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1 Introduction

In recent years connections between the space-time symmmetry and underly-

ing world-sheet symmetry have been receiving much attention. Especially rela-

tions between the space-time supersymmetry and world-sheet superconformal

symmetry were studied in connection with string compactification [1,2,3,4,5].

It was shown that world-sheet N = 2 superconformal symmetry and U(1)

charge quantization are necessary and sufficient in order to realize the N = 1

space-time supersymmetry. Since N = 2 superconformal algebra has an auto-

morphism (spectral flow) [6], Neveu-Schwarz(NS) and Ramond(R) sectors are

mapped onto each other by the spectral flow. This spectral flow is considered

as the space-time supersymmetry. U(1) charge quantization condition is the

generalization of the GSO projection. If compactified space can be considered

as a manifold, N = 1 space-time supersymmetry implies that the compacti-

fied space is a ñ-dimensional complex manifold with SU(ñ) holonomy, in other

words, Ricci-flat Kähler manifold, namely Calabi-Yau manifold[7,8]. This man-

ifold possesses a unique covariantly constant spinor, which generates N = 1

space-time supersymmetry transformation, and an (anti-)holomorphic ñ-form.

The N = 2 superconformal symmetry plus the U(1) charge quantization

condition suggest that the N = 2 superconformal symmetry becomes enhanced.

We have studied the extension of the N = 2 superconformal algebra by adding

the spectral flow generators which correspond to the (anti-)holomorphic ñ-

form[9,10]. For ñ = 2, the extended algebra becomes the N = 4 superconformal

algebra[9]. In the case of ñ = 3, we have determined the structure of the

extended algebra[10]. We call it the c = 9 algebra or ñ = 3 algebra. Since the

ñ = 3 algebra is regarded as the generalization of the ñ = 2 algebra (i.e. N = 4

superconformal algebra), properties of the c = 9 algebra resemble those of the

N = 4 superconformal algebra. Using this fact we have conjectured character
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formulas[11].

In this paper we present character formulas of the c = 9 algebra and prove

them. We also discuss the modular transformation properties of characters.

In section 2 we review the c = 9 algebra. In section 3 we present character

formulas and prove them in the appendix. In section 4 we describe the modular

transformation formulas and in section 5 we discuss the Gepner’s models and

curious modular properties of the characters.

2 Review of the c = 9 algebra

In this section we review the c = 9 algebra[10]. We follow the notation of

[10].

We start with two properties of N = 2 superconformal algebra(SCA). One

property is the decoupling of the U(1) Kac-Moody current I(z)[3], namely,

when I(z) is bosonized

I(z) =

√
c

3
i∂ϕ(z) (2.1)

ϕ(z) = q − ip log z + i
∑

n∈Z,n ̸=0

αn

n
z−n, (2.2)

other fields are decomposed into ϕ-dependent part and ϕ-independent part (we

denote them by )̃,

T (z) =
1

2
: (i∂ϕ(z))2 : +T̃ (z)

G(z) = : ei
√

3
c
ϕ(z) : G̃(z)

Ḡ(z) = : e−i
√

3
c
ϕ(z) : ¯̃G(z). (2.3)

Here G̃(z) is the so-called parafermion field, a primary field with h̃=3
2
(1 − 1

c
)

w.r.t. T̃ (z) with c̃ = c− 1. In general, A(z) with U(1) charge Q is expressed as

A(z)=: eiQ
√

3
c
ϕ(z)PA(z) : Ã(z), where PA(z) is some differential polynomial of
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I(z). The other property is the spectral flow [6], i.e. under the transformation

L′
n = Ln + ηIn +

c
6
η2δn0

I ′n = In +
c
3
ηδn0

G′
n = Gn+η

Ḡ′
n = Ḡn−η,

(2.4)

the algebra is invariant for an arbitrary real parameter η. This transformation

is induced by the unitary transformation (momentum shift)

A′(z) = U †
ηA(z)Uη A = T, I,G, Ḡ

Uη = eiη
√

c
3
q. (2.5)

In general, A(z)=: eiQ
√

3
c
ϕ(z) : Ã(z) is transformed to A′(z)=U †

ηA(z)Uη=zQηA(z),

i.e. A′
n=An+Qη. For the half shift spectral flow (η ∈ Z+ 1

2
), NS sector is mapped

to R sector and R to NS. For the integral shift spectral flow (η ∈ Z), NS is

mapped to NS and R to R, but the representation is changed. For example, in

NS sector,

(h,Q)N=2 η=±1−−−→


(h±Q+ 1

2
( c
3
− 1), Q± ( c

3
− 1))N=2 2h±Q 6= 0

(h±Q+ c
6
, Q± c

3
)N=2 2h±Q = 0.

