we obtain Y0|h,Q⟩ = 0 for Q ̸= −k
2
and

Ȳ0|h,Q⟩ = 0 for Q ̸= k
2
. |h, k

2
⟩ and |h,−k

2
⟩ are mapped each other by Y0 and

Ȳ0. Consequently, irreducible unitary highest weight representations of the

c = 3d algebra exist if and only if in the following cases:

• massive representations h > |Q|
2

Q = 0,±1, · · · ,±([d
2
]− 1) A0|h,Q⟩ = 0

and k
2
(for odd d) |h,−k

2
⟩

1
a
Y0−−−→

←−−−−−
1
a
Ȳ0

|h, k
2
⟩ (3.2)

• massless representations h = |Q|
2

Q = 0,±1, · · · ,±[k
2
] A0| |Q|2 , Q⟩ = 0

and d
2
(for even d) |d

4
,−d

2
⟩

X0−−−→
←−−−−−

X̄0

|d
4
, d
2
⟩, (3.3)

where A0 stands for X0 and X̄0 for even d, Y0 and Ȳ0 for odd d and [x] is the

greatest integer not exceeding x and a =
√

1
2
(h− Q

2
). Sufficiency is checked
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by the free field realization eq. (2.7). Since the Fock space of eq. (2.7) is very

large, there exist infinite many highest weight states of the c = 3d algebra, for

example, : ψ1 · · ·ψjeiα(φ
d+φ̄d) : (z) creates the state with (h,Q) = (α2 + j

2
, j)

for 0 ≤ j ≤ [k
2
] and : ψ1 · · ·ψ d

2 : (z) creates the state with (h,Q) = (d
4
, d
2
).

Since the c = 3d algebra is invariant under the spectral flow, NS and

R sector are mapped each other by the spectral flow with η ∈ Z + 1
2
. The

highest weight state of R sector are obtained from those of NS sector by

η = 1
2
spectral flow:

R
η= 1

2←−−− NS Q ≤ 0 |hR = h+ Q
2
+ d

8
, QR = Q+ d

2
⟩R = |h,Q⟩NS

Q > 0 |hR = h− Q
2
+ d

8
, QR = Q− d

2
⟩R = X̄−( d

2
−Q)|h,Q⟩

NS.

(3.4)

Similarly NS sector is mapped from R sector by η = 1
2
spectral flow as follows:

NS
η= 1

2←−−− R Q ≤ 0 |h,Q⟩NS = X̄R
Q |hR = h+ Q

2
+ d

8
, QR = Q+ d

2
⟩R

Q > 0 |h,Q⟩NS = |hR = h− Q
2
+ d

8
, QR = Q− d

2
⟩R. (3.5)

Thus, representations come back to the same representations under the η = 1

spectral flow. The highest weight states in R sector, which are defined by eq.

(3.4), have following zero mode conditions:

• massive representations

Q < 0 |hR, QR − 1⟩R
1
b
GR

0−−−→
←−−−−−

1
b
ḠR

0

|hR, QR⟩R (3.6)

13



Q > 0 |hR, QR + 1⟩R
1
b
ḠR

0−−−→
←−−−−−

1
b
GR

0

|hR, QR⟩R (3.7)

Q = 0

|hR, d
2
⟩R|hR,−d

2
⟩R

|hR, d
2
− 1⟩R

|hR,−d
2
+ 1⟩R

-
�

XR
0

X̄R
0

Z
Z

Z
Z
Z~ Z
Z

Z
Z

ZZ}

1
b
GR

0

1
b
ḠR

0

�
�

�
��>
�

�
�

�
�

�=
2
b
Y R
0

2
b
Ȳ R
0

Z
Z

Z
Z

Z}Z
Z

Z
Z
Z

Z~

(−1)d+1

b
GR

0

(−1)d+1

b
ḠR

0

�
�

�
��=
�
�

�
�
�
�>

2
b
Y R
0

2
b
Ȳ R
0

(3.8)

• massless representations

Q ̸= 0 |d
8
, QR⟩R (3.9)

Q = 0 |d
8
,−d

2
⟩R

XR
0−−−→

←−−−−−
X̄R

0

|d
8
, d
2
⟩R, (3.10)

where b =
√
2(hR − d

8
). From these, only massless representations with Q ̸= 0

and massless representation with Q = 0 for even d possess non-vanishing

Witten indices and their absolute values are 1 and 2 respectively.

