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Abstract

In 2012, the Higgs boson, which is a last piece of the standard model
(SM), was discovered by the experiments at Large Hadron Collider (LHC) in
CERN. Hence, correctness of the SM has been proved. But, because the SM
includes some problems, it is not a perfect theory. For example, the SM dose
not include gravitational interaction and can not explain the origin of three
families for quarks and leptons, the mass of neutrino, and the identity of dark
matter and dark energy is unknown, and so on. In order to explain the history
of universe, physics beyond the SM is needed.

Physics beyond the SM such as supersymmetry (SUSY), higher dimen-
sional theories and technicolor (composite) theories has been proposed, and
those theories predict new particles. However, no particles other than the SM
ones have been found until now. This means that new physics should exist at
a very high energy scale, and the SM should be effective up to such a scale.

In this thesis, we focus on a family unification and the origin and identity
of unknown new particles. And, in order to solve those problem, we use the
higher dimensional theory including extra dimensional spaces called orbifold.

In the SM, matter particles are composed of six types of quarks and lep-
tons. However, in the early universe, those particles could not be distinguished
in the framework of grand unified theories (GUTSs). Therefore, we construct
a unification model that all matter particles are unified under a large gauge
group.

By considering SU(N) gauge theory on six-dimensional (6D) space-time
M* x T?)Zy (M = 2,3,4,6), we search the models to unify families and ob-
tained enormous number of models with three families of SU(5) matter multi-
plets and these with three families of the SM multiplets, from a single massless
Dirac fermion with a higher-dimensional representation of SU(N). We also
study the relationship between the family number of chiral fermions and the
Wilson line phases, based on the orbifold family unification. We show that fla-
vor numbers are independent of Wilson line phases relating extra-dimensional
component of higher-dimensional gauge field and this feature originates from
a quantum-mechanical SUSY.

Next, we study phenomenological aspects of orbifold family unification
models with SU(9) gauge group on a 6D space-time including the orbifold
T?/Zs. Especially, we focus on a mass acquirement of the SM matter particles.
And, we also predict relations among sfermion masses in the SUSY extension
of models.

We explain the reason why new particles have not been discovered using
gauge theory on 5D based on 1D orbifold S!/Zs. We propose an idea that new
particles can be separated according to gauge quantum numbers from the SM
ones by the difference of boundary conditions (BCs) on extra dimensions, e.g.
zero modes due to orbifold breaking by inner automorphisms correspond to the
SM particles, and zero modes due to orbifold breaking by outer automorphisms
correspond to new particles. We apply this idea on a gauge-Higgs inflation
scenario. This model contains inflaton which causes the inflation and dark
matter, but they hardly interact with the SM particles.
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1 Introduction

The standard model (SM) contains by electromagnetic, weak and strong inter-
action and is constructed by gauge principle concerning the gauge group Ggy =
SU@3)c x SU(2)p x U(1)y. The SU(3)c symmetry describes the strong interac-
tion. The SU(2), x U(1)y symmetry is spontaneously broken down to U(1)gw by
the Higgs mechanism, and the unbroken symmetry describes the electromagnetic
interaction and the broken one describes the weak interaction. Under this gauge
group, the SM includes 12 matter particles (Table 1.1), 3 types of gauge bosons cor-
responding to SU(3)¢, SU(2)r, and U(1)y and the Higgs particles. Gauge quantum
numbers of the SM particles are indicated in Table 1.2, 1.3 and 1.4. Gauge group,
gauge couplings and gauge particles of the SM are summarized in Table 1.5.

15* generation | 2" generation | 3' generation
i ur, Cy, tL
o dr, SL br
quarks ,
uﬁ% UR CR lr
dg% dR SR bR
Iy,
leptons . cL Hr L
V}% VeRr VuRr Vrr
6}2 €Rr HR TR
Table 1.1: The SM matter particles.
Matter particles | SU(3)¢ | SU(2)L T3 Y |QE=TE+Y)
1 2
o 3 2 21 % 31
dr ~3 ~3
dp 3 0 -3 -2
1
e 5 0
Vel 1 2 R
€r, ) -1
ER 1 1 0 —1 —1
Ver 1 0 0 0

Table 1.2: Gauge quantum number of the SM matter particles.

The SM is verified with high accuracy by experiments. In 2012, the Higgs particle
was discovered at the Large Hadron Collider (LHC) in the CERN. As a result, the
SM has been completed. However, there are some unsolved problems in the SM
frame. For example,

- Quantization of gravity



Gauge particles || SU(3)¢ | SU(2)L T3 Q=T +Y)
e 8 1 0o o 0
wir +1 +1
we= | wo 1 3 0 0
W -1 1
B, 1 1 0 0

Table 1.3: Gauge quantum number of the SM gauge particles.

Higgs particle | SU(3)¢ | SU(2);, T3 Y| Q=T +Y)
o 1 2 : z !
# 3) 0 o

Table 1.4: Gauge quantum number of the SM Higgs particles.

Gauge group SU(3)¢ SU2), |[UQ1)y
Gauge coupling Js g q
Gauge particle G, Wy B,

Generator Te=X/2 | Tp=0/2] Y

Table 1.5: Gauge group, gauge couplings and gauge particles of the SM.

- Hierarchy problem (fune-tuning problem)

- Strong CP ploblem

- The number of family

- Neutrino mass

- Dark matter and energy

- Baryon asymmetry
- Grand unification

Those problems must be solved by considering new physics beyond the SM. Actu-
ally, physics beyond the SM such as grand unified theories (GUT), supersymmetry
(SUSY), higher dimensional theories and technicolor theories have been proposed.
In order to explain that why the SM gauge group is SU(3)c x SU(2) x U(1)y,
GUT is proposed.

For example, in the case of SU(5) GUT, when SU(5) is broken down to sub-
group Ggu, one generation matter particles of the SM is unified into 10, 5 and 1
representation of SU(5) such as

10 = (3,1%\/?) D (ug) @ (3,2,—;@) DqL D (Z_l,l, \/g) c(er)®, (1.1)

_ 1 /3 .
(3,1,§ g) : (dg) EB(

1727__
2V 5

1 /3

)

:lL7



1=(1,1,0): (vr)". (1.3)

And, SU(5) gauge field with 24 representation is decomposed to

5 /3 - 5 /3
mz@¢m@@&m@@Lm@GJﬁg5>@Ggﬁ¢9, (1.4)

where (8,1,0), (1,3,0) and (1,1,0), are representation of SU(3)¢, SU(2), and
U(1)y gauge boson, respectively. Therefore, the SM gauge bosons are unified, and
three gauge couplings are unified as g, = g = 1/5/3¢' = ggur at GUT scale. The

(3, 2, —% g) and <3, 2, %\/§> are extra gauge bosons which can cause proton
decay.
When SO(10) gauge group are broken down to subgroup SU(5)x U(1) in SO(10)

GUT, 16 representation of SO(10) is decomposed to

_ 3 /1 1 /1 5 /1
16 = 5,24/ — 10, —=4/ — 1,—24/— . 1.
6 (5’2 10)69(0’ 2 10)69(’ 2 10) (15)

Hence, one generation of matter particles are unified to a single multiplet with 16
representation of SO(10). In GUT based on Es gauge group, 16 representation of
SO(10) gauge group is a part of 27 of Fg.

Furthermore, when exceptional group Fj is broken down to subgroup Fgx SU(3),
248 representation of Eg is decomposed to

248 = (78,1) ® (1,8) & (27,3) @ (27, 3). (1.6)

Here, (27,3) includes all matter particles of the SM. However, there are a lot of
extra particles which do not appear in the SM.

We have studied this problems by using higher-dimensional theories. The ad-
vantage of higher-dimensional theories is that substances including mirror particles
can be reduces using the symmetry breaking concerning extra dimensions, as origi-
nally discusses in superstring theory [1-3]. Hence, a candidate realizing the family
unification is GUTs on a higher-dimensional space-time including an orbifold as an
extra space.!

Many physics beyond the SM have been proposed, but their evidences have not
been discovered. In order to explain the history of universe, we should disclose the
identity of unknown particles such as dark matter and inflaton. Because it is hard
to detect such hidden particles directly, they are supposed to interact with the SM
particles weakly. We also have studied this problems by using higher-dimensional
theories.

The contexts of this thesis are as follows. In Sec. 2, we explain the properties of
orbifold and orbifold breaking which is a kind of symmetry breaking. In Sec. 3, we
review a family unification on the basis of SU(N) gauge theory on 5D space-time,

! Five-dimensional supersymmetric GUTs on M* x S1/Z, possess the attractive feature that
the triplet-doublet splitting of Higgs multiplets is elegantly realized [4,5].
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M* x S'/Zy [6]. In Sec. 4, we investigate the family unification on the basis of
SU(N) gauge theory on 6D space-time, M* x T?/Zy; (M = 2,3,4,6) [7]. In Sec.
5, we investigate the relationship between the family number of chiral fermion and
the Wilson line phases, based on the orbifold family unification [8]. In Sec. 6, we
predict orbifold family unification models with SU(9) gauge group on a 6D space-
time including the orbifold 72 /Z,, and obtain relations among sfermion masses in the
SUSY extension of models [9]. In Sec. 7, we propose an idea that hidden particles
can be separated according to gauge quantum numbers from the visible ones by
the difference of boundary conditions (BCs) on extra dimensions [10]. Section 8 is
devoted to conclusion and discussion.



2 Orbifold

Orbifold is the quotient space M/H which is obtained from a manifold M with
some discrete transformation group H, and the space has fixed point (or space).
First, I consider how to generally construct orbifold.

For orbifold M/H, the discrete group H is the direct production of the space
group and discrete rotation group if space is a flat one M = R™. If the element of
H, g = (6,v), acts on an arbitrary point y*(i = 1,2, -+ ,m) of R™, it transforms as

gy — 9§yj + 07, (2.1)

where v is a translation for space group and 6 is a discrete rotation. Speaking in
the language of the topological transformation group, a set of g is called the “orbit”
of H for 4, and because a “manifold” is divided by some discrete group, it is called
orbifold. However, orbifold is not manifold because it has fixed points. In fixed
points, the curvature diverges.

In the quotient space R"/H., the coordinates has the equivalence relation as the
following;

y' o~ Oyl + 07 (2.2)

Because R" is the flat space and H is the discrete group, R"/H is also flat and
compact from the properties of space group. The quotient space, where the compact
flat space is divided by the discrete rotation group, is orbifold.

The fixed points f for some (6% vy) is defined by points that satisfy the relation

f=0"f+ v (2.3)

in the fundamental region. The number of fixed points is defined as

x =det(1—0) = H4sin2(7rgbi) (2.4)

by Lefschetz fixed point theorem. Here, 6 is the integer representation matrix and
2m¢; are all angles that are integer multiples of 27 /M rotation obtained from Z,,
symmetry up to m. If y =0, ¢; = 0, and the space is non-compact orbifold or fixed
surface (torus). Therefore, the number of fixed points is automatically fixed when
Zys 1s determined.

2.1 S'/Z, orbifold
2.1.1 Property

The S'/Z, orbifold is obtained by dividing a circle S' whose radius is R with
the identification,
Stiy~y+27R, (2.5)

under the Zo symmetry,
Lo:yn~—y, (2.6)

which is shown in Fig. 2.1.



y=7nR

Figure 2.1: S'/Z, orbifold

It follows that when the point y is identified with the point —y on S'/Z,, the
space is regarded as a line segment whose length is m7R. The both end points y = 0
and mR are fixed points under the Z, transformation. The transformations around
those fixed points can be defined as

So:y— -y, S1:y—2rR—y, t:y—y+2rR. (2.7)
They satisfy the relation,

se=s7=1, t=355; . (2.8)

2.1.2 Orbifold breaking by inner automorphisms boundary condition

Let us discuss SU(N) gauge theory to consider boundary conditions (BCs) of
gauge, scalar and spinor field under the transformation, using inner auotomophisms.
5D Lagrangian density is given by

1 w
Lop = = Fiin M 4+ 0l Dagr + | Dyl (2.9)

where Dy = Oy — igs A% T and Fy = Oy A% — On A%y + g5 f2¢ A5, AS, and g5 is
5D gauge coupling.
First, the BCs of gauge field Ay, = A$,T* are determined as

So - AM(I> _y) = P()AM(JT, y)PJ7 A5($7 _y) = _POAB(:Ev ?J)Pg 9 (210)
s1: Au(x,2rR —y) = PLA,(x,y)P], As(x,27rR —y) = —P As(z,y)P],  (2.11)
t1: Ap(z,y+27R) = UAy(z,y)UT, (2.12)

where Fy, P, and U stand for the representation matrices for the Z,, Z, and T
transformation, respectively. Those matrices satisfy the relations,

P2=pP'=1, UU'=1, U=PP, . (2.13)

where, Py and P; are hermitian matrices because of Py = Pg and P, = P{r .



Next, the BCs of scalar field ¢ are determined as

S0 :¢($, _y) = T@[P0]¢($’ y) 5 (2'14)
s1:0(x,2rR — y) = Te[P1]p(x,y) , (2.15)
t1:p(x,y + 2 R) = Te[U]o(z,vy) , (2.16)

where To[FP), To[P1] and Te[U] represent appropriate representation matrices in-
cluding arbitrary sign factors, with the matrices %, P, and U. The representation
matrices satisfy

To[P)> = Ts[P)? =1, TolU] = Ts[P))Ts[P1] . (2.17)
For example, if ¢ is the fundamental representation of SU(N) gauge symmetry,

To[Po]o(x,y) = ngoLod(x,y) , To[Prlo(x,y) = np1Pro(z,y)
Ts[Ulg(z,y) = nep2Ud(z,y) (2.18)

where 79, 71 and 7, are intrinsic Zy parity and they take 1 or —1.
The BCs of spinor field ¢ are determined as

So 3¢($a _y) = ZF5T‘I’[P0] (ZE, y) ) (219)
S1 :w(xa 2R — y) ir° T\IJ[PJYP(%Z/) ) (2'20>
trY(z,y +27R) = Ty [Uld(z,y) , (2.21)

where Ty [Py, Ty[P] and Ty[U] represent appropriate representation matrices in-
cluding arbitrary sign factors, with the matrices Fy, P, and U. The representation
matrices satisfy

Ty[R) =Ty[P> =1, Ty[U]=Ty[R|Ty[P] . (2.22)
For example, if ¢ is the fundamental representation of SU(N) gauge symmetry,

so p(x, —y) = —nwoPotbr(z,y) , Yr(x, —y) = npoPovr(z,y)
s1 (2,21 R —y) = =y PiYr(n,y) , Yr(2,20R — y) = nyi PiYgr(e, y)
t1 Wp(z,y + 27R) = npeUdbr(z,y) , Yr(z,y+ 27R) = nypUvg(x,y) . (2.23)

note that Zs parity of ¢y, is different from that of ¢)z. This property is important
to consider chiral theory on 4D.

Let (7071 (z,y) be a component in a multiplet and have a definite Z, parity
(P, P1). Here, ¢ is a generic field and it is applied to scalar field ¢, fermion field
v or gauge field Ay;. The Fourier expansion of p(Z0?1)(z, y) is given by

|
FLAD (1, y) = )cos =y , 2.24
P () \/ﬁw +1/ -5 Z " y (2.24)

(+1,-1) 2
(x,y) 7 nE " cos 5 Y (2.25)

¥



1
(— 1,+1 5)
© (z,y) =1\ — 7TR 5 o™ sm 7Y (2.26)

(_17 J—
© (z,y) =1\ — — Z % sm (2.27)

Upon compactification, massless mode ¢(*)(z) appears on 4D when Z, parities are
(Py, Z1) = (4+1,+1). The massive Kaluza-Kein (KK) modes ¢™ () do not appear
in our low energy world because they have heavy masses of O(1/R), with the same
magnitude as the unification scale. Unless all components of non-singlet field have
a common Zs parity, a symmetry reduction occurs upon compactification because
zero modes are absent in fields with an odd parity. This type of symmetry breaking
mechanism is called orbifold breaking mechanism.”
For example, if the representation matrices /) and P; are

N
Pozdia’g(_'_l?"'7+17+17"'7+]-7_17"'7_17_17'”7_]-)7
Pl = dla’g(:'_:l? 7+];7\_]-7"' 7_117:’_17"' 7+117\_17'” 7_];) ) (228)
p q T s

where s = N — p — g —r, SU(N) gauge symmetry is broken down as
SU(N) — SU(p) x SU(q) x SU(r) x SU(s) x U(1)>™* (2.29)

where k is the number of SU(0) and SU(1). The SU(1) stands for U(1) and SU(0)

a(P0,21)

means nothing. In this case, the gauge field A}, are divided as

Aa(—l—l,—l—l) A6(+1,—1) Aﬁ(—1,+1) Aﬂ —-1,-1)
iz I 1

I ) ) )

A?:(—l,—l) : Ag(—lr"l) Ag (+1,+1) , (230)

A§(+1,—1)

) )

where the index « indicates the gauge generators of unbroken gauge symmetry and
the index 3 indicates the gauge generators of broken gauge symmetry. This shows
that the gauge symmetry is unbroken when gauge field contains zero modes.

2.1.3 Orbifold breaking by outer automorphisms boundary condition

Let us discuss SU(N) gauge theory to consider BCs of gauge, scalar and spinor
field under the transformation, using outer automorphisms. The BCs of gauge field
A$,T* are generated by a conjugation transformation,

S0 A(w, —y)T* = — A, (x,y)(T°)"

Ag($, _y)Ta = AB(:Ev y) (Ta)* ’ (231)
ty: AY(z,y +27R) T = ASy(z,y) T . (2.32)

2 The Zy orbifolding was used in superstring theory [11] and heterotic M-theory [12,13]. In
field theoretical models, it was applied to the reduction of global SUSY [14,15], which is an orbifold
version of Scherk-Schwarz mechanism [16,17], and then to the reduction of gauge symmetry [18].

8



This is an outer automorphism transformation. Such BCs relate particles with a
representation R to that with the conjugated one R as conjugate BCs [19]. In this
case of BCs, SU(N) gauge symmetry is broken down as

U(1) — nothing ,
SU(N) — SO(N) , (2.33)

and the rank is reduced (for n > 2) [20]. In the case of other gauge symmetry,
symmetries are broken down as

SO(p+q) = SO(p) x SO(q) ,
SU((2n) — Sp(n) ,
E¢ — Sp(4) , Eg¢— Fy .

Let us consider a U(1) gauge theory as an example. In the case of U(1), the BCs
(2.31) and (2.32) are represented such as

S0 - Au(xa _y) = _Au(xvy) ) A5(ZL', _y) = A5(Iay) ) (234)
t1: Au(z,y+27R) = Ay, y) - (2.35)

The 5D U(1) gauge fields Ay are given by the Fourier expansions:

A Z sm -, (2.36)
L 40 (n) ny
As(z,y) = \/mA J_ ZA ) cos = . (2.37)
The BCs of scalar field ¢ and spinor field ¢ are determined as
0: ¢z, —y) =¢"(z,9) , (2.38)
oz, y + 21R) = ePogp(a,y) (2.39)
@/)(I, ) W (z,y) (2.40)
1o Y(z,y + 27R) = ey (a,y) (2.41)

where 3, and (3, are arbitrary real constants and )¢ = ?<T'?¢)*. The ¢° corresponds
to a charge conjugation of ) on 4D space-time, and 7, is an arbitrary real number.
From the BCs of (2.38) - (2.41), ¢ and v are given by the Fourier expansion:

27rn+6¢

gb(x,y 2\/_ Z ¢(n el TarR v, (2.42)

U(x,y) = 2\/— n_zoo ( s 9(2) ) R (2.43)

where ¢(™ () are 4D real scalar fields (¢™*(x) = ¢ (z)), & m (x) are 4D 2-component
spinor fields, and « and & are spinor indices.

9



2.2 T?/Zy orbifold

In this subsection, let us explain SU(N) gauge theory on M* x T?/Z,s. Because
the properties of T?/Z,; orbifold is similar to previous subsection, we easily sum-
marize it. The details of the properties and orbifold breaking mechanism of T2 /Z,
orbifold are described in appendix.

Let z be the complex coordinate of T?%/Z,;. Here, T? is constructed from a
two-dimensional SO(4), SU(3), SO(5) and Gy lattice on T?/Zy, T?/Zs3, T?/Z4 and
T2/ Zg, respectively (Fig. 2.2).

62/\ """"""" ]
I
I
|
I
e1 + e: !
)2 & (e1 +e2)/2 !
|
|
I
. X
0 01'/2 !
(a) T?/Zsy orbifold
€ o ___
A I [
I
I
I
I
€ (&) !
e2/2 ¢ g e :
|
I
I
| X
0 61/2 “ 0 e1/2 é
(c) T?/Z4 orbifold (d) T?/Zg orbifold

Figure 2.2: T2/Z) orbifold

On T2, the point z is equivalent to the points z + e; and z + ey where e; and
ey are the basis vectors. The orbifold T2 /Z,; is obtained by dividing T? by the Z,,
transformation: 2z — 0z(6™ = 1). As the point z is identified with the point 6z on
T?/Zys, the space is regarded as a dark area in Fig. 2.2, respectively. The fixed
point zy for the Zj; transformation satisfies

zp = 0%z + ney + mesy (2.44)

where k, n and m are integers. In Fig. 2.2, the fixed points is shown by filled circle.
Basis vector, transformation properties and their representation matrices of T2 /Z,
are summarized in Table 2.1. [21,22]
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M H Basis vectors (eq, €2) ‘ Transformation properties ‘ Representation matrices
2 1,4 2= —2,2 e — 2,2 —>ey— 2 Py, P, P,

3 1,e%m/3 2z — 2™y 2 — 2™y 4y 6o, O

4 1,2 Z—iz,z el — 2 Qo, P

6 1, (=3 +iV3)/2 2= ey e —z Zo, P

Table 2.1: The characters of T2 /7y,

3 Review of Orbifold Family Unification on M* x
St/ 7,

In this section, we review family unification on the basis of SU(N) gauge theory
on 5D space-time, M* x S /Z, [6].

With suitable diagonal representation matrices Py, P, such as (2.28), the SU (V)
gauge group is broken down into its subgroup such that

SU(N) — SU(p) x SU(q) x SU(r) x SU(s) x U(1)*™ (3.1)

where s = N —p—q—r and & is the number of SU(0) and SU(1), and SU(1) stand
for U(1) and SU(0) means nothing.