(2.6)

In the case of c = 3ñ, vacuum state is mapped onto

(h = 0, Q = 0)N=2 = (0, 0)N=2
NS

η=± 1
2−−−→ (

ñ

8
,± ñ

2
)N=2
R

η=± 1
2−−−→ (

ñ

2
,±ñ)N=2

NS , (2.7)

by the spectral flow with η = ±1
2
,±1. So in [10] we considered the exten-

sion of the N = 2 SCA by the addition of the operators X(z), X̄(z) with

(h,Q)N=2 =( ñ
2
,±ñ), which we call the spectral flow generators, and their su-

perpartners Y, Ȳ with ( ñ+1
2
,±(ñ − 1)). For ñ = 3, associativity and closure
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determine the extended algebra and center c uniquely:

c = 9

[Ln, Lm] = (n−m)Ln+m + 3
4
n(n2 − 1)δn+m,0

{Gn, Ḡm} = 3(n2 − 1
4
)δn+m,0 + (n−m)In+m + 2Ln+m

[In, Im] = 3nδn+m,0

{Gn, Gm} = {Ḡn, Ḡm} = 0
ϕ = I G Ḡ X X̄ Y Ȳ

[Ln, ϕm] = ((h− 1)n−m)ϕn+m h = 1 3
2

3
2

3
2

3
2

2 2

[In, ϕm] = Qϕn+m Q = ∗ 1 −1 3 −3 2 −2

{Gn, Xm} = 0 {Gn, X̄m} = 2Ȳn+m

{Ḡn, Xm} = 2Yn+m {Ḡn, X̄m} = 0

[Gn, Ym] = (2n−m)Xn+m [Gn, Ȳm] = 0

[Ḡn, Ym] = 0 [Ḡn, Ȳm] = (2n−m)X̄n+m

{Xn, X̄m} = (n2 − 1
4
)δn+m,0 + (n−m)In+m + (I2)n+m

[Xn, Ȳm] = (n+ 1
2
)Gn+m + (IG)n+m

[X̄n, Ym] = (n+ 1
2
)Ḡn+m − (IḠ)n+m

[Yn, Ȳm] = 1
2
n(n2 − 1)δn+m,0 +

1
2
(n(n+ 1) +m(m+ 1))In+m

+1
4
(n−m)(I2)n+m − (m+ 1)Ln+m + (IT )n+m − 1

2
(GḠ)n+m

{Xn, Xm} = {X̄n, X̄m} = [Xn, Ym] = [X̄n, Ȳm] = [Yn, Ym] = [Ȳn, Ȳm] = 0.

(2.8)

Here (AB)n =
∑

p≤−hA
ApBn−p +(−1)AB ∑

p>−hA
Bn−pAp except for (GḠ)n in

R sector (see [10]). We call this the c = 9 algebra or ñ = 3 algebra. The c = 9

algebra is not a Lie algebra but an analogue of the W -algebra[12]. We note

that the spectral flow generator X(z) is ”square” of the ”true” spectral flow

generator Σ(z) of [3] because the decopling of U(1) current implies X(z) =
√
2 : ei

√
3ϕ(z) : and Σ(z) =: ei

√
3

2
ϕ(z) :. Σ maps NS to R and R to NS, so X maps
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NS to NS and R to R.

Properties of the c = 9 algebra:

1. ”degenerate” conditions.

Jacobi identity requires some operator relations and among them

(IX)(z) = ∂X(z), (2.9)

and its hermitian conjugate (IX̄)(z) = −∂X̄(z) are the most basic ones.

Here (AB)(z) =
∮
z

dx
2πi

1
x−z

A(x)B(z).

2. subalgebras.

The c = 9 algebra containes two N = 2 SCA as subalgebras

c = 9 N = 2 SCA generated by T, I,G, Ḡ (2.10)

c = 1 N = 2 SCA generated by
1

6
(I2),

1

3
I,

1√
3
X,

1√
3
X̄. (2.11)

The second subalgebra corresponds to SU(2) Kac-Moody algebra of N =

4 SCA which is considerd as ”ñ = 2 algebra”.

3. spectral flow.

The c = 9 algebra is invariant under the transformation
L′
n = Ln + ηIn +

3
2
η2δn0

I ′n = In + 3ηδn0 ϕ = G Ḡ X X̄ Y Ȳ

ϕ′
n = ϕn+Qη Q = 1 −1 3 −3 2 −2.

(2.12)

4. unitary irreducible representation.

The highest weight states of the c = 9 algebra are labeled by conformal

weight h and U(1) charge Q. Unitary irreducible representation are as
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follows: (see [10] about other zero mode conditions)

massless representation

•NS1 h = 0 Q = 0 •R1 h = 3
8

Q = ±3
2

•NS2 h = 1
2

Q = 1 •R2 h = 3
8

Q = −1
2

•NS3 h = 1
2

Q = −1 •R3 h = 3
8

Q = 1
2

massive representation

•NS4 h > 0 Q = 0 •R4 h > 3
8

Q = ±3
2
,±1

2

•NS5 h > 1
2

Q = ±1 •R5 h > 3
8

Q = ±1
2
.

(2.13)

Q is determined by subalgebra eq. (2.11) just like as SU(2) Kac-Moody

algebra of the N = 4 SCA determines the isospin. Each state of the

representation in NS(R) sector has integer(half odd integer) U(1) charge

respectively. The half shift flow (η ∈ Z + 1
2
, eq. (2.12)) connects NS

and R sector:NSi ↔ Ri (i=1,· · ·,5). By the integral shift flow (η ∈ Z, eq.

