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1 Introduction

In recent years connections between the space-time symmmetry and underly-
ing world-sheet symmetry have been receiving much attention. Especially rela-
tions between the space-time supersymmetry and world-sheet superconformal
symmetry were studied in connection with string compactification [1,2,3,4,5].
It was shown that world-sheet N = 2 superconformal symmetry and U(1)
charge quantization are necessary and sufficient in order to realize the N =1
space-time supersymmetry. Since N = 2 superconformal algebra has an auto-
morphism (spectral flow) [6], Neveu-Schwarz(NS) and Ramond(R) sectors are
mapped onto each other by the spectral flow. This spectral flow is considered
as the space-time supersymmetry. U(1) charge quantization condition is the
generalization of the GSO projection. If compactified space can be considered
as a manifold, N = 1 space-time supersymmetry implies that the compacti-
fied space is a f-dimensional complex manifold with SU(72) holonomy, in other
words, Ricci-flat Kéhler manifold, namely Calabi-Yau manifold[7,8]. This man-
ifold possesses a unique covariantly constant spinor, which generates N = 1
space-time supersymmetry transformation, and an (anti-)holomorphic 7-form.

The N = 2 superconformal symmetry plus the U(1) charge quantization
condition suggest that the N = 2 superconformal symmetry becomes enhanced.
We have studied the extension of the N = 2 superconformal algebra by adding
the spectral flow generators which correspond to the (anti-)holomorphic 7-
form[9,10]. For n = 2, the extended algebra becomes the N = 4 superconformal
algebra[9]. In the case of n = 3, we have determined the structure of the
extended algebra[10]. We call it the ¢ = 9 algebra or 1 = 3 algebra. Since the
n = 3 algebra is regarded as the generalization of the n = 2 algebra (i.e. N =4
superconformal algebra), properties of the ¢ = 9 algebra resemble those of the

N = 4 superconformal algebra. Using this fact we have conjectured character



formulas[11].

In this paper we present character formulas of the ¢ = 9 algebra and prove
them. We also discuss the modular transformation properties of characters.
In section 2 we review the ¢ = 9 algebra. In section 3 we present character
formulas and prove them in the appendix. In section 4 we describe the modular
transformation formulas and in section 5 we discuss the Gepner’s models and

curious modular properties of the characters.

2 Review of the ¢ =9 algebra

In this section we review the ¢ = 9 algebra[10]. We follow the notation of
[10].

We start with two properties of N = 2 superconformal algebra(SCA). One
property is the decoupling of the U(1) Kac-Moody current I(z)[3], namely,

when /(z) is bosonized

() = \/gz'@gb(z) (2.1)

¢(z) = q—iplogz+i Y, %2_", (2.2)
neZ,n#0 n

other fields are decomposed into ¢-dependent part and ¢-independent part (we
denote them by 7),

T(:) = 5 (i06()  +7()
G(z) = eV 3(2)
G(z) = e VI G(2). (2.3)

Here G(2) is the so-called parafermion field, a primary field with B:%(l —-13)

w.r.t. T(z) with & = ¢— 1. In general, A(z) with U(1) charge Q is expressed as

A(z)=: e"Q\/g‘b(z)PA(z) : A(z), where P4(z) is some differential polynomial of



I(z). The other property is the spectral flow [6], i.e. under the transformation

L, = Ly+nl,+ n°0n0
G/ — Gn+77

G, = Gy,

(2.4)

the algebra is invariant for an arbitrary real parameter n. This transformation

is induced by the unitary transformation (momentum shift)

Az) = UlA(x)U, A=T,IG,G
U, = "5 (2.5)

In general, A(z)=: V300 . A(z) is transformed to Al(2)=UJA(2)Uy=29"A(2),
i.e. A=A, oy For the half shift spectral flow (1 € Z—f—%), NS sector is mapped
to R sector and R to NS. For the integral shift spectral flow (n € Z), NS is
mapped to NS and R to R, but the representation is changed. For example, in
NS sector,

(h£Q+3(E-1,Q+(E— 1))V 20+ Q#0

(h,Q)N=2 ==L,
(h+Q+5,Q+5)N2 2h+Q = 0.