A fermion with spin 1/2 in 5D is regarded as a Dirac fermion or a pair of
Weyl fermions with opposite chiralities in 4D. After the breakdown of SU (), Weyl
fermion with the rank k totally antisymmetric tensor representation [N, k] (g, whose
dimension is yC}, is decomposed as

k k—l1 k—l1—1l2

[Nv k]L = Z Z Z (PCquClzv TClsv SCl4)L ) (32)
11=012=0 1I3=0
k k=l1 k=l1—12

[N7 k]R = ZZ Z (pCh?quz’TCleClz;)R ) (33)

1,=01=0 I3=0
where [, = k — [ — [y — I3, and our notation is that ,C} for [ > n and n > 0. The
Ly parity of the representation (,Cy,, (Cl,, »Ciy, sCly) L(R) 2T€ given by

Porry = (U 0wk s Py = (D g, (3.4)

where 9n k), and 77{ Nk AT€ the intrinsic Zy and Zj, respectively. In order to the

kinetic term is invariant under the Z, parity transformation, (,Cj,, Cl,, rCi,, sCl,) I
and (,C1,, ¢Cl,, »Cly, sCiy)  should have opposite Z, parity to each other:

NINEL = —TINKR > UEN,k]L = —UfN,k]R ‘ (3.5)

Therefore, Py, = —Por and P, = —HP1g 4D Weyl fermions having even Z,
parities Zyrry = Pi1(r) = +1 compose chiral fermions in the SM.

In order to remove zero mode of unwelcome particles such as mirror particles from
low-energy spectrum, the survival hypothesis [23,24], which is proposed by Georgi,
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is adopted. Here, the survival hypothesis is the assumption that if a symmetry is
broken down into a smaller symmetry at a scale Mgg, then any fermion masses terms
invariant under the smaller group induce fermion masses of O(Mgpg).

Let consider two gauge symmetry breaking pattern:

SU(N) — SU(5) x SU(q) x SU(r) x SU(s) x U(1)*~
SU(N) — SU(3) x SU(2) x SU(r) x SU(s) x U(1)*~

In the case of the gauge symmetry breaking pattern SU(N) — SU(5) x SU(q) %
SU(r) x SU(s), using the survival hypothesis and the equivalence of (5gz)¢ and
(10g)¢ with 5, and 10y, respectively, the number of 5 and 10 representations for
left-handed Weyl fermions are

ns =15, — 5, + 85z — t5r
k—ly k—ly—Is

- Z Z Z ll PL - PR) ClQ ’ TCZ3 : sCl4 ) (36)

h=141o=0 I3=0
nip = 10, — 10, + 105 — §10g
k—11 k—ly—lo

- Z Z Z ll PL - PR) ClQ ’ TCl3 : sCl4 ) (37)

11=2,415=0 13=0
where § represents the number of each multiplet and

2 2
In [6], many solutions which give rise to three families ns = n;y = 3 have been
found.
Next, in the case of gauge symmetry breaking pattern SU(N) — SU(3) x
SU(2) x SU(r) x SU(s) x U(1)>*, using the survival hypothesis and the equiv-

alence on charge conjugation, the flavor number of each chiral fermion are

ng = ﬂ(gal)L _ﬁ(gvl)[, +ﬁ(3a 1>R _ﬁ(gv]-)R
k—11—12
- Z Z ll+l2 P PR) Cls ’ 5014 > (39)
(11,l2)=(2,2),(1,0) 13=0
n; = jj(]_,Z) _ﬂ<172)L+ﬁ(1a2)R_H(172)R
k—Il1— l2
= Z 1)t (P — PR),Cy, - sC, (3.10)
(I1,l2)=(3,1 13=0
=1(3,1) — ( 1), +83, 1) —8(31),
k—l1—12
= > ()P, = PR),Cl - C (3.11)
(l1,12)=(2,0),(1,2) I3=0
= ﬂ(lvl) _ﬂ<171)L +Jj<171)R _ﬂ(]w]-)R
k—11—l2
= > ()P, = PR),Cl - JCy (3.12)

(I1,l2)=(0,2),(3,0) 13=0

Prry = (3.8)

12



Ng = 1(3,2) —jj(g,Z)L —|—jj(3,2)R _ﬂ<372)R
k—11—1o

= > (=) (P, = PR),C, - Gy (3.13)

(l1712)2(1:1)7(271) l3=0
The total number of heavy neutrino singlets (1,)¢ is

:ﬁ(171)+ﬁ(171>L+ﬂ<171)R+ﬁ<171)R
k—Il1—l2

- > > (=1 (P = Pg),Cy - C, (3.14)

(11,12)=(0,0),(3,2) 13=0

In [6], it is found that there is no solution satisfying ng = n; = ng = ne =n, = ny =
3.

Therefore, we think that it is important to expand space dimension. In next
section, we study family unification on 6D M* x T?/Z,.

13



4 Orbifold family unification on M* x T?/Z,,

In this section, we study the possibility of family unification on basis of SU(N)
gauge theory on M* x T?/Zy (M = 2,3,4,6), in the framework of 6D SU(N)
GUTs.

4.1 Z); orbifold breaking and formulas for numbers of species

Fields possess discrete charges relating eigenvalues of representation matrices
for Zys transformation. The discrete charges are assigned as numbers n/M (n =
0,1,---,M — 1) and €™M are elements of Zj, transformation. We refer to them
as Zy; elements.

A fermion with spin 1/2 in 6D is regarded as a Dirac fermion or a pair of Weyl
fermions with opposite chiralities in 4D. There are two choices in a 6D Weyl fermion,

ie.,
1+15 <175 0 )(qﬂ) (\111)
\I] = \IJ: 2 = = L 3 41
" 2 0 = 2 v (4.1)

1-1T7 e v! U

where U, and W_ are fermions with positive and negative chirality, respectively,
and I'; and 75 are the chirality operators for 6D fermions and 4D ones, respectively.
% Here and hereafter, the subscript & stands for the chiralities on 6D.

From the Z,; invariance of kinetic term and the transformation property of
the covariant derivatives Zy; : D, — pD, and Ds — pD= with p = e 2™/ and
p = e¥/M the following relations hold between the Z,; element of W} g and

0

Pyz = pPyr , Py =0 Py (4.3)

5 6

where z = 2° + i2® and 7 = 2° — iaS.

Chiral gauge theories including Weyl fermions on even dimensional space-time
become, in general, anomalous in the presence of gauge anomalies, gravitational
anomalies, mixed anomalies and/or global anomaly [26,27]. In SU(N) GUTSs on
6D space-time, the global anomaly is absent because of IIg(SU(N)) = 0 for N > 4.
Here, II5(SU(N)) is the 6-th homotopy group of SU(N). In our analysis, we consider
a massless Dirac fermion (U, V_) under the SU(N) gauge group (N > 8) on 6D
space-time. In this case, anomalies are canceled out by the contributions from
fermions with different chiralities

4.2 Formulae for numbers of species

With suitable diagonal representation matrices R, (a = 0,1,2 for T?/Z, and
a=0,1 for T?/Zs, T?|Z4 and T?/Z¢), the SU(N) gauge group is broken down into
its subgroup such that

SU(N) — SU(p1) x SU(pg) x -+ x SU(p,) x U(1)"~™"1 (4.4)

3 For more detailed explanations for 6D fermions, see Ref. [25].
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where N = 3" | p;. Here and hereafter, SU(1) unconventionally stands for U(1),
SU(0) means nothing and m is a sum of the number of SU(0) and SU(1). The
concrete form of R, will be given in the next section.

After the breakdown of SU(N), the rank k totally antisymmetric tensor repre-
sentation [N, k], whose dimension is yC}, is decomposed into a sum of multiplets of
the subgroup SU(py) x --- x SU(py) as

k k-l k=li——=ln_2

ZZ Z <mcl1vpzclz7"‘ ;pnCln), (4.5)

11=0105=0 ln—1=0

where [,, =k — 1, — - -+ — ,,_1 and our notation is that ,C; =0 for [l > n and [ < 0.
Here and hereafter, we use ,,C; instead of [n,] in many cases. We sometimes use
the ordinary notation for representations too, e.g., 5 and 5 in place of 5C; and 5C,.

The [N, k] is constructed by the antisymmetrization of k-ple product of the
fundamental representation N = [N, 1]:

[Nk = (N x---x N)j . (4.6)
We define the intrinsic Zjy, elements nj such that
(N x -+ X N)x = (RN x -+ x R,N)x . (4.7)

By definition, n¢ take a value of Zj; elements, i.e., e2™/M (n = 0,1,--- , M — 1).
Note that ¢ for U are not necessarily same as those of ¥_, and the chiral symmetry
is still respected.

Let us investigate the family unification in two cases. Each breaking pattern is
given by

SU(N) — SU(5) x SU(pg) x -+ X SU(pn) x U(1)r—m-1 (4.8)
SU(N) — SU(3) x SU(2) x SU(pg) < x SU(p,) x U™ (4.9)
where SU(3) and SU(2) are identified with SU(3)¢ and SU(2)r in the SM gauge
group.
4.2.1 Formulae for SU(5) multiplets

We study the breaking pattern (4.8). After the breakdown of SU(N), [N, k| is
decomposed as

k k=l k—li——lp_s
Z Z Z (5Cl1>p20127 e 7pnCln) : (410)
ll 0[2 0 n 1= 0

As mentioned before, 5Cy, 5C1, 5Cs, 5C3, 5C4 and 5C5 stand for representations 1,
5,10,10, 5and 1. *

4 We denote the SU(5) singlet relating to 5C5 as 1, for convenience sake, to avoid the confusion
over singlets.
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Utilizing the survival hypothesis and the equivalence of (5z)¢ and (10z)¢ with
5, and 10;, respectively, ° we write the numbers of 5 and 10 representations for
left-handed Weyl fermions as

ngEﬁgL—ﬁE)L—i-ﬁSR—ﬂgR y (411)
Nig = ﬂ]_OL - ﬂ]__OL -+ ﬂ]__OR — ﬂ]_OR N (412)

where f represents the number of each multiplet.

The SU(5) singlets are regarded as the right-handed neutrinos, which can obtain
heavy Majorana masses among themselves as well as the Dirac masses with left-
handed neutrinos. Some of them can be involved in see-saw mechanism [28-30].
The total number of SU(5) singlets (with heavy masses) is given by

Formulae for nz, nyp and ny from a Dirac fermion (U, , ¥_) whose intrinsic Zy,
elements are (nf,,n¢_)are given by

ZEDIDIIC Vi) HED DD DR PR AR RS
+ hh=14 {l27...7ln,1}n71Li {127...7ln71}n71Ri

Mo = Z Z (_1)l1 Z - Z p20l2 o .pnOln ) (415)
+ =23 fzednibug | Alzedoihg o

m = Z Z Z + Z pQCZQ o 'pnCln s (416)
+ 01=0,5 {l27...7ln_1}n211Li {127...7ln_1}nflRi

where p, = N — Z?;ll p; and [, = N — Z?;ll l;. Y. represents the summation

of contributions from ¥, and W_. Furthermore, >’ (oo 1}, M€ANS that the
ooy

summations over I, = 0,--- k=1l —--- — 11 (j = 2,---,n — 1) are carried

out under the condition that I; should satisfy specific relations on T?%/Z; given in

Table 4.1. The relations will be confirmed in the next section. In the same way,

Z{lz,~~-,ln71}n7 ., means that the summations over [; = 0,--- bk — 1, — -+ — 1,4
1

(j=2,---,n—1) are carried out under the condition that [; should satisfy specific
relations nf p. = nf ;. F 1 (mod M) for Uy. The formulae (4.14) — (4.16) will
be rewritten in more concrete form for each T?/Zy; (M = 2,3,4,6), by the use of
projection operators, in the next section.

5 As usual, (55)¢ and (105)¢ represent the charge conjugate of 5z and 10g, respectively. Note
that (5r)¢ and (10g)° transform as the left-handed Weyl fermions under the 4-dimensional Lorentz
transformations.
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Orbifolds e, Specific relations

(=1)knd, = (=1)= nlOILi =l+l3+l,=2—-1; —asr (mod 2)
TQ/Z2 (_1)1677]%1 = (—1)’6i nlllLi = lg + l5 + l6 =2—- ll — B:I: (mod 2)
(—1)fn2, = (—1)= nl21Lﬂ: =l+ls+1l;=2—1; —v+ (mod 2)

n)py =lo+ 134+ 2(ly + 15+ lg)

—2mi/3\k,,0 2mi/3\a+
2 (€ a ( ) =3—-1l —ax (mod 3)
/2, -
(e—27r1/3>kn1 ( 27rz/3) nllL:i: - l4 + l7 + 2(12 + l5 + l8)
’ —3—1, — B (mod 3)
(—i)enQ, =i ) e = o+ 2(l3 + 1a) + 3(15 + Is)
/7, e —4—1 —os (mod 4)
(—1)k77]}:i = (—1)5i nlllLi = l3 + l5 + l7 =2 — ll — B:I: (mod 2)
' . n?lLi = l2 + 2(l3 + l4) + 3(l5 + lﬁ)
(e7™ )k, = (emi/)o= +A(lr + 1g) + 51y + l1o)
T?)Zs =6—1; —ax (mod 6)

e =ls+ls+l 41+
=2—1;— 3+ (mod 2)

Table 4.1: The specific relations for [; for SU(5) multiplets.

4.2.2 Formulae for the SM multiplets

We study the breaking pattern (4.9). After the breakdown of SU(N), [N, k] is
decomposed as

k k=l k—l1—12 k—l1——lp—2

:ZZ Z Z (3011’20l27p30137"' 7pnCln) . (417)

11=012=0 1[3=0 lp—1=0

The flavor numbers of down-type anti-quark singlets (dg)¢, lepton doublets [,
up-type anti-quark singlets (ug)¢, positron-type lepton singlets (eg)¢, and quark
doublets q;, are denoted as ng, n;, ng, ne and n,. Using the survival hypothesis and
the equivalence on charge conjugation, we define the flavor number of each chiral
fermion as

8(3C2,202) L — #(3C1,2C0) L + 4(3C1,2C0)r — £(3C2,202)R (4.
1(3C3,2C1) L — #(3C0,2C1) 1 + 4(3C0,2C1) R — £(3C3,2C1 )R (4.
1(3C2,2C0) L — #(3C1, 2C2) L + 4(3C1,2C2) r — £(3C2, 2Co) R (4.20
is )L — 4 )+ 4 )r — 4 ) (4.
is )z — H( )+ 4( )r — ) (4.

3
||I

Co,209) 1 — 8(3C3,200) L + 8(3C3,200) r — #(3C0,2C2) R
C1,2C1)L — 8(3C2,2C1) L + 8(3C2, 2C1) g — 8(3C1, 2C1 )R

)
)
)
)
)
)

where £ again represents the number of each multiplet. The total number of (heavy
neutrino singlets (vg)¢ is denoted n; and defined as

v = 1(3C0,2C0) L + #(3C3,2C2) L + 4(3C5,202) g + #(3C0, 2C0) - (4.23)
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Formulae for the SM species including neutrino singlets are given by

ng = Z Z (_1)ll+l2 Z - Z p3cl3 o 'Pncln )
+

(l1712):(272)7(170) {l37"'7ln—1}na {137"'7ln—1}na’

lylgL+ lilg R+
(4.24)
n; = Z (—1>ll+12 Z - Z pSCl3 o .pnCln )
£ (l1,12)=(3,1),(0,1) L T L
(4.25)
S DI ST S SEREEID SRR PN
£ (I1,12)=(2,0),(1,2) {l37""l”_1}"7112Li {13,..~,ln—1}n7112Ri
(4.26)
S S D S O e
T (11,12)=(0,2),(3,0) {13""’l"*1}”§1112L¢ {l?’"“’l"*l}"?1l23i
(4.27)
S DD S PP I S PR
£ (I1,l2)=(1,1),(2,1) {l;57...,l,1_1},l;zll2Li {13,..~,ln—1}n§1112Ri
(4.28)
Ny = Z Z Z - Z psCls 9. Cly (4.29)
£ (I1,12)=(0,0),(3,2) {lg,---,lnfl}ngﬂzLi {ls:--wln—l}nfl,QRi
where Z{ls,“- dn—tkng oy means that the summationsover [; = 0,--- k=l —-- =,
7] =o9o,---,n— 1) are carried out under the condition that (; should satisty speciiic
g 1 ied out under the condition that {; should satisf ifi

relations on T?/Zy; given in Table 4.2.  The relations will be confirmed in the

next section. In the same way, > (s o 1}a means that the summations over
b wn— nlllQR:t

li=0,---,k—=li—---—1j_1 (j=3,--- ,n—1) are carried out under the condition
that [; should satisfy specific relations nf; p. = nf; ;. F1 (mod M) for ¥.. The
formulae (4.24) — (4.29) will be also rewritten in more concrete form for each T?%/Z,,,

by the use of projection operators, in the next section.

4.3 Total numbers of models with three families

We investigate the family unification in SU(N) GUTs for each T?/Zy; (M =
2,3,4,6). Let us present total numbers of models with the three families, for refer-
ence. Total numbers of models with the three families of SU(5) multiplets and the
SM multiplets, which originate from a Dirac fermion whose representation is [V, k]

(k < N/2) of SU(N), are summarized up to SU(12) in Table 4.5 and up to SU(13)
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Orbifolds e Specific relations
(=D)*my = (—1)= n e =l +l=2—4 —l—ay (mod 2)
TQ/Z2 (_1)knlii = (-].)’8jE nllllzLi El5+l6:2—l1—l2—/3:|: (IIlOd 2)
(—1)k77]3:t = (—1)’7i nl21l2L:|: = 13 + l5 + l7 =2 ll — Y+ (mod 2)
(e2mi/3 )k — (e2mi/3)ox Myre = U3+ 2(la + 15 + o)
T?)Zs =3—-h—lp—ax (mod3)
(e=2mifSykpl  — (o2mi/3)Be 0} g,re = la+ 17+ 2(15 4 1)
:3—11—2lg—ﬁi (mod 3)
Nk, 0 ot n?ﬂzL:l: = 2(l3 + l4) + 3(l5 + l6)
T2 Z (_Z) nk:l: =1 _
2y =41 —ly—ax (mod 4)
(=D)kpt, = (—1)%=* n}llQLi =l+ls+1l;=2—1; —F: (mod 2)
' ' n e = 2(ls +1s) +3(ls + ls)
(e ) s = (e™/%)= +4(I7 + Is) + 5(ly + L)
T?)Zs =6—10 —ly—ay (mod 6)
T L
=2—1; — B+ (mod 2)

Table 4.2: The specific relations for [; for the SM multiplets.

in Table 4.10, respectively. In the Tables, the hyphen (-) means no models. We omit
the total numbers of models from [V, N — k], because each flavor number from [N, k]
with intrinsic Zy, elements n{, is equal to that from [N, N — k] with appropriate

ones Ny _j.-
4.3.1 Numbers of SU(5) multiplets on T?%/Z,,

After the breakdown SU(N) — SU(5) x SU(py) x -+- x SU(p,) x U(1)"—™+1,
[N, k] is decomposed as

k k=l k—li——lp_1
[Nv k]:t :ZZ (5Cl17p2012>"' 7pn0ln)j: J (4'30)
11=012=0 ln—1=0
where ln:k‘—ll—lg—"'—ln_l.

The Zy; elements of the representation (,,Ci,,,Cly, -+ 1p,Ci, ), are given by
Table 4.3. Using the assignment of Zj; elements, we find that zero modes appear if
the specific relations of Table 4.1 are satisfied.

Utilizing the survival hypothesis and equivalence of charge conjugation, we obtain
the formulate the formulae (4.14) — (4.16). The Z,s projection operator that picks
up zero modes of left- and right-handed ones represents Pys.. For each T?/Zy,, the
Zy; projection operators are defined as

P(9,9,6)

24 (l_l_é‘@O:t)(l_l_él@li)(l_'_él@Qi) for T2/Z2 s (431)

ool —

19



Orbifolds | n the Z,; elements

@Oi — (_1)l1+l2+l3+l4+ai
T2/Z2 8 | P = (_1)l1+l2+l5+16+,8i

4@21 — (_1)l1+l3+l5+l7+’7i

P, = wl1+l2+13+2(l4+15+16)+ai
/7y | 9 |~

P, = i tlatir+2(la+ls+ls)+6+

P = hitle+2(s+1la)+3(ls+le)+ox
/7, | 8 | %

gzl:l: _ (_1)l1+l3+l5+l7+5:{:

P, = l1+lo+2(13+14)+3(U5+16)+4(l7+18)+5(lo+110) +ot
T2/7¢ | 12| %= °F

_ l1+I3+I5+17+1g+1
yli — (_1) 1H3+H5+17+Hlo+111+8+

1
3+ 9
/ 1
4+ 8
/ 1

6+ 12

Table 4.3: The Z); elements for each T2 /7,

(]_ —I— é@oj: + 9_2{@3:‘:)(1 + 94@1:‘: —f- 52@1%:) fOI T2/Zg s

(1 + é:@oj: + Q_Qe@gi + 539&[)(1 -+ 9_/91:‘:) for TQ/Z4 s
(1+0Pys + PP+ PP+ 0P+ 0P,

X (]_ + g’@u) for TQ/ZG .

(4.32)

(4.33)

(4.34)

Using the Z ), projection operators, the formulae (4.14) — (4.16) are rewritten as

k—ly
ng =
l1=1,4 15=0
k—ly
Nio =
11=2,3 15=0
k—ly
nl — E g PR
11=0,5 lo=0

Here, we give a list of Z,,; projection operator in Table 4.4.

k—=li——lpn—2

2.

(-1

lp—1=0

X (Pary = Pyy + Py — Pyy_) ,Cly -+, Gl
k—=ly——lp_2

2.

(1"

ln—1:0

(4.35)

n

X (PM+ — PJ/\/I+ + PM, — P]/\/[i) polz . 'pnCln s (436)

k—ly——lp_o

2.

(PM++P]/\/[++PM—+P]/\/[—)p2012"'pncl

ln—1=0

(4.37)

Total numbers of models with the three families of SU(5) multiplets, which
originate from a Dirac fermion whose representation is [N, k] (k < N/2) of SU(N),
are summarized up to SU(12) in Table 4.5.

Here, we give some examples for representations and BCs to derive ng = nqyg = 3,
for each T?/Zy; orbifold, in Table 4.6 — 4.9.
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Orbifolds | Py P Py Pl
T2/ 7, P&Ll) p2(;17—17—1) Pz(i’l’l) P2(:1 “1-1)
PR A G A
T%/7,4 Pzﬁ’l) pii—l) Pﬁ’l) Pi:i,—n
vz | B R | AT

Table 4.4: The Z,; projection operator for picking up zero modes.

