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1 Introduction

The Virasoro algebra plays a central role in two-dimensional conformal field theories.

For some years several extensions of the Virasoro algebra have been attempted. The

typical one is the WN algebra, which contains fields of conformal spin 2, · · · , N . But,

for N ≥ 3, WN doesn’t have the structure of Lie algebra. Recently new Lie algebraic

extensions of the Virasoro algebra have been considered, which can be regarded as large

N limit of WN algebra. Pope, Romans, Shen etc. have constructed and studied the

such algebras, what are called W∞, W1+∞, and super W∞[1,2,3].

In ref.[4], the new algebra ŝu(N)k-W1+∞ is constructed, which contains the W1+∞

algebra and the affine ŝu(N)k algebra as subalgebras. The supersymmetric extension

of the ŝu(N)k-W1+∞ is also constructed, and some properties (realization and spectral

flow) of these new algebras are studied. In this report, we present some additional

results of the study of these new algebras. Due to space limitations, we refer the

readers to ref.[4] for the definitions of these algebras and follow the notations of [4].

2 Algebraic Structure

In ref.[1], Pope, Romans and Shen defined and studied the lone-star product, which

is defined as follows:

V i
m ⋆ V j

n ≡ 1

2

∞∑
r=−1

qrgijr (m,n, µ) V
i+j−r
m+n , (1)

where the coefficients gijr (m,n, µ) are defined in ref.[1] and µ is an arbitrary real con-

stant. This product turns out to be associative. The following relation was also pointed

out:

{V i
m; |m| ≤ i+ 1, ⋆} ≃ U(SL(2,R))/I(Q− µ), (2)

where U(SL(2,R)) is the universal enveloping algebra of SL(2,R), Q = (L0)
2 −

1
2
(L+L−+L−L+) is the quadratic Casimir operator of SL(2,R), and I(Q−µ) is the ideal

generated by Q − µ. One can extend the associative algebra {V i
m; |m| ≤ i + 1, ⋆} out

of the region |m| ≤ i+1, and the central extension of the extended algebra is generally

non-trivial. It is the algebra W∞(µ) defined in ref.[1]. In general, the W∞(µ) algebra
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contains the generators of negative spins, which are unphysical. The condition that the

fields of negative spins do not appear imposes strong restrictions on the allowed value

of µ. There are only two values of µ under which all negative-spin generators vanish;

µ = 0, or −1
4
. W∞(0) and W∞(−1

4
) are W∞ and W1+∞, respectively[1].

The higher-spin generators of W∞(µ) can be constructed from the low-spin genera-

tors by the lone-star product. In the cases of W∞ andW1+∞, the higher-spin generators

can be constructed in the following way[1]:

W∞ : Ṽ 0
m = L̃m, Ṽ 1

m+n = 4q(L̃m ⋆ L̃n − 1
2
(m− n)L̃m+n), (3)

Ṽ i+1
m = 4qL̃0 ⋆ Ṽ

i
m + 2qmṼ i

m +
i(i+ 2)((i+ 1)2 −m2)

4(4(i+ 1)2 − 1)
(4q)2Ṽ i−1

m , i ≥ 1,(4)

W1+∞ : jm+n = jm ⋆ jn, V −1
m = 1

4q
jm, V 0

m = Lm, (5)

V i+1
m = 4qL0 ⋆ V

i
m + 2qmV i

m +
(i+ 1)2((i+ 1)2 −m2)

4(4(i+ 1)2 − 1)
(4q)2V i−1

m , i ≥ 0.(6)

In consequence, one can construct the W1+∞ algebra without central extension from

the U(1) Kac-Moody algebra and its derivation d as follows[1]:

[jm, jn] = 0, [d, jm] = −mjm, (7)

V −1
m = 1

4q
jm, (8)

V 0
m ≡ Lm = (d+ 1

2
m)jm, (9)

V i
m = 4q(d+

1

2
m)V i−1

m +
i2(i2 −m2)

4(4i2 − 1)
(4q)2V i−2

m , i ≥ 1

= Pi(d,m)jm, (10)

where Pi(d,m) are polynomials in d of degree i+1. TheW∞ algebra can be constructed

from the Virasoro generators by the similar way[1]:

Ṽ 0
m = L̃m, (11)

Ṽ i
m = 4q(L̃0 +

1

2
m)Ṽ i−1

m +
(i2 − 1)(i2 −m2)