Next we consider the structure of the representation spaces. We take

the massive representations for illustration. The highest weight state of the

N = 2 SCA, |h,Q⟩ = |h,Q⟩N=2, is mapped to the N = 2 highest weight state

|hm, Qm⟩N=2 by the spectral flow of the N = 2 SCA with ηN=2 = m ∈ Z:

|h,Q⟩N=2 ηN=2=m−−−−−→ |hm = h− Q2

2k
+ k

2
(m+ Q

k
)2, Qm = k(m+ Q

k
)⟩N=2 (3.11)
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and these states are not connected by the N = 2 SCA generators. In the rep-

resentation space of the c = 3d algebra, however, these states are connected

by X, X̄(Y, Ȳ ), which is the reason why we call X and X̄ as the spectral flow

generators. In fact these states with unit norm are given by

|m⟩ = |hm, Qm⟩N=2 =



m∏
j=1

Y−k(j− 1
2
)−Q√

1
2
(h− k

8
− Q2

2k
+ k

2
(j − 1

2
+ Q

k
)2)
|h,Q⟩ m ≥ 0

−m∏
j=1

Ȳ−k(j− 1
2
)+Q√

1
2
(h− k

8
− Q2

2k
+ k

2
(j − 1

2
− Q

k
)2)
|h,Q⟩ m < 0,

(3.12)

where
∏n−1

j=n ∗ = 1. Just like as the c = 9 algebra, we can prove that represen-

tation space of the c = 3d algebra is a direct sum of representation spaces of

the N = 2 SCA, which are mapped from |h,Q⟩ = |h,Q⟩N=2 by the spectral

flow of the N = 2 SCA with ηN=2 ∈ Z. The proof is an easy generaliza-

tion of [11] and key steps are (i) proposition 1 of [11], (ii) X−n, Y−n|m⟩ = 0

(m ≥ 0, n < k(m+ 1
2
)+Q), (iii) |m⟩ is the highest weight state of the N = 2

SCA, (iv) X−n, Y−n|m⟩ = (N = 2)|m + 1⟩ (m ≥ 0, n ≥ k(m + 1
2
) + Q) (v)

proposition 3 of [11]. For massless representations, similar results hold.

The highest weight state of massless representation with Q > 0, |Q
2
, Q⟩ =

|Q
2
, Q⟩N=2, is mapped to

|hm, Qm⟩N=2

=



m∏
j=1

Y−k(j− 1
2
)−Q√

1
2
(Q
2
− k

8
− Q2

2k
+ k

2
(j − 1

2
+ Q

k
)2)
|Q
2
, Q⟩ m ≥ 0

−m∏
j=2

Ȳ−k(j− 1
2
)+Q−1√

1
2
(Q−1

2
− k

8
− (Q−1)2

2k
+ k

2
(j − 1

2
− Q−1

k
)2)
X̄− d

2
+Q|

Q
2
, Q⟩ m < 0
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(hm, Qm) =


(Q
2
− Q2

2k
+ k

2
(m+ Q

k
)2, k(m+ Q

k
)) m ≥ 0

(Q−1
2
− (Q−1)2

2k
+ k

2
(m+ Q−1

k
)2, k(m+ Q−1

k
)) m < 0

(3.13)