T2/7, T2)74 /7,4 T2/
SU®) ] 8,3]:24 | [8,3):14 8,3]:28
8,4:12 | [8,4):16 [8,4]:20
SU() 9,3:192 | [9,3):182 | [9,3]:142 | [9,3]:512
[0,4:348 | [9,4]:32 | [9,4]:800
[10,3]:852 | [10,3]:160 | [10,3]:2484
SU(10) - [10,4]:1308 | [10,4]:92 | [10,4]:2654
[10,5]:48 [10,5]:1532
[11,3]:768 | [11,3]:1608 | [11,3]:456 | [11,3]:6530
SU(11) | [11,4]:768 | [11,4]:1716 | [11,4):436 | [11,4]:6768
[11,5:1794 | [11,5):186 | [11,5]:5540
[12,3]:1104 | [12,3]:2214 | [12,3]):748 | [12,3]:17084
sUa2) [12,4]:1020 | [12,4]:676 | [12,4]:13692
[12,5]:534 | [12,5]:10498
[12,6]:632 | [12,6]:13188

Table 4.5: Total numbers of models with the three families of SU(5) multiplets.

[N, k] | (1, P2, D3, P4, D5, P6s P7,D8) | (s, B, v4) | (@, B-,7-)
9,3] (5,0,0,0,3,0,0,1) (0,1,1) (0,0,1)
[11,3] (5,0,1,0,4,0,1,0) (0,0,1) (1,1,0)
[11,4] (5,0,3,1,0,1,1,0) (0,0,0) (0,0,1)
[12,3] (5,2,0,0,2,0,1,2) (1,0,1) (0,0,0)

Table 4.6: Examples for the three families of SU(5) from T?/Zs.
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[N, k] | (p1, P2, P3, P4, D5, D6, P75 P8, Do) | (g, B1) | (a—, B-)
8,3] (5,0,0,0,3,0,0,0,0) (2,0) (2,2)
8,4] (5,1,1,0,1,0,0,0,0) (0,0) (2,2)
9,3] (5,0,0,2,0,1,0,0,1) (2,0) (2,1)
9,4] (5,0,2,0,0,0,0,2,0) (2,2) (0,2)
[10,3] (5,0,0,0,3,2,0,0,0) (2,0) (2,2)
[10,4] (5,0,0,1,0,1,1,1,1) (2,2) (2,2)
[10,5] (5,1,0,0,1,0,2,0,1) (0,0) (0,0)
[11,3] (5,1,0,0,1,4,0,0,0) (0,0) (2,1)
[11,4] (5,2,2,0,0,1,0,1,0) (1,2) (2,1)
[11,5] (5,1,1,1,1,0,0,0,2) (0,1) (1,1)
[12,3] (5,0,0,3,3,0,0,0,1) (2,0) (0,2)
[12,4] (5,0,3,1,0,1,0,2,0) (1,2) (0,1)

Table 4.7: Examples for the three families of SU(5) from T?/Zs.

[N, k] | (p1,p2; P3, P4, D5, D6, P75 D8) | (g, By) | (-, B-)
8,3] (5,0,0,0,0,0,3,0) (2,1) (0,0)
8,4] (5,0,0,3,0,0,0,0) (0,0) (2,0)
9,3] (5,3,0,0,0,0,0,1) (1,0) (0,1)
9,4] (5,0,2,0,0,0,1,1) (2,0) (2,0)
[10,3] (5,0,0,0,3,0,0,2) (1,0) (2,0)
[10,4] (5,0,0,0,0,4,0,1) (0,0) (2,1)
[11,3] (5,0,0,1,2,2,0,1) (3,1) (2,0)
[11,4] (5,0,3,1,2,0,0,0) (2.0) (1,1)
[11,5] (5,0,0,2,0,0,1,3) (0,1) (3,0)
[12,3] (5,4,0,1,0,0,0,2) (3,1) (1,0)
[12,4] (5,0,4,0,1,2,0,0) (2,0) (3,0)
[12,5] (5,1,2,0,2,2,0,0) (3,1) (1,1)
[12,6] (5,0,3,0,1,0,3,0) (2,0) (2,1)

Table 4.8: Examples for the three families of SU(5) from T?/Zj.
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[N,E] | (p1,p2,p3, - 011, p12) | (o, By) | (a—, B-)
18,3] | (5,0,0,3,0,0,0,0,0,0,0,0) (0,1) (2,0)
8,4] | (5,0,0,1,0,0,0,2,0,0,0,0) (0,0) (2,0)
9,3] | (5,0,0,0,0,0,3,0,0,0,0,1) (0,1) (5,0)
9,4] | (5,2,0,1,0,0,1,0,0,0,0,0) (2,0) (2,0)
[10,3] | (5,0,0,1,1,0,0,0,0,0,3,0) (0,1) (4,1)
[10,4] | (5,0,1,0,1,1,0,0,0,1,1,0) (5,0) (2,0)
[10,5] | (5,0,0,0,0,0,1,2,0,2,0,0) (4,1) (1,0)
[11,3] | (5,0,0,1,0,0,0,0,0,1,4,0) (3,1) (4,1)
[11,4] | (5,0,0,0,0,2,0,0,2,1,0,1) (5,0) (2,0)
[11,5] | (5,3,0,0,0,0,0,0,0,0,3,0) (1,1) (1,1)
[12,3] | (5,3,0,1,0,0,0,0,0,0,0,3) (0,1) (3,0)
[12,4] | (5,0,0,0,0,0,0,1,0,4,1,1) (5,0) (2,0)
[12,5] | (5,0,0,0,0,0,2,1,2,1,1,0) (1,1) (1,1)
[12,6] | (5,0,0,0,0,3,1,1,2,0,0,0) (3,0) (0,0)

Table 4.9: Examples for the three families of SU(5) from T?/Zg.

4.3.2 Numbers of the SM multiplets on 72/Z,

After the breakdown SU(N) — SU(3) x SU(3) x SU(p3) x -+ x SU(p,) X
U(1)»™+1 [N, k]. is decomposed as

k k-l k—=li——lp—1

[N7 k]i = ZZ <3Cl172clg7p3cl37“' JPnCln)j: 9 (438>
11=0105=0 lp_1=0
where l,, =k -1 —lo — -+ — l,,_1.

Using the Z)s projection operators (4.31) — (4.34), the formulae (4.24) — (4.29)
are rewritten as

k—li—ly  k—li——lg

= S S Y (e

(l1,12)=(2,2),(1,0) 13=0 l7=0
X (PM+ - P]/\4+ + PM_ - P],W*) P3Cl3 o .pnCln )
(4.39)
k—l1—l2 k—l1—-—lg
n; = Z Z e Z (_1)l1+l2
(l1,l2)=(3,1),(0,1) I3=0 l7=0
X (PM"" - PJ/\/H- + Py- — P],W—) p3013 o 'pnOln ,
(4.40)

k—li—ly  k—li——lg

ng = Z Z . Z (_1)l1+l2

(l1,l2)=(2,0),(1,2) I3=0 l7=0
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><(PM+—P]/\/[++PM_—P]/\/[_)p3Cl3"

X (PMJF—P]I\/[_,'_—FPM,

X (PM+—P]/\/[++PM_—P]/V[7)7,3C[3"

k—l1—l1o k—l1——lg
_ 141
Ne = g E E (—1)"™*=
(11,12)=(0,2),(3,0) I3=0 l7=0
k—l1—l2 k—l1——l¢
— L1+l
g = E § § (—1)
(l1,02)=(1,1),(2,1) 13=0 l7=0
k—l1—l2 k—l1——lg
o= >, D )
(11,12)=(0,0),(3,2) 13=0 l7=0

X (P]V[++PJ/\/[++PM_+PJ/\4_)p3Cl3"

- P]/W—) psCls o

’ p’nCln Y

(4.41)

’ pnOln Y

(4.42)

’ pnCln )

(4.43)

" pn Cln )

(4.44)

where each Z); projection operator are listed in Table 4.4. Total numbers of models
with the three families of the SM multiplets, which originate from a Dirac fermion
whose representation is [N, k] (k < N/2) of SU(N), are summarized up to SU(13)

in Table 4.10.

T2/7,

T2)74

T2/,

T2/

SU(8)

SU(9)

[9,3]:8

[9,3]:8
[9,4]:32

SU(10)

[10,3]:80
[10,4]:108

SU(11)

[11,4]:80

[11,4]:20

[11,3]:84
11,4]:144

SU(12)

[12,3]:120

[12,3]:80

[12,4]:88
[12,6]:240

12,3]:392
12,4]:120
[12,5]:72
[12,6]:552

[
[11,5]:156
[
[

SU(13)

[13,3]:144

[13,4]:40

[13,3]:712
[13,4]:88
[13,5]:140
[13,6]:200

Table 4.10: Total numbers of models with the three families of SM multiplets.
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Here, we give a list of all BCs to derive three families of SM fermions from [9, 3]
from T2 /Z,, in Table 4.11, and some examples for representations and BCs to derive
three families of SM fermions from 172 /Zs, T?/Z3 and T?/Zg, in Table 4.12 — 4.14.

4.4 Generic features of flavor numbers

We list generic features of flavor numbers.

(i) Fach flavor number from [N, k] with intrinsic Zy; elements ni, is equal to that
from [N, N — k| with appropriate ones n%_.. .
Let us explain this feature using the SU(5) multiplets. From (4.10) and the
decomposition of [N, N — k| such that

k k=l k—li——ln_2
[Nv N — k] = Z Z T (505—117}720?2—127 T 7pncpn_ln) ) (445>
11=01>=0 lpn_1=0
there is a one-to-one correspondence between (5C5-1,, poCpo—ins* **  pn Cpn—t, ) i [N, N—
k] and (5C,, p,Clyy -+, p.Ci,,) in [N, k]. The right-handed Weyl fermion whose repre-
sentation is (5Cs_i;, pyCpa—is, ==+ 5 pn Cpn—t) is regarded as the left-handed one whose
representation is the conjugate representation (5Cj,, p,Cly, - - , . Cl,, ), and hence we

obtain the same numbers for (4.14) — (4.16) with a suitable assignment of intrinsic
Zy elements for [N, N — k.

Here, we give an example for T?/Z,. Each flavor number obtained from [N, k]
with (—1)Fn, = (—1)°, (—1)fyl, = (=1)% and (1), = (—1)** agrees with
that from [N, N — k] with (=D)N %% _,. = (=1)*, (=D)N*pk_,. = (—1)%* and
(=D)N=Fn2 . = (—1)%%, where o/, £ and . satisfy the relations o/, = ax +py +
ps + pa(mod2), fi = B + p2 + ps + ps(mod2) and 74 = 74 + ps + ps + pr(mod2),
respectively.

(ii) Each flavor number from [N, k] with intrinsic Zy elements (—1)kni, = (—1)%%
is equal to that from [N, k] with the exchanged ones (6% 5 6), i.e., (—1)Fne, =
(—1)%=.

This feature is understood from the fact that specific relations on [; for ¥,
change into those of ¥_ and vice versa, under the exchange of Z, parity of ¥, and
that of W_.

Here, we give an example for T%/Z,. Under the exchange of a; and a_, ”?1 I
and n} p, change into n) ;_ and n) ,_ (mod2), respectively. Each flavor number
remains the same, because the summation is taken for ¥, and ¥_.

(iii) Fach flavor number from [N, k] is invariant under several types of exchange
among p; and intrinsic Zy elements.

From specific relations in Table 4.1, we find that the same number for each SU(5)
multiplet is obtained under the exchange,

(p37p4704j:) — (p57p675:|:) )
(P2, ps, B+) <= (p3,p7,7+)
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[N, K] | (p1, 2,03, P45 D5, 6, P75 18) | (a0, By v4) | (o, By v-)
(3,2,0,0,0,3,0,1) (0,1,1) (0,1,0)
(3,2,0,0,0,3,0,1) (0,1,0) (0,1,1)
(3,2,0,0,0,3,1,0) (0,1,1) (0,1,0)
(3,2,0,0,0,3,1,0) (0,1,0) (0,1,1)
(3,2,0,0,3,0,0,1) (0,1,1) (0,1,0)
(3,2,0,0,3,0,0,1) (0,1,0) (0,1,1)
(3,2,0,0,3,0,1,0) (0,1,1) (0,1,0)
(3,2,0,0,3,0,1,0) (0,1,0) (0,1,1)
(3,2,0,3,0,0,0,1) (1,0,1) (1,0,0)
(3,2,0,3,0,0,0,1) (1,0,0) (1,0,1)
(3,2,0,3,0,0,1,0) (1,0,1) (1,0,0)
(3,2,0,3,0,0,1,0) (1,0,0) (1,0,1)
(3,2,3,0,0,0,0,1) (1,0,1) (1,0,0)
(3,2,3,0,0,0,0,1) (1,0,0) (1,0,1)
(3,2,3,0,0,0,1,0) (1,0,1) (1,0,0)

9.3) (3,2,3,0,0,0,1,0) (1,0,0) (1,0,1)

’ (3,2,0,0,1,2,0,1) (0,1,1) (0,1,0)
(3,2,0,0,1,2,0,1) (0,1,0) (0,1,1)
(3,2,0,0,1,2,1,0) (0,1,1) (0,1,0)
(3,2,0,0,1,2,1,0) (0,1,0) (0,1,1)
(3,2,0,0,2,1,0,1) (0,1,1) (0,1,0)
(3,2,0,0,2,1,0,1) (0,1,0) (0,1,1)
(3,2,0,0,2,1,1,0) (0,1,1) (0,1,0)
(3,2,0,0,2,1,1,0) (0,1,0) (0,1,1)
(3,2,1,2,0,0,0,1) (1,0,1) (1,0,0)
(3,2,1,2,0,0,0,1) (1,0,0) (1,0,1)
(3,2,1,2,0,0,1,0) (1,0,1) (1,0,0)
(3,2,1,2,0,0,1,0) (1,0,0) (1,0,1)
(3,2,2,1,0,0,0,1) (1,0,1) (1,0,0)
(3,2,2,1,0,0,0,1) (1,0,0) (1,0,1)
(3,2,2,1,0,0,1,0) (1,0,1) (1,0,0)
(3,2,2,1,0,0,1,0) (1,0,0) (1,0,1)

Table 4.11: The three families of SM multiplets from [9, 3] on T?/Z.
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[N7 k] (p17p27p37p47p57p67p77p87p9> (Oé+,6+) (Oé_, —)
[11,4] (3,2,0,0,1,2,3,0,0) 01 | (0,1)
[12,3] (3,2,0,1,1,0,1,2,2) (1,0) (0,1)

Table 4.12: Examples for the three families of SM multiplets from 72 /Zs3.

[N,E] | (p1, 2, D3, 4, D5, D6, P7,08) | (g, By) | (o, B2)
[9,3] (3,2,1,0,0,0,2,1) (0,1) (0,0)
[11,3] (3,2,1,1,0,4,0,0) (1,0) (1,1)
[11,4] (3,2,0,0,3,1,1,1) (0,1) (0,0)
[12,4] (3,2,1,0,2,1,3,0) (0,1) (0,0)
12,6] (3,2,1,2,0,0,0,4) (0,1) (1,1)
[13,4] (3,2,1,2,2,2,0,1) (0,1) (0,0)

Table 4.13: Examples for the three families of SM multiplets from T2 /Z;.

[NE] | (p1,p2.p3, - s 011 D12) | (a4, B4) | (-, B-)
9,3] | (3,2,0,1,0,0,0,0,0,0,1,2) (0,0) (0,1)
9,4] | (3,2,0,0,0,1,0,0,1,2,0,0) (1,1) (1,0)
[10,3] | (3,2,0,0,3,0,0,0,0,0,1,1) (1,0) (1,1)
[10,4] | (3,2,0,1,1,2,0,0,0,0,1,0) (0,1) (0,0)
[11,3] | (3,2,1,1,1,0,0,0,0,1,1,1) (0,1) (0,0)
[11,4] | (3,2,0,1,0,2,0,0,0,3,0,0) (0,1) (1,0)
[11,5] | (3,2,0,0,1,0,4,0,1,0,0,0) (0,1) (0,0)
[12,3] | (3,2,0,1,3,1,0,1,0,0,0,1) (1,0) (1,1)
[12,4] | (3,2,0,0,0,1,1,2,0,2,1,0) (1,1) (1,0)
[12,5] | (3,2,1,1,0,3,1,1,0,0,0,0) (1,0) (1,1)
[12,6] | (3,2,0,0,0,1,0,0,3,0,0,3) (1,1) (1,1)
[13,3] | (3,2,1,0,0,0,0,3,2,0,0,2) (0,0) (0,1)
[13,4] | (3,2,2,0,1,1,1,1,0,0,1,1) (1,0) (1,1)
[13,5] | (3,2,1,0,0,4,0,0,0,3,0,0) (1,1) (1,0)
[13,6] | (3,2,1,0,0,0,0,2,4,0,0,1) (0,0) (0,1)

Table 4.14: Examples for the three families of SM multiplets from T2 /Zsg.
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(p2, P4, ) == (p5, P7, V) for T°/Z, , (4.46)
<p27p37p67a:|:> — (p47p77p875:|:) for TQ/Z3 ) (447)

where the exchange is done independently.
In the same way, from specific relations in Table 4.2, we find that the same
number for each SM multiplet is obtained under the exchange,

(p3, pa, x) <= (ps, ps, Bs) , for T?/Zs . (4.48)

Under the above exchanges, although the unbroken gauge symmetry remains,
the numbers of zero modes for extra-dimensional components of gauge bosons are,
in general, different and hence a model is transformed into a different one.

(iv) Each flavor number obtained from [N, k] is invariant in the introduction of
Wilson line phases.
Let us give some examples.
On T?/Zs,, the numbers nz and nyo obtained from the breaking pattern SU(N) —
SU(5)x SU(pg) x - - -x SU(pg) x U(1)"™™ are same as those from SU(N) — SU(5) x
SU(phy) x -+ x SU(pg) x U(1)™"™, if the following relations are satisfied,

Py — P2 = Py — pr = P3 — Py = P6 — P »

Pi=Dpi, Ds=Ds5, Ps=Ds, (4.49)
or

/ / / /

Py —p2 =Py — D7 =Dpa— Py =Dps — Dy,

Ps=Ds, Ds=D6, Ps=Ds, (4.50)
or

Py —P3 =P — P6 = Pa— Py = D5 — Py
Py=p2, Pr=pr, Ps=Dps. (4.51)

The above BCs are connected by a singular gauge transformation, and they
are regarded as equivalent in the presence of Wilson line phases. This equivalence
originates from the Hosotani mechanism [31-34], and is shown by the following
relations among the diagonal representatives for 2 x 2 submatrices of (P, Pi, P,) [22],

(73,7'377'3) ~ (7'377'37 —73) ~ (7'3, —7'377'3) ~ (7'37 —173, —7'3) ) (452)

where 73 is the third component of Pauli matrices.

In our present case, we assume that the BC is chosen as a physical one, i.e.; the
system with the physical vacuum is realized with the vanishing Wilson line phases
after a suitable gauge transformation is performed. Hence, it is understood that each
net flavor number obtained from [N, k] does not change even though the vacuum
changes different ones in the presence of Wilson line phases.

In the same way, the numbers ng, n;, ng, ne and n, obtained from the breaking
pattern SU(N) — SU(3) x SU(2) x SU(p3) x -+ x SU(pg) x U(1)"™™ are same as
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those from SU(N) — SU(3) x SU(2) x SU(py) x -+ x SU(pg) x U(1)™™™_ if the
following relations are satisfied,

Py —D3=Ds—Ps =Pas— Py =ps—Ds, Dy=Dpr, Ps=Ds- (4.53)

On T?/Zs, the numbers nz and ny obtained from the breaking pattern SU(N) —
SU(5) x SU(pg) x -+ x SU(pg) x U(1)®~™ are same as those from SU(N) — SU(5) x
SU(py) x -+ x SU(py) x U(1)®™, if the following relations are satisfied,

Py — D2 =Dy — P6 = Py — D7 = P3 — Py = D1 — Py = Ps — Dy ,
Ps=Ds, Py=Do - (4.54)

The above BCs are also connected by a singular gauge transformation, and they
are regarded as equivalent in the presence of Wilson line phases. The equivalence
is shown using the following relations among the diagonal representatives for 3 x 3
submatrices of (g, ©) on T?/Z3 [22],

(X, X) ~ (X, 5X) ~ (X,wX) , (4.55)

where w = >™/3, G = /3 and X = diag(1,w,®).
For these cases, it is also understood that each net flavor number does not change
even though the vacuum changes different ones in the presence of Wilson line phases.
Although this feature holds for models on T2/Z, and T?/Z¢, there are no ex-
amples in our setting, because of the absence of Wilson line phases changing BCs
but keeping SU(5) or the SM gauge group for T?/Z, and because of the absence of
equivalence relations between diagonal representatives for T2 /Zg [22].
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5 Relationship between the family number of chi-
ral fermions and the Wilson line phase

In this section, we study the relationship between the family number of chiral
fermions and Wilson line phases, based on the orbifold family unification of previous
section.

5.1 Family number in orbifold family unification

In section 4, we assume that the BCs are chosen as physical ones, i.e., the system
with the physical vacuum is realized with the vanishing Wilson line phases after a
suitable gauge transformation is performed. Then, the feature is expressed by

N"|({pi},ak:0) - NT|({p;},ak:o) ) (5.1)

where N, is a net chiral fermion number (flavor number) for 4D fermions with the
representation r of the gauge group, unbroken even in the presence of the Wilson
line phases (2may), and it is defined by

Ny =0y = NRp — N5 + Ny - (5.2)

Here, n),., n%,., n?_ and n%.. are the numbers of 4D left-handed massless fermions
with r, 4D right-handed one with 7, 4D left-handed one with the complex conjugate
representation 7 and 4D right-handed one with 7, respectively. Note that 4D right-
handed fermion with 7 and 4D left-handed one with 7 are transformed into each
other under the charge conjugation.

On the other hand, the equivalence due to the dynamical rearrangement is ex-
pressed by

NT‘({Pi}ﬂk#O) - NT‘({p;},akzo) : (5'3)

From (5.1) and (5.3), we obtain the relation,

N’“‘({pi},aﬁo) = Nr‘({pi},ak;ﬁo) ) (5.4)

and find that each flavor number obtained from [V, k| does not change even though
the vacuum changes different ones in the presence of the Wilson line phases.

In this way, we arrive at the conjecture that each flavor number in the SM is
independent of the Wilson line phases that respect the SM gauge group. If there
were a Wilson line phase with a non-vanishing SM gauge quantum number, (a part
of) the SM gauge symmetry can be broken down. Hence, we assume that such a
Wilson line phase is vanishing or switched off.

