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This talk is based on the collaboration with Jimbo, Konno and Shiraishi 1. After review-

ing a quasi-Hopf algebra and a twistor, we define elliptic quantum groups Aq,p(ŝln) and
Bq,λ(G), which correspond to the solvable lattice models with elliptic solutions of the
Yang-Baxter equation, the vertex type and the face type respectively.

1 Introduction

Conformal Field Theory (CFT) is a theory which is invariant under the confor-
mal transformation. In two dimensional space (or 1+1 dimensional spacetime), the
group of conformal transformations is infinite dimensional, whose algebra is known
as the Virasoro algebra in the field theory realization. This symmetry is very pow-
erful. By using its detailed representation theory one can determine the spectrum
and even calculate correlation functions. CFT in 2 dimensions can be applied to
the string theory (as a world sheet theory) and statistical critical phenomena in 2
dimensional space.

Quantum field theory and critical phenomena are the systems with infinite de-
grees of freedom. Hence they are difficult to treat. However one can sometimes solve
some models, so-called solvable models. From symmetry point of view, “solvable”
is stated as the following “equation”:

System of infinite degrees of freedom

Infinite dimensional symmetry
(1)

= System can be described by finite degrees of freedom.

This is the reason why we are interested in infinite dimensional symmetries.
Since CFT is invariant under the scale transformation, CFT has no scale, in

other words, it is a massless theory. If we add to CFT the perturbation which
breaks the conformal symmetry, the theory becomes massive. General massive
theories are very difficult. So we restrict ourselves to its subset, massive integrable
models (MIM). If we perturb CFT in “good” manner, infinitely many conserved
quantities survive. In the terminology of statistical mechanics, CFT corresponds to
on-critical theory, and perturbation corresponds to off-critical procedure, and MIM
corresponds to solvable lattice model. CFT is controlled by the Virasoro symmetry,
but MIM is massive, therefore there is no Virasoro symmetry.

CFT on-critical massless Virasoroygood perturbation

yoff-critical
y

y
massive solvable massive no

integrable model lattice model Virasoro
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A natural question arises:

What symmetry ensures

the integrability or infinitely many conserved quantities of MIM?

We would like to answer this question. This is our main motivation.
In some cases the quantum group symmetry plays an important role. Kyoto

group studied the XXZ spin chain and clarified its symmetry, the quantum affine Lie
algebra Uq(ŝl2)

2. But naively one expects some deformation of the Virasoro algebra.
Such algebras, deformed Virasoro and deformed WN algebras, were constructed in
different point of view 3,4. Later it was shown that the deformed Virasoro algebra
appears in the Andrews-Baxter-Forester model as a symmetry 5.

Another possibility is elliptic quantum groups (elliptic algebras). Corresponding
to the two types of elliptic solutions of the Yang-Baxter equation, there are two type
of elliptic quantum groups 6,7. These two elliptic quantum groups have a common
structure8; They are quasi-Hopf algebras9. Along this line, we presented an explicit
formula for the twistors and defined the vertex type algebra Aq,p(ŝln) and the face
type algebra Bq,λ(G), see eq.(29) 1.

In section 2 we give a brief review of a quasi-Hopf algebra. Although several
talkers already mention a quasi-Hopf algebra in this symposium, we also explain it
because it is an important notion. In section 3 we present our result, an explicit
formula for the twistors and the definition of elliptic quantum groups. Section 4 is
devoted to discussion.

2 Quasi-Hopf Algebra (Introduction to Physicists)

In this section we illustrate an outline of a quasi-Hopf algebra. For precise definition
we refer the readers to refs.9,1

In quantum mechanics, we know an addition of angular momentums very well.
For two particles system the total angular momentum J⃗ is obtained simply by an
addition of each angular momentum J⃗ (1) and J⃗ (2),

J⃗ = J⃗ (1) + J⃗ (2). (2)

In mathematics, this formula is written in the following way; J⃗ (1) acts on the
representation space V1, J⃗