(2.6)

In the case of ¢ = 3n, vacuum state is mapped onto

_ o =t N N n_o n=xi N N
(h=0,Q = 0)¥=2 = (0,05 =5 (5, £ )N= 55 (2 ah?, (27)

1

5»E1. So in [10] we considered the exten-

by the spectral flow with n = +
sion of the N = 2 SCA by the addition of the operators X(z), X(z) with
(h, Q)N=2 =(%,+n), which we call the spectral flow generators, and their su-

perpartners Y,Y with (”T“, +(n — 1)). For n = 3, associativity and closure



determine the extended algebra and center ¢ uniquely:

L, Im] = 3n0n1mo
{Gnqu} = {Gnaém}zo

(X0, Xnd = { X0, Xon} = [Xo, Voo = [ X0, Yol

Ly, L] = (n—m)Lnjm + 3n(n? — 1)0n4m0
{Gn,Gr} = 3(n* = 1)0ptmo + (n—m)Lypm + 2Ly,

o =1 G G X X VY Y

Lp,¢m] = (h=1)n—m)¢ppiy, h =1 3 3 3 32 2 2
[Inv Qbm] = Q¢n+m Q =% 1 -1 3 -3 2 =2
{Gn,Xm} - 0 {Gn, 7m} — 2Yn+m
{GnaXm} = 2Yn+m {Gna _m} = 0

G, Y]l = Cn—m)Xpim [Gu,Y] = 0

G, Y] = 0 G, Y] = (2n—m)Xnim
{ X, 7m} = (n*— i)én—i-m,o + (1 =m) Ly + (I )ngm

[Xm Ym] = (77, + %)Gn-i-m + (IG)fH-m

[ 7%7 Ym] = (n + %)Gm-m - (Ié)n—i-m

Y, Y, = %n(n2 — 1)0ntmo + %(n(n +1)+m(m+1))Lm

Here (AB), = Y pc i, ApBu—p +(=1)*E o 4, BapA, except for (GG), in

R sector (see [10]). We call this the ¢ = 9 algebra or n = 3 algebra. The ¢ =9

algebra is not a Lie algebra but an analogue of the W-algebra[12]. We note

that the spectral flow generator X(z) is "square” of the ”true” spectral flow

generator X(z) of [3] because the decopling of U(1) current implies X (z) =
V2 :eV39() s and B(z) =: BE OB > maps NS to R and R to NS, so X maps



NS to NS and R to R.

Properties of the ¢ = 9 algebra:

1. 7degenerate” conditions.

Jacobi identity requires some operator relations and among them

(IX)(2) = 0X (), (2.9)
and its hermitian conjugate (1X)(z) = —0X(z) are the most basic ones.
Here (AB)(z) = §, 2 L A(z)B(z).

2. subalgebras.

The ¢ = 9 algebra containes two N = 2 SCA as subalgebras

c=9 N =2 SCA generated by T.I,G,G (2.10)
1 1 1 1

c=1 N =2 SCA generated b —(I*),=1,—=X,—X.

The second subalgebra corresponds to SU(2) Kac-Moody algebra of N =

(2.11)

4 SCA which is considerd as "n = 2 algebra”.

3. spectral flow.
The ¢ = 9 algebra is invariant under the transformation
L;L = Ln—i-T]In—i-%?]g(sno
I = I, + 3ndno » = G G X X Y Y
P = On+qn Q@ =1 -1 3 -3 2 -2

4. unitary irreducible representation.