(2.12)), representations come back to the same representations. This is

the desired property because we consider the spectral flow as the space-

time SUSY, which , by twice operations, takes the representation to the

initial one.

3 Character Formulas of the c = 9 Algebra

Characters of the c = 9 algebra are defined by

ch∗(θ, τ ) = tr∗q
L0− c

24 zI0 , (∗ = NSi,Ri) , q = e2πiτ , z = eiθ, (3.1)

where τ is a modular parameter of torus (Imτ > 0) and θ is a complex pa-

rameter. Due to the spectral flow, characters have quasi-periodicity in θ. The

spectral flow with η = 1
2
implies

chNSi(θ + πτ, τ ) = q−
3
8 z−

3
2 chRi(θ, τ ) (i = 1, · · · , 5), (3.2)
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so in the following we will consider NS sector only. Considering the sign of the

U(1) charge it is clear that

chNSi(−θ, τ ) = chNSi(θ, τ ) (i = 1, 4, 5)

chNS2(−θ, τ ) = chNS3(θ, τ ). (3.3)

Since bosonic(fermionic) generators have even(odd) U(1) charge, i.e. (−1)F =

(−1)I0 , characters of ÑS and R̃ sector are

ch
ÑS
(θ, τ ) = trNS(−1)F qL0− c

24 zI0 = chNS(θ + π, τ)

ch
R̃
(θ, τ ) = chR(θ + π, τ). (3.4)

The spectral flow with η = 1 implies

chNSi(θ + 2πτ, τ ) = q−
3
2 z−3chNSi(θ, τ ) (i = 1, · · · , 5), (3.5)

because of invariance of representations under the integral shift spectral flow.

Characters in NS sector are Laurant serieses in z variable since each state

has integral U(1) charge. Applying these two properties to Hermite’s lemma1

chNSi(θ, τ ) are expanded into three basis functions fQ(θ, τ ):

fQ(θ, τ ) =
1

η(τ)

∑
n∈Z

q
3
2
(n+Q

3
)2z3(n+

Q
3
) (Q = 0,±1) (3.6)

as function in z. Here η(τ) = q
1
24

∏
n≥1(1− qn). In other words, this expansion

is nothing but the decomposition of chNSi into characters of subalgebra eq.

(2.11) because f0(θ, τ ) = chN=2,c=1
h=0,Q=0(3θ, τ ) and f±1(θ, τ ) = chN=2,c=1

h= 1
6
,Q=± 1

3

(3θ, τ ).

Using this fact, properties of the modular invariant partition functions have

been studied [9]. Authors of [9] showed that cosmological constant vanishes

1Fix a = 1, 2, 3, · · · and 0 ≤ b ≤ a and δ = ±1. If Φ(z) = Φ(z, q) is a Laurant series in z

and Φ satisfies Φ(zq, q) = δ

zaq
b
2
Φ(z, q), then {Φ(z)} is a a-dimensional vector space and we

can take basis, e.g. zρ
∑

n∈Z δnzanq
a
2n

2+(ρ+ b−a
2 )n (ρ = 0, 1, 2, · · · , a− 1).

This is easily proved by expressing Φ as Φ(z) =
∑

anz
n.
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in heterotic string compactification due to supersymmetry in the right moving

sector. They also showed in SST II (non-linear σ model) one can vary Euler

numbers by 4. Since there is no geometrical meaning for such a procedure, so

moduli of the string compactification with N = 1 space-time supersymmetry

(i.e. modular invariant partition function of the c = 9 algebra) seems to be

larger than that of Calabi-Yau manifold.

Next we will consider the decomposition of chNSi into characters of the

another subalgebra eq. (2.10). In the following N = 2 means N = 2 SCA with

c = 9. We take the representation NS4 for illustration. First we note that the

highest weight state of the c = 9 algebra |h, 0〉 is also the highest weight state

of the N = 2 SCA |h, 0〉N=2, i.e. |h, 0〉N=2=|h, 0〉, and this state |h, 0〉N=2 is

mapped to

|h, 0〉N=2 ηN=2=m−−−−−→ |h+m2, 2m〉N=2, (3.7)

by the spectral flow of N = 2 SCA with ηN=2 = m(∈ Z) (see eq. (2.6)). In the

N = 2 SCA these states |h+m2, 2m〉N=2 are not connected by any generators.

In the c = 9 algebra, however, these are connected by X, X̄ (Y, Ȳ ). In fact

these state with unit norm are given by

|h+m2, 2m〉N=2 =



∏m
j=1

Y−(2j−1)√
h+j(j−1)

|h, 0〉 m ≥ 1

|h, 0〉 m = 0∏−m
j=1

Ȳ−(2j−1)√
h+j(j−1)

|h, 0〉 m ≤ −1.