5.2 Fermion numbers and hidden supersymmetry

On a higher-dimensional space-time M* x KP4, a massless fermion ¥ = ¥(z,y)
satisfies the equation,
iTMDy ¥ =0, (5.5)
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where KP~* is an (D — 4)-dimensional extra space, '™ (M =0,1,2,3,5,---, D) are
matrices that satisfy the Clifford algebra TMTN +TNTM = 29pMN Dy, = Oy +igAy
and ¥ is a fermion with 2[P/2-components. Here, ¢ is a gauge coupling constant,
Ay (= Af,TY) are gauge bosons, and [*] is the Gauss symbol. The coordinates x*
(p=0,1,2,3) on M* and 2™ (m = 5,---, D) on KP~* are denoted by z and vy,
respectively.

After the breakdown of gauge symmetry, ¥ is decomposed as

0) =33 [l el w) + el el )] (5.6)

Ty {n;}

where w{ﬁj( ) and w{nl}( ) are 4D left-handed spinors and right-handed ones, re-
spectively. The subscript rg stands for some representation of the unbroken gauge
group H, and the superscript {n;} represents a set of numbers relating massive

modes and those concerning components of multiplet ry. The functions gzﬁ{n’}( )

and qﬁRTH( ) form complete sets on KP4,
We define the chiral fermion number relating r as

Ny = n(I)rr - nOR'r ’ (57)

where 7 is a representation of the subgroup unbroken in the presence of the Wilson
line phases. The net chiral fermion number N, is given by N, = n, — nz.

In case that n, is independent of the Wilson line phases (2may), n}, and nf,.
must be expressed as

n[ﬂr = nf)r + f"‘(ak) and noRr = n/ROT + fT‘(ak) ) (58)
respectively. Here, n’. and nf,. are some constants irrelevant to ax and f,(ax) is a
function of ay,.

5.2.1 An example

Let us calculate n),. and n%,., and verify the relations (5.8), using an SU(3) gauge
theory on M* x S*/Z,.
On 5D space-time, ¥ is expressed as

@:<£)7 (5.9)

where ¢, and g are components containing 4D left-handed fermions and 4D right-
handed ones, respectively.
The equation (5.5) is divided into two parts,

iEuDMwL — Dy’l?bR = 0 s iUuDM@/JR + Dy@/JL = 0 s (510)
where D, = 0, +igA,. For ¢y, and ¢, the BCs are given by

Uz, —y) =Pz, y) . Yol 2nR —y) =n'Pigp(z,y) (5.11)
wR<I7 _y> = _UOPO¢R(x7 y) ) ¢R(I> 2R — y) = _n1P1¢R(xvy) ) (512>
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where P, and P, are the representation matrices for the Z, transformation y — —y
and the Z, transformation y — 27 R —y, respectively. n° and n! are the intrinsic Z,
parities for the left-handed component. Note that Z, parities for the right-handed
one are opposite to those of the left-handed one. For the gauge bosons, the BCs are
given by
Az, —y) = PoyAu (2, )P, Au(x,27R —y) = PLA,(z,y) P (5.13)
Ay (z,—y) = —PoA,(x,y) P} , A (x,271R —y) = —P A, (z,y) P . (5.14)

We take the representation matrices,
Py = diag(1,1,-1) , P, =diag(1,1,-1). (5.15)

Then SU(3) is broken down to SU(2) x U(1). We consider the fermion with the
representation 3 of SU(3) and (n°,n') = (1,1). Then, ¢, and YR are expanded as

f: V¥, (x) cos 2y zwm )sin 2y
= iwm JeosZy | ) wn = 2%( JsinZy | . (5.16)
ZwLn( )sm Z¢Rn( )COS =Y

After a suitable SU(2) gauge transformation, the vacuum expectation value
(VEV) of A, is parameterized as

(5.17)

o O O
o O QR

where 27ma is the Wilson line phase. From the periodicity, we limit the domain of
definition for @ as 0 < a < 1. In case with a # 0, SU(2) is broken down to U(1),
and then every 4D fermion becomes a singlet.

Inserting (5.16) and (5.17) into (5.10), we obtain a set of 4D equations,

._ a . a

ZU#DMDIIJO - E@Zﬁgm =0, ZUMDMDE{O - E@/Jio =0, (5.18)
io" D, i, =0, (5.19)
o n a

it Db, — E%‘" — §¢§n =0 (n=1,2,---), (5.20)
i D2, — %¢§n =0 (n=1,2,---), (5.21)
i D+ %wi’m + %zpfl{n —0 (n=1,2---), (5.22)
ioch Dyl — %¢in n %z/;gn —0 (n=1,2,--), (5.23)
io" D2, — %z/;ﬁn ~0 (n=1,2---), (5.24)
it Dpd, + %win _ %win —0 (n=12-). (5.25)
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Using the equations (5.20), (5.22), (5.23) and (5.25), we derive a set of 4D equations,

T Dyl + ) = T Uk~ Vh) =0 (=12) . (5:20)
T Du(hy — 8) = Wk 0R) =0 (n=120),  (527)
0" Dk, + 08) = W —UE) =0 (n=1200), (5.29)
0" Dy = V) = T (Ul +U) =0 (=120) . (529)

From (5.18), 9{, and ¢, form a 4D Dirac fermion. In the same way, we find
fermions for n = 1,2,--- from (5.21) and (5.24), (5.26) and (5.29), and (5.27) and
(5.28), respectively.

The numbers of 4D massless fermions are evaluated as

n% = 1 =+ 5011 s n% = (SQG s (530)

where d, represents the Kronecker delta. From (5.30), we confirm that the fermion

number n(= n{ — n% = 1) does not depend on the Wilson line phase. The mass

spectrum for 4D fermions in this model is depicted as Figure 5.1.

-woco= ce----=(34a)/R
3/R—e—e—e— —e—<e—%—  3/R®__g- o o—-(3—a)/R
- —e—-G----(2+a)/R
2/R—e—e—o—  ——6—-6—  2/R—e—(—  —o— -(2-a)/R
-eoco= —ce---—=(1+a)/R
l/R—e—e—o—  —&—o—o—  |/R—e—"—  —o o-—(1—a)/R
; )T —e—-G--—-a/R
(9 Ur Y Ur
(a) a=0 () 0<a<1

Figure 5.1: Mass spectrum of 4D fermions. The filled circles and the open ones represent
left-handed fermions and right-handed ones, respectively.

5.2.2 Hidden quantum-mechanical supersymmetry

We explore a physics behind the feature that the fermion numbers are indepen-
dent of the Wilson line phases.

From Figure 5.1, we anticipate that the feature originates from a hidden quantum-
mechanical SUSY. Here, the quantum-mechanical SUSY means the symmetry gen-
erated by the supercharge @) that satisfies the algebraic relations [35, 36],

H=Q, {Q.(-)}=0, (-))=1, (5.31)
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where H, F' and [ are the Hamiltonian, the “fermion” number operator and the
identity operator, respectively. The eigenvalue of (—1)¥ is given by +1 for “bosonic”
states and —1 for “fermionic” states, and Tr (—1)" is a topological invariant, called
the Witten index [37].

It is known that the system with 4D fermions has the hidden SUSY where the
4D Dirac operator plays the role of @ [38,39]. The correspondences are given by

) 0 oD
@ < iy Dy = < i D 0 g ) , (=D s, (5.32)
I

where 75 is the chirality operator defined by 5 = i7°v'92~3. The trace of 75 is the
index of the 4D Dirac operator, and the following relations hold,

Tr 75, = ng,.[4,] — n},[A,] = dimker *D,,|, — dimker5*D,,|,

= 35,2 /trreu,,agF"”Fo‘ﬁdA‘x , (5.33)
T

from the Atiyah-Singer index theorem. Here, n{,.[A,] and n{,[A4,] are the num-
bers of normalizable solutions (massless fermions) satisfying io*D, g, = 0 and
ic" D, = 0, respectively. Note that massive fermions exist in pairs (¢, and
Y1) and do not contribute to the index. The integral quantity in (5.33) is called
the Pontryagin number, and it is deeply connected to the configuration of gauge
bosons A, on 4D space-time.

It is pointed out that higher-dimensional theories with extra dimensions also pos-
sess the hidden SUSY [40,41]. In the system with a 5D fermion, the Dirac operator
relating the fifth-coordinate plays the role of () and there are the correspondences,

( - ) L (5.34)

Note that I' = —v5. The counterpart of the Witten index is given by

QH@:(_% %),(qfﬁf

Tr | =%, (a) — 7l (a), (5.35)

T

where 7%,.(a) and 7Y,.(a) are the numbers of eigenfunctions, that satisfy the equa-

tions, 5, ( ¢0R ) B < Dy(;pR ) _ ( 8 > (5.36)
2 ()=o) (0) o

respectively. Note that the eigenvalue equations are given by D,Yr = AYr and
Dy, = Ny, eigenfunctions with non-zero eigenvalues exist in pairs, which corre-
spond to 4D massive fermions as seen from (5.10), and they do not contribute to the
index. From the equations (5.10), there is a one-to-one correspondence such that

and

Dwa =0 iEMD;ﬂ/}L =0, Dwa =0« ’L'O'#DH”QDR =0. (538)
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Let us generalize to a system with a fermion on a higher-dimensional space-time.
For the case that D = 2n (n = 3,4, --+), the correspondences are given by

D
Q<D=> "D, , (-1)' T =-Tp., (5.39)
m=5>

where I'p,; is the chirality operator defined by I'pyy = (—4)"™'1°T" ... TP,
For the case that D =2n+ 1 (n = 2,3,---), the correspondences are given by

D
Qe D=U"> ia"D,U, (-1)F «+T=ir", (5.40)

m=>5

where U is the unitary matrix that satisfies the relation iI'” = UT'U, and iI'" is a
diagonal matrix with the same form as the chirality operator on D(= 2n)-dimensions
up to a sign factor.

The equation (5.5) is written by

D
T D,V + Y il Dy ¥ =0 . (5.41)

m=>5

For the case that D = 2n + 1, after the unitary transformation I"™ = UTTM{U and
U = UtV is performed, I"™ and ¥’ are again denoted as I'M and ¥ in (5.41). The
counterpart of the Witten index is given by

Tr T| = ax,(ax) — 72, (a) , (5.42)
where 7y, (ar) and 77, (ax) are the numbers of eigenfunctions, that satisfy Dy =0
and Dy, = 0, respectively. From (5.41), there is a one-to-one correspondence such

that
Dipg =0 4+ iT"Dypr, =0, Dipp, =0 < iT"Dyahg =0 . (5.43)

Here ¢g and vy, are a 4D right-handed spinor component and a 4D left-handed one
in W, that are eigenspinors of the 4D chirality operator I's = iI'°T"'I'?I"® whose eigen-
values are 1 and —1, respectively. Note that components with a different 4D chirality
involve each other through the equation (5.41), because I'; is anti-commutable to
«I'*D,, but it is commutable to D.

From (5.43), the following relations hold,

ﬁORr<ak’) = n%,, ) ﬁ%r(ak) = noRr ) (544)

and, using (5.44), we derive the relation,

T T = ﬁOR,,,(ak) — ﬁ%,,,(ak) = ngr — nORT ) (5.45)

Because Tr f‘ is a topological invariant and the Wilson line phases determine

the vacuum with (Frn) = 0 globally in our orbifold family unification models,
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ny(=n! —nb ) is independent of the Wilson line phases. Hence, N,.(= n, — ny) is
Lr Rr

also independent of the Wilson line phases.
Finally, we give a comment on Tr f‘ . As seen from the Atiyah-Singer index the-

orem relating the Dirac operator for exzcnra—dimensions, fermion numbers are deeply
connected to the topological structure on K”~* including the configurations of A,,
on KP=*. From this point of view, the family number has been studied in the
Kaluza-Klein theory [12] and superstring theory [20].
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6 Prediction of SU(9) orbifold family unification

In this section, we study predictions of orbifold family unification models with
SU(9) gauge group on a 6D space-time including the orbifold T?/Z,. For the pre-
dictions, we search specific relations among sfermion masses on the SUSY extention
of models.

6.1 SU(9) orbifold family unification

We have found 32 possibilities that just three families of the SM fermions survive
as zero modes from a pair of Weyl fermions with the 84(= ¢Cj5) representation of
SU(9). For the list of (p1,p2, s, P4, Ps, Ps, P7, Ps) to derive them, see Table 4.11.
They are classified into two cases based on the pattern of gauge symmetry breaking
such that SU(9) — SU(3)¢ x SU(2)r x SU(3)r x U(1)? and SU(9) — SU(3)¢ X
SU(2);, x SU(2)r x U(1)*. We study how well the three families of fermions in the
SM are embedded into ¥, and W_, in the following.

6.1.1 SU(9) = SU(3)e x SU(2); x SU(3)r x U(1)?

For the case that p; = 3, po = 2, either of p3, p4, ps or pg is 3 and either of p; or
ps is 1, SU(9) is broken down as

SU(9) = SU3)e x SU(2)p, x SU3)p x U(1)1] x U(1)s x U(1)s, (6.1)

where SU(3)F is the gauge group concerning the family of fermions, U(1); belongs
to a subgroup of SU(5) and is identified with U(1)y in the SM, and others are
originated from SU(9) and SU(4) as

SU(9) > SU(5) x SU(4) x U(1)s, (6.2)
SU(4) > SU(3) x U(1)s. (6.3)

Let us illustrate the survival of three families in the SM, using two typical BCs.

(BC1) : (p1,p2, p3, P4, D5, 06, P7,18) = (3,2,3,0,0,0,0,1)

In this case, 84 is decomposed into particles with the SM gauge quantum num-
bers and its opposite ones, and their U(1) charges and Z, parities are listed in Table
6.1.  In the first and second columns, particles are denoted by using the symbols
in the SM, and those with primes are regarded as mirror particles. Here, mirror
particles are particles with opposite quantum numbers under the SM gauge group
Gsm = SU(3)e x SU(2)r, x U(1)y. The U(1) charges are given up to the normal-
ization. The Z, parities of 7,0;(2) are given by omitting the subscript k(= 3) in the
last column. The Zs parities of 1/)?%(1) are opposite to those of zbi(?) .

When we assign the intrinsic Z, parities of ¢} and ¢? as

(n?i-’n—lwn?i-) - (+17 _17+1)’ (77(1’771—77]3) - <+17 —1, _1)7 (64)

all mirror particles have an odd Z, parity and disappear in the low-energy world.
Then, just three sets of SM fermions (g%, (u%)¢, (d%)¢, I, (€%)¢) survive as zero modes
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0P [P [ SUB)e x SUER)L x SUB)p | ULy | Uy | UQ)s | (P, 21, 9)
(eR)° | er (3C3,2Co,3C) = (1,1,1) —6 12 0 | (+7° +nt, +n?
7 | (qr) (3C2,2C1,3C)) = (3,2,1) —1 12 0 | (+9° 40", =
(u%)c UR (3C1,2C9,3Cy) = (3,1,1) 4 12 0 (+170,+771,+772
(ug)® | upy (3C%,2C,3C1) = (3,1, 3) —4 3 1 (+n°, —nt, +n?
(ug)® | uy (3C5,2C0,3Ch) = (3,1,1) —4 3 -3 | (—=n° —nt, —n?
qr | (1) | (3C1,201,3C) = (3,2,3) 1 3 1| (=" —n
qr | (q1)" | (5C1,2C1,3C0) = (3,2,1) 3 =3 | (=", —n', +?
(er)® | €k (3C0,2C2,3C1) = (1,1,3) 3 L (°, -+
(er)® | €k (3C0,2C2,3C)) = (1,1,1) 3 -3 | (=", —n', =
(dp)¢ | dr (3C1,2Ch,3Cs) = (3,1, 3) —2 —6 2 (+n0, +m1, +12
(dR) | dr (3C1,2C0,3C1) = (3,1,3) -2 | =6 | =2 | (="'
I (Ip)° (3C0,2C1,3Cy) = (1,2 3) 3 —6 2 (+n°, +nt, —n?
I (Ip)° (3C0,2C1,3C1) = (1,2,3) 3 —6 =2 | (=n° +nt, +n?
(vr)® | Pr (3C0,2C0,3C3) = (1,1,1) 0 —15 3 (+1°, —nt, +n?
(vr)® | Dr (3C0, 2Co, 3Cs) = (1,1, 3) 0 —15 -1 | (=% —nt, —n?

Table 6.1: Decomposition of 84 for (p1, p2, p3, P4, Ps, Pe, 7, Ps) = (3,2,3,0,0,0,0,1).

and they belong to the following chiral fermions,
vi, O (ug)®, (€)", (vr)", ¥R O dp, ¥r D (L)% YL D ar, (6.5)

where (= 1,2, 3) stands for the family index. By exchanging ¢ for n*, ¢} and ¢}
are exchanged for ¥? and 1%, respectively. Note that a right-handed neutrino (vz)®
appears alone. We obtain the same result (6.5) by assigning the intrinsic Z, parities
suitably, in case with p4, ps or ps = 3 in place of p; = 3.

(BC2) : (p1,p2, p3, P4, D5, 06, P75 18) = (3,2,3,0,0,0,1,0)

In this case, 84 is decomposed into particles with the same gauge quantum
numbers but sightly different Z, parities from those of (BC1). Concretely, the third
Zy parity &5 of fields with I; = 1 is opposite to that with Ig = 1, i.e., P of
(302,200,300)7 (3017201,300), (300,2027300), (301,200,301), (3007201,301) and
(3C0,2C0, 3Cy) is given by +n%, —n?, +n%, +n%, —n* and +n?, respectively.

Under the same assignment of the intrinsic Z, parities as (6.4), all mirror particles
have an odd Z, parity and disappear in the low-energy world. Then, just three sets
of SM fermions survive as zero modes such that

vr O (ug)", (€R), (vR)", ¥R D (1) ¥R Ddp, Ui Dqp. (6.6)

Note that (I7)¢ and d; are embedded into ¥% and v}, respectively, different from
the case of (BC1). We obtain the same result (6.6) by assigning the intrinsic Zs
parities suitably, in case with py, ps or pg = 3 in place of p3 = 3.
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We summarize fermions with zero modes and those gauge quantum numbers in
Table 6.2. Here, Gsa3 = SU(3)c x SU(2);, x SU(3)p, l, is a number appearing
in a representation ,, Cj, of SU(3)r for a = 3,4,5 or 6, and, in the 7-th and 8-th
columns, the way of embeddings for the SM species are shown for pg = 1 and p; = 1,
respectively.

Species ‘ G323 ‘ (ll, lg, la) ‘ U(l)l ‘ U(l)g ‘ U(l)g ‘ Ps = 1 ‘ Pr = 1
¢ (323 @iy [ 1 [ 3 [ 1 [0 ] e
(up) | (3,1,3) | (201) | —4 | 3 1 @ 9@
i 2(1) 1)
R (371’3> (17071) —2 —6 —2 R R

G 11,23 011 | 3 | -6 | -2 | v | vy
(eh)° | (1,1,3)] (0.21) | 6 3 1 1D ] g®
vr) |(L,LD)] 003 ] 0 | -15] 3 RS

Table 6.2: Gauge quantum numbers of fermions with even Zs parities for SU(9) —
G323 X U(l)l X U(l)g X U(l)g.

6.1.2 SU(9) = SU3)c x SU(2)p x SU(2)p x U(1)*

For the case that p; = 3, ps = 2, either of (p3, ps) or (ps, ps) is (2,1) or (1,2) and
either of p; or pg is 1, SU(9) is broken down as

SU9) = SUBB)e x SU((2)L x SU2)r x U(1); x U(1)e x U(1)3 x U(1)y, (6.7)

where U(1); belongs to a subgroup of SU(5) and is identified with U(1)y in the SM,
and others are originated from SU(9), SU(4) and SU(3) as

SU(9) > SU(5) x SU(4) x U(1)s, (6.8)
SU(4) > SU(3) x U(1)s, (6.9)
SU(3) > SU(2) x U(1)s. (6.10)

The embedding of species are classified into two types, according to ps = 1 or
pr=1

(BC3)
For the case with pg = 1, just three sets of SM fermions survive as zero modes
such that

0P D (uh), (eh) qn, ) D di, (1L)",
¢}%<2) D) dRa (12)07 ¢i(1) D) (UR)Ca (eR)Ca quv (VR)C7 (611)

where i = 1, 2.

(BC4)
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For the case with p; = 1, just three sets of SM fermions survive as zero modes
such that

Ui D (Wh)e, () ar, Y D dr, (13)°,
w;@) D) dj‘%a (lL)Cv wi(l) D) (uR)C7 (eR)CJ qlLv (I/R)Cv (612>
where 1 = 1, 2.

We summarize fermions with zero modes and those gauge quantum numbers in

Table 6.3. Here, G = SU(3)c x SU(2), x SU(2)p.

species Gz UML) |[U1)y |UQ)s |UL)y |ps=1]|pr=1
(up), () | 3,1,2) | —4 | 3 | 1 | 1 | ¢ | 9%
(ug)° (3,1,1) | —4 3 1 —2 | iV | i
¢ 1322 1 | 3 | 1 | 1 | |
aL (3,2,1) | 1 3 1 2 1) 1)
(eh) (e 12| 6 | 3 | 1 | 1 | [
(er)" (1,1,1) | 6 3 1 —2 ) )
dhd% | (3.1,2)] -2 | -6 | -2 1 i) S
dp 3,1,1)| -2 | -6 | —2 | -2 3 S
(1), () | (1,2,2) —6 | =2 | 1 [ ug” | vg”
(1) (1,2,1) | 3 —6 | -2 1 ) 12
(vr)° (1,1,1) ~-15 | 3 0 ) )

Table 6.3: Gauge quantum numbers of fermions with even Zs parities for SU(9) —
G322 X U(l)l X U(l)g X U(l)g X U(1)4.

6.2 Predictions
6.2.1 Yukawa interactions

We examine whether four types of SU(9) orbifold family unification models,
where the embedding of the SM fermions are realized as (6.5), (6.6), (6.11) and
(6.12), are realistic or not,by adopting the appearance of Yukawa interactions from
interactions in the 6D bulk as a selection rule. This rule is not almighty to select
models, because Yukawa interactions can also be constructed on the fixed points
of T?/Z,. Here, we carry out the analysis under the assumption that such brane
interactions are small compared with the bulk ones in the absence of SUSY.