by the spectral flow of the N = 2 SCA with ηN=2 = m ∈ Z and massless

representation with Q < 0 is mapped to

|hm, Qm⟩N=2

=



m∏
j=2

Y−k(j− 1
2
)−Q−1√

1
2
(−Q+1

2
− k

8
− (Q+1)2

2k
+ k

2
(j − 1

2
+ Q+1

k
)2)
X− d

2
−Q| −

Q
2
, Q⟩ m > 0

−m∏
j=1

Ȳ−k(j− 1
2
)+Q√

1
2
(−Q

2
− k

8
− Q2

2k
+ k

2
(j − 1

2
− Q

k
)2)
| − Q

2
, Q⟩ m ≤ 0

(hm, Qm) =


(−Q+1

2
− (Q+1)2

2k
+ k

2
(m+ Q+1

k
)2, k(m+ Q+1

k
)) m > 0

(−Q
2
− Q2

2k
+ k

2
(m+ Q

k
)2, k(m+ Q

k
)) m ≤ 0.

(3.14)

The highest weight state of massless representation with Q = 0, |0, 0⟩ =

|0, 0⟩N=2, is mapped to

|hm, Qm⟩N=2 =



m∏
j=2

Y−k(j− 1
2
)−1√

1
2
(−1

2
− k

8
− 1

2k
+ k

2
(j − 1

2
+ 1

k
)2)
X− d

2
|0, 0⟩ m > 0

|0, 0⟩ m = 0
−m∏
j=2

Ȳ−k(j− 1
2
)−1√

1
2
(−1

2
− k

8
− 1

2k
+ k

2
(j − 1

2
+ 1

k
)2)
X̄− d

2
|0, 0⟩ m < 0

(hm, Qm) =


(−1

2
− 1

2k
+ k

2
(m+ 1

k
)2, k(m+ 1

k
)) m > 0

(0, 0) m = 0

(−1
2
− 1

2k
+ k

2
(m− 1

k
)2, k(m− 1

k
)) m < 0.

(3.15)

In the case of d = 1, the c = 3 algebra is one pair of complex free

boson and fermion (G =
√
2ψi∂φ, X = ψ, Y = 1√

2
i∂φ̄). Although the
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highest weight state is the simultaneous eigenstate of L0, I0 and momentum

of boson α0 and ᾱ0, we abbreviate this to |h,Q⟩. Irreducible unitary highest

weight representation exist if and only if Q = 0 and h(= pp̄ = |p|2) ≥ 0 and

these are invariant under the spectral flow with η ∈ Z. Moreover massive

representation h > 0 is invariant under the spectral flow of the N = 2

SCA with ηN=2 ∈ Z. The highest weight state of massless representation,

|0, 0⟩ = |0, 0⟩N=2, is mapped to

|hm, Qm⟩N=2 =



∏m
j=2

Y−1√
1
2
(j−1)

X− 1
2
|0, 0⟩ m > 0

|0, 0⟩ m = 0∏−m
j=2

Ȳ−1√
1
2
(j−1)

X̄− 1
2
|0, 0⟩ m < 0

(hm, Qm) =


(m− 1

2
, 1) m > 0

(0, 0) m = 0

(−m− 1
2
,−1) m < 0,

(3.16)

by the spectral flow of the N = 2 SCA with ηN=2 = m ∈ Z.

Representation space of the c = 3d algebra contains only one highest

weight state of the N = 2 SCA modulo the spectral flow of the N = 2

SCA. In this sense the c = 3d algebra is the smallest one among the algebras

which contain N = 2 SCA as subalgebra and have integer-shift spectral flow

invariant representations.
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4 Character Formulas

First we consider d ≥ 2 case. Characters of the c = 3d algebra in the

various sectors are defined by

chSec∗ (θ, τ ) = tr∗q
L0− c

24 zI0 Sec = NS,R

chS̃ec∗ (θ, τ ) = tr∗(−1)F qL0− c
24 zI0 ∗ = representation, (4.1)

where q = e2πiτ (Imτ > 0) and z = eiθ and F is a fermion number operator.

