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tential of degree 2v. We determine the critical coupling constants, with
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1. To find a true stable string vacuum from among a large number of classical vacua,

we must study string theories nonperturbatively. Concerning the “space-time dimen-

sion” less than 1, the matrix model and the double scaling limit technique allow us

the nonperturbative study of “string” theories[1]. Matrix models are solvable by the

orthogonal polynomial method[2]. One matrix model with a quartic potential realizes

a pure two dimensional gravity, i.e. (p, q) = (2, 3), and its specific heat satisfies a non-

linear differential equation, so-called string equation[1]. One matrix model with higher

order potential realizes 2d gravity coupled to (p, q) = (2, 2m − 1) minimal conformal

matter, and its string equation and correlation functions are closely related to the KdV

hierarchy[1]. Douglas pointed out that more general (p, q) minimal conformal matter

coupled to 2d gravity can be realized by p − 1 matrix model, and its string equation

is related to the generalized KdV hierarchy (p-reduction of the KP hierarchy)[3]. In

fact, (p, q) = (3, 4) unitary minimal matter, i.e. Ising model, is realized by the two

matrix model with quartic potential[4], and (p, q) = (4, 5) minimal unitary matter, i.e.

tricritical Ising model, is realized by the three matrix model with quartic potential[5].

Relations between p − 1 matrix model and Wp algebra, topological field theory were

also pointed out[6].

Recently Tada and Yamaguchi studied the two matrix model with a sixth order

potential and found that not only (p, q) = (3, 8) minimal conformal model but also

(p, q) = (4, 5) minimal unitary model are realized[7]. They conjectured that the two

matrix model with a higher order potential realizes all the minimal unitary models.

Moreover Douglas discussed all (p, q) minimal conformal models can be realized by the

two matrix model[8]1.

In this letter we will investigate the two matrix model with the Z2 symmetric even

potential and try to show the Tada-Yamaguchi conjecture. By the method of [7], we

present the general expression for the critical coupling constants that correspond to

minimal unitary model, and express the Douglas’ P,Q operators by the orthogonal

polynomial method. In §2 we review the orthogonal polynomial method and determine

the critical coupling constants. We show in §4 that these critical coupling constants

really correspond to (p, q) = (m,m + 1) minimal unitary model for m ≤ 6, by explicit

1After completion of our calculation, we received ref.[12], where Tada also conjectured the same

statement and obtained (p, q) = (3, 5) model by explicit calculation.
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calculation. We discuss the Douglas’ P,Q operators in §3, correlation functions and

critical lines in §5. In §6 we comment on the general (p, q) models. Since the matrix

model has a definite normalization, we will keep multiplicative constants carefully.

2. We will consider the two matrix model with the Z2 symmetric even potential of

degree 2v, whose partition function is

Z = eF =
∫

dM+dM−e
−S, S = tr(V (M+) + V (M−)− cM+M−), (1)

V (x) =
v∑

j=1

1

N j−1

g2j
(2j)!

x2j, g2 = 1, (2)

where M± are N ×N hermitian matrices. We assume c is non-zero because, if c = 0, Z
reduces to two copies of the one matrix model. We can diagonalize the matrices M± by

using unitary matrices and integrate out the unitary matrices. Introducing orthogonal

polynomials Pi(x)[2]

hiδij =
∫

dxdyPj(y)e
−V (x)−V (y)+cxyPi(x), Fi =

hi

hi−1

, (3)

the partition function is rewritten as

Z = eF = πN(N−1)c−
N(N−1)

2 N !hN
0

N∏
i=1

1

i!

N∏
i=1

FN−i
i . (4)

Pi(x) is a monic polynomial of degree i and has a definite parity Pi(−x) = (−1)iPi(x),

since our action is even. Polynomials Pi satisfy the following recursion relation:

xPi(x) =
∑
j

αijPj(x) =
v∑

k=0

R
[k]
i Pi+1−2k(x), R

[0]
i = 1, (5)

where R[k]’s are unknown coefficients and matrix α is defined by this equation. Absence

of the terms Pi−2k is a consequence of even potential and the upper bound2 of sum over

k is determined by the degree of the potential V . Depending on the potential, this

recursion relation contains a number of adjustable coefficients. This is the reason why

the two matrix model can realize the (p, q) minimal conformal model for any p. In

the case of the one matrix model, the recursion relation contains only one coefficient.