(2) acts on V2, and the total angular momentum J⃗ acts
on V1 ⊗ V2 by,

J⃗ = J⃗ ⊗ 1 + 1⊗ J⃗ . (3)

This is called the tensor product representation of Lie algebra so(3). If a system has
rotational symmetry, for example the Heisenberg spin chain (XXX spin chain), one
can apply the representation theory of the rotational group SO(3) (or its Lie algebra
so(3)) to it. But if the system is perturbed and looses the rotational symmetry, then
one can not apply so(3) to it. Some models, however, have a good property. For
example the XXZ spin chain has the same degeneracy of energy as the XXX spin
chain. To treat such models we need some deformation of the Lie algebra or some
deformation of the tensor product representation.
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2.1 Algebra and Coalgebra

Let us begin with the definitions of an algebra and a coalgebra. For simplicity we
take the complex field C as a base field. An algebra A is a vector space with two
operations, product (multiplication) m and unit u, which satisfy

A⊗A⊗A
m⊗id−−−−−−→ A⊗A product m : A⊗A→ Ayid⊗m

ym unit u : C→ A

A⊗A −−−−−−→
m

A associativity m ◦ (m⊗ id) = m ◦ (id⊗m),

(4)

and m ◦ (id ⊗ u) = id = m ◦ (u ⊗ id) (A ⊗C, A and C ⊗ A are identified). If we
write m(a⊗ b) = ab, the associativity becomes a usual form (ab)c = a(bc).

A coalgebra is defined by reversing the arrows. A coalgebra A is a vector space
with two operations, coproduct ∆ and counit ε, which satisfy

A⊗A⊗A
∆⊗id←−−−−−− A⊗A coproduct ∆ : A→ A⊗Axid⊗∆

x∆ counit ε : A→ C

A⊗A ←−−−−−−
∆

A coassociativity (∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

(5)

and (id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆ (A⊗C, A and C⊗A are identified).
Let us introduce σ (σ : A⊗A→ A⊗A, σ(a⊗ b) = b⊗a) and define m′ = m◦σ

and ∆′ = σ ◦∆. An algebra is called commutative if m′ = m, and a coalgebra is
called cocommutative if ∆′ = ∆.

2.2 Hopf Algebra

A Hopf algebra is a set (A,m, u,∆, ε, S) satisfying the following conditions: A is
an algebra and a coalgebra; m, u, ∆, ε are homomorphism; antipode S : A → A
satisfies m ◦ (S ⊗ id) ◦∆ = u ◦ ε = m ◦ (id⊗ S) ◦∆. S is an anti-homomorphism.

We give two examples of a Hopf algebra, a group G and a Lie algebra G,
exactly speaking a function algebra of group Fun(G) and an enveloping algebra of
Lie algebra U(G) respectively. Their Hopf algebra structures are

Fun(G) = Map(G,C) U(G)
product (f1f2)(x) = f1(x)f2(x) XY
unit (u(a))(x) = a u(a) = a1
coproduct (∆(f))(x1, x2) = f(x1x2) ∆(X) = X ⊗ 1 + 1⊗X
counit (ε(f))(x) = f(e) ε(X) = 0
antipode (S(f))(x) = f(x−1) S(X) = −X,

(6)

and (m(g))(x) = g(x, x) for g(x1, x2) ∈ Map(G×G,C), and ∆(1) = 1⊗1, ε(1) = 1,
S(1) = 1 for U(G). Roughly speaking ∆, ε and S correspond to

Fun(G) U(G)
∆ ↔ product of G tensor product rep. of U(G)
ε ↔ unit element of G trivial rep. of U(G)
S ↔ inverse element of G contragredient rep. of U(G).

(7)
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Fun(G) is a commutative (and non-cocommutative) Hopf algebra and U(G)
is a cocommutative (and non-commutative) Hopf algebra. Non-commutative and
non-cocommutative Hopf algebra may be regarded as an extension (deformation)
of group or Lie algebra in this sense. This is the idea of quantum group (quantum
algebra).

