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Abstract

In this thesis, we explore some aspects of quantum entanglement in quantum

gravity. In particular, we investigate the refined Rényi negativity in Jackiw-

Teitelboim (JT) gravity. The refined Rényi negativity is a one-parameter

generalization of the entanglement negativity which is a measure of entangle-

ment in general mixed states. The parameter introduced is called the replica

number. JT gravity is a two-dimensional toy model of quantum gravity and is

described by a certain double-scaled random matrix model. Several types of

“replica wormholes” contribute to the refined Rényi negativity, which plays

the essential role in our study.

The aim of our work is to provide a deeper understanding of the entan-

glement structure of the Hawking radiation. To this end, we consider the

matrix model of JT gravity with dynamical branes, which serves as a toy

model of an evaporating black hole. We identify the degrees of freedom of

the Hawking radiation with the branes in this model. The model provides

an effective method to investigate the back-reaction of the Hawking radia-

tion. The replica wormholes appear as the connected parts of the ensemble

average of the matrix integral. We compute the refined Rényi negativity for

a bipartite system of the Hawking radiation.

We find that the refined Rényi negativity monotonically decreases due to

the back-reaction at late time of the black hole evaporation. The decreasing

behavior is understood in the same way as the “Page curve” of the entangle-

ment entropy. Moreover, we define a novel quantity which we call “capacity

of negativity,” as a derivative of the refined Rényi negativity with respect

to the replica number. We find that the capacity of negativity exhibits two

peaks as a function of time. The peaks indicate the phase transitions of

the entanglement structure of the Hawking radiation, which comes from the

exchange of dominance of different types of replica wormholes.
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Chapter 1

Introduction

In this chapter, we explain the backgrounds of our work and give a brief

summary of this thesis. Our work is motivated by the recent progress in

the black hole information paradox and quantum gravity. In this thesis, we

particularly focus on the applications of the matrix model of JT gravity to

the black hole information paradox.

The black hole information paradox is a long-standing puzzle whether the

time evolution of black holes is unitary or not. Such a problem arises when

we consider the black holes with quantum effects, namely the Hawking radia-

tion. The information paradox is formulated by calculating the entanglement

entropy of the Hawking radiation. Recently, the information paradox is par-

tially resolved by applying novel computational methods developed in the

study of quantum gravity. The new findings include some important ingre-

dients such as “island” and “replica wormholes.” In particular, the replica

wormholes play the essential roles in our study.

On the other hand, JT gravity is a two-dimensional toy model of quantum

gravity. Recently, the matrix model description of JT gravity was discovered

and has been applied to many important problems in quantum gravity, such

as the quantum chaos, the factorization problem, and the black hole infor-

mation paradox. Our work is based on the recent developments of the matrix

model of JT gravity. Namely, the aspect of JT gravity as a specific example

of the two-dimensional topological gravity is essential.
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Black hole information paradox

We first review the recent progress in the black hole information paradox.

See also [1] for a recent review and for further references. Black holes are

extremely massive objects and thought to be formed by the gravitational

collapse of massive stars [2]. Classically, black holes can only gain their

masses and the area of the event horizon can only increase [3]. However,

black holes lose their masses by emitting thermal radiation and will finally

evaporate out if we consider the quantum effects of matter on the classical

black hole background. This effect is called the Hawking radiation [4]. The

Hawking radiation consists of entangled pairs of particles, one of the pair

goes inside the black hole while the other escapes to infinity. If the black

hole completely evaporates, only the Hawking radiation outside the black

hole will remain. We show a schematic picture of the process of the black

hole evaporation in Figure 1.1.

Hawking [5] pointed out the possibility that the black hole evaporation

would violate the unitarity. This is the original black hole information para-

dox. If the time evolution is unitary, an initial pure state must evolve to a

final pure state. However, the final state of the black hole seems to be a ther-

mal mixed state even though we start from an initial pure state. The para-

dox is formulated by calculating the entanglement entropy of the Hawking

radiation. Hawking expected that the entanglement entropy of the Hawk-

ing radiation keeps growing until the black hole completely evaporates out

(shown as the green curve in Figure 1.2). This calculation indicates that the

final state of the total system is the thermal mixed state. Thus, the black

hole evaporation seems to violate the unitarity.

Page [6, 7] found a necessary condition for the time evolution of black

holes to be unitary. He found that the entanglement entropy follows the

“Page curve” as a function of time if the time evolution of black holes is

unitary. The entanglement entropy first increases and turns to decrease at a

time called the “Page time” (shown as the blue curve in Figure 1.2). As seen

from Figure 1.2, the entanglement entropy is bounded by the thermodynamic

entropy of the black hole after the Page time. The thermodynamic entropy is

called the Bekenstein-Hawking entropy [8] which is proportional to the area of

the event horizon of the black hole. The late time decreasing behavior comes

from the decreasing area of the event horizon as the black hole evaporates
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(a) Formation (b) Evaporation (c) Final state

Figure 1.1: Schematic picture of black hole evaporation [1]. (a) Black hole

is formed by gravitational collapse. (b) Black hole creates entangled pairs of

particles. (c) Black hole evaporates out and Hawking radiation remains.

by emitting the Hawking radiation. This effect is called the “back-reaction”

of the Hawking radiation. However, Page’s discussion was limited in a non-

gravitational toy model which approximates the state of the total system by

a random pure state. How to obtain the Page curve in gravitating systems

has been a long-standing problem.

Island formula and replica wormholes

The recent studies revealed how to calculate the entanglement entropy follow-

ing the Page curve in semiclassically gravitating systems. The entanglement

entropy of the Hawking radiation at a constant time can be calculated by

the following “island formula” [9, 10, 11]

S = minI

{
extI

[
A(∂I)

4GN

+ Smatter(I ∪R)
] }

, (1.1)

where I and R are subregions of the Cauchy surface at the time. The region

I is called the “island” which locates inside the black hole. The region R

is the “radiation” region where we collect the Hawking radiation outside

the black hole. The first term comes from the area of the codimension-two

surface which is the boundary of the island I. The second term comes from

the Hawking radiation in the region I ∪ R. From the island formula (1.1),

the Page curve is reproduced as follows: (i) there is no island contribution at

early time, and the entanglement entropy is just given by the contribution

from the increasing Hawking radiation in the region R, (ii) the island covers a

large region inside the black hole at late time, and the first term approaches

the Bekenstein-Hawking entropy while the second term goes to zero. The
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Figure 1.2: A schematic picture of the Page curve [1]. If the time evolution of

the black hole is unitary, the entanglement entropy of the Hawking radiation

follows the Page curve described by the blue curve in the figure.

second term goes to zero at late time since the Hawking radiation in R is

purified by the interior partner in I. The island formula is developed in recent

study of quantum gravity, in particular the AdS/CFT correspondence.

The recent studies also revealed the connection between the spacetime

topology and the quantum entanglement. The island formula can be obtained

by using the replica trick in gravitational systems [12]. It was found that

geometric objects called the “replica wormholes” play the essential role to

obtain the island formula [13, 14]. The replica trick is a trick to calculate

the entanglement entropy by preparing the copies of the original system.

The replica wormholes are geometric objects connecting the different copies.

They appear as the nontrivial saddles in the gravitational path integral. The

transition of the Page curve can be understood by the exchange of dominance

between the different types of replica wormholes. The “disconnected” saddle

dominates before the Page time while the “connected” one dominates after

the Page time. These two saddles are invariant under the exchange of the

replicas. This symmetry is called the replica symmetry.
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This thesis

In this thesis, we investigate the entanglement negativity in a toy model of

an evaporating black hole. It was found by Dong, McBride, and Weng [15]

that the entanglement negativity can probe more elaborate entanglement

structure of the Hawking radiation than the entanglement entropy. Inter-

estingly, certain replica wormholes which break the replica symmetry can

dominate in the calculation of the entanglement negativity. The dominant

replica wormhole corresponds to a certain phase of the entanglement struc-

ture of the Hawking radiation. The aim of our work is to refine the previous

work and provide a deeper understanding of the relation between the replica

wormholes and the entanglement structure of the Hawking radiation.