(3.8)

From this property we have called X, X̄ (Y, Ȳ ) as the spectral flow generators.

eq. (3.8) means representation space of the c = 9 algebra, VNS4, contains

representation space of the N = 2 SCA V N=2
h+m2,2m. Moreover we can prove the

following result:

Theorem VNS4 =
⊕
m∈Z

V N=2
h+m2,2m. (3.9)

This has been conjectured [13,11] because for ñ = 2 algebra, i.e. N = 4

SCA with c = 6, N = 4 character with (h, I) is sum of N = 2 characters
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with (h′, Q′), where (h′, Q′) is mapped from (h,Q = 2I) by the integral shift

N = 2 spectral flow[14]. To prove eq. (3.9), it is sufficient to show that any

state of VNS4, (N = 2)X · · ·XY · · ·Y X̄ · · · X̄Ȳ · · · Ȳ |h, 0〉, is a descendant of

|h+m2, 2m〉N=2, i.e. (N = 2)|h+m2, 2m〉N=2 or has zero norm. Here (N = 2)

denotes creation operators composed of T, I,G, Ḡ. The proof is given in the

appendix.

Characters of the N = 2 SCA with c > 3 are classified to three types:

massive and two massless[15,16,14]. chN=2
h+m2,2m is a massive character. Now the

character of representation NS4 is easily derived from eq. (3.9)

chNS4(θ, τ )

=
∑
m∈Z

qh+m2− 9
24 z2m

∏
n≥1

(1 + zqn−
1
2 )(1 + z−1qn−

1
2 )

(1− qn)2

=
qh−

1
4

η(τ)

ϑ3(2θ, 2τ)

η(τ)

ϑ3(θ, τ )

η(τ)

=
qh−

1
4

η(τ)
(

∑
n∈Z q3n

2

η(τ)
f0(θ, τ ) +

∑
n∈Z q3(n−

1
3
)2

η(τ)
f+(θ, τ )), (3.10)

where f±(θ, τ ) = (f1±f−1)(θ, τ ). Last equation is checked by Schröter’s lemma:

∑
m∈Z

zm1 q
a
2
m2 ×

∑
n∈Z

zn2 q
b
2
n2

(a, b = 1, 2, 3, · · ·)

=
a+b−1∑
ρ=0

zρ2q
b
2
ρ2

∑
m∈Z

z−bm
1 zam2 q

1
2
ab(a+b)m2+abρm ×

∑
n∈Z

zn1 z
n
2 q

a+b
2

n2+bρn.

(3.11)

For all other representations, we can prove similar results like as eq. (3.9).

For NS5, the highest state |h, 1〉 = |h, 1〉N=2 is mapped to |h +m2 +m, 2m +

1〉N=2 by the spectral flow of N = 2 SCA with ηN=2 = m(∈ Z). In the

representation space of the c = 9 algebra, these states are expressed as

|h+m2+m, 2m+1〉N=2 =


∏m

j=1
Y−2j√
h+j2− 1

2

|h, 1〉 m ≥ 0∏−m−1
j=1

Ȳ−2j√
h+j2− 1

2

× Ȳ0√
h− 1

2

|h, 1〉 m ≤ −1,
(3.12)
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where
∏n−1

j=n ∗ = 1. These are massive characters of N = 2 SCA. chNS5 is

chNS5(θ, τ )

=
∑
m∈Z

qh+m2+m− 9
24 z2m+1

∏
n≥1

(1 + zqn−
1
2 )(1 + z−1qn−

1
2 )

(1− qn)2

=
qh−

1
2

η(τ)

ϑ2(2θ, 2τ)

η(τ)

ϑ3(θ, τ )

η(τ)

=
qh−

1
2

η(τ)
(

∑
n∈Z+ 1

2
q3n

2

η(τ)
f0(θ, τ ) +

∑
n∈Z+ 1

2
q3(n−

1
3
)2

η(τ)
f+(θ, τ )). (3.13)

For NS1, the highest weight state |0, 0〉 = |0, 0〉N=2 is mapped to

|m2 +m− 1
2
, 2m+ 1〉N=2 =

∏m
j=2

Y−2j√
j2−1

× X−3/2√
2

|0, 0〉 m ≥ 1

|0, 0〉N=2 = |0, 0〉 m = 0

|m2 −m− 1
2
, 2m− 1〉N=2 =

∏−m
j=2

Ȳ−2j√
j2−1

× X̄−3/2√
2

|0, 0〉 m ≤ −1

(3.14)

and these are massless characters of N = 2 SCA connected to (0, 0)N=2. chNS1

is

chNS1(θ, τ ) =
∑
m∈Z

(1− q)qm
2+m− 1

2
− 9

24 z2m+1

(1 + zqm− 1
2 )(1 + zqm+ 1

2 )

∏
n≥1

(1 + zqn−
1
2 )(1 + z−1qn−

1
2 )

(1− qn)2

= chh=0
NS4(θ, τ )− ch

h= 1
2

NS5 (θ, τ ). (3.15)

For NS2, |1
2
, 1〉 = |1

2
, 1〉N=2 is mapped to

|m2 +m+ 1
2
, 2m+ 1〉N=2 =

∏m
j=1

Y−2j

j
|1
2
, 1〉 m ≥ 0

|m2, 2m〉N=2 =
∏−m

j=2
Ȳ−(2j−1)√

j(j−1)
× X̄−1/2√

2
|1
2
, 1〉 m ≤ −1

(3.16)

and these are massless characters of N = 2 SCA disconnected to (0, 0)N=2.