4(4i2 − 1)
(4q)2Ṽ i−2

m , i ≥ 1

= Qi(L̃0,m)L̃m, (12)

where Qi(L̃0,m) are polynomials in L̃0 of degree i. Furthermore one get the following

relations:

W1+∞(without central extension) ≃ U(jm, d)/I(jmjn − jm+n), (13)

W∞(without central extension) ≃ U(L̃m)/I(L̃mL̃n − (L̃0 +m)L̃m+n). (14)
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Now we can represent the ŝu(N)0-W1+∞ algebra by the above notations as:

V i
m = Pi(d,m)jm, W i,a

m = Pi(d,m)jmt
a, i ≥ −1 (15)

where ta denote the basis of su(N). TheWN
∞ algebra, obtained by Bakas and Kiritsis[3],

is also represented in a similar way:

Ṽ i
m = Qi(L̃0,m)L̃m, W̃ i,a

m = Qi(L̃0,m)L̃mt
a, i ≥ 0. (16)

The ŝu(N)k-W1+∞ algebra contains the WN
∞ algebra as its subalgebra nontrivially, and

then the central charge c of the former relates to the central charge c̃ of the latter by

c̃ = −2c. This relation is the same as that between W∞ and W1+∞[1]. WN
∞(c̃ = 0) and

ŝu(N)0-W1+∞ are also realized as enveloping algebras:

WN
∞(c̃ = 0) ≃ U(L̃m, t

a)/I(L̃mL̃n − (L̃0 +m)L̃m+n,

tatb − 1
2
ifabctc − dabctc − 1

N
δab), (17)

ŝu(N)0-W1+∞ ≃ U(jm, d, ta)/I(jmjn − jm+n, t
atb − 1

2
ifabctc − dabctc − 1

N
δab).(18)

Now we introduce the algebra WN
∞(µ), which is obtained by replacing the coefficients

gijr (m,n) of ŝu(N)k-W1+∞ by gijr (m,n, µ). Immediately we obtain the following results:

WN
∞ = WN

∞(0), ŝu(N)k-W1+∞ = WN
∞(−1

4
), (19)

W∞ = W 1
∞(0), W1+∞ = W 1

∞(−1
4
). (20)

WN
∞(µ) without central extension contains so-called wedge subalgebra WN

∞(µ)∧ as sub-

algebra, which consists of generators V i
m,W

i,a
m ; |m| ≤ i+ 1. We have the following rela-

tion:

WN
∞(µ)∧ ≃ U(SL(2,R)⊗ u(N))/I(Q− µ, tatb − 1

2
ifabctc − dabctc − 1

N
δab). (21)

Setting jm = eimθ, d = i d
dθ
, and L̃m = ieimθ d

dθ
, then WN

∞ and ŝu(N)0-W1+∞ can be

regarded as the algebras of operators which act on the N -dimensional vector-valued

functions on S1.
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3 Geometric Interpretation

TheW∞ algebras with non-zero q values are all isomorphic to each other. Any other

algebra appeared in this report has this property. We can consider the q → 0 limit of

these algebras and the resultant algebras are not isomorphic to the original ones. For

example, one obtains the w∞ algebra[1] as the q → 0 limit of the W∞ algebra. The

w∞ algebra is geometrically the algebra of area-preserving diffeomorphisms of 2-surface.

What are the geometric meanings of ŝu(N)k-W1+∞ and super ŝu(N)k-W∞ ? After some

redefinitions of generators, we can take the q → 0 limit of the ŝu(N)k-W1+∞ algebra:

[vim, v
j
n] = (m(j + 1)− n(i+ 1))vi+j

m+n +
c
12
m(m2 − 1)δijδi0δm+n,0, i, j ≥ 0,(22)

[vim, w
j,a
n ] = (m(j + 1)− n(i+ 1))wi+j,a

m+n , i ≥ 0, j ≥ −1, (23)

[wi,a
m , wj,b

n ] = ifabcwi+j+1,c
m+n + kmδm+n,0δ

abδijδi,−1, i, j ≥ −1, (24)

[v−1
m , wj,a

n ] = 0, j ≥ −1, (25)

[v−1
m , vjn] = mδj,0v−1

m+n, j ≥ 0, (26)

[v−1
m , v−1

n ] = c′mδm+n,0, (27)

where c = Nk = c′ but the above algebra is closed for arbitrary c, k and c′. These

commutators without center can be realized in the following way:

vim = (i+m+ 1)xi+myi+1 ∂

∂y
− (i+ 1)xi+m+1yi

∂

∂x
, (28)

wi,a
m = taxi+m+1yi+1, (29)

v−1
m = mxm−1δ(y). (30)

The vector fields vim are the Hamiltonian vector fields which generate the canonical

transformations (in other words, area-preserving diffeomorphisms) on 2-surface(x, y).