The highest weight states of the ¢ = 9 algebra are labeled by conformal

weight h and U(1) charge ). Unitary irreducible representation are as



follows: (see [10] about other zero mode conditions)

massless representation

eNS1 h=0 @=0 oR1 h:% Q:i%

oNS2 h=1 Q=1 R2 h=3 Q=—3

eNS3 h=1 Q=-1 eR3 h=% Q=1 (2.13)
massive representation

NS4 h>0 Q=0 R4 h>3 Q=43 43

NS5 A>3 Q==+1 eR5 h>2 Q=23

@ is determined by subalgebra eq. (2.11) just like as SU(2) Kac-Moody
algebra of the N = 4 SCA determines the isospin. Each state of the
representation in NS(R) sector has integer(half odd integer) U(1) charge
respectively. The half shift flow (n € Z + 3, eq. (2.12)) connects NS
and R sector:NSi <» Ri (i=1,---,5). By the integral shift flow (n € Z, eq.
(2.12)), representations come back to the same representations. This is
the desired property because we consider the spectral flow as the space-
time SUSY, which , by twice operations, takes the representation to the

initial one.

3 Character Formulas of the ¢ =9 Algebra
Characters of the ¢ = 9 algebra are defined by
ch.(0,7) = tr,g™ 320 | (x =NSi,Ri), q¢=¢"™", 2z=¢", (3.1)

where 7 is a modular parameter of torus (Im7 > 0) and 6 is a complex pa-
rameter. Due to the spectral flow, characters have quasi-periodicity in 6. The

spectral flow with n = % implies

chnsi(0 + 77, 7) = q_%z_%chm(@, ) (i=1,---,5), (3.2)



so in the following we will consider NS sector only. Considering the sign of the

U(1) charge it is clear that

ChNSi(—97T) = ChNSi(Q,T) (1:1,4,5)

ChNSQ(_07 T) = Cthg(e, 7'). (33)

Since bosonic(fermionic) generators have even(odd) U(1) charge, i.e. (—1)" =

(=1)", characters of NS and R sector are

chgg(0,7) = trns(— 1) gh0 72120 = chyg(0 + 7, 7)

chz(0,7) = chg(0+m,7). (3.4)
The spectral low with n = 1 implies
chysi(0+ 277, 7) = ¢ 22 3chngi(0,7)  (i=1,--+,5), (3.5)

because of invariance of representations under the integral shift spectral flow.
Characters in NS sector are Laurant serieses in z variable since each state
has integral U(1) charge. Applying these two properties to Hermite’s lemma®
chysi(0,7) are expanded into three basis functions fg (6, 7):

folb,7) = 77(17) ST (Q = 0,+1) (3.6)

neZ

as function in z. Here n(7) = ¢21 [1,>1(1 —¢"). In other words, this expansion

is nothing but the decomposition of chyg; into characters of subalgebra eq.

(2.11) because fo(0,7) = cth:(fgzé(?)H,T) and fi(0,7) = cth:;g;li%(BG,T).

Using this fact, properties of the modular invariant partition functions have

been studied [9]. Authors of [9] showed that cosmological constant vanishes

Fix a =1,2,3,---and 0 < b < a and § = +1. If ®(z) = ®(z,q) is a Laurant series in z

and @ satisfies ®(2q,q) = 25 ®(2,¢), then {®(2)} is a a-dimensional vector space and we
2%q2

can take basis, e.g. z* ZneZ 57Lz“"q%"2+(p+b_Ta)” (p=0,1,2,---,a—1).

This is easily proved by expressing ® as ®(z) = > a,2".



in heterotic string compactification due to supersymmetry in the right moving
sector. They also showed in SST II (non-linear ¢ model) one can vary Euler
numbers by 4. Since there is no geometrical meaning for such a procedure, so
moduli of the string compactification with N = 1 space-time supersymmetry
(i.e. modular invariant partition function of the ¢ = 9 algebra) seems to be
larger than that of Calabi-Yau manifold.

Next we will consider the decomposition of chys; into characters of the
another subalgebra eq. (2.10). In the following N = 2 means N = 2 SCA with
¢ = 9. We take the representation NS4 for illustration. First we note that the
highest weight state of the ¢ = 9 algebra |h,0) is also the highest weight state
of the N = 2 SCA |h,0)V=2 i.e. |h,0)Y=2=|h,0), and this state |h,0)V=2 is
mapped to