We assume that the Yukawa interactions in the SM come from interaction terms
containing fermions in the bilinear form and products of scalar fields in the 6D bulk.
® From the Lorentz, gauge and Z, invariance, the Lagrangian density containing

6 We assume that fermion condensations and Lorentz tensor fields are not involved with the
generation of Yukawa interactions.
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interactions among a pair of Weyl fermions (U, ¥_) and scalar fields ®/ on 6D
space-time is, in general, written as

Ling = > UyanUTF (1) + Y T EU Gopoger (@) + hec.
(Z,’”,f [l,-",f
_ 11 _22F(I)I 1yet, )2 Lyetoh2) (P! h
= Z Vg +UrYr ) F(O7) + Z ((wL) V1 + (Yr) wR) (®") + h.c,,
(6.13)

where ¥, = ¥L1 ElL(Z) z/JL R)fy , and (¢, ) = ifyonywi((QI%;‘. In the final
expression of (6.13), we omit indices of S U 9) Such as a, b, ---, f designating the

components to avoid complications. The F(®!) and G (QDI ) are some polynomials of
®!, e.g., F(®!) is expressed by

thcbfwthb@h@fu => > fren, @0k (6.14)

I,I2 n I, In

where f,..;, are coupling constants. Note that mass terms of W such as mpW, W_
and my UL EW_ are forbidden at the tree level, in case that ¥ and U_ have different
intrinsic Zo parities. Using the representation given by 6D gamma matrices, E is
written as

0 0 i0? 0
2
E =TT = _?02 8 8 "8 , (6.15)

where o2 is the second element of Pauli matrices. It is shown that L is invariant
under the 6D Lorentz transformation, ¥, — exp [—inNZMN} U, where XMV =
%[I’M, '] and wyry are parameters relating 6D Lorentz boosts and rotations.

After the dimensional reduction occurs and some components acquire the vacuum
expectation values (VEVs) generating the breakdown of extra gauge symmetries, the
linear terms of the Higgs doublet ¢}, and its charge conjugated one én, can appear in
F(®') and G(®') and then the Yukawa interactions are derived. For instance, the
linear term f¢j, appears from F (®1) = f®,P3P5 where @, are scalar fields whose
representations are (SL), after some SM singlets in ®3 and &5 acquire the VEVs.

From the above observations we impose the selection rule that Yukawa inter-
actions ;}TLu;%q;h, qLd on and fereﬁgbh in the SM can be derived from L, on
orbifold family uniﬁcatlon models.

For (BC1), the following Lagrangian density is derived at the compactification
scale M,

Lsen Z dRqJ Fl(zlj )+ Z lLej FQ(ZIJ )+ Z Unqi G (¢) + hee.,  (6.16)

4,j=1 ,j=1 3,j=1

using (6.5), and Yukawa interactions in the SM can be obtained, after some SM
singlet scalar fields in the polynomials F\"(¢), Fi”(¢) and GM(¢) acquire the
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VEVs. Because all gauge quantum numbers of the operator GiLdﬂé are same as those

of I ¢J,, there is a possibility that F m(gb) is identical with F’Q(l)(@ as a simple case.
In this case, we have the relations d = [j; at the extra gauge symmetry breaking
scale.

For (BC2), the following Lagrangian density is derived,

3
Lipony = Y Ui G (6) + hec, (6.17)

3,j=1

using (6.6). In this case, down-type quark and charged leptons masses cannot be
obtained from L;,; at the tree level at Mc.
For (BC3), the following Lagrangian density is derived,

2

Loy = Y dpa) D) (0) + GdrFy” (6) + Z T eh ED(6) + el FP(4) + hec.

3,j=1 7,j=1

+ Z T, GD(0) + T urGY) (9) + hc., (6.18)

2,7=1

using (6.11). For (BC4), the following Lagrangian density is derived,

2

Loy = I (Arai PP (0) + @udi PSP (6) + e PP (0) + et} FLD(9) ) + hc.

=1

+ Z Uy jLGhJ +qurGY (¢) + hec., (6.19)

i,0=1

using (6.12). In both cases, the full flavor mixing cannot be realized at the tree level
at Mc.

In this way, we find that the model based on the embedding (6.5) is a possible
candidate to realize the fermion mass hierarchy and flavor mixing, in case that
radiative corrections are too small to generate mixing terms with suitable size for
(BC2), (BC3) and (BC4). In any case, we have no powerful principle to determine
the polynomials of scalar fields, and hence we obtain no useful predictions from the
fermion sector.

6.2.2 Sfermion masses

The SUSY grand unified theories on an orbifold have a desirable feature that
the triplet-doublet splitting of Higgs multiplets is elegantly realized [4,5]. Hence, it
would be interesting to construct a SUSY extension of orbifold family unification
models.

In the presence of SUSY, the model with (BC1) does not obtain advantages of
fermion sector over that with (BC2), (BC3) or (BC4), because any interactions other
than gauge interactions are not allowed in the bulk and Yukawa interactions must
appear from brane interactions. In SUSY models, complex scalar fields (®,,P_)
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are introduced as superpartners of (W, W_), and they consist of two sets of com-
plex scalar fields @, = (¢},¢%) and &_ = (¢1,¢?), where ¢L, ¢3, ¢L and ¢
are superpartners of ¥}, ¥%, ¥k and 1%, respectively. Here, we pay attention to
superpartners of the SM fermions called sfermions and study predictions of models.

Based on the assignment (6.5) for (BC1), sfermions are embedded into scalar
fields as follows,

oL D, en, vk o1 Ddp, oL DT, ¢ D (6.20)
Gauge quantum numbers for sfermions are given in Table 6.4. Here, the charge
conjugation is performed for scalar fields alZ and l}j‘ corresponding to the right-

handed fermions, and Gsa3 = SU(3)¢ X SU( ) X SU(3)p. Note that (I1,12,1,) is

untouched by change as a mark of the place of origin in 84.

species |  G3a3 (I1,09,0,) | U()y | U(1)g | U(1)3
@ 1(3,2,3) | (1,1,1) 1 3 1
ax o 1(3,1,3)] (2,0,1) | —4 3 1
dz | (3,1,3) | (1,0,1) 2 6 2
11,23 (0,1,1) | -3 6 2
éx 1(1,1,3) ] (0,2,1) | 6 3 1
7% | (1,1,1) | (0,0,3) 0 15 | 3

Table 6.4: Gauge quantum numbers of sfermions with even Zo parities for SU(9) —
G323 X U(l)l X U(1)2 X U(l)g.

We study the sfermion masses based on the following two assumptions.

1) The SUSY is broken down by some mechanism and sfermions acquire the soft
SUSY breaking masses respecting SU(9 ) gauge symmetry. Then, as, en, vy
and dﬁ‘ get a common mass m,, and ¢; and lZL get a common mass m_ at
some scale Msg.

2) Extra gauge symmetries SU(3)p x U(1)2 x U(1)3 are broken down by the
VEVs of some scalar fields at Mg. Then, the D-term contributions to the
scalar masses can appear as a dominant source of mass splitting.

The D-term contributions, in general, originate from D-terms related to broken
gauge symmetries when the soft SUSY breaking parameters possess non-universal
structure and the rank of gauge group decreases after the breakdown of gauge sym-
metry [13-16]. The contributions for scalar fields specifying by (1, ls,1,) are given
by

M 11y = (D2 [Q1 Dy + Q2Dpy +{9(lh + Io) — 151D,
+ {4l — 3(3 =11 — 12) } D3], (6.21)

where )7 and )y are the diagonal charges (up to normalization) of SU(3)p for
the triplet, i.e., (Q1,Q2) = (1,1), (=1,1) and (0,—2). Dpgy, Dps, Dy and D3 are
parameters including D-term condensations for broken symmetries.
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. 2 . .
Using m., m_ and m D(lrala) WE derive the following formulae of mass square
for each species at Mg: ”

mfl}; = m% + Dp1 + Dy + 3Dy + Ds, (6.22)
mi% = m% — Dp1 + Dpy + 3D, + Ds, (6.23)
ngg =m4 —2Dpy + 3D, + Ds, (6.24)
mg. =m} + Dpi + Dz + 3D2 + Dj, (6.25)
m% = m% — Dp1 + Dpy + 3Ds + Ds, (6.26)
ng},{ =m? — 2Dps + 3Dy + Ds, (6.27)
m%}; = m% — D1 — Dpy + 6D, + 2D, (6.28)
mz% = mi + Dp1 — Dpa +6D2 + 2Ds3, (6.29)
Mg, =m} +2Dpa + 6D + 2Ds, (6.30)
mg =m2 + Dpi + Dpy + 3D + D, (6.31)
m% =m® + Dpy — Dpz + 3Ds + Ds, (6.32)
mgy =m? —2Dpy + 3D, + D, (6.33)
ng} =m” — Dpy — Dpy + 6D + 2D;, (6.34)
mlzzL =m® — Dpy + Dpy + 6D, + 2Ds, (6.35)
ml%z =m? +2Dpy + 6Dy + 2D5. (6.36)

By eliminating unknown parameters such as m2, m2, Dy, Dpo, Dy and Ds, we

obtain 15 kinds of relations ®
még = még, m?g; = méf;a még = mi%;, (6.37)
A
i~y = iy =~y 639
m?z T ng; - m% + m?% = m?g + m%, (6.39)
myy + M, = mgy +ml, = mly +m,
=My Mg = mpy - mg, = miy + mg.. (6.40)
They are compactly rewritten as
m% = mg,ﬁ, mfiﬁ% - m%R = ml%L - m%, (6.41)
Mies — miz2 = —mfﬁg + m%; =my — m% = —ml?2 + mlgi’ (6.42)

" In case that the extra gauge symmetry breaking scale (M) is lower than Mg, m3 receive
radiative corrections between Mg and Mg, and the mass formulae should be modified. Here, we
consider the simplest case to avoid complications.

8 Sum rules among sfermion masses have also been derived using the orbifold family unification
models on five-dimensional (5D) space-time [47—49].
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where 7,7 = 1,2, 3.
In the same way, based on (6.6) for (BC2), we obtain the relations,

2 _ 2 2 _ 2

Mg = Mie, mi, — Mgie = m&* — Mg (6.43)
2 2 2 2 _ 2 2

Mgt = Mg = mdl* + mdj* =mg — Mg = —mg g, (6.44)

where 4,5 = 1,2,3. Note that these relations are obtained by exchanging m? i for

mZZ in those for (BC1).

Furthermore, we obtain the specific relations,

még = ng, m%,* - m%i* = ml% - m%b- , (6.45)

M — ng; = _mii + mlgi, mg — méi = —mfz% - mgg, (6.46)

ng — mfl%* = m% — m%, (6.47)

mg}; + m%; = mdi + m%, mﬁ}; + m%; = mlgi +m3 (6.48)
for (BC3) and

m%iﬁ = mgg, mﬁ — mgi* = mjz* - méi, 6.49

mzzﬁ — mik = md” + md]*, m% — m% = —ml%-L + mlgi, 6.50

mﬂ}; — mﬁ? = mqi — TTL~2,

2 2 2 2 (
2 2 _ 2 2 2 2
M1 —l—mﬁgR* = m‘ii +mq%, M —|—md§,{* =mp —|—ml% (

for (BC4) Here, i,5 = 1,2,3 and we denote @%, &%, d%, [, and § qL as uiy, eR, dx, B
and ¢3. The relations for (BC4) are obtained by exchanging m?2 i for mll in those
for (BC3).

The above relations become predictions to probe models because they are specific
to models, in case that the extra gauge symmetry breaking scale is near Msg.
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7 Separation of the SM and hidden particles on
5D

In this section, we propose that hidden particles can be separated according to
gauge quantum numbers from the visible ones by the different BCs. Especially, we
show that the separation of visible and hidden particles can be realized in gauge
interactions using a 5D extension of the SM with an extra U(1) gauge symmetry
coexisting different types of BCs. Furthermore, we also study models that hidden
particles relating to conjugate BCs are identified with dark matter or inflaton.

7.1 Why hidden

In order to obtain some hints to explore the origin of dark matter and the identity
of inflaton and to address the reason for their existence, we search for an factor that
it is hard to detect hidden particles based on the following assumptions.

e There is an extra gauge group Ghiqqen Other than the SM one Ggy (or some
extension such as a grand unified group Ggur), and Gpigden leaves little trace
behind around the terascale.

e Hidden particles such as dark matter and inflaton possess gauge quantum
numbers of Ghjgqen Or are some components of gauge bosons in a hidden sector,
and they are gauge singlets of Gy (or Ggyr).

e The SM particles are gauge singlets of Ghigden-

Gauge quantum numbers are suitably assigned to construct a realistic model,
but in most cases, it would be done without any foundation except for symmetry
principle. We expect a reason or a mechanism that a subtle separation of gauge
quantum numbers in the above assumptions is realized naturally, and propose a hy-
pothesis that hidden particles can be separated according to gauge quantum numbers
from the visible ones by the difference of BCs on extra dimensions. °

To embody our hypothesis, we consider a 5D theory with Ggy x U(1)¢ gauge
group as an extension of the SM with an extra U(1) gauge boson Cy = Cy(z,y)
and an extra matter ¢ = ¢(x,y). For simplicity, we pay attention to scalar fields
and U(1) gauge bosons and treat the Lagrangian density,

1
Lsp = (DyH) (DM H) — m2%|H|? — ZBMNBMN

o N . 1
+ (Dy @) (DY) — mi|@|* — ZCMNCMN
2 ~ 2 ~
= A(HP) =2 (1917)" = M HP PP + -+, (7.1)

where H = H(z,y) is 5D complex scalar field containing the SM Higgs doublet as
its zero mode (H®), and A, A and A are quartic couplings of scalar fields.

9 According to a similar idea that a dark matter possesses different features from the SM
particles on extra dimensions, a truncated-inert-doublet model has been constructed that the SM
ones belong to Zs even zero modes and the dark matter is one of Zs odd zero modes on a warped
extra dimension [50].
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If By which is the 5D extension of the U(1)y gauge boson in the SM satisfies
the BCs such as (2.10) — (2.12) and C)y satisfies the BCs such as (2.34) and (2.35),
H and ¢ cannot own both non-zero U(1) charges. In other words, H is separated
from ¢ in gauge interactions through the difference of BCs.

After the dimensional reduction, we obtain the following 4D Lagrangian density
for zero modes H®, @ B and 05(0), at the tree level,

1
Ljfg)) _ (fo’)H(O))*(D(O)“H(O)) — 2| HOP? - ZB,S(,],)B(O)“”
1 ~=(0 ~(0 1 2 5«5_‘]@9 ? ~(0)\2 1 (0) (0)
-+ 581190( )8“90( ) — 5 {m¢ =+ <W (80( )) + 5(3#05 (9“05
2 1 5 1 -
= A(HOP) = 2260 = Al HOP@) - (7.2)

where where 6 is the Wilson line phase defined by

TR 1
0= OOy = V2rRgsCL. 7.3
g5 /WR \/ﬁﬁ 5 Yy g5 5 ( )

and the ellipse in (7.2) stands for parts containing Kaluza-Klein modes of gauge
bosons and the kinetic term of C’éo) . Note that the U(1) gauge symmetry is broken
by orbifolding, and 6 is a remnant of the U(1). And, we use the Fourier expansion
(2.24) for H and (2.42) for ¢.

As seen from (7.2), Céo) is massless at the tree level. After receiving radiative

corrections, the effective potential relating to Céo) is induced and C’éo) acquires a
mass through the Hosotani mechanism [31,32]. Concretely, the one-loop effective

potential for the Wilson line phase (= v/ 27TR§5CEEO)) is derived as

[e.e]

1 [ d 21n + Bs — G0\
%[H]ZE/ﬁZIH{p%‘i‘mé—‘—( 27T<PR 90)

=—00

3~ (L e TEN .
:Eo—m;(ﬁ+m+%)e “"COS{TL(ﬁ@—FQ(ﬁg)}, (74)

where pg is a 4D Euclidean momentum, Ej is a #-independent constant and rg =
2mRmg. The physical vacuum is realized at 85 — gz = 0 and 6’5(0) decouples in the
low-energy theory, if R is small enough, by acquiring the mass of O(1/R).

The scalar field 3% () survives in a post-SM at the terascale for 8; — Gz0 = 0
and mg; < O(1)TeV, and we find that our Lagrangian density agrees with that
containing a dark matter in a specific model called the New Minimal Standard
Model (NMSM) [51,52]. Then, ¢ (x) becomes a possible candidate of dark matter.

The ¢ (z) couples to the SM Higgs doublet through the quartic interaction
—(1/2) Amix | HO2(¢)2. In the presence of this term as the Higgs portal, the run-
ning of A based on the renormalization group equation changes compared with that
in the SM, and the vacuum stability of Higgs potential can be improved [52,53].

Here, as a complementary comment on our hypothesis, we state a feature that
matters are not necessarily classified into the visible ones and the hidden ones, even
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if a system has two U(1) gauge bosons By and Cyr with different types of BCs,
because there can exist particles that possess both U(1) charges. Let us show it using
a model described by the Lagrangian density,

N N 5 1 1
Ls, = Z {(Dy@a)* (DY o) — md, |@al*} — ZBMNBMN — ZCMNCMNa (7.5)

a=1,2

where Dy = Oy — 19593, Bvr — 195G3,Cr for a pair of complex scalar fields ¢, =
Pa(x,y) (@ = 1,2). In case that ¢z, = ¢p,, 43, = —qz, and my, = mg,, Ls, is a
single-valued function under the BCs (2.10) — (2.12), (2.34), (2.35) and

Pa(z,y +21R) = %@ (2,y), 1(z, —y) = 102(2, ), (7.6)

where (5 takes 0 or m and ng takes 1 or —1. We refer to the U(1) gauge symmetry
concerning the BCs (2.34), (2.35) and (7.6) as an exotic U(1) symmetry [54,55]. 1
Then, we find that ¢, own both U(1) gauge quantum numbers. A similar feature
holds on a theory containing non-abelian gauge symmetries: matters can possess
both gauge quantum numbers whose gauge bosons satisfy different types of BCs if
the theory is vector-like.

7.2 Gauge-higgs inflation
7.2.1 Inflation

Inflation has been proposed to solve some problems in Big Bang cosmology such
as horizon problem, flatness problem and magnetic-monopole problem by K. Sato
and A. Guth in the early 1980s [57,58]. Inflation is an exponential expansion of
space in the early universe. It is realized by a vacuum energy of inflaton potential.
Here, inflaton is any scalar field.

Especially, slow-roll inflation models which have been proposed by A. Linde
is one of the most important model [59]. Inflation can be estimated by inflation
parameters, which are observable, only using inflaton potential. From observation
and theoretical analysis, inflation parameters are restricted as follow:

- Minimum value of inflaton potential V' (¢) is almost zero:
V({¢)) ~0. (7.7)

- The slow-roll conditions:

M2 [V 2 e
EETG<V((§:))> <1, n=M3 V((j))‘<<1’ (7.8)
Me = 2.4 x 10'GeV : the reduced Planck scale ,
OV OPV(9)
V(¢)_a—¢7 V"'(¢) = 952

10 The orbifolding due to these BCs is regarded as a variant of the diagonal embedding proposed
in [56].
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- The e-folding number:
- L| [ V@

NE/ Hdt:—/ dgb‘:50~60, 7.9

LA ), i) 7

H : the Hubble constant

¢« : the value of inflaton field in the start point of inflation

¢ : the value of inflaton field in the end point of inflation

- The scalar power spectrum:

1 (V)

Pe= Tomais (Vio)?

= (2.196 + 0.079) x 10~* (7.10)
P=ox

- The spectral indez:
ns = 1 — 6e, + 21, = 0.9655 £+ 0.0062 , (7.11)

€+, M : the quantities at the horizon exit

- The tensor-to-scalar ratio:

r=2h g, <012, (7.12)
P
_ 2V(9)
Pr= 3m2 M2

The first conditions are assumed because the current cosmological constant is very
small value. The slow-roll conditions are demanded from the flatness of potential.
The e-folding number represents that how much exponential expansion continued.
In order to realize our universe, the e-folding number should be taken N = 50 ~ 60.
The constraint of the scalar power spectrum, the spectral index and the tensor-to-
scalar ratio are given by Planck observation in 2015 [60].

Many slow-roll inflation models have been proposed, but in most of models,
inflaton potential have been given by hand. This causes problems such as the ori-
gin of inflaton and fine-tuning problem of parameters. Higher-dimensional theories
may solve those problems. On 5D gauge theory, gauge-Higgs field which is 5-th
component of 5D gauge field dose not have its potential in the classical level, but,
in 1-loop level, gauge-Higgs potential is generated by radiative corrections. Fine-
tuning problem is solved because this potential is finite due to 5D gauge symmetry.
N. Arkani-Hamed have proposed inflation model that gauge-Higgs field are identified
with inflaton [61]. This model can solve the origin of inflaton and the fine-tuning
problem, under the condition that the value of relevant gauge coupling constant is
tiny enough.

Recently, the models with 5D gauge theory added to 5D gravitational theory
has been constructed, and investigated fine-tuning problem and the origin of in-
flaton [62-64]. These models may solve problems of fine-tuning and the origin of
inflaton with a same magnitude of gauge coupling constant as the SM ones. On
5D gravitational theory, a scalar field called radion, which is an extra-dimensional
component of 5D gravity field, is included, and it may be also inflaton.
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7.2.2 Gauge-higgs inflation

We apply a model with conjugate BCs on a gauge-Higgs inflation scenario. Let
us consider a gravity theory coupled to a U(1l)c gauge theory defined on a 5D
space-time whose classical background is M* x S'/Z,. The starting action is given

by

A 1
R __AMPANLC C
—167TG5 5 49 g MNUPL

SE%]S = dBZU\/ —g5

+ Z ¢ GMNT Vi — g

+Z'(Zgh( 'MNFMDN—mb) Jych s (713)

where g5 = det gy, gM" is the inverse of 5D metric gayn, Gs is the 5D Newton

constant, Ry is the 5D Ricci scalar, Cyy = 9y Cn — OnCas, Tar = EX Ty (BEY, =
E% (x, y) is the fiinf bein, I'; are 5D gamma matrices, and k is the space-time index
in the local Lorentz frame), Vi = Oy — (i/4)0k (wN is the spin connection and
Ekl = Z[Fk,rl]/Q), DN = 8N — (Z/4)(I}%Zkl — i§5(jbCN for ¢b s CN is a 5D U( )
gauge boson in the hidden sector and we assume that it satisfies the conjugate BCs
(2.31) and (2.32), ¢ are neutral fermions, ¢* are U(1)¢ charged fermions whose
U(1)c charge is g, and ¢; and ¢ stand for numbers of neutral and charged fermions,
respectively. The g5 is a 5D gauge coupling constant.

If the SM gauge bosons satisfy the ordinary BCs such as (2.10) — (2.12) and
both ¢ and " satisfy the BCs (2.40) and (2.41) with 8, and 8, as a twisted phase
(ﬁq/;), 1;3 and @Egh should be singlets of the SM gauge group, as a consequence in the
previous section.