Due to the spectral flow and (−1)F = (−1)I0 for generators, characters have

quasi-periodicity in θ and their relations are

chÑS
∗ (θ, τ ) = chNS

∗ (θ + π, τ)

chR∗′(θ, τ ) = q
d
8 z

d
2 chNS

∗ (θ + πτ, τ )

chR̃∗′(θ, τ ) = e−iπ
d
2 chR∗′(θ + π, τ), (4.2)

where ∗′ is the representation corresponding to ∗ and we take the convention

of fermion number such that

(−1)F |h,Q⟩NS = (−1)Q|h,Q⟩NS

(−1)F |hR, QR⟩R =


(−1)Q|hR, QR⟩R Q ≤ 0

(−1)d−Q|hR, QR⟩R Q > 0
(4.3)

(in [11] we omitted the factor e−iπ
d
2 ). In the following we denote chNS as ch.

For k = d− 1 = 1, 2, 3, · · · and Q ∈ Z, we define the following functions:

fk,Q(θ, τ ) =
1

η(τ)

∑
m∈Z

q
k
2
(m+Q

k
)2zk(m+Q

k
) (4.4)

f ′k,Q(θ, τ ) =
1

η(τ)

∑
m∈Z

(zqm+ 1
2 )Q−

k
2

1 + zqm+ 1
2

q
k
2
(m+ 1

2
)2zk(m+ 1

2
), (4.5)
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where η(τ) = q
1
24
∏

n≥1(1− qn). fh,Q and f ′h,Q have properties

fk,Q(θ, τ ) = fk,Q+kZ(θ, τ )

fk,Q(−θ, τ ) = fk,−Q(θ, τ ) (4.6)

fk,Q(θ + 2πτ, τ ) = q−
k
2 z−kfk,Q(θ, τ )

f ′k,Q(θ + 2πτ, τ ) = q−
k
2 z−kf ′k,Q(θ, τ ) (4.7)

and we abbreviate f1 = f1,0. fk,Q and f1f
′
k,Q are Laurant series of z.

By the structure of representation space discussed in section 3 eq. (3.12),

character of massive representation with (h,Q), which we denote as chh,Q(θ, τ ),

is a sum of the N = 2 SCA characters with (hm, Qm), which are the N = 2

SCA massive characters[14,12],

chh,Q(θ, τ ) =
∑
m

chN=2
hm,Qm

(θ, τ )

=
∑
m

qhm− k
8 zQm

f1(θ, τ )

η(τ)2

=
qh−

k
8
−Q2

2k

η(τ)
f1(θ, τ )fk,Q(θ, τ ). (4.8)

For massless representation with Q > 0, we denote the character as

chQ(θ, τ ) and it is a sum of the N = 2 SCA characters with (hm, Qm)

eq. (3.13), which are the N = 2 SCA massless characters not connected

to (h = 0, Q = 0),

chQ(θ, τ ) =
∑
m

chN=2
hm,Qm

(θ, τ )

=
∑
m

qhm− k
8 zQm

1 + zqm+ 1
2

f1(θ, τ )

η(τ)2
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=
1

η(τ)
f1(θ, τ )f

′
k,Q(θ, τ ). (4.9)

For massless representation with Q < 0, its character chQ is, by eq. (3.14),

chQ(θ, τ ) =
∑
m

chN=2
hm,Qm

(θ, τ ) = ch−Q(−θ, τ ). (4.10)

For massless representation with Q = 0, we denote the character as

chvac(θ, τ ) and it is a sum of the N = 2 SCA characters with (hm, Qm)

eq. (3.15), which are the N = 2 SCA massless characters connected to

(h = 0, Q = 0),

chvac(θ, τ ) =
∑
m

chN=2
hm,Qm

(θ, τ )

=
∑
m

(1− q)qhm− k
8 zQm

(1 + zqm−
1
2 )(1 + zqm+ 1

2 )

f1(θ, τ )

η(τ)2

= (ch0,0 − ch1 − ch−1)(θ, τ ). (4.11)

When h of massive representation reaches unitarity bound |Q|
2
, massive

representation splits into massless representations, which are expected from

the zero mode conditions of R sector,

chQ
2
,Q = chQ + chQ+1 Q > 0

ch0,0 = chvac + ch1 + ch−1 Q = 0.
(4.12)

Moreover we can show that chh,Q = qh−
Q
2 (chQ + chQ+1) for Q > 0 and

chh,0 = qh(chvac + ch1 + ch−1). Q < 0 cases are obtained from above results

and chh,Q(−θ, τ ) = chh,−Q(θ, τ ) and chQ(−θ, τ ) = ch−Q(θ, τ ).