The quantum group (quantum algebra) is a Hopf algebra. We give an example of
the quantum group, Uq(sl2), which is a deformation of U(sl2). Uq(sl2) is generated
by t = qh, e and f , which satisfy

[h, e] = 2e ∆(h) = h⊗ 1 + 1⊗ h ε(h) = 0 S(h) = −h
[h, f ] = −2f ∆(e) = e⊗ 1 + t⊗ e ε(e) = 0 S(e) = −t−1e
[e, f ] = t−t−1

q−q−1 ∆(f) = f ⊗ t−1 + 1⊗ f ε(f) = 0 S(f) = −ft.
(8)

This quantum algebra appears in the XXZ spin chain as a symmetry,

[HXXZ, Uq(sl2)] = 0,

HXXZ = J

N−1∑
i=1

(
sxi s

x
i+1 + syi s

y
i+1 +

q + q−1

2
szi s

z
i+1

)
+ J

q − q−1

4
(sz1 − szN ), (9)

h =
∑
i

2szi , e =
∑
i

q

∑
j<i

2szj s+i , f =
∑
i

s−i q
−
∑

j>i
2szj ,

where s⃗ = 1
2 σ⃗ and s± = s1 ± is2. In the q → 1 limit, Uq(sl2) reduces to U(sl2).

2.3 Quasi-Triangular Hopf Algebra

Using the coproduct, a tensor product representation of two representations (πi, Vi)
(i = 1, 2) of the Hopf algebra can be defined in the following way,(

(π1 ⊗ π2) ◦∆, V1 ⊗ V2

)
. (10)

Coassociativity implies the isomorphism,

(V1 ⊗ V2)⊗ V3
∼= V1 ⊗ (V2 ⊗ V3) (as A module). (11)

But cocommutativity does not hold in general, so the following isomorphism de-
pends on the detail of the Hopf algebra:

V1 ⊗ V2

?∼= V2 ⊗ V1 (as A module). (12)

Of course we have V1⊗ V2
∼= V2⊗ V1 as vector space, by PV1V2

: V1⊗ V2

∼=→ V2⊗ V1,
PV1V2

(v1 ⊗ v2) = v2 ⊗ v1. But the problem is the commutativity of the action of A
and PV1V2

.

Drinfeld considered the situation that the isomorphism (12) does hold. A
quasi-triangular Hopf algebra (A,m, u,∆, ε, S,R) (we abbreviate it as (A,∆,R))
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is a Hopf algebra with a universal R matrix R, which satisfies

R ∈ A⊗A : universal R matrix

∆′(a) = R∆(a)R−1 (∀a ∈ A),

(∆⊗ id)R = R(13)R(23), (ε⊗ id)R = 1, (13)

(id⊗∆)R = R(13)R(12), (id⊗ ε)R = 1.

Then we have an intertwiner

RV1V2
= PV1V2

◦ (π1 ⊗ π2)(R) : V1 ⊗ V2

∼=−→ V2 ⊗ V1 (as A module), (14)

and R satisfies the Yang-Baxter equation,

R(12)R(13)R(23) = R(23)R(13)R(12). (15)

2.4 Quasi-Triangular Quasi-Hopf Algebra

As presented in subsection 2.2, the quantum group is obtained from the Lie algebra
by relaxing one condition, cocommutativity. Here we relax one more condition,
coassociativity. Coassociativity (5) is modified by a coassociator Φ in the following
way,

Φ ∈ A⊗A⊗A : coassociator

(id⊗∆)∆(a) = Φ(∆⊗ id)∆(a)Φ−1 (∀a ∈ A), etc. (16)

A quasi-triangular quasi-Hopf algebra (A,m, u,∆, ε,Φ, S, α, β,R) (we abbreviate it
as (A,∆,Φ,R)) satisfies (16) and

R ∈ A⊗A

∆′(a) = R∆(a)R−1 (∀a ∈ A),

(∆⊗ id)R = Φ(312)R(13)Φ(132)−1R(23)Φ(123), (17)

(id⊗∆)R = Φ(231)−1R(13)Φ(213)R(12)Φ(123)−1,

where Φ(312) means Φ(312) =
∑

i Zi ⊗ Xi ⊗ Yi for Φ =
∑

i Xi ⊗ Yi ⊗ Zi. Then R
enjoys the Yang-Baxter type equation,

R(12)Φ(312)R(13)Φ(132)−1R(23)Φ(123) = Φ(321)R(23)Φ(231)−1R(13)Φ(213)R(12). (18)

A quasi-Hopf algebra with Φ = 1 is nothing but a Hopf algebra.