In particular, we explore the refined Rényi negativity which is a one-

parameter generalization of the entanglement negativity. The parameter

introduced is called the replica number. We find that the refined Rényi neg-

ativity monotonically decreases at late time of the black hole evaporation.

This decreasing behavior is similar to the decreasing behavior of the Page

curve. Moreover, we define a novel quantity which we call “capacity of neg-

ativity” as a derivative of the refined Rényi negativity with respect to the

replica number. We find that the capacity of negativity exhibits two peaks as

a function of time, which comes from the exchange of dominance of different

types of replica wormholes. Thus, the capacity of negativity is a valuable

indicator of the phase transitions of the entanglement structure.

Summary and organization

In this section, we give a brief summary of the remainder of this thesis.

Chapter 2

We review the random matrix model of JT gravity [16] and its extension

[17] with dynamical Fateev-Zamolodchikov-Zamolodchikov-Teschner (FZZT)

anti-branes [18, 19]. The aim of this chapter is to obtain the leading eigen-

value density ρ0(E) of the matrix model, which is deformed from the original

one by the insertion of the FZZT anti-branes. We call this effect the “back-

reaction of branes.” The eigenvalue density ρ0(E) is related to the partition
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function Z(β) of JT gravity by the following Laplace transformation

Z(β) =

∫ ∞

E0

dEe−βEρ0(E), (1.2)

where E0 is the minimal energy such that ρ0(E) is supported for E ≥ E0.

As we will review in section 2.2, JT gravity is a kind of two-dimensional

topological gravity which is described by a certain double-scaled random

matrix model with infinitely many couplings {tk}. One can compute Z(β)

from a generating function F ({tk}) defined in the topological gravity. In this

formalism, adding FZZT anti-branes amounts to the shift of the couplings

{tk} in (2.124), and one can compute Z(β) from F ({tk}) with the resulting

couplings. Finally, ρ0(E) is given by the following expression:

ρ0(E) =
1√
2πgs

(∫ E

E0

dv
I0(2

√
v)√

E − v
− t

E + ξ

√
E − E0

2(E0 + ξ)

)
, (1.3)

where t denotes the ’t Hooft coupling which is proportional to the number of

branes. It reduces to the original eigenvalue density ρJT0 (E) by setting t = 0,

ρJT0 (E) =
sinh(2

√
E)√

2πgs
. (1.4)

In chapter 3 and 4, we investigate the back-reaction effects to the entan-

glement entropy and the refined Rényi negativity by using the deformed

eigenvalue density (1.3) rather than the original one (1.4).

Chapter 3

We review the recent progress in the black hole information paradox. The

aim of this chapter is to explain the methods employed in this study. In

particular, we focus on the Penington-Shenker-Stanford-Yang (PSSY) model

[14], a toy model of an evaporating black hole in JT gravity with the end

of the world (EOW) branes. In the PSSY model, the Page curve of the

entanglement entropy is calculated by summing over the several types of

replica wormholes. The sum is efficiently calculated by solving the Schwinger-

Dyson equation (3.53). The entanglement entropy approaches a constant

value at late time of the black hole evaporation since the back-reaction of

branes is not considered. Namely, the original eigenvalue density (1.4) is used
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to calculate the path integral of JT gravity. The constant value at late time

corresponds to the constant thermodynamic entropy. Thus, the black hole in

this model is approximated to be eternal, but emits the Hawking radiation.

On the other hand, we also review a generalized model [20] in the matrix

model of JT gravity with dynamical FZZT anti-branes. We can use the

similar methods to calculate the entanglement entropy as in the PSSY model.

Interestingly, the entanglement entropy monotonically decreases at late time

in the generalized model by considering the back-reaction of branes. This

decreasing behavior is the consequence of the deformed eigenvalue density

(1.3). Thus, the generalized model is useful to explore the effects of the

black hole evaporation. In chapter 4, we apply this model to the case of the

refined Rényi negativity to investigate the effects of the back-reaction.

Chapter 4

We investigate the refined Rényi negativity and the capacity of negativity

in JT gravity with dynamical FZZT anti-branes. We consider a bipartite

system of the Hawking radiation. The aim of this chapter is to discuss

our results [21]. We find that the refined Rényi negativity monotonically

decreases at late time of the black hole evaporation due to the back-reaction

of branes. The numerical result is shown in Figure 4.4. This decreasing

behavior is similar to that of the entanglement entropy. Moreover, we find

that the capacity of negativity exhibits two peaks as a function of time,

which comes from the exchange of dominance of different types of replica

wormholes. These peaks indicate the phase transitions of the entanglement

structure between the bipartite Hawking radiation system. The numerical

result is shown in Figure 4.6. Finally, we conclude this thesis and discuss

some open questions in Chapter 5.

11



Chapter 2

Matrix model of JT gravity

In this chapter, we review the matrix model of JT gravity with dynamical

branes. The aim of this chapter is to explain the formalisms used in later

chapters. In particular, we focus on the aspect of JT gravity as a specific

example of the two-dimensional topological gravity. The topological gravity

is an intersection theory on the moduli space of Riemann surfaces and is

also described by a certain double-scaled matrix model with infinitely many

couplings {tk}. JT gravity is related to the topological gravity in a particular

background tk = γk in (2.52). In the topological gravity, the insertion of

branes amounts to the shift of the couplings tk → t̃k in (2.123). We refer

this effect as the “back-reaction of branes.” Correspondingly, the eigenvalue

density of JT gravity is deformed as (2.127) from the original one (2.103)

due to the back-reaction of branes. This deformation of JT gravity plays the

essential role to model an evaporating black hole including the back-reaction

of the Hawking radiation in section 3.2 and section 4.3.

This chapter is organized as follows. In section 2.1, we briefly review

some known results in JT gravity. The path integral of JT gravity can

be computed by gluing the building blocks: the trumpet (2.24) and the

Weil-Petersson (WP) volume (2.22). In section 2.2, we review some basic

formalisms of the topological gravity. In the topological gravity, quantities

can be computed from a generating function F ({tk}) defined in (2.57). In

section 2.3, we review JT gravity with dynamical branes. We obtain the

deformed eigenvalue density (2.127) by using the formalisms explained in

section 2.2.
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2.1 JT gravity and random matrix

We review some known results in JT gravity and the connection with the

random matrix model. See also [22] for a recent review and references therein.

JT gravity [23, 24, 25] is a two-dimensional solvable toy model of quantum

gravity. The path integral of JT gravity can be exactly computed by gluing

the building blocks: the trumpet (2.24) and the Weil-Petersson (WP) volume

(2.22). The trumpet comes from the path integral of the Schwarzian action

(2.20) which describes the boundary reparametrization degrees of freedom

while the WP volume comes from the path integral of the bulk metrics.

Moreover, JT gravity is also described by a certain double-scaled random

matrix model [16]. The path integral of JT gravity corresponds to the matrix

integral in the double-scaling limit.