NN=2=mM

|h, 0)V=2 =220 B m? 2m) N (3.7)

by the spectral flow of N =2 SCA with ny_y = m(€ Z) (see eq. (2.6)). In the
N = 2 SCA these states |h +m?, 2m)N=2 are not connected by any generators.
In the ¢ = 9 algebra, however, these are connected by X, X (Y,Y). In fact

these state with unit norm are given by

I M]h 0> m>1

1= /hiGG-1)
|h+m?,2m)"=* =< |k, 0) m =0 (3.8)

om Y@y | 0) m< -1,

= /G

From this property we have called X, X (Y,Y) as the spectral flow generators.
eq. (3.8) means representation space of the ¢ = 9 algebra, Vys4, contains

representation space of the N = 2 SCA V= Moreover we can prove the

—i—m2 2m*
following result:

Theorem Vase = B iz om. (3.9)

meZ

This has been conjectured [13,11] because for n = 2 algebra, i.e. N = 4
SCA with ¢ = 6, N = 4 character with (h,[) is sum of N = 2 characters

9



with (A, Q"), where (W', Q') is mapped from (h,Q = 2I) by the integral shift
N = 2 spectral flow[14]. To prove eq. (3.9), it is sufficient to show that any
state of Vga, (N = 2)X - XY ... YX ... XY .--Y]h,0), is a descendant of
|h4+m?2,2m)N=2 ie. (N = 2)|h+m?,2m)¥=2 or has zero norm. Here (N = 2)
denotes creation operators composed of T,I,G,G. The proof is given in the
appendix.

Characters of the N = 2 SCA with ¢ > 3 are classified to three types:

massive and two massless[15,16,14]. chl' =2 is a massive character. Now the

+m?2,2m

character of representation NS4 is easily derived from eq. (3.9)

Cth4<9, T)

_ hrm?— g 2m (1+2¢"3)(1+2'q"3)
- ] (1—q)
qh—i/ﬁg(ze,zr)ﬁg(e,f)

n(r)  n(7) nﬁ)

" e _
~ o e PO

Znez q3(n—%)2
n(7)

f+(977—))7 (310)

where f1(0,7) = (fix£f-1)(0, 7). Last equation is checked by Schroter’s lemma:

Z z{”q%m2 X Z z?qg”2 (a,b=1,2,3,-)
meZ neZ
a+b—1
— Z Py q2p Z 2] —bm amq ab(a+b)ym2+abpm w Z le q 2 2+bpn
p=0 meZ nez

(3.11)

For all other representations, we can prove similar results like as eq. (3.9).
For NS5, the highest state |h, 1) = |h, 1)¥=2 is mapped to |h +m? +m,2m +
1)N=2 by the spectral flow of N = 2 SCA with ny— = m(€ Z). In the

representation space of the ¢ = 9 algebra, these states are expressed as

— 2|y 1) m>0

1
|htm?+m, 2m+1)V=2 = ] (3.12)
P h,1) m < -1,

=t /hr2-1 \/h_1

10




where H?;}b x = 1. These are massive characters of N = 2 SCA. chygs is

ChNS5 (9, 7')

= Y grmteme g ame H (1+2¢"2)(1 +2271qn_5)
meZ n>1 (1 - qn>
¢ 2 95(26,27) 95(6, 7)
n(r)  n(r) 0l
h—1 Zn 1 q3n2
q 2 €Z+1 fO(Q,T) n

RGN

For NS1, the highest weight state |0,0) = |0,0)"=2 is mapped to

Sezi1 ¢
n(7)

fe(0,7)). (3.13)

Y_o; X_3/2
]211 #20,0) m=>1

|0,0)V=2 = |0,0) m =0 (3.14)

Im? —m — 3,2m — 1)V=2 = [[;1% Voo xX\‘/"%/Q]O,m m < —1

_2\/].2—71

and these are massless characters of N =2 SCA connected to (0,0)V=2. chys;

Im? 4+ m — 3,2m + 1)N= T

7

is
1 — m2+m— é 2422m+1 1+Z n—% 1_|_Z71 n—%
e (0.7) = Z< 9)q - . (1 +2¢"2)( i q""2)
oz (L4 2q™3) (14 2¢™F3) 35 (1—qm)
_1
= S0, 7) — chas? (0,7). (3.15)