We can regard wi,a
m as the generators of the local gauge transformations of SU(N)

bundle on 2-surface. The geometric meaning of v−1
m is not clear.

The result of q → 0 limit of the super ŝu(N)k-W∞ algebra (N > 1) is more or less

complex. After some redefinitions of generators we can take q → 0 limit and obtain

[vim, v
j
n] = cmδm+n,0δ

ijδi,−1, (31)
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[vim, g
j,α
n ] = −gi+j+1,α

m+n , (32)

[vim, ḡ
j,α
n ] = ḡi+j+1,α

m+n , (33)

[wi,a
m , gj,αn ] = −taαβg

i+j+1,β
m+n , (34)

[wi,a
m , ḡj,αn ] = taβαḡ

i+j+1,β
m+n , (35)

[wi,a
m , wj,b

n ] = ifabcwi+j+1,c
m+n + kmδijδi,−1δabδm+n,0, (36)

{gi,αm , ḡj,βn } = 2taαβw
i+j,a
m+n + 2( 1

N
− 1)δαβvi+j

m+n, (37)

[ṽim, ṽ
j
n] = (m(j + 1)− n(i+ 1))ṽi+j

m+n +
c+ c̃

12
m(m2 − 1)δijδi0δm+n,0, (38)

[ṽim, v
j
n] = (m(j + 1)− n(i+ 1))vi+j

m+n, (39)

[ṽim, w
j,a
n ] = (m(j + 1)− n(i+ 1))wi+j,a

m+n , (40)

[ṽim, g
j,α
n ] = (m(j + 1

2
)− n(i+ 1))gi+j,α

m+n , (41)

[ṽim, ḡ
j,α
n ] = (m(j + 1

2
)− n(i+ 1))ḡi+j,α

m+n , (42)

{gi,αm , gj,βn } = {ḡi,αm , ḡj,βn } = [vim, w
j,a
n ] = 0. (43)

This algebra without center can be realized as follows:

ṽim = (i+m+ 1)xi+myi+1 ∂

∂y
− (i+ 1)xi+m+1yi

∂

∂x
, (44)

vim = xi+m+1yi+1(
DE ′ +D′E

2( 1
N
− 1)

− θα
∂

∂θα
+ θ̄α

∂

∂θ̄α
), (45)

wi,a
m = xi+m+1yi+1(θα(−taβα)

∂

∂θβ
+ θ̄αtaαβ

∂

∂θ̄β
), (46)

gi,αm = xi+m+ 1
2yi+

1
2 (Dθα + E

∂

∂θ̄α
+

2

E ′ θ
αθβ

∂

∂θβ
), (47)

ḡi,αm = xi+m+ 1
2yi+

1
2 (D′θ̄α + E ′ ∂

∂θα
− 2

E
θ̄αθ̄β

∂

∂θ̄β
), (48)

where D,D′, E and E ′ are arbitrary real parameters. By rescaling the fermionic co-

ordinates θα and θ̄α, two parameters can be absorbed. These generators generate the

volume-preserving diffeomorphisms of the superspace (x, y, θα, θ̄α;α = 1, . . . , N).

4 Anomaly-free Condition

In refs.[5,6] the anomaly-free conditions for W∞, W1+∞, and super W∞ are consid-

ered by the BRS formalism and it is shown that their critical central charges are −2,
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0 and −3, respectively. We do not ask here whether there exist the physical string

models which possess the symmetries according to those algebras. However, it is inter-

esting that we can extract the significant results in spite of the appearance of infinite

number of ghost fields, and it is expected that there may be the theories in higher

dimensions which consist of finite number of fields[5,6]. In this section we will compute

the anomaly-free conditions for ŝu(N)-W1+∞ and super ŝu(N)-W∞.