2.1.1 Path integral of JT gravity

Let us review the path integral of JT gravity. The gravitational path integral

is defined by the sum over all possible topologies and the sum over all possible

geometries (i.e., metrics) on the manifold M of each topology. Namely, for

a given Eucledan action I[g, ϕ] of the metric g and the other fields ϕ, the

partition function is defined by

Z =
∑

topologies

∫

M
DgDϕ e−I[g,ϕ], (2.1)

where we include the dividing factor of the volume of the gauge symmetries in

the integration measure. In two dimensions, it is known that the topologies

of any surfaces are completely classified by the Euler characteristic. The

Euler characteristic for the surface Σg,n with genus g and n boundaries is

given by

χ(Σg,n) = 2− 2g − n. (2.2)

Thus, the sum over topologies in the partition function (2.1) becomes the

sum over Euler characteristics in two dimensions. Note that if we consider

the triangulation of the surface Σ, the Euler characteristic is given by the

alternating sum of the number of vertices V , edges E, and faces F as

χ(Σ) = V − E + F. (2.3)
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Eucledean action of JT gravity

JT gravity is a model of two-dimensional gravity coupled to a scalar field

ϕ called dilaton. The dilaton is introduced as an auxially field without the

kinetic term. The Euclidean action of JT gravity is given by

IJT[g, ϕ] = Igravity[g] + Idilaton[g, ϕ], (2.4)

where the pure gravity term Igravity[g] is given by the sum of the Einstein-

Hilbert term and the Gibbons-Hawking-York [26, 27] boundary term

Igravity[g] = −S0

2π

(
1

2

∫

Σ

d2x
√
gR +

∫

∂Σ

dx
√
hK̃

)
, (2.5)

and the interaction term Idilaton[g, ϕ] is given by

Idilaton[g, ϕ] = −1

2

∫

Σ

d2x
√
gϕ(R + 2)−

∫

∂Σ

dx
√
hϕ(K̃ − 1). (2.6)

Here gµν and h denotes the bulk metric on the surface Σ and the induced

metric on the boundary ∂Σ, respectively. R and K̃ are the Ricci scalar and

the extrinsic curvature on the boundary, respectively. The extrinsic curvature

K̃ is defined by

K̃ = gµν∇µnν , (2.7)

where nν is a unit vector normal to the boundary. The pure gravity action

Igravity[g] is topological (i.e., non-dynamical) since it gives the Euler charac-

teristic by the Gauss-Bonnet theorem, namely

−S0

2π

(
1

2

∫

Σ

d2x
√
gR +

∫

∂Σ

dx
√
hK̃

)
= −S0χ(Σ). (2.8)

Thus, the variation of Igravity[g] with respect to the metric vanishes

∂Igravity[g]

∂gµν
= 0, (2.9)

which implies that any geometry is a solution. We impose the boundary

conditions for the dilaton ϕ and the induced metric h as

ϕ|∂Σ =
γ

ϵ
, h|∂Σ =

1

ϵ2
, (2.10)

where γ is a constant later fixed to γ ≡ 1/2π2 in our convention, and ϵ is a

regulator introduced for the cutoff near the asymptotic boundary. We will

later take the limit ϵ→ 0.
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Path integral of JT gravity

Let us consider the partition function (2.1) with the action (2.4). We consider

the path integral on Riemann surfaces Σ with fixed n boundaries as

ZJT =
∞∑

g=0

e(2−2g−n)S0

∫

Σg,n

DgDϕ e−Idilaton[g,ϕ], (2.11)

where we have replaced the sum over topologies by the sum over genus and

we have used (2.8) with the Euler characteristic (2.2). Here the path integral

of the dilaton can be computed as
∫

Σg,n

Dϕ e−Idilaton[g,ϕ] = δ(R + 2) e
γ

ϵ2

∫
dx(K̃−1), (2.12)

where we have chosen the integration contour parallel to the imaginary axis

and imposed the boundary conditions for the dilaton and the boundary in-

duced metric in (2.10). Now the bulk geometry is fixed to the constant

negative curvature

R = −2, (2.13)

which implies that the bulk geometry is locally the two-dimensional anti-de

Sitter (AdS) space. Thus, we can locally adopt the Poincaré coordinate

ds2 =
dz2 + dt2

z2
. (2.14)

Note that this metric is not defined at z = 0 which corresponds to the

asymptotic boundary of the two-dimensional AdS space. Thus, we have to

cut off the spacetime near the asymptotic boundary as in Figure 2.1. At the

cutoff boundary we take [28]

z(τ) = ϵt′(τ), (2.15)

where τ denotes the coordinate along the cutoff boundary and ′ denotes the

derivative with respect to τ . Then the metric (2.14) becomes

ds2 =

(
(t′′)2 +

1

ϵ2

)
dτ 2, (2.16)

which is consistent with the boundary condition for the boundary induced

metric in (2.10) as we take the limit ϵ→ 0.
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z

t
Figure 2.1: Poincaré coordinate in the two-dimensional AdS space [22]. We

have to cut off the spacetime near the asymptotic boundary since the metric

(2.14) is not defined at z = 0.

Let us go back to the partition function. By using (2.12), the partition

function ZJT in (2.11) becomes

ZJT =
∞∑

g=0

e(2−2g−n)S0

∫

Σg,n

Dg δ(R + 2) e
γ

ϵ2

∫
dx(K̃−1). (2.17)

Here we have to determine the dependence of the bulk metric g in the ex-

trinsic curvature K̃. The extrinsic curvature K̃ can be computed explicitly

by using the metric (2.16) as

K̃ =
t′(t′2 + z′2 + zz′′)− zz′t′′

(z′2 + t′2)
3
2

= 1 + ϵ2 Sch(t, τ) +O(ϵ4), (2.18)

where Sch(t, τ) is the Schwarzian derivative defined by

Sch(t, τ) =
t′′′

t′
− 3

2

(
t′′

t′

)2

. (2.19)

Thus, the boundary action in the partition function is given by

ISch = −γ
∫
dτ Sch(t, τ), (2.20)

which is referred to as the Schwarzian action in the literature. Note that the

Schwarzian action (2.20) is independent of the bulk metric but it depends on

a field t(τ) on the boundary. Namely, the Schwarzian action describes the

reparametrization t(τ) as the dynamical degrees of freedom, which is referred

to as the boundary “wiggles” in the literature.
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(a) disk (b) trumpet

Figure 2.2: The particular cases which we have to treat separately. (a) disk

for (g, n) = (0, 1) and (b) trumpet for (g, n) = (0, 2).

Finally, the partition function ZJT in (2.17) can be computed by integrat-

ing over the bulk metric and over the boundary wiggles as

ZJT =
∞∑

g=0

e(2−2g−n)S0

∫

Σg,n

Dg D(wiggles) e−ISch(wiggles). (2.21)

Here the integral over the bulk metric (implicitly divided by the volume of the

diffeomorphisms on Σg,n) gives the volume of the bulk moduli space Mg,n.

The volume of Mg,n with the boundary lengths b1, . . . , bn is given by the

Weil-Petersson (WP) volume Vg,n(b1, . . . , bn) as

Vg,n(b1, . . . , bn) = vol (Mg,n(b1, . . . , bn)) . (2.22)

Note that the WP volume is not defined for the particular cases (g, n) =

(0, 1), (0, 2) at which the dimension dimMg,n = 3g−3+n becomes negative.

We have to treat these cases separately. The (g, n) = (0, 1) case is the

hyperbolic disk shown in Figure 2.2a. The Schwarzian boundary is described

by the wiggly curve near the asymptotic boundary. As discussed in [16], the

disk partition function with the boundary length β is given by

Zdisk(β) =
eS0γ

3
2

(2π)
1
2β

3
2

e−
2π2γ

β . (2.23)

The (g, n) = (0, 2) case is the trumpet shown in Figure 2.2b. The trumpet

has two boundaries one of which is taken to be a geodesic. As discussed in

[16], the trumpet partition function is given by

Ztrumpet(β, b) =

√
γ

2πβ
e−

γb2

2β . (2.24)
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Figure 2.3: Gluing pants with length b and relative twist τ .