2Strictly speaking, the upper bound of sum over k is min(v, [ i+1
2 ]).
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Therefore the one matrix model can realize p = 2 minimal conformal model only. In

the case of the n-matrix model (n ≥ 3), α is a general lower triangular matrix.

All the necessary information for solving the two matrix model is contained in the

following equations:

cR
[k]
i = FiFi−1 · · ·Fi+2−2kV

′(α)i+1−2k,i, (
v

2
< k ≤ v), (6)

cR
[k]
i+k−1 = Fi+k−1Fi+k−2 · · ·Fi+1−kV

′(α)i−k,i+k−1, (1 ≤ k ≤ v

2
), (7)

i = V ′(α)i,i−1 − cFi. (8)

We call the above first and second equations as constraint equations and the third one

as a potential equation. In principle, by solving the constraint equations, we can express

R
[k]
i ’s in terms of Fi. We remark that R

[k]
i (v

2
< k ≤ v), eq. (6), are solved in terms of

Fi and R
[k]
i (1 ≤ k ≤ v

2
).

We first consider the naive large N limit. In this limit, F and R[k] are scaled as

follows:
i

N
∼ x,

1

N
Fi ∼ F (x),

1

Nk
R

[k]
i ∼ R[k](x), (1 ≤ k ≤ v). (9)

Let us denote the values of F and R[k] at x = 1 by

F (1) = f0, R[k](1) = fk
0 r

[k]
0 , (1 ≤ k ≤ v). (10)

After eliminating R[k], we define a potential W (F ) by the right hand side of eq. (8)

divided by N . Since the scaling laws arise from the singular behavior of F (x) in the

vicinity of x = 1, the potential W takes the form W (F )− 1 ∝ (F − f0)
m near x = 1 at

the m-th order critical point. So, the m-th order critical coupling constants c and g2j

are determined by the following requirement:

W (k)(f0) = 0, (1 ≤ k ≤ m− 1), (11)

W (f0) = 1. (12)

If we solve these equations completely for each m, we can draw the phase diagram of the

two matrix model. In actual calculation it is convenient to differentiate W (F ) under

the constraint equations instead of solving R[k] explicitly. However, this calculation is

very hard for large v. So we give up finding out all the solutions and try to find some

of the critical points.
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Instead of eq. (11), we require

dn = 0, (1 ≤ n ≤ p− 1), (13)

where dn’s are defined by

dn =
1

n!

v∑
k=0

(2k − 1)nr
[k]
0 . (14)

These equations with p = m are sufficient conditions for eq. (11), and the meaning of

them will be explained in the next section. Naive parameter counting shows that the

maximum value of m is v + 13. In the following we will concentrate our attention on

this case, i.e. m = p = v + 1. Then eq. (13) is solved as follows:

r
[k]
0 =

(−1)k+1

2k − 1

(
v

k

)
, (0 ≤ k ≤ v). (15)

Using these values, d0, dm, dm+1 are given by

d0 =
(2v)!!

(2v − 1)!!
, dm =

(−1)v+1

v + 1
2v, dm+1 =

(−1)v+1

v + 2
(v − 1)2v. (16)

Critical coupling constants are determined by the constraint and potential equations.

After some combinatorics, eqs. (6,7,8) become

r
[k]
0 +

v∑
j=k

(−1)jg′2j

∮
0

dt

2πi

1

tj−k+1

( v∑
i=0

r
[i]
0 t

i
)2j−1

= 0, (0 ≤ k ≤ v), (17)

where g′2j =
(−f0)j−1

(2j−1)!c
g2j (2 ≤ j ≤ v), g′2 =

1
c
and g′0 =

1
cf0

. From this recursion relation,

one can obtain the critical coupling constants g′2j (j = v, v−1, · · · , 0) easily; for example,

(2v − 1)g′2v = 1,

(2v − 3)g′2(v−1) = 2v(v − 1),

3(2v − 5)g′2(v−2) = v(v − 1)(6v2 − 14v − 1),

15(2v − 7)g′2(v−3) = 2v(v − 1)(10v4 − 60v3 + 83v2 + 16v + 1),

630(2v − 9)g′2(v−4) = v(v − 1)(420v6 − 4620v5 + 16184v4 − 16180v3

−5953v2 − 831v − 45),

945(2v − 11)g′2(v−5) = v(v − 1)(252v8 − 4368v7 + 27468v6 − 71808v5

+53797v4 + 33596v3 + 7763v2 + 886v + 42).