Let us fix our notation. A field A(z) with conformal weight hA is expanded as

A(z) =
∑
Anz

−n−hA , where sum is taken over n ∈ Z − hA. We consider only the case

2hA ∈ Z and denote the Grassmann parity of A(z) by (−1)A. (Anti-)commutation

relation is defined by [Am, Bn}=AmBn − (−1)ABBnAm. Normal ordering (AB)(z) of

the two fields A(z) and B(z) is defined by (AB)(z) =
∮
z

dx
2πi

1
x−z

A(x)B(z) and its mode

expansion is

(AB)m =
∑

p≤−hA

ApBm−p + (−1)AB
∑

p>−hA

Bm−pAp. (49)

The step function θ(P ) takes 1 if the proposition P is true, and 0 if P is false.

At first we review the construction of BRS charge. Let us consider the following Lie

algebra generated by the field JA(z) with conformal weight hA (∈ 1
2
N):

[JA
m, J

B
n } = ifAB

C(m,n, l)J
C
l + δABδm+n,0kA(m), (50)

kA(m) = kA

2hA−2∏
j=0

(m+ j − hA + 1), (51)

where the structure constants fAB
C(m,n, l)= fAB

C(m,n)δm+n,l and the central terms

kA(m) satisfy the Jacobi identity. For each JA(z), we introduce the ghost field cA(z)

with conformal weight 1−hA and antighost field bA(z) with conformal weight hA. cA(z)

and bA(z) are both Grassmann (−1)A+1 and their (anti-)commutation relations are

[cA,m , bBn } = δ B
A δm+n,0 ,

(
cA(z)b

B(w) ∼ δ B
A

z − w

)
. (52)

Setting hABC = hA + hB − hC , we can rewrite the structure constants fBA
C(n,m) as

ifBA
C(n,m) =

hABC−1∑
k=0

if̃BA
C,k[n+ hB − 1]hABC−1−k[−n−m− hC ]k, (53)
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and using these coefficients we define the ghost currents JA
gh(z) as follows:

JA
gh(z) =

hABC−1∑
k=0

if̃BA
C,k(−1)B(∂hABC−1−kcB∂

kbC)(z), (54)(
JA
gh,m = ifBA

C(n,m, l)(−1)BcB,−nb
C
l

)
. (55)

The above equations need a little explanation. Of course the second equation needs

some regularization, and we define the regularization of JA
gh,m by the first equation 1.

The algebra generated by JA
gh(z) is the same one generated by JA(z) except for the

center. The center of ghost currents are

kghA = −
hABC−1∑

k=0

hACB−1∑
k′=0

if̃BA
C,kif̃

CA
B,k′(−1)B+hABC

×(hABC − 1− k + k′)! (hACB − 1− k′ + k)!

(2hA − 1)!
. (56)

The BRS current JBRS(z) and the BRS charge QBRS are given as:

JBRS(z) = (cAJ
A)(z) + 1

2
(cAJ

A
gh)(z) + θ(hA ∈ N)κA∂

hAcA(z), (57)

QBRS =
∮
0

dz

2πi
JBRS(z) (58)(

= cA,−mJ
A
m + 1

2
ifBA

C(n,m, l)(−1)BcA,−mcB,−nb
C
l

)
. (59)

Here we define again the regularization of the third line by the second line. The coef-

ficients κA, which do not contribute to QBRS, are determined by the requirement that

JBRS(z) should be a primary field of conformal weight 1 with respect to the total Vira-

soro generator. The nilpotency of QBRS (Q2
BRS = 0) is equivalent to the condition that

the central charge ktotalA =kA + kghA of the total current JA
total(z)=J

A(z) + JA
gh(z) is equal

to 0. So, to obtain the anomaly-free condition, we have only to compute the center of

the ghost current. The total current can be expressed as [QBRS, b
A(z)}=JA

total(z).

To avoid the repetition, we present the expressions for the ghost currents corre-

sponding to the super ŝu(N)-W∞ algebra. The coefficients Nx,y
r (m,n) (eq.(9) in ref.[4])

can be rewritten as follows 2:

Nx,y
r (m,n) =

r+1∑
k=0

(−1)k
(
r + 1

k

)
(2x+ 2− r)k[2y + 2− k]r+1−k

1This regularization may be different from the usual normal ordering : : only by constant in zero

mode, which gives an intercept.