Let us make some comments on the WP volume. Riemann surfaces can be

constructed by gluing the building blocks called “pants,” a hyperbolic surface

with genus zero and three boundaries as shown in Figure 2.3. Each boundary

connected with other pants is associated to two parameters, the length of the

connected boundary b and the relative twist between the pants τ . It is known

that the Riemann surface Σg,n with genus g and n boundaries is divided by

3g+ n− 3 geodesics into the set of pants. Thus, there is a set of parameters

{(bi, τi)}, (i = 1, . . . , 3g+n− 3) associated to the pants decomposition. This

set of coordinates is known as the Fenchel-Nielsen coordinates. From the set

of coordinates the Weil-Petersson symplectic form is defined by

ω = α

3g+n−3∑

i=1

dbi ∧ dτi, (2.25)

and it defines the associated volume form on the moduli space of the Riemann

surface. The parameter α is a numerical constant and we set α = 1 in

our convention. The WP volume Vg,n(b1, . . . , bn) is given by integrating the

volume form over the fundamental region of the moduli space. However, the

integration is not easy to calculate directly. Instead, the WP volume can be

computed recursively by using Mirzakhani’s recursion relation [29]. The WP

volume can also be computed more efficiently by using the techniques in the

two-dimensional topological gravity [30] which was developed based on the

idea of [31].

To summarize, the partition function of JT gravity ZJT in (2.21) can

be computed by gluing the trumpet (2.24) and the WP volume (2.22) for

general geometry with n boundaries except for the disk and trumpet. If we
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Figure 2.4: The partition function of JT gravity with n boundaries.

define the genus g part of the partition function Zg,n with n boundaries of

the lengthes β1, . . . , βn as

ZJT(β1, . . . , βn) =
∞∑

g=0

e(2−2g−n)S0Zg,n(β1, . . . , βn), (2.26)

Zg,n(β1, . . . , βn) is given by gluing the trumpets and the WP volume as

Zg,n(β1, . . . , βn) =
n∏

i=1

∫ ∞

0

bidbiZtrumpet(βi, bi)Vg,n(b). (2.27)

This prescription is shown in Figure 2.4. As seen from Figure 2.4, we can

cut off the Schwarzian boundaries by geodesics with lengthes b1, . . . , bn and

gluing them again. The integration measure comes from the Weil-Petersson

symplectic form (2.25) after integrating over the twist coordinate

∫ ∞

0

db

∫ b

0

dτ =

∫ ∞

0

bdb. (2.28)

Our convention

In the following sections, we will use the convention in [30]. We set the

parameters γ and gs as

γ ≡ 1

2π2
, gs ≡ (2π2)

3
2 e−S0 . (2.29)

The parameter gs is referred to as the genus counting parameter as we will

see later. We also define the rescaled trumpet and the rescaled WP volume
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so that the partition function of JT gravity is given by

ZJT(β1, . . . , βn) =
∞∑

g=0

g2g−2+n
s

n∏

i=1

∫ ∞

0

bidbiZtrumpet(βi, bi)Vg,n(b), (2.30)

where the rescaled trumpet partition function Ztrumpet(β, b) is given by

Ztrumpet(β, b) =
e−

b2

2β

√
2πβ

, (2.31)

and the WP volume Vg,n(b) is rescaled from the original one Ṽg,n(b) as

Vg,n(b) = (2π2)3−3g−n Ṽg,n(b). (2.32)

Correspondingly, the disk partition function is given by

Zdisk(β) =
1√

2πgsβ
3
2

eβ
−1

. (2.33)

2.1.2 Random matrix model

We briefly review some basic concepts of the random matrix model related

to the two-dimensional quantum gravities. The random matrix model is a

statistical model whose variables are matrices distributed in a certain prob-

ability distribution. Such a model was first introduced by Wishart [32] and

first applied to physical problem by Wigner [33] to calculate the energy spec-

trum of heavy nucleus. We particularly consider N × N Hermitian matrix

H which is regarded as the Hamiltonian of the system. In quantum gravity,

random matrix models have been considered since 1980s. See also [34, 35, 36]

for reviews and references therein. The basic idea comes from that the dis-

cretized path integral of the two-dimensional gravity in (2.1) is given by the

sum over the random triangulations of Riemann surfaces which corresponds

to the sum over the Feynman diagrams of random matrices:

∑

topologies

∫
Dg discretize−−−−−→

∑

random
triangulations

=
∑

Feynman diagrams

of random matrices

. (2.34)

This picture is shown in Figure 2.5. To obtain the original continuous results

of gravity from the discretized theory, we have to take the double-scaling

limit. Namely, we take the limit of the size of the matrices N → ∞ and

fine-tune the couplings in the matrix potential V (H) in a specific way.
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Matrix integral

Let us define the random matrix model. A random matrix model is defined by

the matrix integral which gives the probability distribution of the matrices.

We define the matrix integral for N ×N Hermitian matrix H by

Z =

∫
dHe−TrV (H), (2.35)

where V (H) is a polynomial of H, called the matrix potential. The matrix

potential is viewed as the action of the random matrix model. In this model,

we consider the ensemble average of operators depend on H. Namely, the

ensemble average of O(H) is defined by

⟨O⟩ = 1

Z

∫
dHe−TrV (H)O(H). (2.36)

In the matrix model of JT gravity, we are particularly interested in the

following single-trace operator

Z(β) = Tre−βH , (2.37)

which is called the macroscopic loop operator in the matrix model. As proved

in [16], the partition function of JT gravity with single boundary of length β

is equivalent to the ensemble average of the macroscopic loop operator (2.37)

in a certain double-scaling limit (DSL),

ZJT(β) = ⟨Z(β)⟩DSL. (2.38)

Similarly, the partition function of JT gravity on Riemann surfaces with fixed

n boundaries of the lengthes β1, . . . , βn corresponds to the n point connected

correlator of the macroscopic loop operators as

ZJT(β1, . . . , βn) = ⟨Z(β1) · · ·Z(βn)⟩conn.. (2.39)

On the other hand, the partition function of JT gravity ZJT(β1, . . . , βn) is

also computed by gluing the trumpets and the WP volume as in (2.30). Thus,

the connected correlator (2.39) is given by

〈
n∏

i=1

Z(βi)

〉

conn.

=
∞∑

g=0

g2g−2+n
s

n∏

i=1

∫ ∞

0

bidbiZtrumpet(βi, bi)Vg,n(b). (2.40)
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Fig. 1: A piece of a random triangulation of a surface. Each of the triangular

faces is dual to a three point vertex of a quantum mechanical matrix model.

The integral
∫

Dg over the metric on the surface in (1.1) is difficult to calculate in

general. The most progress in the continuum has been made via the Liouville approach

which we briefly review in sec. 6. If we discretize the surface, on the other hand, it turns out

that (1.1) is much easier to calculate, even before removing the finite cutoff. We consider in

particular a “random triangulation” of the surface [1], in which the surface is constructed

from triangles, as in fig. 1. The triangles are designated to be equilateral,2 so that there

is negative (positive) curvature at vertices i where the number Ni of incident triangles is

more (less) than six, and zero curvature when Ni = 6. Indeed if we call V , E, and F

the total number of vertices, edges, and faces respectively, of the triangulation, due to the

topological relations 2E =
∑

i Ni and 3F = 2E (a relation obeyed by triangulations of

surfaces, since each face has three edges each of which is shared by two faces), all quantities

can be expressed in terms of the Ni’s. The discrete counterpart to the Ricci scalar R at

vertex i is Ri = 2π(6−Ni)/Ni, so that

∫ √
g R→

∑

i

4π(1−Ni/6) = 4π(V − 1
2
F ) = 4π(V −E + F ) = 4πχ ,

2 We point out that this constitutes a basic difference from the Regge calculus, in which the

link lengths are geometric degrees of freedom. Here the geometry is encoded entirely into the

coordination numbers of the vertices. This restriction of degrees of freedom roughly corresponds

to fixing a coordinate gauge, hence we integrate only over the gauge-invariant moduli of the

surfaces.

6

Figure 2.5: Random triangulation of a surface and the Feynman diagram of

the random matrix model for three point interaction [34].

In the original paper [16], the duality between JT gravity and the random

matrix model was proved up to all orders in the genus expansion. The proof

was based on the correspondence between the Mirzakhani’s recursion relation

for the WP volume [29] and the Eynard-Orantin’s topological recursion for

the resolvent of the random matrix model [37, 38, 39]. In this thesis, we will

use these results for the applications of the matrix model of JT gravity. In

particular, we use the above results to evaluate the effects of the insertion of

branes to the matrix model of JT gravity in section 2.2.