Witten index is defined by

index∗ = chR̃∗′(0, τ) = q
d
8 ch∗(π + πτ, τ ) (4.13)
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and their values are

index =



0 massive

(−1)d−Q massless Q > 0

(−1)Q massless Q < 0

1 + (−1)d massless Q = 0.

(4.14)

Next we will consider the modular transformation properties of charac-

ters. Under the S and T transformations, fk,Q and f ′k,Q transform as[15]

fk,Q(θ, τ )|S = e
ikθ2

4πτ

k−1∑
Q′=0

1√
k
e−2πi

QQ′
k fk,Q′(θ, τ )

fk,Q(θ, τ )|T = e2πi(
Q2

2k
−Q

2
− 1

24
)fk,Q(θ + π, τ) (4.15)

f ′k,Q(θ, τ )|S =
√
−iτe

ikθ2

4πτ θ(k : even)(−1)Q i
2
(2f ′

k, k
2
− fk, k

2
)(θ, τ )

+
√
−iτe

ikθ2

4πτ θ(k : odd)(−1)Qf ′
k, k+1

2
(θ, τ )

+
√
−iτe

ikθ2

4πτ

k−1∑
Q′=0

e−2πi
QQ′
k fk,Q′(θ, τ )

×
∫ ∞
−∞

dt
1

2

( e2π(Q−
k
2
)t

1 + e−2πi
Q′
k e2πt

+
e−2π(Q−

k
2
)t

1 + e−2πi
Q′
k e−2πt

)
q

k
2
t2

f ′k,Q(θ, τ )|T = e2πi(−
k
8
− 1

24
)f ′k,Q(θ + π, τ), (4.16)

where f(θ, τ )|S = f( θ
τ
, −1

τ
) and f(θ, τ )|T = f(θ, τ + 1) and θ(P ) is a step

function, θ(P ) = 1 if the proposition P is true and θ(P ) = 0 if P is false.

Using these and transformation formula for Dedekind eta function and

Gaussian integral, massive characters transform as

chα2

2
+ k

8
+Q2

2k
,Q
(θ, τ )|S = e

idθ2

4πτ

∑
1−[ d

2
]≤Q′≤[ k

2
]

1√
k
e−2πi

QQ′
k
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×
∫ ∞
−∞

dβ cos(2παβ)chβ2

2
+ k

8
+Q′2

2k
,Q′(θ, τ )

ch−a2

2
+ k

8
+Q2

2k
,Q
(θ, τ )|S = e

idθ2

4πτ

∑
1−[ d

2
]≤Q′≤[ k

2
]

1√
k
e−2πi

QQ′
k

×
∫ ∞
−∞

dβ cosh(2πaβ)chβ2

2
+ k

8
+Q′2

2k
,Q′(θ, τ )

chh,Q(θ, τ )|T = e2πi(h−
Q
2
− d

8
)chÑS

h,Q(θ, τ ), (4.17)

where α and a are real and a2

2
< k

8
+ Q2

2k
− |Q|

2
. Massless characters with Q > 0

transform as

chQ(θ, τ )|S = e
idθ2

4πτ θ(d : odd)(−1)Q i
2
(ch k

2
− ch− k

2
)(θ, τ )

+e
idθ2

4πτ θ(d : even)(−1)Qch d
2
(θ, τ )

+e
idθ2

4πτ

∑
1−[ d

2
]≤Q′≤[ k

2
]

1√
k
e−2πi

QQ′
k

∫ ∞
−∞

dα chα2

2
+ k

8
+Q′2

2k
,Q′(θ, τ )