2eq. (60) is needed when we express the (anti-)commutation relations in OPE form[1].
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×[x+ 1 +m]r+1−k[y + 1 + n]k (60)

=
r+1∑
k=0

Ñx,y
r,k [n+ y + 1]r+1−k[−n−m− (x+ y − r + 2)]k (61)

=
r+1∑
k=0

Ñ ′x,y
r,k [m+ x+ 1]r+1−k[−n−m− (x+ y − r + 2)]k, (62)

Ñx,y
r,k = (−1)r+1Ñ ′y,x

r,k

= (−1)r+1

(
r + 1

k

)
(2y + 2− r)k[2x+ 2y + 4− r]r+1−k. (63)

We replace the coefficientsNx,y
r (m,n) in the structure constants dijr (m,n) (d= g,g̃,a,ã,b,b̃)

by Ñx,y
r,k and Ñ ′x,y

r,k , and denote the resultant coefficients by dijr,k and d′ijr,k respectively.

Let us introduce the ghost fields (ci,(αβ), bi,(αβ)), (c̃i, b̃i), (γi,α, βi,α), and (γ̄i,α, β̄i,α) cor-

responding to W i,(αβ), Ṽ i, Gi,α, and Ḡi,α respectively. These fields satisfy the following

OPE’s:

ci,(αβ)(z)bj,(γδ)(w) ∼ δijδαδδβγ

z − w
, c̃i(z)b̃j(w) ∼ δij

z − w
, (64)

γi,α(z)β̄j,β(w) ∼ δijδαβ

z − w
, γ̄i,α(z)βj,β(w) ∼ δijδαβ

z − w
. (65)

The ghost currents for the super ŝu(N)-W∞ algebra are constructed by the method

mentioned above. The results are

W
i,(αβ)
gh (z) = −1

2

∑
j≥−1

i+j+1∑
r=−1

r+1∑
k=0

qrgijr,k((∂
r+1−kcj,(γβ)∂kbi+j−r,(αγ))(z)

+(−1)r(∂r+1−kcj,(αγ)∂kbi+j−r,(γβ))(z))

+
∑
j≥0

i+j∑
r=−1

r+1∑
k=0

qraijr,k((∂
r+1−kγ̄j,α∂kβi+j−r,α)(z)

+(−1)r(∂r+1−kγj,α∂kβ̄i+j−r,α)(z)), (66)

Ṽ i
gh(z) = −

∑
j≥0

i+j∑
r≥0,even

r+1∑
k=0

qrg̃ijr,k(∂
r+1−kc̃j∂kb̃i+j−r)(z)

+
∑
j≥0

i+j∑
r=−1

r+1∑
k=0

qrãijr,k((∂
r+1−kγ̄j,α∂kβi+j−r,α)(z)

+(−1)r(∂r+1−kγj,α∂kβ̄i+j−r,α)(z)), (67)

Gi,α
gh (z) =

∑
j≥−1

i+j∑
r=−1

r+1∑
k=0

qra′jir,k(∂
r+1−kcj,(βα)∂kβi+j−r,β)(z)
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+
∑
j≥0

i+j∑
r=−1

r+1∑
k=0

qrã′jir,k(∂
r+1−kc̃j∂kβi+j−r,α)(z)

−
∑
j≥0

i+j+1∑
r=0

r∑
k=0

qrbijr,k(∂
r−kγj,β∂kbi+j−r,(βα))(z)

−
∑
j≥0

i+j∑
r=0

r∑
k=0

qrb̃ijr,k(∂
r−kγj,α∂kb̃i+j−r)(z), (68)

Ḡi,α
gh (z) =

∑
j≥−1

i+j∑
r=−1

r+1∑
k=0

qr(−1)ra′jir,k(∂
r+1−kcj,(αβ)∂kβ̄i+j−r,β)(z)

+
∑
j≥0

i+j∑
r=−1

r+1∑
k=0

qr(−1)rã′jir,k(∂
r+1−kc̃j∂kβ̄i+j−r,α)(z)

−
∑
j≥0

i+j+1∑
r=0

r∑
k=0

qrb′jir,k(∂
r−kγ̄j,β∂kbi+j−r,(αβ))(z)

−
∑
j≥0

i+j∑
r=0

r∑
k=0

qrb̃′jir,k(∂
r−kγ̄j,α∂kb̃i+j−r)(z). (69)

When we calculate the center, we must regularize the summation with respect to

the field index, since there exist the infinite number of fields. The method of the

regularization is as follows. We take W∞, i.e. the first term of eq. (67), for illustration.