(18)

3In general there are exceptional critical coupling constants which give m > v + 1.
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Next we consider the double scaling limit in order to include the contributions from

the higher genus Riemann surfaces. As refs.[1], we introduce a lattice spacing constant

a such that the continuum limit is a → 0. The renormalized cosmological constant is

µR = (µB − µcri)/a
2, i.e. µR =

gcri2j −g2j

(j−1)gcri2j a2
. Introducing the scaled variable z,

i

N
∼ 1− a2z,

1

N
∼ ã2m+1, a = ãm, (19)

F and R[k] have the following expansions:

1

N
Fi+l ∼ f0(1 +

∑
n≥1

ã2nf2n(z − lã)) (20)

1

Nk
R

[k]
i+k−1+l ∼ fk

0 (r
[k]
0 +

∑
n≥1

ã2nr
[k]
2n(z − lã)), (1 ≤ k ≤ v

2
). (21)

R
[k]
i (v

2
< k ≤ v) have been exactly eliminated by using eq. (6). The function f2(z)

is related to the free energy as d2

dµ2
R
F = f2(z)|z=µR

. Substituting these expansions

into eqs. (7,8) and solving the constraint equations order by order in ã, we obtain a

coupled nonlinear differential equation, so-called string equation. This calculation is

tedious but straightforward. We expect that this string equation agrees with the type

(p, q) = (m,m + 1) equation of the KP hierarchy (q-th flow of p-reduction of the KP

hierarchy). In fact we will check this conjecture for m ≤ 6 in section 4.

3. To compare the string equation obtained in the previous section and the string equa-

tion in Douglas’ form[3], we introduce the normalized polynomials Pi(x) = 1√
hi
Pi(x).

We define matrices Q̃ and P̃ as follows:

xPi(x) =
∑
j

Q̃ijPj(x),
d

dx
Pi(x) =

∑
j

P̃ijPj(x). (22)

Q̃ and P̃ satisfy the commutation relation

[Q̃, P̃ ] = 1, (23)

and this equation reduces to [tQ̃, Q̃] = 1
c
, because P̃ is expressed as P̃ = −c tQ̃+V ′(Q̃),

where tQ̃ is a transposed matrix of Q̃. In the double scaling limit, the matrix Q̃ is

scaled as follows[7]:

Q̃ij =
√
Fi+1δi+1,j +

v∑
k=1

R
[k]
i (FiFi−1 · · ·Fi+2−2k)

− 1
2 δi+1−2k,j, (24)
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1√
N
Q̃ij ∼

√
Fi+1

N
e−ã∂ +

v∑
k=1

R
[k]
i

Nk

(
Fi

N

Fi−1

N
· · · Fi+2−2k

N

)− 1
2

e(2k−1)ã∂ (25)

def
=

√
f0
∑
n≥0

ãnQ̃n, (26)

where F
N

and R[k]

Nk have the expansions eqs. (20,21) and ∂ represents ∂
∂z
. Q̃n is a dif-

ferential operator of order n, and its coefficient of ∂n is dn. Therefore eq. (13) is the

necessary condition for the vanishing of Q̃n = 0 (1 ≤ n ≤ p− 1). In the next section we

will see that it is also sufficient. For later use, we rewrite Q̃n as Q̃n = dnQn. Expansion

of the transposed matrix tQ̃ becomes 1√
N
(tQ̃)ij ∼

√
f0
∑

n≥0 ã
nQ̃†

n, where † is defined

by the following properties: ∂† = −∂, φ(z)† = φ(z) for any function φ, (AB)† = B†A†

for any pseudodifferential operators A and B, and linearity. On the other hand tQ̃ has

the following expansion:

1√
N
(tQ̃)ij ∼

√
Fi

N
eã∂ +

v∑
k=1

R
[k]
i+2k−1

Nk

(
Fi+2k−1

N

Fi+2k−2

N
· · · Fi+1

N

)− 1
2

e−(2k−1)ã∂ . (27)

Comparing eq. (25) and eq. (27), we obtain

∑
n≥0

ãnQ̃†
n(z) =

∑
n≥0

(−ã)nQ̃n(z − ã), (28)

where we write the z-dependence of the coefficients of ∂ explicitly. This is a consequence

of the Z2 symmetry. If Q̃n = 0 (1 ≤ n ≤ m− 1), then, by using the above equation, we

can show that

Q̃†
m = (−1)mQ̃m, Q̃†

m+1 = (−1)m+1(Q̃m+1 + Q̃′
m), (29)

where ′ represents a differentiation, i.e. A′ =
∑

n a
′
n∂

n for A =
∑

n an∂
n. Under the

condition Q̃n = 0 (1 ≤ n ≤ m− 1), by substituting these expansions into eq. (23), i.e.

[ 1√
N
Q̃, 1√

N
P̃ ] = 1

N
∼ ã2m+1, we obtain

[1
2
(Qm+1 + (−1)m+1Q†

m+1), Qm] =
(−1)m+1g′0
2dmdm+1

. (30)

This commutation relation suggests the following identification of the Douglas’ P , Q

operators with Qn’s which are obtained from the orthogonal polynomial method,

Q = Qm, P =
1

2
(Qm+1 + (−1)m+1Q†

m+1) = Qm+1 +
dm

2dm+1

Q′
m. (31)
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We remark that Q is the order ãm term of Q̃ but P is not the order ãm+1 term of P̃ .

This form of P was conjectured in [7]. Q and P have definite parity Q† = (−1)mQ,

P † = (−1)m+1P due to the Z2 symmetry.

Let us recall the type (p, q) string equation in Douglas form[3]. Q is a differential

operator of order p and P = Q
q
p

+:

Q = ∂p +
p−1∑
n=2

{∂p−n, cn}+ cp, Q
q
p = ∂q +

∑
n≥2

bn∂
q−n. (32)

In the case of the Z2 symmetric potential, codd vanishes, and Q and P have definite

parity. In the language of KP hierarchy, Q = Lp = Lp
+ (p-reduction) and P =

Lq
+, where L is a pseudodifferential operator L = ∂ +

∑
n≥2 un∂

1−n. Setting all the

integration constants equal to zero, the string equation in Douglas form ([P,Q] = const)

is equivalent to[5]

bn = 0, (q + 1 ≤ n ≤ p+ q − 2), bp+q−1 =
const

p
z. (33)

In our case, p = m = v+1, q = m+1, const =
(−1)m+1g′0
2dmdm+1

. In the case of the Z2 symmetric

potential, bodd = 0 can be derived from other equations, and unknown functions are c2n

(1 ≤ n ≤ [p
2
])4.

4. In §2,3, we have argued that the two matrix model with the critical coupling

constants eqs. (17,18) and eq. (15), gives the type (p, q) = (m,m + 1) string equation.

However there are some unproved facts. They are

(i) Q̃n = 0, (1 ≤ n ≤ m− 1).

(ii) 1
2
(Qm+1 + (−1)m+1Q†

m+1) = (Qm)
m+1
m
+.