×1

2

( e
2π(Q− k

2
) α√

k

1 + e−2πi
Q′
k e

2π α√
k

+
e
−2π(Q− k

2
) α√

k

1 + e−2πi
Q′
k e
−2π α√

k

)
chQ(θ, τ )|T = e2πi(−

d
8
)chÑS

Q (θ, τ ). (4.18)

Transformation formulas for massless characters with Q ≤ 0 are obtained

from above formulas and massive-massless relations eq. (4.12). Massive

characters are divided into two classes: h ≥ k
8
+ Q2

2k
and h < k

8
+ Q2

2k
. Massive

characters with h < k
8
+ Q2

2k
do not appear in the right hand sides of above

formulas and this is the common feature of the irrational theory[11].

In the case of d = 1, massive character is the N = 2 SCA character

itself chh,0(θ, τ ) = qh f1(θ,τ)
η(τ)2

. Massless character is a sum of the N = 2 SCA
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massless characters with (hm, Qm) eq. (3.16),

chvac(θ, τ ) =
∑
m

chN=2
hm,Qm

(θ, τ )

=
∑
m

(1− q)qhmzQm

(1 + zqm−
1
2 )(1 + zqm+ 1

2 )

f1(θ, τ )

η(τ)2

=
f1(θ, τ )

η(τ)2
lim

M→∞

M∑
m=−M

(
zqm−

1
2

1 + zqm−
1
2

− zqm+ 1
2

1 + zqm+ 1
2

)

=
f1(θ, τ )

η(τ)2
(4.19)

In this case, massive-massless relation is ch0,0 = chvac. These characters are

easily calculated by a free field realization and there is no distinction between

massive and massless representations.

5 Discussion

We have obtained the characters of the c = 3d algebra as a sum of the N =

2 SCA characters. Next we will consider the decomposition of characters into

characters of another subalgebra, the c = 1 subalgebra. Since representations

of the c = 3d algebra are invariant under the spectral flow with η ∈ Z, η = 1

flow means that characters have the following property

ch∗(θ + 2πτ, τ ) = q−
d
2 z−dch∗(θ, τ ). (5.1)

This property is checked by eq. (4.7). Hermite’s lemma [11] says that, as

a function of θ, Laurant series in z variable with property eq. (5.1) form a

d-dimensional vector space and one can take {fd,Q(θ, τ )} as basis. Therefore
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characters are expanded into fd,Q as a function of z. Moreover their expansion

coefficients are q-series with non-negative integer coefficients because fd,Q are

characters of the c = 1 subalgebra. In fact characters of the c = 1 subalgebra

are easily calculated by the free boson realization (I(z) =
√
di∂ϕ(z), X(z) =

: ei
√
dϕ(z) :) and agree with fd,Q:

chc=1
Q (θ, τ ) = trq

1
2d

(I2)0− 1
24 zI0 = fd,Q(θ, τ ). (5.2)

Due to the massive-massless relation eq. (4.12), we have only to know de-

composition of d − 1 massive characters chh,Q and one massless character

ch[ d
2
]. Using the formula

fk1,Q1(θ, τ )fk2,Q2(θ, τ ) =
k1+k2−1∑

j=0

fk1k2(k1+k2),k1k2j+k1Q2−k2Q1(0, τ)fk1+k2,k2j+Q1+Q2(θ, τ ),

(5.3)

chh,Q are expanded into fd,Q as

chh,Q(θ, τ ) =
qh−

k
8
−Q2

2k

η(τ)

k∑
j=0

fkd,kj+Q(0, τ)fd,kj+Q(θ, τ ). (5.4)

Coefficients of fd,Q′(θ, τ ) in above expansion are q-series with non-negative

integer coefficients. Since the expansion is ensured by Hermite’s lemma,

decomposition of massless character is obtained by comparing coefficients of

zQ. For even d, ch[ d
2
] is expanded as,

ch d
2
(θ, τ ) = A

(k)
0 (τ)fd,0(θ, τ ) +

d
2
−1∑

Q=1

A
(k)
Q (τ)(fd,Q + fd,−Q)(θ, τ ) + A

(k)
d
2

(τ)fd, d
2
(θ, τ )