2.5 Twist

Quasi-Hopf algebras admit an important operation, twist. For any invertible ele-
ment F ∈ A⊗ A ((ε⊗ id)F = (id⊗ ε)F = 1), which is called as a twistor, there is
a map from quasi-Hopf algebras to quasi-Hopf algebras:

quasi-Hopf algebra −→ quasi-Hopf algebra

(A,∆,Φ,R) F−→ (A, ∆̃, Φ̃, R̃). (19)

5



New coproduct, coassociator, R matrix etc. are given by

F ∈ A⊗A : twistor

∆̃ = F∆(a)F−1 (∀a ∈ A),

Φ̃ =
(
F (23)(id⊗∆)F

)
Φ
(
F (12)(∆⊗ id)F

)−1
, (20)

R̃ = F (21)RF−1,
etc.

We remark that an algebra A itself is unchanged. If a twistor F satisfies the cocycle
condition, this twist operation maps a Hopf algebra to a Hopf algebra. For a general
twistor F , however, a Hopf algebra is mapped to a quasi-Hopf algebra:

Hopf algebra −→ quasi-Hopf algebra

(A,∆,R) F−→ (A, ∆̃, Φ̃, R̃). (21)

Let H be an Abelian subalgebra of A, with the product written additively. A
twistor F (λ) ∈ A ⊗ A depending on λ ∈ H is a shifted cocycle if it satisfies the
relation (shifted cocycle condition),

F (λ) : shifted cocycle

⇔ F (12)(λ)(∆⊗ id)F (λ) = F (23)(λ+ h(1))(id⊗∆)F (λ), (22)

for some h ∈ H.
When a twistor F (λ) satisfies the shifted cocycle condition, we obtain a quasi-

triangular quasi-Hopf algebra from a quasi-triangular Hopf algebra by twisting,

Hopf algebra −−−→ quasi-Hopf algebra

(A,∆,R) F (λ)−−−→ (A,∆λ,Φ(λ),R(λ)), (23)

and we have

Φ(λ) = F (23)(λ)F (23)(λ+ h(1))−1,

(∆λ ⊗ id)R(λ) = Φ(312)(λ)R(13)(λ)R(23)(λ+ h(1)), (24)

(id⊗∆λ)R(λ) = R(13)(λ+ h(2))R(12)(λ)Φ(123)(λ)
−1

,

and R matrix satisfies the dynamical Yang-Baxter equation,

R(12)(λ+ h(3))R(13)(λ)R(23)(λ+ h(1)) = R(23)(λ)R(13)(λ+ h(2))R(12)(λ). (25)

3 Qausi-Hopf Twistors and Elliptic Quantum Groups

It is well known that a statistical lattice model in two dimensional space is solv-
able if its Boltzmann weights satisfy the Yang-Baxter equation. The Yang-Baxter
equation admits two types of elliptic solutions, the vertex-type and the face-type.
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Corresponding to these two there are two types of elliptic quantum groups (alge-
bras).