The center of ghost takes the form
∑

j≥0(rational function in j), where the origin of j

is Ṽ j. We divide this rational function into the polynomial and fractional parts. We

expand the polynomial part in j+ 3
2
and decompose the fractional part into the partial

fractions. If the origin of j is the fermionic generator, we expand the polynomial part

in j + 1 3. After the explicit calculation, the expressions to be summed with respect to

j are
i+1∑
r=0

pir(j +
3

2
)2r +

i−1∑
r=0

p′ir(
1

2j + 2r + 5
− 1

2j − 2r + 1
). (70)

We regularize these as follows:

c̃ghi =
i+1∑
r=0

pirζ(−2r,
3

2
) +

i−1∑
r=0

p′ir

2r+1∑
j=0

−1

2j − 2r + 1
, (71)

3Actual calculation shows that the polynomial parts have only even power terms with respect to

j+ 3
2 (or j+1). j+ 3

2 (or j+1) are chosen in order to respect the symmetry of (b, c) system: h ↔ 1−h

[5].
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where ζ(s, a) is the Hurwitz’s zeta function, and the sum with respect to j in the second

term is equal to − 1
2r+3

− 1
2r+1

. The Hurwitz’s zeta function is defined by

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
(Res > 1, a ̸∈ Z≤0) (72)

and analytically continued to the whole complex plane in s (except s = 1). When s

takes a nonpositive integer value, ζ is represented by the Bernoulli polynomial:

ζ(−n, a) = −Bn+1(a)

n+ 1
(n ≥ 0),

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (73)

The special values which we will use are

ζ(−2n,
1

2
) = 0, ζ(−2n,

3

2
) = − 1

22n
, (n ≥ 0), ζ(0, 1) = −1

2
. (74)

In the case of W∞, we have p01 = −1, p00 =
1
12

for i = 0, p12 = −4
3
, p11 = 0, p10 = − 3

20
,

p′10 = 3
40

for i = 1, p23 = −32
45
, p22 = −64

45
, p21 = 2

75
, p20 = − 43

350
, p′21 = 15

448
, p′20 = 321

5600

for i = 2, etc. We have checked c̃gh = 2 for i ≤ 5 (we have also explicitly checked

the results given in the rest of this section for i ≤ 5.). In refs. [5,6], Q2
BRS is directly

evaluated and c̃gh = 2 is checked for i ≤ 16[6].

The contribution from the first term of eq. (66), which is the ghost current of ŝu(N)-

W1+∞, has the same form as eq. (70) 4. But the sum is taken over the region j ≥ −1,

because the origin of j is W j,(αβ). In the expression corresponding to eq. (71), ζ(−2r, 1
2
)

and
∑2r

j=−1
−1

2j−2r+1
appear. Since both of these are 0, we obtain

cgh = Nkgh = 0. (75)

In the case of the super ŝu(N)-W∞, the ghost central charge cgh of W1+∞ contains

the contribution from the bosonic ghost (the second term of eq. (66)). This contribution

is written in the form of the sum of

2N ×
(
pi(j + 1)0 +

i∑
r=0

p′′ir(
1

2j + 2r + 3
− 1

2j − 2r + 1
)
)

(76)

over j ≥ 0 (the origin of this j is the fermionic generator Gj,α.). We regularize this as

follows:

cghi,fermionic = 2N ×
(
piζ(0, 1) +

i∑
r=0

p′′ir

2r∑
j=0

−1

2j − 2r + 1

)
, (77)

4Of course coefficients p, p′ are different and upper bound of r may be different.
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where
∑2r

j=0
−1

2j−2r+1
= − 1

2r+1
. We have, for example, p−1 = − 1

16
for i = −1, p0 = −1

8
,

p′′00 = 1
48

for i = 0, p1 = −11
72
, p′′11 = 9

640
, p′′10 = 157

5760
for i = 1, etc. and we obtain

cghfermionic = Nkghfermionic = N . Taking into account of the contribution from the fermionic

ghost cghbosonic = Nkghbosonic = 0, we obtain

cgh = Nkgh = N. (78)

From the Jacobi identity, we have c̃gh = 2 and čgh = 3. These could be also evaluated

by the explicit calculation: in fact we have c̃ghfermionic = 0, čgh = N × 0 + 3
2
+N × 0 + 3

2

5. The total central charge of the ghost currents for the super ŝu(N)-W∞ algebra is

cgh + c̃gh = N + 2. (79)

In conclusion, the anomaly-free conditions turn out to be c = 0 for ŝu(N)-W1+∞, and

c+ c̃ = −N − 2 for super ŝu(N)-W∞.