Genus expansion

We briefly comment on a perturbative expansion, namely the genus expan-

sion of the matrix integral (2.35). We will see that the sum over Feynman

diagrams of random matrices corresponds to the sum over topologies and ge-

ometries in the two-dimensional gravitational path integral. First, the matrix

integral (2.35) is exactly solvable if the potential V (H) is up to the second or-

der in H, which is called the Gaussian matrix model or the Gaussian unitary

ensemble (GUE) such as

VGUE(H) =
H2

2
. (2.41)

As with the usual quantum field theory, the two point function in the Gaus-

sian matrix model can be computed as

⟨HijHkl⟩GUE = δilδjk, (2.42)
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(a) propagator (b) vertex (c) index loop

Figure 2.6: Feynman diagrams for three point interaction of the matrix

model. Each double line corresponds to each propagator.

which is viewed as the propagator in the matrix model. The propagator

(2.42) can be represented by a double-line diagram 2.6a. Such a double-line

formalism is originally introduced by ’t Hooft [40] for the analysis of the

theory of strong interaction.

Let us consider a generalized matrix potential V (H) including the inter-

action terms with couplings {ck}k≥3 as

V (H) =
1

gs

(
H2

2
+ c3H

3 + c4H
4 + · · ·

)
, (2.43)

where we have rescaled the matrix potential by a parameter gs. We refer

gs as the genus counting parameter so that the genus expansion becomes

manifest. In this model the propagator (2.42) is rescaled as

⟨HijHkl⟩ = gsδilδjk, (2.44)

since the propagator is proportional to the inverse of the coefficient of the

quadratic term of the action. We evaluate the matrix integral (2.35) with

the potential (2.43) by expanding around the Gaussian ensemble as

Z =
∞∑

m=0

1

m!

∫
dHe−

1
gs

TrH
2

2 g−ms
[
Tr
(
c3H

3 + · · ·
)]m

. (2.45)

Now the matrix integral can be computed by using the Wick contraction and

this expansion gives the sum over Feynman diagrams. We show an example

of Feynman diagram for the three point interaction in Figure 2.5.

Let us read off the Feynman rules. As we see from (2.45), each interaction

vertex is weighted by g−1
s . We show an example of the interaction vertex for
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the three point interaction in Figure 2.6b. From Figure 2.6c, index loops

will appear and each loop is weighted by δii = N . Thus, the contribution of

a Feynman diagram with V vertices, E propagators, and F index loops is

given by

g−V+E
s NF = g−V+E−F

s (gsN)F . (2.46)

Here the power of gs is nothing but the Euler characteristic in (2.3) with

the appropriate identifications. Actually, if we define the genus g for the

Feynman diagram by

2− 2g = V − E + F, (2.47)

g corresponds to the genus of the surface on which we can draw the diagram.

For example, the genus g = 0 for all planar diagrams.

Similary, let us consider the insertion of a single-trace operator. For

example, let us consider the expectation value of TrH3 as

⟨TrH3⟩ ∼
∫
dHe−TrV (H)TrH3

∼
∞∑

m=0

1

m!

∫
dHe−

1
gs

TrH
2

2
[
g−1
s Tr

(
c3H

3 + · · ·
)]m

TrH3,
(2.48)

where we have omitted the overall normalization factor. Now we can also

compute the matrix integral by using the Wick contraction. The operator

TrH3 behaves like the vertex of the three point interaction but the vertex

associated to TrH3 is not weighted by g−1
s . Thus, the insertion of TrH3

changes the weight of the diagram as g
−(V−1)
s . In general, n insertion of

single-trace operators changes the weight of the diagram as g2g−2+n
s .

Finally, we make a brief comment on the double-scaing limit of the matrix

model. If we take the following ’t Hooft limit

N → ∞, gs → 0, with t ≡ gsN fixed, (2.49)

the sum in (2.45) becomes the perturbative expansion in gs as

Z =
∞∑

g=0

g2g−2
s Fg(t, c3, c4, . . .), (2.50)

where we denote the coefficients by Fg(t, c3, c4, . . .). By using t ≡ gsN , this

small gs expansion can also be viewed as the N−1 expansion

Z =
∞∑

g=0

N2−2gF̃g(t, c3, c4, . . .), (2.51)
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where we define F̃g = t2g−2Fg. From this expression, the higher genus con-

tributions seem to be suppressed in the large N limit. On the other hand,

all genus contributions should be summed over in the original gravitational

path integral in (2.34). As discussed in [34], all genus contributions can be

included in the genus expansion (2.51) if we tune the couplings of the matrix

potential in a specific way simultaneously with the large N limit. Such a

limit is called the double-scaling limit.

2.2 Two-dimensional topological gravity

In this section, we review the connection between JT gravity and the two-

dimensional topological gravity [41, 42] (see [43] for a recent review) following

[30]. The two-dimensional topological gravity is an intersection theory on the

moduli space of Riemann surfaces and is described by a certain double-scaled

random matrix model with infinitely many couplings {tk}. As discussed in

[30], JT gravity is nothing but a specific example of the topological gravity

in a particular background tk = γk with

γ0 = γ1 = 0, γk =
(−1)k

(k − 1)!
(k ≥ 2). (2.52)

The connection with the topological gravity provides some efficient compu-

tational methods such as the Korteweg-de Vries (KdV) equations and the

dynamical treatment of branes. The KdV equation is a useful tool to com-

pute the higher genus contributions in the path integral of JT gravity but

we will not review much about that (see [30] for the details). In this thesis,

we focus on the basic formalisms for the dynamical treatment of branes.

2.2.1 JT gravity as a topological gravity

Let us consider the two-dimensional Riemann surfaces Σ with genus g and n

marked points p1, . . . , pn. We are interested in the intersection numbers

⟨κmτd1 · · · τdn⟩g =
∫

Mg,n

κmψd11 · · ·ψdnn , m, d1, . . . , dn ∈ Z≥0, (2.53)

which is viewed as the correlation function of the topological gravity. Here

Mg,n is the Deligne-Mumford compactification of the moduli space Mg,n of
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the Riemann surface Σ and κ is the first Miller-Morita-Mumford class which

is proportional to the Weil-Petersson symplectic form (2.25) as

ω = 2π2κ. (2.54)

The integrand ψi is the first Chern class of the complex line bundle whose

fiber is the cotangent space to the marked point pi and τdi = ψdii . Note that

(2.53) vanishes unless m + d1 + · · · + dn = 3g − 3 + n. In this theory, the

Weil-Petersson (WP) volume is given by

Vg,n(b) =

∫

Mg,n

eκ+
1
2

∑n
i=1 b

2
iψi ≡

〈
eκ+

1
2

∑n
i=1 b

2
iψi

〉
g
, (2.55)

where this formula is valid except for V0,1, V0,2. We need to consider (g, n) =

(0, 1), (0, 2) separately but we will not so much care about these cases unless

necessary. It is convenient to introduce the generating functions for the

intersection numbers (2.53) as

G(s, {tk}) =
∞∑

g=0

g2g−2
s

〈
esκ+

∑∞
d=0 tdτd

〉
g
, (2.56)

F ({tk}) =
∞∑

g=0

g2g−2
s

〈
e
∑∞

d=0 tdτd
〉
g
. (2.57)

It is known that these generating functions are related [43, 44] by

G(s, {tk}) = F ({tk + γks
k−1}) (2.58)

with

γ0 = γ1 = 0, γk =
(−1)k

(k − 1)!
(k ≥ 2). (2.59)

One can compute various quantities from the generating functions, in par-

ticular the partition function of JT gravity.