chNS2 is

chNS2(θ, τ ) =
∑
m∈Z

qm
2+m+ 1

2
− 9

24 z2m+1

1 + zqm+ 1
2

∏
n≥1

(1 + zqn−
1
2 )(1 + z−1qn−

1
2 )

(1− qn)2

=
1

2
f−(θ, τ ) +

1

2
ch

h= 1
2

NS5 (θ, τ ). (3.17)

Last equation is proved by comparing the modular property[17].
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Relations between massive and massless characters are

chh
NS4(θ, τ ) = qh(chNS1 + chNS2 + chNS3)(θ, τ )

chh
NS5(θ, τ ) = qh−

1
2 (chNS2 + chNS3)(θ, τ ). (3.18)

In the case of h → 0(1
2
) for NS4(NS5), these have been expected from figure 3

in [10].

4 Modular Transformation Formulas

We will discusss the modular properties of characters of the c = 9 al-

gebra. Using Gaussian integral and the modular transformation formulas of

theta functions and Dedekind’s eta function, we can show that under the S

transformation (τ 7→ −1
τ
, θ 7→ θ

τ
) massive characters transform as

ch
h= 1

4
+α2

2
NS4 (θ, τ )|S = e

3iθ2

4πτ

∫ ∞

−∞
dβ cos(2παβ)

1√
2
(ch

h= 1
4
+β2

2
NS4 + ch

h= 1
2
+β2

2
NS5 )(θ, τ )

(4.1)

ch
h= 1

4
−a2

2
NS4 (θ, τ )|S = e

3iθ2

4πτ

∫ ∞

−∞
dβ cosh(2πaβ)

1√
2
(ch

h= 1
4
+β2

2
NS4 + ch

h= 1
2
+β2

2
NS5 )(θ, τ )

(4.2)

ch
h= 1

2
+α2

2
NS5 (θ, τ )|S = e

3iθ2

4πτ

∫ ∞

−∞
dβ cos(2παβ)

1√
2
(ch

h= 1
4
+β2

2
NS4 − ch

h= 1
2
+β2

2
NS5 )(θ, τ ),

(4.3)

where f(θ, τ )|S = f( θ
τ
, −1

τ
) and α and a are real. NS4 characters are divided

into two classes:h ≥ 1
4
and h < 1

4
. NS4 characters with h < 1

4
don’t appear

in the right hand sides of above formulas (this fact will be discussed in section

5). Using the transformation formulas of the massive characters and f−(θ, τ ),

massless characters transform as

chNS1(θ, τ )|S = (chh=0
NS4 − ch

h= 1
2

NS5 )(θ, τ )|S (4.4)

chNS2(θ, τ )|S = −ie
3iθ2

4πτ
1

2
(chNS2 − chNS3)(θ, τ ) +

1

2
ch

h= 1
2

NS5 (θ, τ )|S. (4.5)
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Under the T transformation (τ 7→ τ + 1, θ 7→ θ), characters transform to

ÑS sector as

chNSi(θ, τ )|T = e2πi(h−δ− 3
8
)ch

ÑSi
(θ, τ ),

δ =


0 i = 1, 4

1
2

i = 2, 3, 5
(4.6)

where f(θ, τ )|T = f(θ, τ + 1).

Above formulas realize the representation of the modular group. In fact we

can check that

chNSi(θ, τ )|S2 = chNSi(−θ, τ )

chNSi(θ, τ )|(ST )3 = chNSi(−θ, τ ) (i = 1, · · · , 5). (4.7)

For NS4 characters with h < 1
4
, we must take care of the order of integration,

see discussion.

Modular properties of R sector characters is derived from NS formulas and

eq. (3.2) easily.

5 Discussion

We have obtained the character formulars of the c = 9 algebra and their

modular properties. Now we are ready to challenge the construction of the

modular invariant partition functions. Unfortunately this is very difficult be-

cause the c = 9 algebra has infinite many primary fields, i.e. irrational theory.

This irrational theory, however, can be converted to rational one by combin-

ing infinite many characters to some orbits. Gepner’s model[4] is one of this

method. By construction Gepner’s model is rational but U(1) charge quantiza-

tion is imposed on by hand. On the other hand the c = 9 algebra is irrational

but U(1) charge quantization is automatically satisfied. Each orbit of Gepner’s

13



model is expanded into the characters of the c = 9 algebra with positive integer

coefficients.