For NS2, |3,1) = [3,1)V=% is mapped to

‘m +m+1 2m+1>N2 m Y2]’ > mZO
|m 2m>N 211 ™ Y_(2j-1) % 1/2|7 > m < —1 (316)
=2 /i) V2 120 <

and these are massless characters of N = 2 SCA disconnected to (0,0)V=2

chns 18
chas2(0,7) = > gt s 2L (1+ an_%)@ +z 1qn_%)
’ meZ I+ qu+% n>1 (1—qn)?
1 1 h:%
- §f_(9, 7_) + §ChNS5 (9, 7—). (317)

Last equation is proved by comparing the modular property[17].

11



Relations between massive and massless characters are

Chl}iIS4(07 7) = ¢"(chxsi + chnsa + chnss)(0,7)

chiigs(0,7) = qh_%(Cth2+cth3)(97T)- (3.18)

In the case of h — 0(3) for NS4(NS5), these have been expected from figure 3
n [10].

4 Modular Transformation Formulas

We will discusss the modular properties of characters of the ¢ = 9 al-
gebra. Using Gaussian integral and the modular transformation formulas of
theta functions and Dedekind’s eta function, we can show that under the S

transformation (7 — =1, 6 — £) massive characters transform as

3i02

1, a2
Chl}\LIzliz+ : (67 7-)|S = e / d/B o8 27ra6)

_1,8
<cth4+ + chygz T 2)(0,7)

Sl

(4.1)

h:l_ﬁ 3i0 h:l_,_ﬁ
chysd 2 (0,7)|s = 64”/ dﬁcosh(27mﬁ)7(cth4 T +ChNS52 > )(0,7)
(4.2)

_1,a2 i02 —1,8%
chisi T (O.7ls = o [ dBeos 2mﬂ>f<cth“2 — chyst )0, 7),
(4.3)

where f(0,7)|s = f(¢,=}) and a and a are real. NS4 characters are divided

7—’
into two classes:h > % and h < i. NS4 characters with h < i don’t appear
in the right hand sides of above formulas (this fact will be discussed in section
5). Using the transformation formulas of the massive characters and f_(0,7),

massless characters transform as

chas1(0.7)]s = (chlis) — chas?)(60,7)]s (4.4)
3102 1 1
chnso(0,T)]|s = —iedrr §(cthg — chnss)(0,7) + 2chNS5 (0,7)|s. (4.5)

12



Under the T' transformation (7 — 7 + 1,6 +— ), characters transform to

Ng sector as

chysi(0, 7)1 = 2mith=6=5) o, 0,7),

NSi
0 i=1,4
5= (4.6)
1 1=235

where f(0,7)|r = f(0,7 +1).
Above formulas realize the representation of the modular group. In fact we

can check that

ChNSi(Q,T)‘SQ = ChNSi(—e,T)

ChNSi(Q,T)‘(ST)B = ChNSi(—e,T) (iZl,---,5). (47)

For NS4 characters with h < i, we must take care of the order of integration,
see discussion.
Modular properties of R sector characters is derived from NS formulas and

eq. (3.2) easily.

5 Discussion

We have obtained the character formulars of the ¢ = 9 algebra and their
modular properties. Now we are ready to challenge the construction of the
modular invariant partition functions. Unfortunately this is very difficult be-
cause the ¢ = 9 algebra has infinite many primary fields, i.e. irrational theory.
This irrational theory, however, can be converted to rational one by combin-
ing infinite many characters to some orbits. Gepner’s model[4] is one of this
method. By construction Gepner’s model is rational but U(1) charge quantiza-
tion is imposed on by hand. On the other hand the ¢ = 9 algebra is irrational

but U(1) charge quantization is automatically satisfied. Each orbit of Gepner’s

13



model is expanded into the characters of the ¢ = 9 algebra with positive integer
coefficients.