5 Representation Theory

In this section we consider the irreducible unitary representations of the ŝu(N)k-

W1+∞ algebra which can be realized by free fields. We especially analyze the case of

k = 1, because then the Virasoro generator V 0(z) is equal to the sum of the Sugawara

forms of the û(1) and ŝu(N)1 currents[7], so the analysis becomes very easy.

The highest weight state (HWS) of ŝu(N)-W1+∞ is the state which vanishes by the

actions of {V i
m,W

i,a
m : m > 0} and W i,a

0 of positive roots, and is the eigenstate of W i,a
0

contained in the Cartan subalgebra and V i
0 . The HWS is also the eigenstate of ŝu(N)1.

The HWS’s of ŝu(N)1 contained in the fermion Fock space of the free field realization

(eqs.(38,39) in ref.[4]) are

|l⟩ =


ψ1
− 1

2

ψ2
− 1

2

· · ·ψl
− 1

2

|0⟩ l = 1, 2, · · · , N − 1

|0⟩ l = 0

ψ̄1
− 1

2

ψ̄2
− 1

2

· · · ψ̄−l
− 1

2

|0⟩ l = −1,−2, · · · ,−(N − 1).

(80)

5The first (second, third, fourth) term is the contribution from the first (second, third, fourth) term

of eq. (68) and the third (fourth, first, second) term of eq. (69) respectively.
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The state |l⟩ is the HWS of the l′-th rank antisymmetric representation, where l′ =

l + θ(l < 0)N . The state |l⟩ is also the HWS of ŝu(N)1-W1+∞. The eigenvalues of

W
i,(αα)
0 (no sum over α) is obtained as follows:

W
i,(αα)
0 |l⟩ = 2i−1((i+ 1)!)2

(2i+ 1)!!
(−1)iqi|l⟩ ×


1 l > 0, α = 1, 2, · · · , l
−1 l < 0, α = 1, 2, · · · ,−l
0 otherwise.

(81)

The conformal weight of |l⟩ is hl = 1
2
|l|. Neglecting the dependence on the eigenvalues

of higher-spin generators, we obtain the character formula:

χl(τ ; θ0, θ⃗) = tr|l⟩q
V 0
0 −N

24 eiθ0J0+iθ⃗·J⃗Cartan
0 =

eilθ0

η(τ)
χ
ŝu(N)1
l′ (θ⃗, τ ), (82)

where q = e2πiτ , η(τ) = q
1
24
∏

n≥1(1 − qn), and χ
ŝu(N)1
l′ (θ⃗, τ ) is the character formula of

the l′-th rank antisymmetric representation of ŝu(N)1. In derivation we have used the

fact that the generators of ŝu(N)-W1+∞ do not change the U(1) charge.

In the rest of this section we give some comments on the irreducible unitary rep-

resentations of W1+∞(c = 1) and W∞(c̃ = 2) realized by the free fields. The free field

realization of W1+∞ with central charge c = 1 is constructed by one fermion(eq.(40) in

ref.[4])[1]. The HWS of U(1) current J(z) contained in the fermion Fock space are

|l⟩ =


ψ− 1

2
ψ− 3

2
· · ·ψ− 2l−1

2
|0⟩ l ≥ 1

|0⟩ l = 0

ψ̄− 1
2
ψ̄− 3

2
· · · ψ̄−−2l−1

2
|0⟩ l ≤ −1,

(83)

where the U(1) charge of |l⟩ is l. These states are well known in Sato theory[8]. The

states |l⟩ are also the HWS of W1+∞, and the eigenvalue of V i
0 are computed as follows:

V i
0 |l⟩ =

2i−1(i+ 1)!

(2i+ 1)!!
qi

min(i+1,l−1)∑
r=0

l−1−r∑
s=0

(i+ 1 + s)!

s!

(
i+ 1

r

)2

|l⟩ ×


(−1)i l > 0

0 l = 0

1 l < 0.