Partition function of JT gravity

Let us explore the connection between JT gravity and the topological grav-

ity by considering the partition function of JT gravity following [30]. As

discussed in section 2.1, the partition function of JT gravity with single
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boundary of length β is given by (2.38). It contains all genus contributions

in the genus expansion as

⟨Z(β)⟩ = ⟨Z(β)⟩g=0 + ⟨Z(β)⟩g≥1. (2.60)

The genus-zero part is given by the disk partition function (2.33) as

⟨Z(β)⟩g=0 =
1√

2πgsβ
3
2

eβ
−1

. (2.61)

Let us consider the higher genus (g ≥ 1) contribution. It is given by gluing

the trumpet partition function (2.31) and the WP volume (2.32) as

⟨Z(β)⟩g≥1 =
∞∑

g=1

g2g−1
s

∫ ∞

0

bdbZtrumpet(β, b)Vg,1(b). (2.62)

Here the WP volume is given by (2.55) as

Vg,1(b) =

3g−2∑

d=0

1

(3g − 2− d)!d!

(
b2

2

)d 〈
κ3g−2−dψd

〉
g
, (2.63)

where we have expanded the exponential and used the following property

⟨κkψl⟩g = 0 unless k + l = 3g − 2. (2.64)

Substituting (2.63) into (2.62) and integrating over b, the higher genus con-

tribution becomes

⟨Z(β)⟩g≥1 =
1√
2π

∞∑

g=1

3g−2∑

d=0

g2g−1
s

βd+
1
2

(3g − 2− d)!

〈
κ3g−2−dψd

〉
g

=
1√
2π

∞∑

g=1

∞∑

d=0

g2g−1
s βd+

1
2

〈
eκψd

〉
g
,

(2.65)

where we have used (2.64) to obtain the second equality. By using the gen-

erating functions (2.56) and (2.57), we have the following relations for g ≥ 1

∞∑

g=1

g2g−2
s

〈
eκψd

〉
g
= ∂dG(s = 1, {tk = 0})

= ∂dF ({tk = γk}),
(2.66)
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where we define the derivative ∂d = ∂/∂td. Thus, the higher genus contribu-

tion of the partition function is given by

⟨Z(β)⟩g≥1 =
gs√
2π

∞∑

d=0

βd+
1
2∂dF ({tk = γk}). (2.67)

Finally, from the genus-zero part (2.61) and the higher genus part (2.67), the

full partition function of JT gravity is given by

⟨Z(β)⟩ = gs√
2πβ

3
2

(
g−2
s eβ

−1

+
∞∑

d=0

βd+2∂dF ({tk = γk})
)
. (2.68)

Therefore the partition function of JT gravity is written in terms of the

generating function of the topological gravity in a specific background tk = γk
in (2.52). Here we comment on the differential operator

B(β) =
gs√
2π

∞∑

d=0

βd+
1
2∂d, (2.69)

which is acting on the generating function F ({tk}) in (2.67). This is noth-

ing but the boundary creation operator [45] which generates the connected

correlator of multiple boundaries

⟨Z(β1) · · ·Z(βn)⟩conn. ≃ B(β1) · · ·B(βn)F ({tk}). (2.70)

The symbol “≃” means that this equation holds up to an additional non-

universal part. Namely, we have to treat the disk (2.33) and the trumpet

(2.31) contributions separately as discussed in the previous section.

2.2.2 Generalized partition function

Let us explore another expression of the partition function ⟨Z(β)⟩ for the

use to obtain the leading order eigenvalue density of JT gravity in the next

subsection. In the topological gravity, eF with F in (2.57) is called the tau

function for the KdV hierarchy. This means that a function

u = g2s∂
2
0F (2.71)

satisfies the (generalized) KdV equation

∂ku = ∂0Rk+1, ∂k ≡ ∂/∂tk, (2.72)
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where Rk is the Gelfand-Dikki differential polynomials of u. It is known that

the Gelfand-Dikki polynomials satisfy the following recursion relation

(2k + 1)D0Rk+1 =
1

4
D3

0Rk + 2uD0Rk + (D0u)Rk, Dk ≡ gs∂k (2.73)

with the initial value R0 = 1. By integrating (2.72) over t0, we also have a

constraint for F as

g2s∂k∂0F = Rk+1. (2.74)

Let us consider a two-parameter generalization of F from JT gravity back-

ground which is well-defined at least around (t0, t1) = (0, 0) as

F (t0, t1) = F (t0, t1, {tk = γk}). (2.75)

Using this generalized function F , we also define a two-parameter deforma-

tion of the partition function (2.68) as

ZJT(t0, t1) =
gs√
2πβ

3
2

(
g−2
s eβ

−1

+ g−2
s βt0 +

∞∑

d=0

βd+2∂dF (t0, t1)

)
, (2.76)

which reproduces the original one at (t0, t1) = (0, 0), i.e., ZJT(0, 0) = ⟨Z(β)⟩.
Here we introduce some rescaled variables for later use

ℏ =
1√
2
gs, x = ℏ−1t0, τ = ℏ−1t1. (2.77)

The derivative of (2.76) with respect to x gives the generating function of

the Gelfand-Dikki polynomials as

∂xZJT(t0, t1) =
1

2
√
πβ

∞∑

d=0

βdRd ≡ W (β), (2.78)

where we have used R0 = 1 and the constraint (2.74). Let us consider the

Laplace transformation of W (β) as

R(η) =

∫ ∞

0

dβe−βηW (β). (2.79)

If we expand R(η) as

R(η) =
∞∑

k=0

η−k−
1
2Rk, (2.80)
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the coefficients are also the Gelfand-Dikki polynomials

Rk =
(2k − 1)!!

2k+1
Rk. (2.81)

This is same as the original Gelfand-Dikki polynomials [46] and it is known

that such R(η) is the “resolvent” for the Schrödinger equation

Qψ = ηψ, Q ≡ ∂2x + u. (2.82)

The “resolvent” means that R(η) satisfies

R(η) =

〈
x

∣∣∣∣
1

η −Q

∣∣∣∣x
〉
, (2.83)

where |x⟩ is the coordinate eigenstate. By taking the inverse Laplace trans-

formation of (2.83) we obtain

W (β) = ⟨x|eβQ|x⟩. (2.84)

Thus, the partition function of JT gravity is given by integrating (2.78) with

W (β) in (2.84) as

ZJT =

∫ x

−∞
dx′⟨x′|eβQ|x′⟩. (2.85)

If we introduce the projection operator

Π =

∫ x

−∞
dx′|x′⟩⟨x′|, (2.86)

the partition function is also expressed as

ZJT = Tr(eβQΠ), (2.87)

which is referred to as (the expectation value of) the macroscopic loop op-

erator in the matrix model of the topological gravity. Thus, JT gravity is

nothing but a specific example of the two-dimensional topological gravity.

2.2.3 Leading order eigenvalue density

Let us obtain the leading order (genus-zero) eigenvalue density ρ0(E) of JT

gravity, which is defined by the Laplace transformation of the genus-zero part

of the partition function

Z
(g=0)
JT (β) =

∫ ∞

E0

dEe−βEρ0(E). (2.88)
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Here E0 is the threshold energy which we will determine later. The expression

(2.85) for the partition function is useful to obtain ρ0(E). It is convenient to

define a function with couplings {tk} of general topological gravity

f(u) =
∞∑

k=0

(δk,1 − tk)
uk

k!
. (2.89)

This function is also expressed as

f(u) = u− I0(u, {tk}), (2.90)

where In(u, {tk}) is the Itzykson-Zuber variable [47] defined by

In(u, {tk}) =
∞∑

k=0

tn+k
uk

k!
. (2.91)

We also consider the expansion of u in (2.71) as

u =
∞∑

g=0

g2gs ug, ug ≡ ∂20Fg, (2.92)

where Fg is defined by

Fg =
〈
e
∑∞

d=0 tdτd
〉
g
, (2.93)

in the genus expansion of F in (2.57). It is known that u0 in (2.92) satisfies

the genus-zero “string equation” f(u0) = 0, or equivalently

u0 − I0(u0, {tk}) = 0. (2.94)

This equation can be interpreted as the stationary condition ∂F0/∂u0 = 0 of

the genus-zero free energy

F0 =
1

2

∫ u0

0

dv (v − I0(v, {tk}))2 . (2.95)

One can confirm that this expression of F0 is consistent with u0 defined in

(2.92) by differentiating F0 twice with respect to t0. Here not only I0(v, {tk})
but also u0 in the upper limit of the integration implicitly depends on t0.