We give an example taking the model (k = 1)°. The subtheory k& =
has three representations (b, Q)¥=2 = (0,0), (3, %3) in NS sector. We denote
their characters as A, B and C' respectively following the notation of [9]. For
example A° + B? + C? (graviton orbit, which contains massless representation
NS1), A°B3 + B®C3 + C%A3 (massless matter orbit, which contains massless
representation NS2) and A°B?C? + B°C?A? + C°A?B? (massive orbit, which

contains massive representations only) are expanded into

(A% + B? + C%)(0,7)

— hnsi(0,7) + " anchlii (6, 7) + anch’gsg” 0,7)
n>1 n>2
(A°B® + B°C® + C%A%)(0, 1)
= chyns2(0,7) +Za ch3m(0, 1) +Zb/ h}liIS;H_ ,7)

n>1 n>1

(A°B*C? + B°C*A* + C°A*B*)(0, 1)

= S dlc e )+ 3 e Rt s g ).

n>0 n>0
n 0 1 2 3 4 ) 6 7
n, 8 27 224 1071 4320 15596 50600
b, 56 334 1512 6064 21096 66960

a, 2 33 216 1062 4344 15579 50570
by, 6 54 331 1530 6048 21078 67020
a’ 1 16 120 640 2762 10304 34485 106000
by 2 28 186 940 3880 14072 45980 138800

Other orbits and other models are also expanded with positive integer coeffi-
clents.

We turn to the next topic: modular transformation property of chngs with

14



h < i. Under S transformation, chygy with A < i seems to disappear. This
is not a special property of the ¢ = 9 algebra but a common feature of the
irratioinal theory: massive representaion with h < l of c=6 N =4 SCA[14],
representation with A < <= of ¢ > 1 Virasoro algebra. We take ¢ > 1 Virasoro

algebra as illustration. ¢ > 1 Virasoro characters with h = 62;4 + %, h =
2 2 c—1

St—% > 0and h = 0are X (1) = L5, X, (1) = 45 and X°(7) = (1-q) L5
respectively. We note that x° = x~ for ¢ < 25 and +0 —
Y X=X X X =X

—X o= for ¢ > 25 and ¢ = 1,25 are special values in the Kac determmant.
12

Due to Gaussian integral and n(=t) = v/—irn(7), characters transform as

XH()s = / dﬁe%w‘ﬂ 3 / dp cos 27rocﬁ)x6()
G(@ls = [ asemig(n) = [ dBeosh(2rag)(r)
N@s = [ dBp®; ()

25—c
pu(5) = cosh(am[ S gy | CPCTVIE) s Bg ),

12 cosh(2m\/52°3) ¢ > 25. '

X, and x° don’t appear in the right hand side. In some sense these are de-

generate. If one generalize finite dimensional formula x;(7)[s = >, S.7x;(1) to
infinite dimensional case x4(7)|s = [dBS fx5(7), S, is formaly (A stand for
(+,a) , (—,a) and 0)
cos(2raf) 0 0
S =1 cosh(2maB) 0 0 (5.2)
pe(B) 00

Formal calculation of S? results in a failure:

(e, ) 0 O
SzAB:/dC'SACSCBI divergent 0 0 (5.3)

divergent 0 0

15



where 1(a, 8) = 5(6(a + 8) + 6(aw — ). Although ++ component is desired
result, — and 0 sector are wrong results or meaningless. S2, however, acts

characters as 1 if we keep characters: for example

G@lse = [ agem ([ vt (n)

— /oo d6627ra5627ri%1§ 1 1
—0 n(T) \/—it

= X (7): (5.4)

The distinction of A > % and h < % appears also in the Feigin-Fuchs

construction. Manifestly unitary Feigin-Fuchs construction with ¢ > 1 is given

by

T(z) = ; (109(2))? : =APd(z), NER

LI =L_,, c=1+12)\% (5.5)

where ¢(z) = ¢(z) + Alog z and ¢ is given by eq. (2.2). Momentum eigenstate
la) (@ € R becuase of hermiticity of p) is the highest weight state w.r.t T'(z)

with h = "‘; + ’\722 ’\72 = %. So in this realization, only the highest weight

states with A > % exist.