We give an example taking the model (k = 1)9. The subtheory k = 1

has three representations (h,Q)N=2 = (0, 0), (1
6
,±1

3
) in NS sector. We denote

their characters as A,B and C respectively following the notation of [9]. For

example A9 +B9 + C9 (graviton orbit, which contains massless representation

NS1), A6B3 + B6C3 + C6A3 (massless matter orbit, which contains massless

representation NS2) and A5B2C2 + B5C2A2 + C5A2B2 (massive orbit, which

contains massive representations only) are expanded into

(A9 +B9 + C9)(θ, τ )

= chNS1(θ, τ ) +
∑
n≥1

anch
h=n
NS4 (θ, τ ) +

∑
n≥2

bnch
h=n+ 1

2
NS5 (θ, τ )

(A6B3 +B6C3 + C6A3)(θ, τ )

= chNS2(θ, τ ) +
∑
n≥1

a′nch
h=n
NS4 (θ, τ ) +

∑
n≥1

b′nch
h=n+ 1

2
NS5 (θ, τ )

(A5B2C2 +B5C2A2 + C5A2B2)(θ, τ )

=
∑
n≥0

a′′nch
h=n+ 2

3
NS4 (θ, τ ) +

∑
n≥0

b′′nch
h=n+ 1

2
+ 2

3
NS5 (θ, τ ).

n 0 1 2 3 4 5 6 7 · · ·

an 8 27 224 1071 4320 15596 50600 · · ·

bn 56 334 1512 6064 21096 66960 · · ·

a′n 2 33 216 1062 4344 15579 50570 · · ·

b′n 6 54 331 1530 6048 21078 67020 · · ·

a′′n 1 16 120 640 2762 10304 34485 106000 · · ·

b′′n 2 28 186 940 3880 14072 45980 138800 · · ·

Other orbits and other models are also expanded with positive integer coeffi-

cients.

We turn to the next topic: modular transformation property of chNS4 with

14



h < 1
4
. Under S transformation, chNS4 with h < 1

4
seems to disappear. This

is not a special property of the c = 9 algebra but a common feature of the

irratioinal theory: massive representaion with h < 1
8
of c = 6 N = 4 SCA[14],

representation with h < c−1
24

of c > 1 Virasoro algebra. We take c > 1 Virasoro

algebra as illustration. c > 1 Virasoro characters with h = c−1
24

+ α2

2
, h =

c−1
24

− a2

2
> 0 and h = 0 are χ+

α (τ) =
q
α2

2

η(τ)
, χ−

a (τ) =
q−

a2

2

η(τ)
and χ0(τ) = (1−q) q

− c−1
24

η(τ)

respectively. We note that χ0 = χ−√
c−1
12

−χ+√
25−c
12

for c < 25 and χ0 = χ−√
c−1
12

−χ−√
c−25
12

for c ≥ 25 and c = 1, 25 are special values in the Kac determinant.

Due to Gaussian integral and η(−1
τ
) =

√
−iτη(τ), characters transform as

χ+
α (τ)|S =

∫ ∞

−∞
dβe2πiαβχ+

β (τ) =
∫ ∞

−∞
dβ cos(2παβ)χ+

β (τ)

χ−
a (τ)|S =

∫ ∞

−∞
dβe2πaβχ+

β (τ) =
∫ ∞

−∞
dβ cosh(2πaβ)χ+

β (τ)

χ0(τ)|S =
∫ ∞

−∞
dβρc(β)χ

+
β (τ)

ρc(β) = cosh(2π

√
c− 1

12
β)−


cos(2π

√
25−c
12

β) c < 25

cosh(2π
√

c−25
12

β) c ≥ 25.
(5.1)

χ−
a and χ0 don’t appear in the right hand side. In some sense these are de-

generate. If one generalize finite dimensional formula χi(τ)|S =
∑

j S
j

i χj(τ) to

infinite dimensional case χA(τ)|S =
∫
dBS B

A χB(τ), S
B

A is formaly (A stand for

(+, α) , (−, a) and 0)

S B
A =


cos(2παβ) 0 0

cosh(2πaβ) 0 0

ρc(β) 0 0


.

(5.2)

Formal calculation of S2 results in a failure:

S2 B
A =

∫
dCS C

A S B
C =


1(α, β) 0 0

divergent 0 0

divergent 0 0


,

(5.3)
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where 1(α, β) = 1
2
(δ(α + β) + δ(α − β)). Although ++ component is desired

result, − and 0 sector are wrong results or meaningless. S2, however, acts

characters as 1 if we keep characters: for example

χ−
a (τ)|S2 =

∫ ∞

−∞
dβe2πaβ(

∫ ∞

−∞
dγe2πiβγχ+

γ (τ))

=
∫ ∞

−∞
dβe2πaβe2πi

−1
τ

β2

2
1

η(τ)

1√
−iτ

= χ−
a (τ). (5.4)

The distinction of h > c−1
24

and h < c−1
24

appears also in the Feigin-Fuchs

construction. Manifestly unitary Feigin-Fuchs construction with c > 1 is given

by

T (z) =
1

2
: (i∂ϕ̃(z))2 : −λ∂2ϕ̃(z), λ ∈ R

L†
n = L−n , c = 1 + 12λ2, (5.5)

where ϕ̃(z) = ϕ(z) + λ log z and ϕ is given by eq. (2.2). Momentum eigenstate

|α〉 ( α ∈ R becuase of hermiticity of p) is the highest weight state w.r.t T (z)

with h = α2

2
+ λ2

2
≥ λ2

2
= c−1

24
. So in this realization, only the highest weight

states with h ≥ c−1
24

exist.