The BCs of gyn are given by

gun (T, y +27R) = gun(r,y) , (7.14)
guu(xa _y) = guu(x7 y) ) ng)(l’, _y) = _gu5(ffa y) )
g55(x7 _y) = §55<SE, y) 9 (715>

and then the Fourier expansions of ¢,y are presented as

(2, y) = G (2) + Z 3 () cos 2 (7.16)

Gus () Z,% sin 7y (7.17)

A ) + 30 6 ) cos 2 718

955(,y) = G5 () + 2955 (x) cos 7 (7.18)
n=1

The spin connection Wkt satisfy the ordinary BCs such that

Rt (2, + 27R) = O (2, y) , (7.19)

20



wzl(% _y) = a}lzl(x’ y) ’ djgl(mv _y) = _(’:}]gl<x> y)? (720)
and then the full Lagrangian density containing both visible and hidden sectors
becomes a single-valued function on S'/Z,.

On the Minkowski background, QS)V) takes the classical value such as <g,S°J) = N,
and other zero modes are assumed to have the following classical values:

0
~(0)y _ 42/3 C(O) - 7.21
<955 ) ¢ ) < 5 > /27TR§]5 ! ( )

where ¢ is the radion and 6 is the Wilson line phase. The Kaluza-Klein modes are
assumed to have zero classical values.

According to a usual procedure, the following effective potential is obtained at
the one-loop level,

3L2mS 0 1 p1/3 ) p2/3 e 13
V(P,Q)ZW[—QC(5)+C1Z(E+MF+M%)G g

= \n® nt 30
L*m _
ot (7.22)

where we take common masses y = u, and m = m,;, a common twisted phase 8 =
and a common charge § = g, for simplicity, L = 27 R, p = L3m3¢, ((k) = >07, 1/nF,
rm = p/m and @ is some constant.

The above potential has the same form as that obtained in [63] except overall
factor and (8, and hence both radion and Wilson line phase are stabilized in case with
c1 > 2+co, and 0 is, in particular, fixed as §—¢f = 7. Furthermore, the gauge-Higgs
field 0 can give rise to inflation in accord with the astrophysical data [64].

We need some modification of our model to explain the origin of the Big Bang
after inflaton decays into the SM particles. The direct coupling between inflaton and
some SM particles is necessary to produce radiations at a very early universe, but
it is difficult due to the mismatch of BCs, as explained in the previous section. As
a way out, if some SM particles or its extension form a pair of vector-like multiplet
for U(1)¢ and satisfy the BCs such as (7.6) or counterparts of fermions, they can
directly couple to C’éo). For instance, if there exist two Higgs doublets H, as a
vector-like pair of U(1)¢, there can appear the coupling such as 2% |H" |2(C{”)2.
In this case, although the contributions from H, are added to the potential (7.22),
f might remain inflaton because they are not dominated.
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8 Conclusion and Discussion

First, we have explained feature of the orbifold S!/Zy, T?/Zy, T? 73, T?/Z, and
T?%/Zs. And, we have reviewed orbifold family unification on the basis of SU(N)
gauge theories on five-dimensional space-time, M* x S1/Z,. Orbifold family unifi-
cation model on the basis of SU(N) gauge theories which is broken down to SU(5)
gauge group by orbifold breaking have been found, but orbifold family unification
model on the basis of SU(N) gauge theories which is directly broken down to the
SM gauge group by orbifold breaking have not been found.

Second, we have studied the possibility of family unification on the basis of
SU(N) gauge theory on 6 dimensional space-time, M* x T?/Z,;. We have obtained
enormous numbers of models with three families of SU(5) matter multiplets and
those with three families of the SM multiplets from a single massless Dirac fermion
with a higher-dimensional representation of SU(N), after the orbifold breaking.
The total numbers of models with the three families of SU(5) multiplets and the
SM multiplets are summarized in Table 4.5 and 4.10, respectively.

Third, we have also studied the relationship between the family number of chiral
fermions and the Wilson line phases, based on the orbifold family unification. We
have found that flavor numbers are independent of the Wilson line phases relating
extra-dimensional components of gauge boson, as far as the SM gauge symmetry is
respected. This feature originates from a hidden quantum-mechanical SUSY. The
relationship of left-handed fermions and right-handed ones corresponds to that of
bosons and fermions in quantum-mechanical SUSY.

Fourth, we have taken orbifold family unification models base on SU(9) gauge
symmetry on M* x T?/Z, and have examined the reality of models by checking
the appearance of Yukawa interactions from the interactions in the 6D bulk as
a selection rule. We have picked out a candidate of model compatible with the
observed fermion masses and flavor mixing. The model has a feature that just
three families of fermions in the SM exist as zero modes and any mirror particles
of fermions do not appear in the low energy world after the breakdown of gauge
symmetry SU(9) — SU3)¢ x SU(2) x U(l)y x SU(3)r x U(1)® or SU(9) —
SU3)c x SU(2)L x U(1)y x SU(2)r x U(1)* by orbifold breaking. Depending on
the assignment of intrinsic Zy parities, uk, €k, di, It and ¢% belong to ¥4 and U
with 84 of SU(9), respectively. We have found out specific relations among sfermion
masses as model-dependent predictions in the SUSY extension of models.

The massless degrees of freedom relating to a family symmetry must be made
massive by further breaking. For example, extra scalar fields can play the role of
Higgs fields for the breakdown of extra gauge symmetries including non-Abelian
gauge symmetries. As a result, extra massless fields including the family gauge
bosons can be massive.

Fifth, we have formulated 5D U(1) gauge theories yielding different types of BCs
on S'/Z,. On the conjugate BCs, the 4D components of U(1)c gauge boson have
odd Z, parities and their zero modes are projected out through the dimensional
reduction. Then, the U(1)c gauge symmetry is broken down by orbifolding. In
contrast, the 5-th component of U(1)c gauge boson has even Z, parities, and its

zero mode 05(0) survives and becomes a dynamical field. It is massless at the tree
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level, but the effective potential relating to C’éo) is induced after receiving radiative
corrections. Then, Céo) acquires a mass of O(1/R) and decouples to the low energy
theory if R is small enough. Matter fields transform into the charge conjugated ones
under the Z, transformation. Then, only real fields such as real scalar and Majorana
fermions appear after compactification.

We have also shown that the separation of visible and hidden particles can be
realized in the gauge interactions using a 5D extension of the SM with an extra
U(1) gauge symmetry and an extra scalar field coexisting different types of BCs.
We also have derived the Lagrangian density containing a dark matter in the NMSM.
The zero mode of extra scalar field yielding the conjugate BCs becomes a possible
candidate of dark matter.

Furthermore, we have applied a 5D gravity theory coupled to a U(1) gauge theory
with conjugate BCs on a gauge-Higgs inflation scenario. We have found that the
effective potential containing the radion ¢ and Wilson line phase 6 plays a role of
an inflaton potential and 6 become inflaton.

We give a comment on the right-handed neutrinos. Because, the right-handed
neutrinos are singlets of the SM gauge group and they have Majorana masses, we
guess that there might be hidden matters obeying conjugate BCs. But, it is difficult
to realize it, because we cannot construct a Z, invariant term in 5D Lagrangian den-
sity to derive the 4D Yukawa interaction relating to neutrino, due to the mismatch
of BCs between the SM non-singlets and singlets. Nevertheless, it would also be
interesting to examine the origin of the right-handed neutrinos from the viewpoint

of BCs.

In this thesis, we have studied the possibility of extra dimensional theories as
the physics beyond the SM choosing orbifolds as an extra dimensional space-time.
Especially, we have focused on the mystery of family number and the origin of undis-
covered particles. Our models can be attractive from the phenomenological point
of view. However, we should investigate other phenomenological and cosmological
verifications from the view point of the mass of the SM particles and observables.

It would be interesting to construct GUT models with a large gauge group be-
cause gauge theories on higher-dimensional space-time satisfying conjugate BCs
lower the rank of gauge symmetries after orbifold breaking. Extra dimensional
models satisfying conjugate BCs have not been studied very much. It would be in-
teresting to combine orbifold family unification models with orbifold with conjugate
BCs. In this case, there can be family unification models without family symmetry
after orbifold breaking.

Extra dimensional theories relate sting theory, which is the candidate of ultimate
theory. If our models are considered as effective theories of string theory, it is
interested to reconsider our models in the framework of string theory.
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A Notation

We use the natural unit system. The speed of light ¢ and the reduced Planck
constant h are

- Pauli matrix

(A.2)
9 —1 3 (1 0
7=\ 0)""(0-1)
- 4D gamma matrix: v* (u=0,1,2,3)
0 ot
wo__ )
I (A3)
0“:(00 JZ),(?“:(UO —a’),
Peigyyt= (T2 0 (A4)
0 12><2
V" =2¢", {37} =0. (A.5)

- 5D gamma matrix: ' (M =0,1,2,3,5)

Dh =t TP =iy (A.6)
{TM TV} = 24M7

- 6D gamma matrix: ' (M =0,1,2,3,5,6)

_ 3 _ [ 0
" = fy“ R o° = ( 0 —7“ ) , (AS)
_ 0 il
5 _ 1 _ 4x4
I° = 144 ®i0 = ( ilisa 0 ) R (Ag)
[0 =144 ®ic” = 0 lox ) (A.10)
_14><4 0
M= IR = et = () Al
- - ,-)/ ®U - 0 75 ) ( . )
{TM TN} =24MY TP TM} =0, (A.12)
[ =0°44%, I?=1°—I"%. (A.13)

B The Properties of 7?/7Z,); orbifold

In this section, let us discuss SU(N) gauge thoery on M? x Z,; in detail. Espe-
cially, we explain the properties of orbifold M* x Z,; and orbifold breaking mecha-
nism by inner automophisms boundary conditions.
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B.1 T?%/Z, orbifold
B.1.1 Property

Let us discuss SU(N) gauge theory on M* x T?/Z,. On T?/Z,, the T? is
constructed by SU(2) x SU(2) lattice, and its basis vector takes e; = 1, e; = i. The
point z is equivalent to the points z + e; and z + ey, and the point —z on T?/Z,. In
this case, the fixed points are

€1 €2 e1+ e
0, —, —, . B.1
2 2 2 (B.1)
The transformation around those fixed points can be defined as
S99 2 —> —Z, So1:R2—>—Z+e€, Sp:z——z+e,
Sog3:iz——2+e +e, t1:z—=24+e, la:z2—>24+eg. (BQ)
They satisfy the relations,
S50 =3 =S5 =33 =1, So1 =115, San=tasa0,
S93 = t1l2S20 = S21520522 = S22820821 , lita = laty . (B.3)

At this time, the BCs of bulk fields are characterized by matrices (Fy, Pi, Py, Ps,
U1, Us). Those matrices satisfy the relations,

P2 P2 P22:P32:I, P=UF , P=U0FK,
Py =UU0FPy= P PyP,=PRFPP, UU,=UU . (B.4)

Since three of those matrices is independent, we choose three matrices Fy, P, P
which are unitary and hermitian matricies.

B.1.2 Orbifold breaking by inner automophisms boundary conditions

The BCs of gauge field are determined as

Sop - AN :U,_Z,_Z> POA (,Z‘,Z,E)POT’

Sz, —2,—%) = —PyAs(x, 2, 2) P, (B.5)
u(r,e1 — 2,60 —2) = PLA,(x, Z,Z)Pf,

Soq
Sz, e1 —z,60—2) = —PA,(x, 2, E)Pf,
—PAs(z,2, %) P, (B.6)
2) = PyAu(x,2,2) P},
Sz, 69 —z,60 — 2) = —PyA,(x, 2, z)PZT,
Sz, ey — 2,8y — Z) = —PyAs(x, 2, 2)P), (B.7)

S3 1 Ay 5U>€1+€2—Z,51+52—5):PSAM<5U7272)P3Ta

(
A(
As(
Au(
A(
As(z,e1 — 2,60 — 2) =
Sop 0 Apw, e — 2,60 — 2
A.( Z) =
A
A
A.(

ze1+ex—z 61+ 63— 2) = —P3A,(z, 2, Z)Pg,
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As(z e+ ey — 2,61+ 62— 2) = —P3As(x, 2, Z)P?T, (B.8)
t1: Ay(z,z+e, 24 &) = U Ay l(z, 2, 2)U], (B.9)
ty: Ay, 2+ €9, 24 &) = Up Ap(z, 2, 2)UJ, (B.10)

where z = 2° + 925, z = 2° — 2%, A, = A5 +iAg and A; = A; —iAg. The BCs of
scalar field ¢ and spinor field 1) are determined as

So0 1 P(x,—z,—2) = Te[Py]p(x, 2, Z) , (B.11)
So1: O(x, 61 — 2,861 —2) = T¢[P1]¢( JZ) (B.12)
Soa: P(x,e9 — 2,69 — 2) = To[Py|t)(x, 2, 2) (B.13)
So3: ¢(r,61 —eg — 2,61 — €9 — Z) = Tq>[ slo(x, 2, Z) (B.14)
t1: ¢z, z+ e, z+e1) =To[Ur]d(z, 2, 2) (B.15)
to: ¢z, 2+ €9,z + €3) = To[Us]d(z, 2, 2) (B.16)
So0 1 Y(x,—2z,—2) = Ty|R)Y(z, 2, 2) (B.17)
So1: Y(x,e1 — 2,61 — 2) = Ty[P1]Y(x, 2, 2) (B.18)
Sog : Y(x,e9 — 2,69 — Z) = Ty[Po)tp(z, 2, Z) . (B.19)
Soz: Y(x,e1 —eg — 2,6p — €y — Z) = T\p[P;g] (x,2,2), (B.20)
ty: Y(r,z+e,z2+61) = Ty|Ui|o(x, 2, 2) (B.21)
ty: Y(x, 2+ €9,z + &) = Ty[Us]t) (x 2,Z) , (B.22)

where Tow)[Pi] and Tow)[U;] represent appropriate representation matrices includ-
ing arbitrary sign factors, with the matices P; and U;. The eigenvalues of Tg[Fy],
To[P1] and Tg[P] are interpreted as the Z, parities for the extra space. The repre-
sentation matrices Tx[P|(X = ®,V, P = Py, Py, Py, P3, Uy, Us) satisfy

Ts[Ry)? = Ts[P* = Te|Po)* = T, Ts[Uh]Ts[Us] = Tx[Us]Tx[UY]
Tx[P] = Ts[U]|Ts[R] , Ts[P] = Tx[Usp]Ts[ R
Tx[P3] = T[] Tx[Us]Ts[R] = Ts[PTs[R]Ts[Po] = Te[P]Ts [P Ts 1] - (B.23)

Let (70:7172) (g » %) be a component in a multiplet and have a definite Z
parity (P, P1, Ps). Here, ¢ is a generic field and it is applied to scalar field ¢,

fermion field ¢ or gauge field Ay;. The Fourier expansion of ¢(7071%2)(z 2 2) is
given by
1
FLALAD) (o 5y — = (00,
2 (o @]
+ — o™ (x)[cos|pm(z, Z) , (B.24)
7T\/R1R2 n;()
(n+m#0)
HLAL=D(g 2z (m) (1) [cos 2,2 B.25
2 ( ) <y ) W\/m n;() @ ]n,m+1/2( ; )7 ( )
(n+m+#0)
2 oo
L=t (g 2 7)) = — M) (1) [cos| it /2m(2, Z B.26
2 (77) ﬂ_\/mn;:ogp ()[ ]+1/27(7>7 ( )
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(1ALt ) (g 5 7 ”m) )[sin],, m z,Z B.27

2 ( ) < ) ﬂ_\/mn;o ]+1/2, +1/2( s )7 ( )
2 oo

HL-b=D(p 2 7)) = — m) () [cos],, m z,Z B.28

@ (z,2,2) W\/mn%;()%? (@)[cos|ni1/2m+1/2(2: 2) (B.28)
2 oo

(AL=D(p 2 7)) = —— (mm) (2 [sin], m(2, 2 B.29

@ ( y 2y ) W\/mn;_()g& ( )[ ]+1/2, ( ) )7 ( )

(—1,—-1,41) > SlIl nom ,2) B.30
@ (2,2,2) = — Rl m n§m O Inmt1/2(2, 2) (B-30)
2 oo
(—1,-1,—1) 5\ — (n,m) ' > B.31
© T, 2, Z E ® Z)[SIn,m( 2, Z) , :
( ) TV R Rs — el ( )

where

: _ : 1f(n+a m+p
[sin]p+a,m+8(2, 2) = sin [— 5 {( R i 2 > } z
1{/n+a m+B\]| _
+§{< R R >}Z] ’
_ 1 n+aoa . m+p
[cOS|nta,mis(2, Z) = cos [— 3 {( R i 8 )}z
+%{(n;a+z’m}£5>}z] . (B.32)
Upon compactification, massless zero mode ¢(*% (z) appears on 4D when Z, parities
are (P, Py, Py) = (+1,+1,+1). And, the massive KK modes ¢™™(z) do not
appear in our low energy world because they have heavy masses. Here, zero modes
mean 4-dimensional massless fields surviving after compactification. KK modes do
not appear in our low-energy world, because they have heavy masses of O(1/R),

with the same magnitude as the unification scale.
If the representation matrices Fy, P, and P, are given by

7 ™~

dlag([+1] [+1] P27 [+1]p37 H‘Hma [_l]ps’ [_1]1’)67 [_1]1377 [_1]138) )
dlag([+1] [+1] D27 [_1]1)37 [_1]1)47 [+1]P57 [+1]p67 [_1]p77 [_1]178) )
dlag([—i—l] [ 1] D27 [+1]p37 [_1];047 [+1]p57 [_1]106’ [+1]p7> [_1];08) ) (B'33)

where [£1],, represents £1 for all elements and N = Zle pi, the SU(N) gauge
group is broken down into its subgroup such as

SU(N) — SU(p1) x SU(pg) x -+ x SU(pg) x U(1)"™" , (B.34)

by orbifold breaking mechanism. In this case, the gauge fields A%}%’%’%) are

divided as

a(+1,+1,+1) B(+1,4+1,—1) B(+1,—1,+1) B(—1,41,+1)
A” , Au , Au A“

) )
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IB("F].,—l,—l) 6(_17"1‘1,_1) ﬁ(_17_17+1) B(_lv_]w_l)
Au Au Au Au

AE(+17+17+1) AE(J’_LJ’_L_I) AE(+17_17+1) Af(_1a+17+1)

Aﬂ(+1,—1,—1) AB(—1,+1,—1) Aﬁ(—l,—1,+1) Aa(—l,—l,—l)

)
,8 +1,+1,+1 B +1,+1,71
AZ_( ) AZ_( )

A§(+1,+1,71) A§(+1,+1,71)

Y Y Y Y

A§(+1,71,71) Ag(—l,ﬂ,fl)

Ag(fl,flﬂrl) ’ A?(fl,fl,fl) 7 (B35)

Y Y

where the index « indicates the gauge generators of unbroken gauge symmetry and
the index [ indicates the gauge generators of broken gauge symmetry.

B.2 T17?/Z3 orbifold
B.2.1 Property

Let us discuss SU(N) gauge theory on M*xT?/Zs. On T?/Zs, T? is constructed
by SU(3) lattice, and its basic vectors takes e; = 1 and ey = ¢*™/3 = w. The point
z is equivalent to the points z + €; and z + ey, and the points wz on M* x T?/Zs.

The fixed points for the Zs transformation z — wz are

261 + €9 e + 262

0, 3 , 3 (B.36)
The transformation around those fixed points can be defined as
83012 —WZ, 831:Z —>WzZ+e€, S32:2—>wWZ+er,
ti:z—z+e, to:2—>z2+e, (B.37)
where satisfy the relation,
3 3 _ 3 _ _ _ _
S30 = S31 = S35 = $30531532 = 31532830 = 32830531 = [ ,
S31 = 11830 , S32 = tat1S30 , tita = Loty . (B.38)

At this time, the BCs of bulk fields are characterized by matrices (6, 1, Os, O3,
Uy, Us). Those matrices satisfy the relations,

@8 = @? = @g == @0@1@2 - 819280 == @2@0@1 = I 5
@1 = U1@0 5 @2 = U2U1(90 s U1U2 = UQUl . (B39)

Since two of those matrices is independent, we choose two matrices @y, @; which
are unitary matrices.
B.2.2 Orbifold breaking by inner automophisms boundary conditions
The BCs of gauge field are determined as
s30 1 Au(r,wz,0z) = OgA,(x, 2, 2)@8,
A (z,wz,0Z) = WO A, (z, 2, 2)@8,
Az (r,wz,0Z) = wOYAs(z, 2, 2)6), (B.40)
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s31: Az, wz+e, 0z +6) = 014,(x, 2, 2)@1,
Az, wz+ 6,072+ &) = 0O A, (z, 2, 7)O],
As(z,wz+ e, 07 4 &) = wO As(z, 2, 2)O), (B.41)
szt Ap(z,wz+ e +ex,wZ+ 6+ &) = OrA,(x, 2, 2)@;,
AT, w2+ €1 + €3, 07 + & + &) = WO A, (1, 2, 2)O8,
As(z,wz + €1 + €9, WZ + & + &) = wO Az (x, 2, 2)O}, (B.42)
ty: An(z,z+e1, 2+ &) = Uy Ay, 2, 2)UT, (B.43)
ty: An(x, 2+ €9, 2 4 &) = Us Ap(z, 2, 2)UJ, (B.44)
where z = 2% 4+ 2%, Z = 2% — 25, A, = Ay +iAg and A; = A5 — iAg, and w = e*™/3
and @ = e*™/3. The BCs of scalar field ¢ areand spinor field 1) are determined as

S30: O(x,wz,wz) = Te|Oo(x, 2, 2) |
S31: O(x,wz+e,wz+é1) = T¢[81]¢(x, z,Z),

S39 - gb(as,wz + e+ e, Wz + e+ 62) = T@[@g]w(l’, z, 5) , B.47
ti: d(x, 2+ e,z +é1) = To[E1]d(x, 2, 2) B.48
tQ : ¢($,Z+€2,2+62) :Tq>[52](b<l',2,2) , B.49

S30 -

S32 1 W(x,wz+ep + ey, 0z + e + &) = Ty[Os)th(x, 2, 2) .
ty: Y(z,z4e, 2+ e) =To[UlY(x, 2, 2)
t2 : w<$,2+€2,2+ég) :T\I/[Ug]w<l',2,2) ,

(B.45)

(B.46)

(B.47)

(B.48)

(B.49)

U(z,wz,wz) = Ty[Oo|t(x, 2, 2) | (B.50)

s31: Y(r,wz+ e, wz +é1) = Ty|O1)Y(z, 2, 2) ( )
U (B.52)

U (B.53)

(B.54)

where Ty(w)[0;] and Ty(w)[U;] represent appropriate representation matrices includ-
ing arbitrary sign factors, with the matices ©; and U;. The representation matrices
Tx[P](X = ®,V, P = 0y, 01,0,,U;,Us) satisty

[@0] = Tx[6,]° = Tx[6,]

T5[60]T5[61]T5[0s] = T5[61]T5[0:]T5[O0] = Tx[0:]T5[00|Tx[61] = I
[ 1] = Te[UW]Tx[6] , Tx[0:] = Tx[Us]Tx[Uh]Tx[O0] ,
Ts[Uh]Ts[Us] = T [UR]Ts[Uh] - (B.55)

Y

Let (#7071 (z, 2, %) be a component in a multiplet and have a definite the Zs
elements &, and &7, which relate the representation matrices @y and @1, and take
1, w or w, respectively. Here, ¢ is a generic field and it is applied to scalar field
¢, fermion field ¥ or gauge field Ay;. The Fourier expansion of o707 (z, 2, ) is
given by

31/4
T/ 2R1R2

D (x,2,2) = 90(0’0)(1’)

(nam) ( ) B.56

n,m=0

(n+m#0)
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”m) z© _
™ 12R1R2 Z SD n+1/3m+1/3('z7z) 3 (B57)

o0

1

. _ 0
w(l,w)(x’z’z) = —7-‘- 12R1R2 Z ¢(n’m)($>f7g+)2/3 m+2/3( ) , (B58)
v m=0
W) (.2, 7) = ?(1 z,Z B.59
n+m7£0)
w,w 1 = n,m 1 =
oWz, 2,2) = m Z o™ )(x)ﬁéﬁ/&mﬂﬁ(z,z) : (B.60)
m=0
w,+1 (n,m ()
90( * )(x,z,z) T 12R1R2 Z ¥ ) n+2/3m+2/3( )’ (B61)
@) (.2, 2 () F3) (2. 7 B.62
PED 05 = e Y I ). (B.62)
(nﬁ’»myﬁo)
w, 1 - n.m 2 —
PO (z,2,2) = AR 3 oM@ FL) (2 7) (B.63)
n,m=0
w,w = 1 — n,m 2 —
0@ (g, 2, 7) = T > M @) FE, (2 7)) (B.64)
n,m=0
where
ﬁé(ﬁa’mq_ﬁ(z) 2) - gn—i—a,m—l—ﬂ(% E) + gn—i—oz,m—i-ﬁ(w% @2) + yn—ka,m—i—ﬂ(@za wE) )
FO 52 2) = 0Futamis(2,2) + 0 Fnramis(W2, 0F) + Ftamep(@2,0E) |
FE 55 2) = 0Pt amis(2, 2) + 0 Furamis(W2, 0F) + Ftamis(@2,wE) |
' 2
RSP 1 (=S S U

2 Ry \/§R1 \/§R2

(g o) ] o

Upon compactification, massless zero mode (% () appears on 4D when Zs ele-
ments are (Zy, #;) = (1,1). The massive KK modes ™™ (x) do not appear in
our low energy world because they have heavy masses.