(iii) the string equation derived from eqs. (7,8) agrees with the string equation

in Douglas form eq. (33) with p = m = v + 1 = q − 1, const =
(−1)m+1g′0
2dmdm+1

.

v = 1 case is trivial because the action is Gaussian. We only consider the case v =

m − 1 ≥ 2. For m ≤ 6, we have checked (i)(ii)(iii) by explicit calculation, and we are

convinced that (i)(ii)(iii) hold for all m. Here we give only the relations between f2n,

4In our notation, suffixes of fn, r
[k]
n , Q̃n, Qn, cn, bn, un represent “weight” n. ∂ has weight 1.
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r
[k]
2n and c2n, because the string equation has a lengthy expression for large v, and the

critical coupling constants can be easily obtained from eq. (18). They are

v = 2 : c2 =
3
4
f2, (34)

v = 3 : c2 = f2, c4 = (r
[1]
4 − f4) + f 2

2 , (35)

v = 4 : c2 =
5
4
f2, c4 =

5
8
((r

[1]
4 − f4) +

3
2
f 2
2 − 1

2
f ′′
2 ), (36)

v = 5 : c2 =
3
2
f2, c4 =

3
4
((r

[1]
4 − f4) + 2f 2

2 − 4
3
f ′′
2 ), (37)

c6 =
3
8
((r

[1]
6 + r

[2]
6 + 3f6) +

7
3
(r

[1]
4 − f4)

′′ + 5(r
[1]
4 − f4)f2

+4
3
f ′′′′
2 − 8

3
f ′
2
2
+ 8

3
f 3
2 ). (38)

c2 is related to f2 as c2 =
m
4
f2 for all m.

5. One point functions of trM2n
± and trM+M− are given by

1

Nn+1
⟨trM2n

± ⟩ =
1

N

N−1∑
i=0

1

Nn
(α2n)ii, (39)

1

N2
⟨trM+M−⟩ =

1

c

1

N

N−1∑
i=0

(
1

N
(αV ′(α))ii −

2i+ 1

N
), (40)

where ⟨O⟩ =
∫
dM+dM−Oe−S/Z. Using the Euler-Maclaurin formula, the first deriva-

tive of the sum 1
N

∑N
i=1 φ(

i
N
) with respect to the renormalized cosmological constant

can be written

− 1

a2
d

dµR

1

N

N∑
i=1

φ(
i

N
) ∼

M∑
r=0

B2r

(2r)!
ã2rφ̃(2r)(z)

∣∣∣∣
z=µR

+ · · · , (41)

where φ(x) = φ̃(z) and Bernoulli numbers are defined by t
et−1

=
∑∞

n=0 Bn
tn

n!
. We

abbreviate − 1
a2

d
dµR

⟨O⟩ as ⟨⟨O⟩⟩5. In the case of (p, q) minimal conformal model, the

correlation function of the scaling operator O(k)α, which is the gravitational descendant

of the primary scaling operator Oα (0 ≤ α ≤ p− 2), is given by[9]

⟨⟨O(k)α⟩⟩ ∝ Res Qk+α+1
p . (42)

Since we are dealing with only the Z2 symmetric potential, Z2 odd operators, such as

a spin operator of the Ising model, cannot be handled. The Z2 even operator can be

5Usually this is written as ⟨PO⟩, where P is the puncture operator.
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expressed as a linear combination of trM2n
± and trM+M−. For example,

v = 2 : ⟨⟨ 1
N3 trM

4
+⟩⟩ − 34

5
⟨⟨ 1

N2 trM
2
+⟩⟩ ∝ Res Q

1
3 , (43)

⟨⟨ 1
N4 trM

6
+⟩⟩ − 144

7
⟨⟨ 1

N3 trM
4
+⟩⟩+ 4356

35
⟨⟨ 1

N2 trM
2
+⟩⟩ − 29376

175
⟨⟨ 1

N
tr1⟩⟩ ∝ Res Q

5
3 ,(44)

v = 3 : ⟨⟨ 1
N3 trM

4
+⟩⟩ − 1375

1008
⟨⟨ 1

N2 trM
2
+⟩⟩ ∝ Res Q

1
4 , (45)

⟨⟨ 1
N4 trM

6
+⟩⟩ − 638

595
⟨⟨ 1

N3 trM
4
+⟩⟩+ 3751

5712
⟨⟨ 1

N2 trM
2
+⟩⟩ ∝ Res Q

3
4 , (46)