Let us consider the leading order (genus-zero) contribution of the partition

function ZJT(β) in (2.85). By inserting the completeness relation for the
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momentum basis states, the leading order partition function becomes

Z
(g=0)
JT (β) =

∫ x

−∞
dx′
∫ ∞

−∞

dp

2π
eβ(−p

2+u0(x′))

=
1

2
√
πβ

∫ x

−∞
dx′eβu0(x

′)

=
1

2
√
πβ

∫ u0

−∞
du
∂x

∂u
eβu,

(2.96)

where we have used Q = ∂2x + u in (2.82) with p = −i∂x in the first equality.

Here x-dependence of u0 is determined by the genus-zero string equation

(2.94) with the definition of the rescaled variable t0 = ℏx in (2.77). The

genus-zero string equation (2.94) can be rewritten as

ℏx = u0 −
∞∑

k=1

tk
uk0
k!
. (2.97)

From this relation we obtain

∂x

∂u
=

1

ℏ
∂f(u)

∂u
, (2.98)

where f(u) is the function defined in (2.89). Substituting this into (2.96)

and changing the integration variable as v = −u, the leading order partition

function becomes

Z
(g=0)
JT (β) =

1

2ℏ
√
πβ

∫ ∞

−u0
dv
∂f(−v)
∂(−v) e

−βv. (2.99)

By using the following formula
√
π

β
e−βv =

∫ ∞

v

dE
eβE√
E − v

, (2.100)

we obtain

Z
(g=0)
JT (β) =

∫ ∞

−u0
dEe−βEρ0(E), (2.101)

where ρ0(E) can be identified as

ρ0(E) =
1√
2πgs

∫ E

E0

dv√
E − v

∂f(−v)
∂(−v) , (2.102)

with the threshold energy E0 = −u0. The threshold energy E0 is also de-

termined by f(−E0) = 0 since u0 is determined by the genus-zero string
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equation f(u0) = 0 or equivalently (2.94). In particular, if we set the param-

eters tk = γk of (2.52) for JT gravity, the threshold energy is determined as

E0 = 0 and the leading order eigenvalue density (2.102) reduces to

ρJT0 (E) =
sinh(2

√
E)√

2πgs
. (2.103)

One can obtain the disk partition function (2.61) by substituting the eigen-

value density (2.103) into (2.88).

2.3 JT gravity with dynamical branes

In this section, we review the leading order eigenvalue density of JT gravity

with dynamical branes following [17]. The eigenvalue density is deformed

from the original one (2.103) due to the back-reaction of the branes. Here

we particularly focus on the Fateev-Zamolodchikov-Zamolodchikov-Teschner

(FZZT) [18, 19] anti-branes which we consider to model an evaporating black

hole in section 3.2 and 4.3. The FZZT anti-brane appears as a boundary

condition of JT gravity [48] and corresponds to the determinant operator

(2.104) in the matrix model. The insertion of FZZT anti-branes amounts

to the shift of the couplings {tk} of the topological gravity, which can be

obtained by considering the connected correlator of multiple boundaries. Fi-

nally, we obtain the deformed eigenvalue density (2.127) from (2.102) with

the couplings shifted by the branes.

2.3.1 Correlator with FZZT anti-branes

In the matrix model, the FZZT anti-brane corresponds to the determinant

operator det(ξ+H)−1, where H is the Hermitian random matrix variable and

ξ is a formal parameter. The insertion of the FZZT anti-brane introduces

the vector degrees of freedom in the matrix integral

det(ξ +H)−1 =

∫
dϕdϕ̄eϕ̄(ξ+H)ϕ, (2.104)

where ϕ, ϕ̄ are Grassmann-even (bosonic) vector variables. Let us prepare

some useful formulas to treat the FZZT anti-branes in the matrix integral.
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The determinant operator corresponds to the infinitely many single trace

operator −Tr log(ξ +H) as

det(ξ +H)−1 = e−Tr log(ξ+H) =
∞∑

n=0

1

n!
[−Tr log(ξ +H)]n . (2.105)

The single trace operator −Tr log(ξ +H) can be represented by the integral

transformation of the macroscopic loop operator Z(β) = Tre−βH as

−Tr log(ξ +H) =

∫ ∞

ϵ

dβ

β
e−ξβZ(β) + log ϵ+O(ϵ0), (2.106)

where ϵ is a small regularization parameter. We can ignore the divergent

term log ϵ by taking an appropriate normalization.

Let us introduceM(b) by the integral transformation (2.106) of the trum-

pet partition function (2.31) as

1

b
M(b) =

∫ ∞

0

dβ

β
e−ξβZtrumpet(β, b). (2.107)

By using the integral representation of the Bessel function

K 1
2
(x) =

1

2

√
x

2

∫ ∞

0

dt t−
3
2 e−t−

t2

4t =

√
π

2x
e−x, (2.108)

the factor M(b) in (2.107) is given by

M(b) = e−zb, (2.109)

where z is related to ξ by

ξ =
1

2
z2. (2.110)

Note that the integral representation (2.108) is valid for | arg(x)| < π/4. This

implies that the equation (2.109) is valid only for Re(ξ) > 0.

Thus, the connected correlator with FZZT anti-brane is given by

〈
det(ξ +H)−1

m∏

i=1

Z(βi)

〉

conn.

=
∞∑

n=0

1

n!

n∏

j=0

∫ ∞

0

dβ′
j

β′
j

e−ξβ
′
j

〈
n∏

j=1

Z(β′
j)

m∏

i=1

Z(βi)

〉

conn.
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=
∞∑

n=0

1

n!

n∏

j=0

∫ ∞

0

dβ′
j

β′
j

e−ξβ
′
j

∞∑

g=0

g2g−2+n+m
s (2.111)

×
n∏

j=1

∫ ∞

0

b′jdb
′
jZtrumpet(β

′
j, b

′
j)

m∏

i=1

∫ ∞

0

bidbiZtrumpet(βi, bi)Vg,n+m(b
′, b)

=
∞∑

g,n=0

g2g−2+n+m
s

n!

n∏

j=1

∫ ∞

0

db′jM(b′j)
m∏

i=1

∫ ∞

0

bidbiZtrumpet(βi, bi)Vg,n+m(b
′, b),

where we have used (2.106) in the first equality and (2.107) in the last equal-

ity. Note that the factor b of the integration measure bdb is canceled out

by 1/b in (2.107). To summarize, we can introduce the FZZT anti-brane

by gluing the factor M(b) along the geodesic boundary of the WP volume

and integrating over b with the integration measure db. The factor M(b) in

(2.109) has the form

M(b) = e−Sparticle , (2.112)

where the “particle action” Sparticle is given by

Sparticle = zb = (mass)× (length of worldline). (2.113)

Namely, M(b) can be interpreted as the contribution of a particle with mass

z running around the geodesic boundary with length b.

We can generalize the above formalisms to the multiple FZZT anti-branes.

Let us consider the multiple FZZT anti-branes

∏

i

det(ξi +H)−1 = exp

[∑

i

∫ ∞

0

dβ

β
e−ξiβZ(β)

]
, (2.114)

where we have used the integral transformation (2.106). The connected cor-

relator with the multiple FZZT anti-branes are given by (2.111) with M(b)

replaced by

M(b) =
∑

i

e−zib, (2.115)

where ξi = z2i /2. In particular, the connected correlator (2.111) with the end

of the world (EOW) branes is obtained in [49], which is given by replacing

M(b) by

M(b) =
e−µb

2 sinh b
2

=
∞∑

n=0

e−(µ+n+ 1
2
)b. (2.116)
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It can be interpreted as the insertion of infinitely many FZZT anti-branes

with a particular set of parameters zn = µ+ n+ 1
2
(n ≥ 0). We will use this

relation in section 3.1. Note that the EOW brane factor (2.116) diverges at

b = 0 and a certain regularization is required to define the EOW brane. On

the other hand, the factor of FZZT anti-brane (2.109) do not contain such a

pole and M(b) for the FZZT anti-brane is well-defined.