If the representation matrices @y and 6, are given by

N

A\

~

Oy = diag(,[l]pl [Ups [Upss [Wpas Wlps s [W]pes [Elprs [©lpss [@]ps)
O, = diag([l] s w ]pzﬁ [w]psj 1 ]p4? [w ]pm [w]pb‘v [1];077 [w]pzs? [@]pg) ) (B.66)

where [1],,, [w],, and [@],, represent +1, w and @ for all elements and N = 30 p,
the SU(N) gauge group is broken down into its subgroup such as

SU(N) = SU(p1) x SU(ps) x -+ x SU(pg) x U(1)*™" (B.67)
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a(Py,21)
M

by orbifold breaking mechanism. In this case, the gauge fields A are divided

as

a(1,1) BLw) A1) Blw,w) B(w,@)

Acl) o ABe) - AB00) o gBlew) - ABR)

Blw,1) B(@.w) A@,1) B(@.w)

Aftel) - AB@R) AR ARGw)

Af(lal) : Af(Lw) 7 AE(L@) 7 A?(wm : Af(‘”’a’) ’

AL ARES AJED AR

I D S L

7 . L (B.68)

where the index « indicates the gauge generators of unbroken gauge symmetry and
the index [ indicates the gauge generators of broken gauge symmetry.

B.3 T?/Z4 orbifold
B.3.1 Property

Let us discuss SU(N) gauge theory on M*xT?/Z,. On T?/Z4, T? is constructed
by SU(2) x SU(2)(~ SO(4)) lattice, and its basic vectors are e; = 1 and ey = i, The
point z is equivalent to the points z 4+ e; and z + e, and the point z is equivalent to
the points —z and iz. The fixed points for the Z, transformation z — 6z = iz are

e1+ e

0, 5 , (B.69)
and it for the Z, transformation z — 6z = —z are
€1 €9 €1+ eg
0. = = B.70
9 2 9 2 ) 2 ( )
The transformation around those fixed points can be defined as
S40 12 — 12, Sg1:2—1tz+e, Syp:Z——2,
So1:2—>—Z+e€1, Sp:Z—>—Z+e€, S3:Z—>—Z+e+e,
ti:z—z4+e, ta:z—>2z+e, (B.71)
They satisfy the relations,
4 4 2 2 2 2
2
S99 = 2890 , S20 = Syg, S21 = S41540 , S22 = S40S41 ,
S93 = t1t2S20 = S21S20S22 = S22820821 , tife = taty . (B.72)

At this time, the BCs of bulk fields are characterized by matrices (Qo, Q1, Po, P,
Py, P3,Uy,Us). Those matrices satisfy the relations,

Q=Qi=F =P =P=P=I1, Q=U0Q, P=UR,

P=UF, PBh=Q, PP=QiQv, P»=QoQ:,
Py = UUs Py = PRy P, = PPy, UUy = UbUy (B.73)

where (); are unitary matrices, and P; are unitary and hermitian matrices. Since
two of those matrices is independent, we choose two matrices (Qg, P;.
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B.3.2 Orbifold breaking by inner automophisms boundary conditions

The BCs of gauge field are determined as

S40 -

S41 -

S90 -

S91 -

S99 .

S93 .

t12
tli

where z = 2% + iaS,

Ay(x,iz,—iZ) = QoA,(x, 2 L 2)Qb,

Az, iz, —iz) = —iQoA.(x, 2, 2)Q),

As(z,iz, —iZ) = iQoAs(x, z Z)QO,

Ay (x,iz + e, —iZ+ &) = Q1A4,(x, 2, 2)Q1,

Az, iz + ey, —iz + &) = —iQ1A.(z, 2, 2)Q1,
As(x,iz+ e, —iz +&1) = iQrAx(x, 2, 2)Q1,

Az, —2,-2) = BA,(z, 2, z)Pg,

Az, —z —2) = —PyA,(x,2, %) P},

As(x,—z,—2) = —PyAs(x, z, Z)Pg,

Az, —2+e,—2+&)=PA,(z,2 )P

Az, —z+e,—z+&)=—PA,(z,2%)P]
As(z,—z+ e, —Z+ &) = —PAs(x,2,2) P,
Az, =2+ ey, —Z+ &) = PA,(x,2 ,Z) P,

Az, —2+ ey, —Z+ &) = —PyA,(z,2,%) P,

As(x,—z + €9, —Z + &3) = — Py Az (z, 2, Z)PQT,

Az, —z+e1+ey,—2+¢6 +6) =PA,(x, 2 Z)Pg,
A (z,—2+ e +ey, —Z+& + &) = —P3A,(,2,2) P,
As(x,—z+ e+ ey, —Z+ & + &) = —PyAs(z, 2,2) P,

N

M(x7z + 6172—{_ é1) = UlAM(x7Z72)U1’
AM<:C7Z + 6275 + éQ) = UQAM(:C’Z?Z)U;J

scalar field ¢ and spinor field 1) are determined as

S90 -

Sq0 1 Oz, iz, —iz) = Te[Qolo(z, 2, 2)

I
&
L
<
—~
8
N
Nl

Sq1: P(x,iz+ e, —iZ + €

So0 1 O(x,—z,—2) = Te[Pylp(x, 2, Z) ,

So1: P, —z+e,—z2+e) =TolPi]o(z,2,2)

Soo: P(x,—z+ ey, —Z+ &) = To|Po)o(z, 2, 2)

So3: O(x,—z+ e+ ey, —Z+ 8 + &) =To[P3|th(x,2,2) ,
t1: ¢z, z+e,z2+ 1) = To[Ur]d(z, 2, 2)
to: O(x, 2+ €9,z + €2) = To[Us]d(z, 2, 2)

Sq0 1 W(x iz, —iz) = Ty|Qo|v(x, 2, Z) |

(
Sq1: W(x iz + ey, —iz 4+ e1) = Ty[Q1]Y(x, 2, 2) |
(

W(x,—z,—2) = Ty|R)Y(z, 2, 2)
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(B.74)

(B.75)

(B.76)

(B.77)

(B.78)

(B.79)
(B.80)
(B.81)

z=a%—142% A, = A5 +idg and A; = A; —iAs. The BCs of



Y(x,—z+e,—z+e) =TyPY(z,2,2), ( )
W(x,—z+ ey, —Z+ &) = Ty[P|t(x, 2, 2) ( )
Soz: Y(x,—z+e1+ey,—Z+eE+6) = TQ[P?,]w(x, z,Z) . (B.95)
V(z,z+ e,z +e1) =To[UiY(z, 2, 2) (B.96)
U(x, 2z + e, Z + €2) = Ty[Usth (l‘ z,Z) ( )

)

where Tow)[P], Tow)|Q:i] and Tew)[U;] represent appropriate representation matri-
ces including arbitrary sign factors, with the matices P;, Q); and U;. The represen-
tation matrices Ts[P](X = &, ¥, P = Qo, Q1, Py, P1, P», P3, Uy, Us) satisty

Ts[Qo]* = Tx[Q1]* = Tx[Ry)* = T [P = Tx[P)* = T [Ps)* = 1

Q1] = Tx[U1]T5[Qo] , Tx[P] = Tx[Uh|Tx[F] ,
Py =Tx[Us] , Tx[P] = Tx[Q1]|Tx[Qo] , Tx[P] = Tx[Qo]Tx[@4] ,
Ts[UW]Ts[Us)Ts [Py = T [P Ts [Ro)Ts [ P) = Tx[P)Tx [R|Tx [Py

1T (0] = T[Us]T[U] (B.98)

Let p(#0?) (g, 2, Z) be a component in a multiplet and have a definite the Z,
elements &, and &?; which relate the representation matrices ()g and Py, respec-
tively. The eigenvalue of )y takes +1, —1, +¢ or —¢ under the Z, symmetry, and
of P, takes +1 or —1 under the Z, symmetry. Here, ¢ is a generic field and it is
appied to scalar field ¢, fermion field ¥ or gauge field A,;. The Fourier expansion
of (70?1 (1, 2, %) is given by

(4D (g, 2, 7) = —f -
T/ 111 L9

(:os,%m Z,Z) + [co8|pm(iz, —12)} ,
WWZ Juan(2,2) + lcoshum(i2, —i2)}

@ 0"0(z)

(n+m;£0)

(B.99)
1D (g, 2, %) {[cos]ni1/2.m 2,2
¥ ( y <9 ﬂ_\/mn;o ]+1/2 +1/2( )
+ [COS]n+1/2 m+1/2( Z, —ZZ)} ,
(B.100)
. 22 >
Fot) (g 2 7)) = —— 2 () () [sin 1 /2.m 2,z
2 ( ) 2y ) W\/mmmz:osp ( ){[ ]+1/2: +1/2< ) )
+ i[sinl, (2, —12)} | (B.101)
(+1,—1) = =
%) T, z,z Sln n,m\%, %
1= 2 35 9 e
+ Z.[Sin]n+1/27m+1/2 (’LZ, —22)} s
(B.102)

<p(’1’+1)(:1:, 2, %) {[cos]nm(z, Z)

7T\/ RlRQ Z

n,m=0
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— [cos|pm(iz, —iZ)} , (B.103)

2\/§ - n,m _
= 2 @zl 2)

n,m=0

— [cos]ns1/2,me1/2(i2, —i2)}

(B.104)
. 2v/2 s
(—1,+1) 7\ _“vV~e (n,m) Si =
% (x,z,z) W\/m mnzzogo (x){[ ln]n+1/2,m+1/2(2’,2)
— i[sin], m(iz, —i2)} , (B.105)
(—4,—1) >
© x,2,Z) {[sin]p.m(z, 2
(@7,5) = - m; hn2:2)
— i[sinny1/2,my1/2(i2, —i2)}
(B.106)
where
fcos] —cos[— 1 {(n—koz_in—koz_im—l—ﬁ)z
oS 2v/2 Ry Ry Ry
I G O L A
R, R, Ry ’
fcos] g [ 1 {(n+a n+a ,m+ﬁ)
ntamis = sin | — —1 —1 z
Femth 2/2 Ry Ry Ry
n+a nt+a m+p\ _
. (B.107
+(R1 TR TR )ZH ( )

Upon compactification, massless mode (%9 (x) appears on 4D when Z4 elements
are (Zy, #1) = (+1,+1). The massive KK modes ™™ (x) do not appear in our
low energy world because they have heavy masses.

If the representation matrices ()g and P, are given by

QO = diag(T”'l]pU [+1]p27 [+i]p3’ [+i]p4f[_1]p5’ [_l]pm [_i]pm [_i]ps) )
Pl = diag([+1]p17 [_1]1)27 [+1]p37 [_1]2747 [+1]p57 [_1]1767 [+1]p77 [_1]178) ) (B108>

where [+1],, and [4i],, represent +1 and =i for all elements and N = 3°° | p;, the
SU(N) gauge group is broken down into its subgroup such as

SU(N) — SU(p1) x SU(pg) x -+ x SU(pg) x U(1)"™", (B.109)

by orbifold breaking mechanism. In this case, the gauge fields A?\}('%"%)

as

are divided

ACGHLAD)  pAB(HL=D)  AB(HLAD)  AB(HLD)
12 Y )2 Y 12 ) y% Y
Aﬁ(_1’+1) , Aﬁ(_lv_l) , Aﬁ(_i7+1) , Ag(_i’_l) ,
AZIED AT AR s
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Aﬁ(_17+1)’ A/B(_lv_l)’ Aﬁ(_i7+1)7 A/B(_iv_l)’
A@(H,H) A@(+1,71) A[j(+i,+1) A@(+i,f1)
R (B.110)

where the index « indicates the gauge generators of unbroken gauge symmetry and
the index [ indicates the gauge generators of broken gauge symmetry.

B.4 T?/Zg orbifold
B.4.1 Property

Let us discuss SU(N) gauge theory on M*xT?/Zs. On T?/Zg, T? is constructed
by Gy lattice, its basic vectors are e; = 1 and ey = (=3 +iv/3)/2 (|ea| = v/3). The
point z is equivalent to the points z+e; and z+ eo, and the point z is equivalent to
the points pz where p® = 1 (p = ¢™/3). The fixed point for the Zg transformation
z — pzis

0, (B.111)

it for the Zs transformation z — p?z = wz are
0o, &, 2 (B.112)

and it for the Z, transformation z — p32 = —z are

€1 €9 €1+ es

0 =
27 27 2

(B.113)

The transformation around those fixed points can be defined as

Se0 - & — P2, 330:z—>p22, 83222—>p22+61—|—€2,
53322—>p2z+2€1—|—2€2, 520:Z—>p32, 521:z—>p3z+61,
82222—>p32’+62, 523:z—>p32+61+62,

ti:z—z+e, ta:z2—>2+ey, (B.114)

They satisfy the relations,

320:320:322:323:3302331:332:333:]>

g2 = tilassg , S33 = 113830, So1 =1l1S20 , S22 = tasSap

530532533 = 32533530 = 33530832 = I ,

S93 = t1l2820 = S21820522 = $22520521 = $32560 »

S30 — Sgo , S99 = Sgo s tth = tgtl (B115)

At this time, the BCs of bulk fields are characterized by matrices (=, ©p, Oz, O3,
Py, P, Py, P3, Uy, Uy). Those matrices satisfy the relationa,

S =0=0=0=P=Pl=Py=P; =1,
Oy = U106, , O3 =UiU;60,, Pi=UF, P,=UsF,
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@0@2@3 - @2@390 = @3@0@2 - I 5
Py =UUy Py = PLPy Py = PRy P = 6,5
@02537 PO Hg, U1U2:U2U1.

(B.116)

Since two of those matrices is independent, we choose two matrices =y, P;. !

B.4.2 Orbifold breaking by inner automophisms boundary conditions

The BCs of gauge field are determined as

S60 -

S30 -

S32 .

S33 .

S90 -

S91 -

S99

S93 .

tll

p\ pzap5 ) “OA (‘T < Z):ga
oz, p2,p°2) = P S0 As(x, 2, 2) 5,

%, p2,0°%) = pSoAs(x, 2, 2)Z],

|

u(1,0°2,p'2) = O A, (z, 2, 2)0),

(z, %2, p*2) = p'OpA.(x, 2, 2)O),

z, p*z, p'z) = p?OgAs(x, 2, 2)6],

u(T PPz te tey, ptE e+ e)) = A, (2, 2, 2)8;

Sz pPr el ey plite +e) = plO.A.(x, 2, 2)600,

T, p%z + ey 4 ey, ptZ e+ &) = PO AL (x, 2, 2)@5,
(T, 072 + 21 + 29, p'Z + 261 + 289) = O3A,,(7, 2, Z)@;,

|

|

|

Wz, p°2,p°2) = PyA,(x, Z,E)POT,
Ax, pPz, p°2) = pPPPyA.(, z,E)Pg,
T pgznOSZ) = pSPOAZ(aja 2, 2>P(;r:

|

Wz, 032+ e, pP 2+ 8) = PLA(x, 2, 2) P,
Az, pPz e, pPz+ 6y —,0 P1 x,2,2) P,

x, 0’z +e1,p'z + &

|

P PoA:(z,2,2) P,
= p’PAx(x,2,2) P,
(T, 072+ e+ eg, pPZ 481 + &) = P3A,(w, 2, Z)PJ,
Az, PPz 4 e1 4 g, pP 2+ & + &) = pP°PyA,(x, 2, 2) P,
(2, 0°2 + €1 + €9, p°Z 4 &1 + &) = p*P3As(x, 2, 2) P,
Ay(z,z+er, 24+ &) = Ui Ay(z, 2, 2)U],

)
) =
(T, 0°2 + €9, p°Z 4+ &9) = P A (oc z,2) P},
Ax, pP2 + e, pPZ 4 2) =
)

z, 0’z + e, p°Z + &

|

S N S R e~ S N S e e e R N

|

Au(
(
(
(
(
(
(
(
(
(
(2, 972 + 201 + 24, p'Z + 26, 4 28,) = p'Os A, (z, 2, 2)6],
(z,0%2 + 2e1 + 29, p*Z + 281 + 26,) = p*O3A5(x, 2, 2)@;,
(
(
(
(
(
(
(
(
(
(
(

(B.117)

(B.118)

(B.119)

(B.120)

(B.121)

(B.122)

(B.123)

(B.124)
(B.125)

1 Though the number of independent representation matrices for T2 /Zg is stated to be three

in [65], it should be two because other operations are generated using s :

zZ — e

mi/35 and ry

z — e; — z. For example, t1 : 2 — 2z 4+ €7 and t3 : 2 — z + ey are generated as t; = rl(so)?’ and
ta = (s0)?r1(s0)*r1, respectively.
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t1: Ay(x,z 46,2+ 6) = UQAM(:E,Z,E)UQT, (B.126)

where z = 2° 4+ 2%, 2 = 2% — 2%, A, = A5 +iAg and A = A; — iAg. The BCs of
scalar field ¢ and spinor field ¢ are determined as

se0 : O(w,pz, p°Z) = To[Z0]p(w, 2, 2)

300 ¢(x, p*z, p*Z) = Ty[Oo)b(, 2, 2) |

5320 Az, 0%z + ey + ey, plZ+ e + &) = Te|Oo]th(w, 2, 2) |
a3 O(x, p°2 + 2e1 + 2e9, p'Z + 28 + 289) = Tp[O3](z, 2, 2) ,
(xa pgza /)32) = T<1>[P0]¢<x7 2y Z) )

3SS

S90 -
S91 ¢ ¢(x71032 + 617P32+ él) = T@[Pl]q/) {L‘,Z,E) )
I

(
(x,2,2),

o0t O(x,p°2 4 €2,0°Z + &) = To[ P2

(B.127)

(B.128)

(B.129)

(B.130)

(B.131)

(B.132)

(B.133)

5930 Oz, p°2 + ey + ey, pPZ + & + &) = Ty Paltp(w, 2, Z) (B.134)
ty: ¢z, z+ e, 2+ ) =To[Uh]o(,2,2) , (B.135)
ty: Pz, 2+ €9, 2+ &) = To[Us]p(2, 2, 2) , (B.136)
se0 © Y(x,pz, p°2) = Ty[Zo)d(z, 2, 2) | (B.137)
s30 0 U(x, p’z, p*2) = Ty[Oo)d(z, 2, 2) | (B.138)
s32 0 Y(x,p%2 + ey + e, plZ e+ &) = TylO)v(z, 2, 2) | (B.139)
s33 0 Y(x,p%2 + 201 + 2eq, p'Z + 281 + 2685) = Ty[Os)Y(z, 2, 2) (B.140)
so0 0 Y(x,p°2,0°2) = Ty[Po)o(x, 2, 2) | (B.141)
so1: Y(x,pP2 +er, p’z+ 1) = Ty[PY(z, 2,2) (B.142)
Sog 1 U(w, PPz + €9, p°Z + &) = To[Po)b(w, 2, 2) | (B.143)
o3t W(w, pPz + €1 +ea,p°Z + &1 + &) = Ty[Bs)(, 2, 2) (B.144)
ty: Y(z,z+4 e, 2+ e) =Te[Uh(x, 2, 2) (B.145)
ta: Y(z, 24 €9, 2+ €) = Ty[Us]t(x, 2, 2) (B.146)

where Toww)[Z0], Tow)[Os], Tow)|[P] and Tew)|[U;] represent appropriate represen-
tation matrices including arbitrary sign factors, with the matices =y, ©;, P; and Uj;.
The representation matrices 15 [P](X = ¢, U, P = =, 0, O3, O3, Py, Py, P2, P3, Uy, Us)
satisfy
Tx[Z0)° = Tx[60] = Tx[61]° = Tx[05)
=Tx[R)* =To[P] = [P =Tx[RP =1,
Ty[6s) = T[T To[Ua] Tu[G0] . Ts[Os] = Tu[Uh P T[Us*T[6] |
Tx[P] = Te[Uh]|Tx[R] , Te[P2] = Te[UTs [ Ry
T[0T (02T O3] = Tx[O:)T%[O5]T%[60] = Tx[O3]T[O0|T[O2] =1 ,
Ts|[Ps] = T[T [Us| Tx [ Py] = T [P Tx [ Ro] T [P
= Tx[P|Ts[Ro)|Ts[P] = Tx[O:]Tx[ =]
Ts[60] = Ts[Z0)? , Txl[Po) = Tx[Z0) , Tx[Uh]|Tx[Us] = Ts[Up)Ts[UY] . (B.147)