Curiousity of massive representation with h < % of c =6 N =4 SCA

has the same origin as ¢ > 1 Virasoro algebra. N = 4 SCA with ¢ = 6k is
realized manifestly unitary by the level k£ — 1 SU(2) Kac-Moody algebra, two

complex free fermions and one Feigin-Fuchs boson[17,18]. In this realizaton

unitary reprezentations have conformal weight h > 4(157—2&-1) because the boson
has energy momentum tensor eq. (5.5) with \? = 2(15i1)' For this range of

conformal weight, fusion rules of the NV = 4 SCA are fusion rules of SU(2) Kac-

Moody algebra and momentum conservation of the Feigin-Fuchs boson[13].

16



Acknowledgments

I would like to thank Professor T. Eguchi for useful suggestions and dis-
cussions and careful reading of this manuscript. I also thank Dr. K. Miki for
useful discussions. This work is supported in part by the Grant-in-Aid for Sci-
entific Research from the Ministry of Education, Science and Culture of Japan

No.01790191.

17



Appendix

We present a proof of eq. (3.9) which tells us the structure of the rep-
resentation space. We prove following lemmas, propositions and theorems by
induction and using the operator relations derived from eq. (2.9): (see [11]

about useful calculation methods)

(IV)(2) + ;(GX)(Z) _oY(2)=0
(@Y)(2) + 5 (01X)(2) — (TX)(z) = 0

(X?)(2) = (Y?)(2) = (XY)(2) = (XOY)(2) = 0 ete. (5.1)

In the following N = 2 means ¢ =9 N = 2 SCA and (/N = 2) stand for creation
operators of the c =9 N = 2 SCA.

First we show the following lemma for the representation NSi (i=1,---,5).
Lemma 1l A B ,hQ)=(N=2)hQ) A B=X,Y.
(proof) Using eq. (2.9), we can show the following operator relations:
(A9'B)(z) = (N = 2 generators)(z) (I >0). (5.2)

For the case A = B = X, this is easily checked because from eq. (2.1)
X(2) is V2 : €V39() 1 g0 (X' X)(2) is expressed by I(z). eq. (5.2) says

(ADB)_—|h Q) = (N=2)|h Q) (1= 0). (5.3)
Combining these relations with various [ proves this lemma.O

From this, the next proposition holds.

Proposition 1

ntm n—m
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Here we abbreviate X_,,, --- X_,, to X --- X.

1. representation NS4.

We define the states [m) = Y_(om_1)---Y_3Y_1|h,0) (m > 0).

Lemma 2 X _,, Y ,/m)=0 n<2m+1 (m>0).

(proof) For example we will show Y_y,,|m) = Y_(25,—1)|m) = 0.

(0) m=0 OK.
(i)m=1

Operating (Y?)_3 and (Y?)_, to |h,0), we obtain Y_1Y_|h,0) = Y2, |h,0)

= 0 because (Y?)(z) = 0. (Or direct calculations show that Y_;Y 5|k, 0)

and Y2|h, 0) have zero norm.) So m = 1 case is OK.
(ii) Assume that m case is OK.

Using (Y?)(z) =0, Y_(am42)/m + 1) and Y_(op41)|m + 1) are

Y_(2m+2)Y—(2m+1) Im), Y_omi1)Y—(2mi1) Im).
I [
=S Yoamosp Yoy —230M Yogm2ip Yoy

By assumption, m + 1 case is also OK.

(5.4)

From (i)(ii), the claim hold by induction. Similarly we can show that

X_(oma1ylm) = 0 using (XY)(z) = 0. O
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Proposition 2 |m) are the highest weight states of the N = 2 SCA with norm
S (A JG - 1)) >0 (m>0).



(proof) (i) m =0,1 OK.
(ii) Assume that m case is OK.

Then,

Am+1) A=T,1,G,G
A Yo gmeyllm) (0> 0), (5.5)
so we will consider only n < 2m + 1. A = G case is trivial. A,|m + 1)
is proportional to Y,_(om1)/m) for A = T, 1 and X,_(2m1)/m) for G.