Curiousity of massive representation with h < 1
8
of c = 6 N = 4 SCA

has the same origin as c > 1 Virasoro algebra. N = 4 SCA with c = 6k is

realized manifestly unitary by the level k − 1 SU(2) Kac-Moody algebra, two

complex free fermions and one Feigin-Fuchs boson[17,18]. In this realizaton

unitary reprezentations have conformal weight h ≥ k2

4(k+1)
because the boson

has energy momentum tensor eq. (5.5) with λ2 = k2

2(k+1)
. For this range of

conformal weight, fusion rules of the N = 4 SCA are fusion rules of SU(2) Kac-

Moody algebra and momentum conservation of the Feigin-Fuchs boson[13].
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Appendix

We present a proof of eq. (3.9) which tells us the structure of the rep-

resentation space. We prove following lemmas, propositions and theorems by

induction and using the operator relations derived from eq. (2.9): (see [11]

about useful calculation methods)

(IY )(z) +
1

2
(ḠX)(z)− ∂Y (z) = 0

(GY )(z) +
1

2
(∂IX)(z)− (TX)(z) = 0

(X2)(z) = (Y 2)(z) = (XY )(z) = (X∂Y )(z) = 0 etc. (5.1)

In the following N = 2 means c = 9 N = 2 SCA and (N = 2) stand for creation

operators of the c = 9 N = 2 SCA.

First we show the following lemma for the representation NSi (i=1, · · · , 5).

Lemma 1 A−rB̄−s|h Q〉 = (N = 2)|h Q〉 A,B = X,Y.

(proof) Using eq. (2.9), we can show the following operator relations:

(A∂lB̄)(z) = (N = 2 generators)(z) (l ≥ 0). (5.2)

For the case A = B = X, this is easily checked because from eq. (2.1)

X(z) is
√
2 : ei

√
3ϕ(z) :, so (X∂lX̄)(z) is expressed by I(z). eq. (5.2) says

(A∂lB̄)−r−s|h Q〉 = (N = 2)|h Q〉 (l ≥ 0). (5.3)

Combining these relations with various l proves this lemma.2

From this, the next proposition holds.

Proposition 1

n+m
2︷ ︸︸ ︷

X · · ·XY · · ·Y

n−m
2︷ ︸︸ ︷

X̄ · · · X̄Ȳ · · · Ȳ |h Q〉
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=


∑
(N = 2)

m︷ ︸︸ ︷
X · · ·XY · · ·Y |h Q〉 m ≥ 0∑

(N = 2) X̄ · · · X̄Ȳ · · · Ȳ︸ ︷︷ ︸
−m

|h Q〉 m < 0.

Here we abbreviate X−n1 · · ·X−nk
to X · · ·X.

1. representation NS4.

We define the states |m〉 = Y−(2m−1) · · ·Y−3Y−1|h, 0〉 (m ≥ 0).

Lemma 2 X−n, Y−n|m〉 = 0 n < 2m+ 1 (m ≥ 0).

(proof) For example we will show Y−2m|m〉 = Y−(2m−1)|m〉 = 0.

(0) m = 0 OK.

(i) m = 1

Operating (Y 2)−3 and (Y 2)−2 to |h, 0〉, we obtain Y−1Y−2|h, 0〉 = Y 2
−1|h, 0〉

= 0 because (Y 2)(z) = 0. (Or direct calculations show that Y−1Y−2|h, 0〉

and Y 2
−1|h, 0〉 have zero norm.) So m = 1 case is OK.

(ii) Assume that m case is OK.

Using (Y 2)(z) = 0, Y−(2m+2)|m+ 1〉 and Y−(2m+1)|m+ 1〉 are

Y−(2m+2)Y−(2m+1)︸ ︷︷ ︸
∥

|m〉, Y−(2m+1)Y−(2m+1)︸ ︷︷ ︸
∥

|m〉.

−∑2m
p=1 Y−4m−3+pY−p −2

∑2m
p=1 Y−4m−2+pY−p

(5.4)

By assumption, m+ 1 case is also OK.

From (i)(ii), the claim hold by induction. Similarly we can show that

X−(2m± 1
2
)|m〉 = 0 using (XY )(z) = 0. 2

Proposition 2 |m〉 are the highest weight states of the N = 2 SCA with norm

=
∏m

j=1(h+ j(j − 1)) > 0 (m ≥ 0).
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(proof) (i) m = 0, 1 OK.

(ii) Assume that m case is OK.

Then,

An|m+ 1〉 A = T, I,G, Ḡ

= [An, Y−(2m+1)]|m〉 (n > 0), (5.5)

so we will consider only n < 2m + 1. A = Ḡ case is trivial. An|m + 1〉

is proportional to Yn−(2m+1)|m〉 for A = T, I and Xn−(2m+1)|m〉 for G.

These states are null states because of Lemma2. So m + 1 case is also

OK. 2

Lemma 3 X−n, Y−n|m〉 = (N = 2)|m+ 1〉 n ≥ 2m+ 1 (m ≥ 0).