(84)

The conformal weight of |l⟩ is hl = 1
2
l2. Taking into account of the fact that V i

m does not

change the U(1) charge and neglecting the dependence on the eigenvalues of higher-spin

generators, we obtain the following character formula:

χl(τ ; θ) = tr|l⟩q
V 0
0 − 1

24 eiθJ0 =
eilθ

η(τ)
. (85)
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The free field realization of W∞ with central charge c̃ = 2 is constructed by one

free boson(eq.(42) in ref.[4])[3]. The Fock space of boson is obtained by the actions

of negative-mode oscillators on the momentum eigenstate |α, ᾱ⟩ (p|α, ᾱ⟩ = α|α, ᾱ⟩,
p̄|α, ᾱ⟩ = ᾱ|α, ᾱ⟩). The state |α, ᾱ⟩ is created from the vacuum state |0, 0⟩ by vertex

operator : eiᾱφ+iαφ̄ : (z). The unitarity requires ᾱ = α∗. The HWS of the Virasoro

generator Ṽ 0(z) in the boson Fock space are |α, ᾱ⟩, (α−1)
l|0, 0⟩ and (ᾱ−1)

l|0, 0⟩, (l ≥ 1),

and these states are also the HWS of W∞. The eigenvalues of Ṽ i
0 are

Ṽ i
0 |α, ᾱ⟩ =

2ii!(i+ 1)!

(2i+ 1)!!
qiαᾱ

1 + (−1)i

2
|α, ᾱ⟩, (86)

Ṽ i
0

 (α−1)
l|0, 0⟩

(ᾱ−1)
l|0, 0⟩

=
2i−1(i+ 1)!(i+ 2)!

(2i+ 1)!!
qil ×

 (−1)i(α−1)
l|0, 0⟩

(ᾱ−1)
l|0, 0⟩.

(87)

For the states |α, ᾱ⟩, Bakas and Kiritsis have obtained, by using the Z∞ parafermion,

the following character formula[3]:

χα(τ) = tr|α,ᾱ⟩q
Ṽ 0
0 − 2

24 =
qαᾱ

η(τ)2
. (88)

For |0, 0⟩, (α−1)
l|0, 0⟩ and (ᾱ−1)

l|0, 0⟩, we must subtract the zero norm states. For

example, the character of |0, 0⟩ is

χvac(τ) = q−
2
24 (1 + q2 + 2q3 + 4q4 + 6q5 + 11q6 + · · ·)

< q−
2
24

∏
n≥1

(1− qn)1−n, (89)

where A < B means that B − A is q-series with positive coefficients.

Representation theories given in this section are insufficient. We need further inves-

tigations (higher level, higher center, super, etc.).

Recently, in the context of the two dimensional quantum gravity, the relation be-

tween the W1+∞ algebra and KP hierarchy has been studied by Fukama, Nakayama

and Kawai (Tokyo preprint UT-572). We expect that our ŝu(N)k-W1+∞ algebra relate

to multi-component KP hierarchy.

14



Acknowledgments

The authors would like to thank T. Eguchi for valuable discussions and careful

reading the manuscript. The authors also would like to acknowledge useful discussions

with H. Kawai, K. Ogawa, K. Igi, M. Ono and K. Yamagishi. This work is supported

in part by the Grant-in-Aid for Scientific Research from the Ministry of Education,

Science and Culture of Japan No.01790191.

References

[1] C.N. Pope, L.J. Romans and X. Shen, Phys. Lett. B236 (1990) 173;

B242 (1990) 401; B245 (1990) 72; Nucl. Phys. B339 (1990) 191.

[2] E. Bergshoeff, C.N. Pope, L.J. Romans, E. Sezgin and X. Shen,

Phys. Lett. B245 (1990) 447.

[3] I. Bakas and E. Kiritsis, “Bosonic Realizations of a Universal W -Algebra and

Z∞ parafermions”, LBL preprint, LBL-28714; Mod. Phys. Lett. A5 (1990) 2039;

“Structure and Representations of the W∞ Algebra”, LBL preprint, LBL-29394;

“Universal W -Algebras in Quantum Field Theory”, LBL preprint, LBL-29393

[4] S. Odake and T. Sano, “ W1+∞ and Super W∞ Algebras with SU(N) Symmetry”,

Tokyo preprint(Oct. 1990), UT-569 (Phys. Lett. B, to be published).
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