Let 90(%"%)(3:, z,Z) be a component in a multiplet and have a definite the Zs
elements &, and £?; which relate the representation matrices =y and P;, respec-
tively. The eigenvalue of =, takes p' (i = 1,---,6) under the Zg symmetry, and
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of P takes +1 or —1 under the Zy symmetry. Here, ¢ is a generic field and it is
applied to scalar field ¢, fermion field i) or gauge field A,;. The Fourier expansion

of ¢!

where

(0)
<gsn+cz,m+,8

2

2

5”07921)(

P (2, 2,2) =

e (z,2,2) =

¥

2 _
(p(p,

go(pg’+1)(x, 2,Z) =

3 _
SO(p’

<p(”4’+1)(x, 2,Z) =

gp(pélvf]-) (x’ 27 Z) =

Sp(p57+1) (.Z', 2, 2) =

90(”5’71)(1?, 2,%) =

(+L+1)(

(+1,71)(

x,2,Z)

x,2,Z)

(2,2, 2)

Dz, 2,2)

1)(1"7 Z? 2)

x,z,Z) is given by

31/4

1
4+ —
T/ 12R1R2

1
T/ 12R1R2
I
T/ 12R1R2

1

T 12R1R2
1

T 12R1R2

1

TN/ 12R1R2
1

T/ 12R1R2

1

™/ 12R1R2
1

TN/ 12R1R2
1

VIRV 12R1R2
1

T 12R1R2

1
T/ 12R1R2

T/ 2R1R2 7

()

n,m=0

(n4+m##0)

> ()

n,m=0

Y (@) F (2, 2)

y(o)

Y ATz, 2)

n,m=0

(n+m#0)

> ()

n,m=0

i P (a

n,m=0

(nt+m#0)

> ()

n,m=0

i P (a

n,m=0

(n+m£0)

> ()

n,m=0

g‘(l)

ta/f(z)

)i (2,%)

9(3)

) (2, 2)

347(4)

Y @) F 0 (22)

n,m=0

(n+m£0)

> ()

n,m=0

y(@

(Za 2) = §n+a7m+,3(zv 5) + ﬁn—&-a,m—i—ﬁ(pzv /052)
+ <9;1-1-04,771-"-5 (p2z, P42) + yn+a,m+,@(p3z7 032)

+ Fntam+s (p4z, P2§) + yn+a,m+6<p5za pZ)
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n+1/2,m+1/2(z7 Z)

n+1/2,m+1/2(z7 Z)

n+1/2,m+1/2<z7 z)

n+1/2,m+1/2<z7 z)

n+1/2,m+1/2(2> z)

n+1/2,m+1/2(z7 Z)

(B.148)

(B.149)

(B.150)

(B.151)

(B.152)

(B.153)

(B.154)

(B.155)

(B.156)

(B.157)

(B.158)

(B.159)



T 52 2) = Fntamis(:2) + 0T niamis(p2, p°%)
+ 0 Famis(PP2,0°2) + 0° Posamis(p°2, p°2)
+ 0 Fuiamis(0' 2 0°2) + 0°Fniamis(p°z, p2)
T mis(20) = Puvamis(2.2) + 0 Furames(p?. 0°Z)
+ 0" T rramss(0°2,0'2) + Priames(0’z, p°Z)
+ 0 Foamis(p'2,0°2) + 0" Foyamis(p°2, p7)
T i p(527) = Futamis(2.2) + 0" Futamis(pz, 07%)
+ Pnramis(0°2,0'2) + 0* Furamis(p’z, p°2)
+ Fntams(0'2 0°2) + 0° Friamis(0°2, pZ)
T 52 2) = Futamis(22) + 0' Fusamis(pz, p%)
+ 0 Famis(PP2,0°2) + 0" Posams(p°z, p°2)
+ 0’ Ftamis(p'2, 0°2) + Prtamis(0°2, pZ)
ﬁrga mi5(22) = Patamis(2,2) + 0" Foramis(pz, 0°2)
+ 0 Pamis(PP2,0°2) + 0° Posamis(p°2, p°2)
+ 0 Framis(p'2, 0°2) + pFuyamis (P2, pZ)
n+ «a _Z,\/g(n—i—a) _Z,Q(n—i—&)z

)
L9;1-&-04,771—&-5(2/’ 2) = eXp |:_ 5{

Ry Ry V3R,
N n+a _H,\/g(njta) _H.2(n—|—a)2H .
Ry Ry V3R,

(B.160)

Upon compactification, massless mode (%0 () appears on 4D when Z3 elements
are (Py, #,) = (+1,+1). The massive KK modes ¢™™ () do not appear in our
low energy world because they have heavy masses.

If the representation matrices =y and P, are given by

S = dlag([+1]p17 [+1] [p]p37 [ ]p4> [ 2];057 [pQ]prﬂ

[ ]P77[ ] [ ]1097[ ]P107 [ps]pnv [p5]1712) )
Pl dlag([+1]p1> [_ ]pzv [ ]psv [_ ]p4> [_'_1]?57 [_1]1067
[+1]p7’ [_1]]087 [+1]p97 [_1]1?10’ [+1]p11v [_1]1712) ) (B'161)

where [+1],, and [p%],, represent 1 and p?(= €™/3) for all elements and N =

leil pi, the SU(N) gauge group is broken down into its subgroup such as

SU(N) — SU(p1) x SU(pg) x -+ x SU(p12) x U(1)H" | (B.162)

by orbifold breaking mechanism. In this case, the gauge fields Ai/}%’%)

as

are divided

a(+1,4+1) B(+1,—1) B(p,+1) B(p,—1) B(p?,+1) B(p?,+1)
Au ? Au ? Aup Aup ’ Aup Aup ’

Y )

6( 31+1) B( 37_1) B( 41+1) 5( 47_1) B( 57+1) B( 57_1)
Aup 7 Aup : Aup A“p Aﬂp ’ A“p :

) I
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AB(H1L+1) 7 AB+1L,-1) 7 AB(p+1) ’ Ac(p—1) : AB(P*+1) 7 AB*+1) :

ABP®+1) ’ AB*—1) : AB(*+1) 7 AB*—=1) : AB(P°+1) 7 AB°,—1) :

A§(+17+1) A@("_L_l) A@(pv""l) A@(pv_l) A@(p27+1) A@(p27+1)

Ag(PBFH) ’ A?(p3,—1) : Ag(ﬂ47+1) ’ Ag(p4’_1) ’ Ag(ﬂsﬁ‘l) 7 Ag(ﬂ5,—1) : (B.163)

where the index « indicates the gauge generators of unbroken gauge symmetry and
the index [ indicates the gauge generators of broken gauge symmetry.

C Formulas based on equivalence relations

We present several formulas concerning the combination ,,Cj, derived from the
dynamical rearrangement and the feature that fermion numbers are independent of
the Wilson line phases.

On S'/Z,, we consider the representation matrices given by

By = diag([+1]p1’ [+1]p2> [_1]1337 [_1]194) ) (Cl)
Py = diag(“‘”pu [_1]1727 [+1]p37 [_1]}74) ) (02>

where [£1],, represents £1 for all p; elements. Then, the following breakdown of
SU(N) gauge symmetry occurs:

SU(N) = SU(p1) x SU(p2) x SU(ps) x SU(ps) x U(1)*™™ . (C.3)

The Z, parities or BCs specified by integers {p;} are also denoted [p1; pa, p3; p4)-
After the breakdown of SU(N), [N, k] is decomposed as

k k=l1 k—l1—12

[N>k]:ZZ Z (p1Clnp20127p30137p4Cl4) ) (C4)

11=010>=0 1[3=0

where py = N —p1 —po — p3, la = k — 13 — Iy — I3, and we use ,C; instead of [p,[].
Our notation is that ,C; = 0 for [ > p and [ < 0.

The Z parities of (,, Ciy s poCly s p5 Cls» pu Cly ) for 4D left-handed fermions are given
by

Po = (1) = (=) (-1
1 _
-

R = (=D (C.5)
P = (1)t ;

_ (_1)l1+13+ﬁ ’ (C.G)

where the intrinsic Zy parities (n?,ni) take a value +1 or —1 by definition and are
parameterized as (—1)*n0 = (=1)® and (—=1)*ni = (—1)".

Zero modes for the left-handed fermions and the right-handed ones are picked
out by operating the projection operators,

(1,1):1‘*‘3201‘1'921 and P(—1,—1):1—9201—321

P :
2 2 2 2

(C.7)

respectively. Note that the intrinsic Zy parities for the right-handed fermions are
opposite to those for the left-handed ones.
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Then, the fermion number is given by

_ 0 0
k k=l k—li—l2

— Z Z Z (PUD — LYY L O Ol 5 Cly Gl (C.8)

11=010>=0 I[3=0

From the dynamical rearrangement, the following equivalence relations hold,

[p1; D2, P33 pal ~ [p1 — L;po+ 1, ps+ 1;ps — 1] (for py,ps > 1),
~[pr+Lpe—1,ps—Lps+1]  (for py,p3 >1).  (C.9)

Using (C.9) and the feature that fermion numbers are independent of the Wilson
line phases, the following formula is derived,

k k—=l1 k—l1—12

Z Z Z [(_1>ll+12+a + (_1)ll+l3+ﬁ} plcll p2012 psCls p4Cl4

11=012=0 13=0
k k—l1 k—l1—1l2

- ZZ Z [(_1)11+l2+a 4 (_1)l1+13+6]

11=012=0 1I3=0
X p1 710 po41C0 ps+1C15 p71Cl (C.10)

where py = N —py — pa — p3, Iy = k — 11 — lo — I3, and we use the relation,

1 1
pLy _ p(=1-1) _ 5 (730 + 7;1> _ 5 [(_1)ll+lz+a + (_1)ll+l3+5] ) (C.ll)

Here and hereafter, we deal with the case that the inequality p; — 1 > 0 is fulfilled
in pi—1 Cli-

In the same way, the following formulas are derived from the feature of the
fermion number on T2 /Z,,

k k=1 k—=l1——lg

ZZ Z (P — p-L=t-1)

11=0105=0 17=0

X p10l1 p20l2 p30l3 p4Cl4 p5015 p60l6 p70l7 PsCls
k k-l k—l1——lg

~Y Y S (PO peteien)

11=012=0 l7=0

X pl:FlCll pz:tlclz ;D3Cl3 p4Cl4 psCls pscls p7i10l7 psiFlols
kok—li k—li——lg

- ZZ . Z (p(l,l,l) _ p(—l,—l,—l))

11=012=0 l7=0

X P1Cl1 p2¥1Cl2 psilcls p4Cl4 PsCl5 pﬁilcl(s p7¥1Ol7 p8Cls
k k-l k—l1—-—lg

— ZZ . Z (p(l,l,l) _ p(—1,71,71))

11=012=0 17=0

X by Cll p2¥1012 p3Cls p4:thl4 P5:|:1Cl5 p6Cl6 p7¥1Cl7 psCls
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k k=l k—li——lg

Yy Y (P - pii)

11=012=0 17=0
X p1Cl1 polz p3ﬁ:10l3 p4:F1014 psZFlcls pﬁﬂ:lCle' p?Cl7 psCls )
(C.12)
where ps = N —py —po— - —prand lg =k — 1, —ly — - — 7. P@bc) are the

projection operators that pick out the Z, parities (Py, P1, P2) = (a, b, ¢), defined by

1+CLP01+b7D11+C7)2

plabe) = C.13
2 2 2 ( )

Here, a, b and ¢ take 1 or —1. Py, P; and P, are given by
'PO — (_1)l5+l6+l7+l8,’72 — (_1)11+l2+l3+l4(_1)kn2 — (_1)l1+l2+13+l4+0< 7 (014)
P, = (_1)l3+l4+l7+lsn; — (_1)l1+l2+l5+l6(_1)kné — (_1)l1+l2+l5+16+5 ’ (C.15)
7)2 — (_1)12+l4+l6+lsn’% — (_1)11+l3+ls+l7(_1)k77]3 — (_1)l1+13+l5+l7+’y , (016)

where a, 3 and « take 0 or 1. Using (C.14), (C.15) and (C.16), P41 — p(=1,=1=1)
is calculated as

pLl) _ p(=1,-1,-1)

= 1[(_1)z1+l2+13+l4+a 4 (—1)bHatlstlets

4
(=)l (qyltlitetirtatfan] (C.17)

The following formulas are derived from the feature of the fermion numbers
relating representations ,, C;, and (,,Ci,, p,Cl, ),

k—ly k—li—ly  k—li——lg

S% 3 (PO pltotony

l2=0 [3=0 17=0
X pzclz P3 C(13 p4Cl4 P5Cl5 pGClG p?cl7 D8 Ols

k—ly k—li—ly  k—lj——lg

=Y Y 3 (P - peiion)

lo=0 I3=0 l7=0

X pQZFlClQ p3ilcl3 p4Cl4 p5Cls peilclﬁ p73Flcl7 PsCls
k—ly k—li—lo  k—li——lg

:Z Z Z (p(l,l,l)_P(fl,—l,q))

lo=0 1I3=0 17=0

X po71C1 p3Cly pax1C ps21C15 16Cls prg1C1 psCls
k—1l1 k—11—1o k—li——lg

— Z Z . Z (P(l,l,l) o P(—l,—l,—l))

l2=0 1I3=0 17=0

X p2012 p3:|:1013 p4:FlCl4 psZFlCls pe:tlols p7Ol7 pscls
(C.18)
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and

k—l1—lg k—l1—1l2—I3 k—l1—-—lg

SO S (PO - piton)

13=0 14=0 17=0
X p3Cl3 p4Cl4 p5Cl5 pGClﬁ p7Cl7 psCls

k—l1—la k—=l1—1l2—I3 k—l1——lg

DD DERITED D (i )

l3=0 l4=0 l7=0

X P3i1013 ;D43Flcl4 p5:!:1015 pGilcle P7Cl7 pscls : (019)

Furthermore, by changing (ps, p4, ps, ps, p7, ps) into (7, ps, s, Pa; Ps, pe) in the or-
dering of the summation and relabeling (p7, ps, ps, Pa, Ps, D) as (3, P4, Ps, Pe, D7, Ds),
the following formulas are derived from the feature of the fermion numbers relating

representations (p1 Cll ) P2 Clz ’ P3 Cl3 ) and (pl Ch ) P2 Clz ) P3 Cl3 ) P4 Cl4 ) )

k=li—lo—l3 k=ly——=ls k—=l1— =I5 k=l1——l¢

Z Z Z Z (P/(l,l,l) . Pl(—l,—l,—l))

14=0 lg=0 17=0
X P4Cl4 psCls pGClG p7Ol7 Pscls
k—l1—lo—l3 k—l1——lg k—l1——Il5 k—l1——Ig

_ Z Z Z Z (P/(1,1,1)_P/(—1,—1,—1))

l4=0 l5=0 l7=0

X paCly ps51C05 ps£1C1 pr41C1r ps71Cl (C.20)

and

k—ly—omly k—ly——l5 k=l ——lg
/(17171) — /(_17_17_1)
E : E : E : (P P )p5015 p6016 p7Cl7 psCls
I5=0 le=0 17=0
kg —e—ly k—ly ol k11— —lg
_ Z Z Z (P/(l,l,l) _ Pl(fl,fl,fl))
I15=0 lg=0 17=0
X P5$1Cl5 p6:|:1016 p7:tlcl7 stFlClg ) (C21>

where P'(LLD — pr=1=1.=1) i5 given by

Pl(l,l,l) _ Pl(—l,—l,—l)

_ 1 [(_1)l1+l2+l5+l6+a + (_1)ll+12+l7+ls+ﬁ

4
+ (_1)l1+l3+l5+l7+7 + (_1)l1+l3+16+l8+0‘+6+7} . (022)

In the same way, the following formulas are derived from the feature of the
fermion number on T2 /Zs,

k k-l k—ly—-—l7
Z Z (p(l,l) _ p(wm)
11=01>=0 1s=0

X by Cll polz p3ClS ;D4Cl4 PBCZ5 p6Cle p?Cl7 psCls nglg
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k k—li  k—li——ly

=3 Y Y (P - plee)y

11=012=0 lg=0

X P1ﬂ:10l1 pQClQ p3:FlCl3 p4:F10l4 psﬂ:lCls pGClﬁ p7Cl7 ps:Flcls pgﬂ:lClQ

k k=l k—li——ly
= Z Z . Z (p(l,l) _ p(w,w)>
1,=013=0 Ig=0

X P1i10l1 pziFlclz p3Cl3 p4Cl4 p5ilcls pﬁiFlch p7:FlCl7 psCls p9ilcl9
k k—ly  k—li——l7

=YY S (PO - plee))

11=015=0 Is=0
X plCll pzilcb p3¥1Cl3 P43Flcl4 p5Cl5 pﬁilcla p7ilCl7 stFlclg pgclg )
(C.23)
where pg = N —py —po — - —pgand lg = k — 1} — Iy — --- — Ig. P& are the

projection operators that pick out the Zj elements (©g, ©1) = (£, 1), defined by

1+ €0, + 021+ 70, +720?
3 3 '

peEm (C.24)

Here, ¢ and 7 take 1, w(= €>™/3) or w(= €*™/?), and ¢ and 7 are the complex
conjugates of £ and 7, respectively. ©y and ©, are given by

l4+ls+lﬁwl7+ls+lg

Oy =w 7712
— wll+12+13+2(l4+ls+16)wkn2 — wl1+12+13+2(l4+l5+l6)+a ’ ((3125)

@1 — wl2+l5+lswlg+le+l9né
wll+l4+l7+2(l2+l5+l8)wk,’7i _ wl1+l4+l7+2(l2+l5+ls)+ﬂ , (026)

where v and ( take 0, 1 or 2.
In the same way, we can derive similar formulas from the feature of the fermion
numbers relating representations ,, Ci,, (,,Cly, p2Cly) and (p, Ciy, py Clyy s Cly ) 00 T2 [ Z3.

D Formulas based on independence from Wilson
line phases

We derive other formulas concerning the combination ,Cj, counting the num-
bers of fermions irrelevant to the Wilson line phases and using the independence of
fermion numbers from the Wilson line phases.

On S'/Z,, we consider the representation matrices given by

Py = diag([+1], [-1]n—p) » P = diag([+1], [-1]n—p) - (D.1)
Then, the following breakdown of SU(N) gauge symmetry occurs:
SU(N) — SU(p) x SU(N —p) x U(1)}™™ | (D.2)
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and [N, k| is decomposed as
k
[N, k] = Z (Cry N—pCr1) - (D.3)
1=0

The Z, parities of (,C}, sCj—;) for 4D left-handed fermions are given and param-
eterized by

Po= (=1 = (=), Py= (=) = (1), (D.4)

where o and (3 take 0 or 1. Then, the fermion number is given by

[(_1)l+a + (_1)l+ﬁ} pC1 N—pCry - (D.5)

n=ny, —nNgr

Il
(1~
DO

The number of the Wilson line phases is m = Min(p, N — p) and, after a suitable
SU(p) x SU(N — p) gauge transformation, (A,) is parameterized as

ty=( o o) (D.6)

where © is the p x (N — p) matrix such that

a 0

a2
o-| U "] Gepznop. (0.7)
0 0 0
ap 0 0
as 0 0 -~ 0
O = . S (for p< N —p). (D.8)
O Ay 0 -+ 0

Here, 2may (k=1,--- ,m;m = Min(p, N — p)) are the Wilson line phases.
For the fermion with [V, 1], the number of components irrelevant to ay is p —m
forp>N—pand N —p—m for p < N — p, and it is expressed as

1

§ pfmCl’ prfmclfl’

I'=0

(D.9)

m=Min(p,N —p)
For the fermion with [N, 2], the number of components irrelevant to ay, is ,—,Co +m
forp > N —p and ny_p—nCo +m for p < N —p, and it is expressed as

2

Zp—mol/ N—p—mOQ—l/ + mCl

I'=0

, (D.10)

m=Min(p,N—p)
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where ,,,C7 comes from the components constructed from the tensor products be-
tween components in [N, 1] with opposite values for the Wilson line phases, and the
components corresponding ,,C7 have odd Z, parities. In the iterative fashion, we
find that the number of components irrelevant to ay is given by

k/2] k—2n

Z Z Cn p—mCl’ N—p—ka—Qn—l’ (D11>

! —

for the fermion with [N, k].

Using the independence of fermion numbers from the Wilson line phases, the
number of fermions is also calculated by counting the fermions irrelevant to a; and
the following formula is derived,

k k/2] k—2n
D (=DLC Ny =) Z D™ G p-mCr N—p-mCr-an—v ,  (D.12)
=0 n=0 ['=

where we use the assignment of Z, parities

Py = (—1yrHh=2ntyd _ (_qymit'sa

P, = ( )n—i—k 2n— 1,77]}; _ (_1)n+l’+,3 (D13)
for the component corresponding ,,Cy, p-mCr N—p—mCrk—2n—r, and we take o = .
The above formula (D.12) holds for the integer m satisfying 0 < m < Min(p, N —p),
because the above argument is valid for m as the number of non-vanishing a; even

if some of a; vanish.
Particularly, in case with m = p and m = N — p, (D.12) reduces to

k [k/2] k—2n
Z Cl N— ka | = Z Z n+l n N— 2ka 2n—1'" > (D'14)
=0 n=0 /=
and
k [k/2] k—2n
Z( ) Cl N— ka 1= Z Z n+lN —p n 2p— NCk 2n—1U" (D15)
1=0 n=0 l'=
respectively.

Based on the representation matrices (C.1) and (C.2), the following formula is
derived,

k k=li1 k—li—1l2

Z Z Z l1+l2+a + (_1)l1+13+ﬁ] plch pzclz p3Cl3 P4Cl4

11=0102=0 1[3=0
k/2] n  k—2nk—2n—I] k—2n-1 -1}

XSRS S R [ e

n=0 m=0 /=0 1,=0 14,=0
X m1Cn1 mzcn—m p1—m1Cl’1 p2_mZCl/2 p3—m20l§ pa—my Olﬁ1 ) (D-16)
where py = N —p; —ps —ps and Iy = k —2n — I} —I5 — ;. The above formula
(D.16) holds for the integers m; and ms satisfying 0 < m; < Min(py,ps) and
0 < my < Min(pz, ps).
In the same way, we can derive similar formulas using models on T2 /Z,;.
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