A
(k)
Q (τ) =

1

η(τ)2
∑

m∈Z+ 1
2
−Q

d

n∈Z+ 1
2

(m+Q
d
)(n−dm)>0

sgn(n)(−1)n−dm−
1
2 q

1
2
n2− d

2
m2

(5.5)
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and for odd d

ch k
2
(θ, τ ) =

1

2
ch k

4
, k
2
(θ, τ ) +

1

2

k
2∑

Q=1

A
(k)
Q (τ)(fd,Q − fd,−Q)(θ, τ )

A
(k)
Q (τ) =

1

η(τ)2
∑

m∈Z+ 1
2
−Q

d

n∈Z+ 1
2

(m+Q
d
)(n−dm+ 1

2
)>0

sgn(n)(−1)n−dmq
1
2
n2− d

2
m2

−(Q→ −Q). (5.6)

A
(k)
Q resembles the Hecke’s indefinite quadratic form[16]. Although A

(k)
Q (τ)

seems to have negative coefficients, it has non-negative coefficients if one

expands A
(k)
Q (τ) into q-series. (Note that substituting θ = π − πτ shows

A
(2)
1 (τ) is equal to 1.) We remark that, instead of fd,Q, we can take d − 1

massive characters chh,Q and one massless character ch[ d
2
] as basis functions,

so that characters of the certain algebra, which have integer-shift spectral flow

invariant representations (i.e. property eq. (5.1)), can be expanded into the

c = 3d characters. Futhermore, if it contains the N = 2 SCA as subalgebra,

its expansion coefficients are non-negative integers because representation of

the c = 3d algebra contains only one highest weight state of the N = 2 SCA

modulo the spectral flow of the N = 2 SCA.

Next we will consider the decomposition of characters of the N = 4

SCA with c = 6 · d
2
(d:even) into the c = 3d characters. The N = 4 SCA

contains the N = 2 SCA as subalgebra and its representations are invariant

under the integer-shift spectral flow. By the remark in the last paragraph,

the N = 4 SCA characters are expanded into the c = 3d characters with

non-negative integer coefficients. This is interpreted as follows: the N = 4
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SCA and the c = 3d algebra are symmetries of the non-linear σ model on

hyper-Kähler and Ricci-flat Kähler manifold respectively and hyper-Kähler

manifolds are Ricci-flat Kähler manifolds, so that the N = 4 SCA contains

the c = 3d algebra as subalgebra implicitly. The c = 6 · d
2
N = 4 SCA

characters [12] are defined by chN=4
∗ (θ, τ ) = tr∗q

L0− c
24 z2J

3
0 and we have only

to consider d
2
massive characters chN=4

h,l (l stands for isospin) and one massless

character chN=4
l with l = d

4
because of massive-massless relation of the N = 4

SCA characters. These functions span the d
2
+1 dimensional subspace which

consists of even function of θ.(For d = 2, d
2
+ 1 is equal to d. In fact the

N = 4 SCA with c = 6 is isomorphic to the c = 6 algebra.) For example, in

the case of d = 4, the N = 4 SCA massive characters are expanded as

chN=4
h,0 (θ, τ ) =

∑
n≥0

anchh+n,0(θ, τ ) +
∑
n≥0

bn(chh+n+ 1
2
,1 + chh+n+ 1

2
,−1)(θ, τ )

chN=4
h, 1

2
(θ, τ ) =

∑
n≥0

a′nchh+n+ 1
2
,0(θ, τ ) +

∑
n≥0

b′n(chh+n,1 + chh+n,−1)(θ, τ ),

(5.7)

where positive integers an, bn, a
′
n and b′n are given by

∑
n≥0

anq
n =

∑
m q

3m2∏
n≥1(1− qn)

,
∑
n≥0

bnq
n =

∑
m q

3m2+2m∏
n≥1(1− qn)∑

n≥0
a′nq

n =

∑
m q

3m2+3m∏
n≥1(1− qn)

,
∑
n≥0

b′nq
n =

∑
m q

3m2+m∏
n≥1(1− qn)

.