(proof) Operating −(n + 1
2
) mode of (GY )(z) + 1

2
(∂IX)(z) − (TX)(z) = 0

and −(n+1) mode of (IY )(z)+ 1
2
(ḠX)(z)−∂Y (z) = 0 to |m〉, we obtain

(h+m2 +m)X−n− 1
2
|m〉 = (

∑
p≤− 1

2

GpY−n− 1
2
−p −

∑
p≤−1

LpX−n− 1
2
−p

−1

2

∑
p≤−2

(p+ 1)IpX−n− 1
2
−p)|m〉

(n− 2m)Y−n−1|m〉 = (
∑
p≤−1

IpY−n−1−p +
1

2

∑
p≤− 1

2

ḠpX−n−1−p)|m〉.

(5.6)

(i) m = 0

From eq. (5.6), X− 3
2
|0〉, Y−2|0〉, X− 5

2
|0〉, Y−3|0〉, · · · are expressed as

(N = 2)|0〉 in turn.

(ii) Assume that m case is OK.

From eq. (5.6), X−2m− 3
2
|m〉, Y−2m−2|m〉, X−2m− 5

2
|m〉, Y−2m−3|m〉, · · · are

expressed as (N = 2)|m+ 1〉 in turn. So m+ 1 case is also OK. 2

From these the next proposition holds.

20



Proposition 3 X · · ·XY · · ·Y︸ ︷︷ ︸
m

|0〉 = (N = 2)|m〉 (m ≥ 0).

We can show the similar results for |m〉 = Ȳ2m+1 · · · Ȳ−3Ȳ−1|h 0〉 (m < 0).

Therefore we obtain the theorem:

Theorem 1 VNS4 =
⊕

m∈Z V N=2
h+m2,2m.

Here V denotes the representation space.

For other representations, we only mention the statements.

2. representation NS5.

We define the states |m〉 = Y−2m · · ·Y−4Y−2|h, 1〉 (m ≥ 0).

Lemma 4 X−n, Y−n|m〉 = 0 n < 2m+ 2 (m ≥ 0).

Proposition 4 |m〉 are the highest weight states of the N = 2 SCA with norm

=
∏m

j=1(h+ j2 − 1
2
) > 0 (m ≥ 0).

Lemma 5 X−n, Y−n|m〉 = (N = 2)|m+ 1〉 n ≥ 2m+ 2 (m ≥ 0).

Proposition 5 X · · ·XY · · ·Y︸ ︷︷ ︸
m

|0〉 = (N = 2)|m〉 (m ≥ 0).

Theorem 2 VNS5 =
⊕

m∈Z V N=2
h+m2+m,2m+1.

3. representation NS1.

We define the states |m〉 = Y−2m · · ·Y−6Y−4X− 3
2
|0, 0〉 (m > 0) and |0〉 =

|0, 0〉.

Lemma 6 X−n, Y−n|m〉 = 0 n < 2m+ 2 (m > 0) ; n < 3
2

(m = 0).
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Proposition 6 |m〉 are the highest weight states of the N = 2 SCA with norm

= 2
∏m

j=2(j
2 − 1) > 0 (m > 0), 1 (m = 0).

Lemma 7 X−n, Y−n|m〉 = (N = 2)|m + 1〉 n ≥ 2m + 2 (m > 0) ; n ≥
3
2

(m = 0).

Proposition 7 X · · ·XY · · ·Y︸ ︷︷ ︸
m

|0〉 = (N = 2)|m〉 (m ≥ 0).

Theorem 3 VNS1 =
⊕

m>0 V
N=2
m2+m− 1

2
,2m+1

⊕ V N=2
0,0

⊕
m<0 V

N=2
m2−m− 1

2
,2m−1

.

4. representation NS2.

We define the states |m〉 = Y−2m · · ·Y−4Y−2|12 , 1〉 (m ≥ 0).

Lemma 8 X−n, Y−n|m〉 = 0 n < 2m+ 2 (m ≥ 0).

Proposition 8 |m〉 are the highest weight states of the N = 2 SCA with norm

=
∏m

j=1 j
2 > 0 (m ≥ 0).

Lemma 9 X−n, Y−n|m〉 = (N = 2)|m+ 1〉 n ≥ 2m+ 2 (m ≥ 0).

Proposition 9 X · · ·XY · · ·Y︸ ︷︷ ︸
m

|0〉 = (N = 2)|m〉 (m ≥ 0).

We define the states |m〉 = Ȳ2m+1 · · · Ȳ−5Ȳ−3X̄− 1
2
|1
2
, 1〉 (m < 0).

Lemma 10 X̄−n, Ȳ−n|m〉 = 0 n < −2m+ 1 (m < 0) ; n < 1
2

(m = 0).

Proposition 10 |m〉 are the highest weight states of the N = 2 SCA with

norm = 2
∏−m

j=2 j(j − 1) > 0 (m < 0).

Lemma 11 X̄−n, Ȳ−n|m〉 = (N = 2)|m− 1〉 n ≥ −2m+1 (m < 0) ; n ≥
1
2

(m = 0).

Proposition 11 X̄ · · · X̄Ȳ · · · Ȳ︸ ︷︷ ︸
−m

|0〉 = (N = 2)|m〉 (m < 0).

Theorem 4 VNS2 =
⊕

m≥0 V
N=2
m2+m+ 1

2
,2m+1

⊕
m<0 V

N=2
m2,2m.
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