The first example of the vertex-type elliptic algebras is the Sklyanin algebra 10,
designed as an elliptic deformation of the Lie algebra sl2. It is presented by the
RLL relation,

R(12)(u1 − u2)L
(1)(u1)L

(2)(u2) = L(2)(u2)L
(1)(u1)R

(12)(u1 − u2). (26)

R and L depend on an elliptic modulus r. Foda et al.6 proposed its affine version,
Aq,p(ŝl2),

R(12)(u1 − u2, r)L
(1)(u1)L

(2)(u2) = L(2)(u2)L
(1)(u1)R

(12)(u1 − u2, r − c), (27)

whose main point of is the shift of r by a central element c. On the other hand,
in the case of the face type algebras, R and L depend on the elliptic modulus r
and other extra parameters λ. Felder 7 showed that the RLL relation undergoes a
dynamical shift by elements h of the Cartan subalgebra,

R(12)(u1 − u2;λ+ h)L(1)(u1, λ)L
(2)(u2, λ+ h(1))

= L(2)(u2, λ)L
(1)(u1, λ+ h(2))R(12)(u1 − u2;λ), (28)

and R(u, λ) satisfies the dynamical Yang-Baxter equation(25).
These two algebras seemed to be different but Frønsdal 8 pointed out that they

have a common structure; they are quasi-Hopf algebras obtained by twisting quan-
tum affine algebras. We constructed an explicit formula for the twistors satisfying
the shifted cocycle condition and defined two types of elliptic quantum groups,
Aq,p(ŝln) and Bq,λ(G): 1

type twistor Hopf algebra quasi-Hopf algebra

face F (λ) Uq(G)
F (λ)−−−→ Bq,λ(G)

vertex E(r) Uq(ŝln)
E(r)−−−→ Aq,p(ŝln),

(29)

where G is the Kac-Moody algebra associated with a symmetrizable generalized
Cartan matrix.

Due to space limitation, here we give the results only and refer the readers to
ref.1 for the details. The face type twistor F (λ) ∈ Uq(G)⊗2 (λ is an element of the

Cartan subalgebra of G) and the vertex type twistor E(r) ∈ Uq(ŝln)
⊗2 (r ∈ C) are

represented in the form of an infinite product of the universal R matrix,

face type twistor F (λ) =

←∏
k≥1

(
φk
λ ⊗ id

)(
qTR

)−1
, (30)

vertex type twistor E(r) =

←∏
k≥1

(
φ̃k
r ⊗ id

)(
qT̃R

)−1
, (31)

where φλ, φ̃r are automorphisms of (algebra)⊗2, and T , T̃ are canonical elements
in (Cartan subalgebra)⊗2. These two twistor satisfy the shifted cocycle condition,

F (12)(λ)(∆⊗ id)F (λ) = F (23)(λ+ h(1))(id⊗∆)F (λ), (32)

E(12)(r)(∆⊗ id)E(r) = E(23)(r + c(1))(id⊗∆)E(r). (33)

7



Twisting the quantum algebra Uq(G) (Uq(ŝln)) by the twistor F (λ) (E(r)), we define

the elliptic quantum group Bq,λ(G) (Aq,p(ŝln)) respectively,

face type algebra Bq,λ(G)

Hopf algebra quasi-Hopf algebra

Uq(G)
F (λ)−−−→ Bq,λ(G)

∆ ∆λ ∆λ(a) = F (λ)∆(a)F (λ)−1

R R(λ) R(λ) = F (21)(λ)RF (λ)−1

... Φ(λ) Φ(λ) = F (23)(λ)F (23)(λ+ h(1))−1,
...

(34)

vertex type algebra Aq,p(ŝln)

Hopf algebra quasi-Hopf algebra

Uq(ŝln)
E(r)−−−→ Aq,p(ŝln) p = q2r

∆ ∆r ∆r(a) = E(r)∆(a)E(r)−1

R R(r) R(r) = E(21)(r)RE(r)−1

... Φ(r) Φ(r) = E(23)(r)E(23)(r + c(1))−1.
...

(35)

4 Discussion

We have presented an explicit formula for the twistors which satisfy the shifted
cocycle condition, and defined elliptic quantum groups by twisting quantum groups
with the twistors (29). We also studied the RLL relation (RLL = LLR∗), the vertex

operators in ref.1 and Uq,p(ŝl2) in ref.11 Applications of these elliptic quantum groups
to the solvable lattice models are to be studied in future.

Finally we mention other related works; Relation to the deformed Virasoro and
W algebras is studied in 12,13, and an extension to the Lie superalgebra is studied
in 14,15.
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