Massless character is expanded as

chN=4
1 (θ, τ ) = ch2(θ, τ ) +

∑
n≥1

a′′nchn,0(θ, τ ) +
∑
n≥2

b′′n(chn+ 1
2
,1 + chn+ 1

2
,−1)(θ, τ )
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∑
n≥1

a′′nq
n =

q
3
8

η(τ)

∑
δ=0,1

∑
m∈Z+ 1

3

n∈Z+ 3
2
m

m(n− 3
2
m−δ+ 1

2
)>0

sgn(m)q3n
2− 3

4
m2

∑
n≥2

b′′nq
n =

q
1
24

η(τ)

∑
δ=1,2

∑
m∈Z+ 1

3

n∈Z+ 3
2
m+ δ

3

m(n− 3
2
m− δ

3
+ 1

2
)>0

sgn(m)q3n
2− 3

4
m2

, (5.8)

where a′′n and b′′n are positive integers. The N = 4 SCA characters are infinite

sums of the c = 3d characters, namely, representations of the N = 4 SCA

with c ≥ 12 are infinitely reducible with respect to the c = 3d algebra.

In order to discuss the properties of Calabi-Yau manifold, we must find

the modular invariant partition functions. Unfortunately this is very hard

because the c = 3d algebra has infinite many primary fields and modular

transformation formulas contain integrals. This irrational theory, however,

can be converted to rational one by combining infinite many characters to

some orbits[6,17,8]. These issues and fusion rules are now under investiga-

tion.

Acknowledgments

I would like to thank Professor T. Eguchi for useful discussions and

careful reading of this manuscript. I also thank M. Ono and T. Sano for

useful discussions. This work is supported in part by the Grant-in-Aid for

Scientific Research from the Ministry of Education, Science and Culture of

Japan No.01790191.

27



References

[1] P.Candelas, G.Horowitz, A.Strominger and E.Witten, Nucl.Phys. B258

(1985)46.

[2] M.Green, J.Schwarz and E.Witten, Superstring Theory 2, Cambridge

University Press(1987).

[3] W.Boucher, D.Friedan and A.Kent, Phys.Lett. 172B (1986)316.

[4] A.Sen, Nucl.Phys. B278 (1986)289; B284 (1987)423.

[5] T.Banks, L.Dixon, D.Friedan and E.Martinec, Nucl.Phys. B299 (1988)

613.

[6] D.Gepner, Nucl.Phys. B296 (1988)757; Phys.Lett. 199B (1987)380.

[7] N.Seiberg, Nucl.Phys. B303 (1988)286.

[8] T.Eguchi, H.Ooguri, A.Taormina and S.K.Yang, Nucl.Phys. B315

(1989) 193.

[9] A.Schwimmer and N.Seiberg, Phys.Lett. 184B (1987)191.

[10] S.Odake, Mod.Phys.Lett. 4 (1989)557.

[11] S.Odake, ”Character Formulas of an Extended Superconformal Alge-

bra Relevant to String Compactification”, Tokyo Univ. preprint UT-

543(1989) (Int.J.Mod.Phys. to be published).

28



[12] T.Eguchi and A.Taormina, Phys.Lett. 210B (1988)125.

[13] A.B.Zamolodchikov, Theor.Math.Phys. 65 (1986)1205.

[14] V.K.Dobrev, Phys.Lett. B186 (1987) 43; E.B.Kiritsis, Int.J.Mod.Phys.

A3 (1988) 1871.

[15] K.Miki, PhD Thesis ”N = 3 superconformal algebra”, Tokyo University,

Dec.1988; G.N.Watson, J.London Math.Soc. 11 (1936) 55.

[16] T.Eguchi and T.Kawai, private communication.

[17] Y.Kazama and H.Suzuki, Nucl.Phys. B321 (1989) 232.

29