These states are null states because of Lemma2. So m 4+ 1 case is also

OK. O
Lemma 3 X _,,Y_ ,m)=(N=2)jm+1) n>2m+1 (m>0).

(proof) Operating —(n + 3) mode of (GY)(z) + 5(8IX)(z) — (TX)(z) = 0
and —(n+1) mode of (IY)(z) + 3(GX)(z) — Y (z) = 0 to |m), we obtain

(h+m2+m)X_n_%]m> = Z GpY—n—%—p_ Z LPX—n—%—p
p

p<-1

NI=

_; S+ DLX , 1) m)

p<—2

(= 2m)Yoalm) = (X LYorp by 3 GoXoway)lm).

< 1
p=—1 p<—3

(5.6)
(i) m=0
From eq. (5.6), X_3(0), Y_5[0), X_3|0), Y_5|0), --- are expressed as
(N =2)|0) in turn.
(ii) Assume that m case is OK.
From eq. (5.6), X?meg\m% Y om_a|m), X72m7%|m>, Y_gpm_s|m), --- are

expressed as (N = 2)|m + 1) in turn. So m + 1 case is also OK. O

From these the next proposition holds.
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Proposition 3 X --- XY .--Y |0) = (N =2)jm) (m >0).

m

We can show the similar results for |m) = Yo 1.+ Y. 3Y 1|h 0) (m < 0).

Therefore we obtain the theorem:

Theorem 1 Vygy = @,,cz VN2

+m2.2m"

Here V' denotes the representation space.

For other representations, we only mention the statements.

2. representation NS5.

We define the states |m) = Y_ o, -+ Y_4Y_o|h, 1) (m > 0).

Lemma4 X ., Y ,/m)=0 n<2m+2 (m>0).

Proposition 4 |m) are the highest weight states of the N = 2 SCA with norm
=L (h+352=3)>0 (m>0).

Lemma 5 X _,, Y ,|/m)=(N=2)m+1) n>2m+2 (m>0).

Proposition 5 X--- XY ---Y |0) = (N =2)|m) (m >0).

m

_ N=2
Theorem 2 Vg5 = D,,c7 Vh+m2+m’2m+1.

3. representation NSI1.

We define the states |m) = Y,gm---Y,GY,ALXf%\O,O) (m > 0) and |0) =
0,0).
Lemma 6 X_,,Y_,/m)=0 n<2m+2 (m>0); n<3 (m=0).
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Proposition 6 |m) are the highest weight states of the N = 2 SCA with norm
— 27, (2~ 1) >0 (m>0), 1 (m=0).

Lemma 7 X_,,Y_,m) =(N=2)jm+1) n>2m+2 (m>0) ; n>

% (m =0).
Proposition 7 X --- XY ---Y |0) = (N =2)|m)  (m >0).

m

Theorem 3 Vyg1 = D,50 Vm2+m_%72m+1 ® Voo = D<o 2 —m—L 2m1-

4. representation NS2.

We define the states |[m) = Y. o, -+ - Y_4Y 0[5,1) (m > 0).
Lemma 8 X_,,Y_,/m) =0 n<2m+2 (m>0).

Proposition 8 |m) are the highest weight states of the N = 2 SCA with norm
=[L,52>0 (m=>0).

Lemma 9 X_,,Y_,/m)=(N=2))m+1) n>2m+2 (m>0).

Proposition 9 X --- XY .--Y |0) = (N =2)/m) (m >0).

m

We define the states |m) = Yo,,01 -+ Y 5V 3X 1], 1) (m < 0).

-3 29

Lemma 10 X_,,Y_,/m)=0 n<-2m+1 (m<0) ; n< (m =0).

1
2
Proposition 10 |m) are the highest weight states of the N = 2 SCA with

norm = 2][;25j(j —1) >0 (m <0).

Lemma 11 X_,, Y ,|m)=(N=2)jm—1) n>-2m+1 (m<0) ; n>
(m =0).

1
2
Proposition 11 X --- XY ... Y |0) = (N =2)lm)  (m <0).

—m

Theorem 4 Vygo = @,,50 VN2 D<o VN2:22m

m2+m+3 2m+1 m
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