⟨⟨ 1
N5 trM

8
+⟩⟩ − 979

672
⟨⟨ 1

N4 trM
6
+⟩⟩+ 75625

56448
⟨⟨ 1

N3 trM
4
+⟩⟩ − 22234355

18966528
⟨⟨ 1

N2 trM
2
+⟩⟩

− 33275
1806336

⟨⟨ 1
N2 trM+M−⟩⟩+ 1590378625

531062784
⟨⟨ 1

N
tr1⟩⟩ ∝ Res Q

7
4 . (47)

In the last equation we have used the string equation, and this correlation function was

firstly obtained in analysis of the three matrix model with the Z2 symmetric quartic

potential[11]. These operators correspond to the Z2 even relevant operator ϕ2n in the

notation of the Landau-Ginzburg description of the usual minimal unitary model. There

are many ways of expressing O(k)α in terms of trM2n
± and trM+M−, but we do not know

the general expressions.

So far we require eq. (13) with p = v + 1, so that critical coupling constants are

uniquely determined. If we relax the condition, we obtain the critical line (or surface,

bulk, etc.). We take v = 3 case as an example. Requiring d1 = 0 only, we obtain

a critical surface parameterized by g′4 and g′6 (g′6 ̸= − 1
15
). At a general point on this

surface, we obtain a (p, q) = (2, 3) string equation. At a general point on a line (g′4 =

50g′6
2 + 10g′6) in this surface, we get a (p, q) = (2, 5) equation. If we require d2 = 0

moreover, then g′4 is related to g′6, and we obtain a critical line:

g′4 =
1
3
(75g′6

2
+ 40g′6 + 1), 1

c
= 1

3
(375g′6

3
+ 500g′6

2
+ 155g′6 + 12), (48)

1
cf0

= 10
3
(19g′6

2
+ 8g′6 + 1), r

[1]
0 = 2 + 5g′6. (49)

On this critical line except for g′6 = 1
5
, 1
15
, we obtain a (p, q) = (3, 4) equation. The

point g′6 =
1
15

realizes a (p, q) = (3, 8) equation[10,7], and in this case, m = 5 > v + 1.

In the case of g′6 = 1
5
, d3 vanishes. So we obtain a (p, q) = (4, 5) equation[7]. We

remark that this point is an intersection point of two critical lines: (p, q) = (2, 5)

line (g′4 = 50g′6
2 + 10g′6) and (3, 4) line (g′4 = 1

3
(75g′6

2 + 40g′6 + 1)). We observed

the same phenomena in analysis of the three matrix model with the Z2 symmetric

quartic potential[11]. In (p, q) = (4, 5) model realized by the three matrix model, the
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gravitationally dressed vacancy operator of the tricritical Ising model is expressed as

a linear combination of tr(A2n + C2n), trB2n (n = 1, 2), and tr(AB + BC), and its

coefficients are determined by the critical line (eq. (48) of the first ref. of [5]). In the

case of the two matrix model, we have not succeeded in deriving such coefficients from

critical lines.

6. In this letter we have presented the critical coupling constants, with which two

matrix model realize (p, q) = (m,m+ 1) minimal unitary conformal matter coupled to

two dimensional quantum gravity, and we have explicitly checked them for m ≤ 6 by

using the orthogonal polynomial method. Douglas’ P,Q operators are also described

by the same method.

It has been conjectured that general (p, q) minimal conformal models coupled to

2d gravity can be realized by the two matrix model with the Z2 asymmetric action

S = tr(V +(M+) + V −(M−)− cM+M−)[8,12]. In fact Tada obtained (p, q) = (3, 5)[12].

In the case of the Z2 asymmetric potential, orthogonal polynomials are defined by

eq. (3) with Pi(x) and Pj(y) replaced by P+
i (x) and P−

j (y) respectively, and α±, R
[k]±
i ,

d±n , etc. are introduced. Corresponding to eq. (13), it is expected that the critical

coupling constants of type (p, q) are obtained by the requirement that d+n should vanish

for 1 ≤ n ≤ p − 1 and d−n should vanish for 1 ≤ n ≤ q − 1, and the string equation is

derived from [tQ̃−, Q̃+] = 1
c
. One can change p by adjusting c and V −, and q by V +.

From the parameter counting, minimal values of v− and v+ are p−1 and q respectively,

but in contrast to the unitary case, the coupling constants are not uniquely determined.
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