2.3.2 Back-reaction of branes

In this subsection, we explore the effects of the insertion of the FZZT anti-

branes in JT gravity. The insertion of FZZT anti-branes amounts to the shift

of the couplings {tk} of the topological gravity. We call this effect the “back-

reaction” of the branes. To see this, let us consider the connected correlator

of the multiple FZZT anti-branes without macroscopic loops in (2.111)

〈∏

i

det(ξi +H)

〉

conn.

=
∞∑

g,n=0

g2g−2+n
s

n!

n∏

j=1

∫ ∞

0

dbjM(bj)Vg,n(b, {tk}),

(2.117)

where M(b) is the brane factor in (2.115) and Vg,n(b, {tk}) is the generalized
WP volume for general topological gravity. As discussed in [17], Vg,n(b, {tk})
can be obtained by

Vg,n(b, {tk}) = V (b1) · · ·V (bn)F ({tk}), (2.118)

where the volume operator V (b) is defined by

V (b) =
∞∑

k=0

b2k

2kk!
∂k. (2.119)

The volume operator V (b) is related to the boundary creation operator B(β)

in (2.69) by the following integral transformation

B(β) = gs

∫ ∞

0

bdbZtrumpet(β, b)V (b). (2.120)

Here we have a relation

∫ ∞

0

dbM(b)V (b) =
∞∑

k=0

∑

i

(2k − 1)!!z−2k−1
i ∂k, (2.121)
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which can be obtained by repeating the integration by parts. Using this

formula, the connected correlator (2.117) becomes
〈∏

i

det(ξi +H)

〉

conn.

=
∞∑

n=0

1

n!

(
∞∑

k=0

∑

i

gs(2k − 1)!!z−2k−1
i ∂k

)n

F ({tk})

= exp

(
∞∑

k=0

∑

i

gs(2k − 1)!!z−2k−1
i ∂k

)
F ({tk})

= F ({t̃k}),
(2.122)

where the couplings t̃k are defined by

t̃k = tk + gs(2k − 1)!!
∑

i

z−2k−1
i . (2.123)

Thus, the insertion of FZZT anti-branes amounts to the shift of couplings

{tk} of the topological gravity. In particular, if we consider K FZZT anti-

branes with a common parameter ξi = ξ, the couplings in (2.123) become

t̃k = tk + t(2k − 1)!!(2ξ)−k−
1
2 , (2.124)

where we have used the relation ξ = 1
2
z2 and denote t ≡ gsK which we refer

to as the ’t Hooft coupling in later chapters. We will use this set of couplings

(2.124) to obtain the eigenvalue density of JT gravity with FZZT anti-branes.

Deformation of eigenvalue density

We will see that the leading order eigenvalue density ρ0(E) in (2.102) is

deformed from the original one in (2.103) due to the shift of the couplings

(2.124). This deformation is crucial to obtain the late time decreasing be-

havior of the Page curve in section 3.2 and of the refined Rényi negativity in

section 4.3. The function f(u) in (2.89) for the shifted couplings (2.124) and

for the JT gravity background tk = γk in (2.52) is given by

f(u) =
√
uJ1(2

√
u)− t√

2(ξ − u)
, (2.125)

where Jα(x) denotes the Bessel function and we have used the following

expression

Jα(x) =
∞∑

k=0

(−1)k

k!(k + α + 1)!

(x
2

)2k+α
. (2.126)
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Figure 2.7: The eigenvalue density ρ0(E) in (2.127) for JT gravity with FZZT

anti-branes. We set gs = 1/50, ξ = 50 in this figure.

Plugging (2.125) into (2.102), the leading order eigenvalue density of JT

gravity with FZZT anti-branes is given by

ρ0(E) =
1√
2πgs

(∫ E

E0

dv
I0(2

√
v)√

E − v
− t

E + ξ

√
E − E0

2(E0 + ξ)

)
, (2.127)

where Ik(x) is the modified Bessel function of the first kind. The threshold

energy E0 is determined by the genus-zero string equation f(−E0) = 0, or

equivalently √
E0I1(2

√
E0) +

t√
2(E0 + ξ)

= 0. (2.128)

The threshold energy is the minimal energy such that ρ0(E) is supported for

E ≥ E0. Note that the eigenvalue density (2.127) reduces to the original

one (2.103) at t = 0 which means that no branes are inserted. We show the

eigenvalue density ρ0(E) in (2.127) for some values of t in Figure 2.7. From

Figure 2.7, we can see that the threshold energy E0 decreases as t increases

and the support of ρ0(E) is shifted to the left. In particular, the original

eigenvalue density (2.103) is shown by the curve for t = 0 with the threshold

energy E0 = 0.
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Figure 2.8: The threshold energy E0 determined by the genus-zero string

equation (2.128). We define E0 as the largest negative solution so that it is

continuously deformed from E0 = 0 for t = 0. We set gs = 1/50, ξ = 50 in

this figure. There is a critical value tc beyond which the equation (2.128) no

longer has any solution.

Phase transition

The threshold energy E0 is determined by the genus-zero string equation

(2.128). Here we show the functions in the equation (2.128) for some values

of t in Figure 2.8. The function
√
EI1(2

√
E) oscillates for E < 0 and mono-

tonically increases for E > 0. The function −t/
√

2(E + ξ) is always negative

for t > 0. We define E0 as the largest negative solution of (2.128) so that

it is continuously deformed from E0 = 0 for t = 0. Then there is a critical

value tc beyond which the equation (2.128) no longer has any solution. It

implies a phase transition at t = tc. As discussed in [20], the critical value

tc corresponds to the value beyond which the corresponding dilaton gravity

theory no longer has any black hole solution. Thus, the phase transition at

t = tc can be viewed as the end of the black hole evaporation in the model

of an evaporating black hole which we review in section 3.2.
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Chapter 3

Black hole information paradox

In this chapter, we review the recent progress in the black hole information

paradox. It is formulated by calculating the entanglement entropy of the

Hawking radiation. The aim of this chapter is to explain the applications of

the matrix model of JT gravity to the literature and to prepare the model

setup which we use in chapter 4. In particular, we focus on a toy model

of an evaporating black hole in JT gravity with end of the world (EOW)

branes proposed by Penington, Shenker, Stanford, and Yang (PSSY) [14].

The entanglement entropy of the Hawking radiation follows the unitary Page

curve in the PSSY model. Several types of “replica wormholes” contribute

to the entropy, and the exchange of dominance of different types of replica

wormholes plays the essential role to obtain the Page curve. However, the

entanglement entropy approaches a constant value at late time of the black

hole evaporation in contrast to the decreasing behavior as shown in Figure

1.2. This result indicates that the back-reaction of the Hawking radiation

is not considered in the PSSY model. On the other hand, the late time de-

creasing behavior of the Page curve is reproduced in another toy model in JT

gravity with dynamical FZZT anti-branes, proposed by Okuyama and Sakai

[20]. The late time decreasing behavior comes from the deformed eigenvalue

density (2.127) due to the back-reaction of branes.

This chapter is organized as follows. Before exploring the applications of

the matrix model of JT gravity, we briefly review the entanglement entropy

and its Rényi generalizations. In section 3.1, we review the PSSY model and

the replica wormholes. In section 3.2, we review the Page curve in the matrix

model of JT gravity with dynamical FZZT anti-branes.
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Entanglement entropy

For later use we recall the definitions of the entanglement entropy and its

Rényi generalizations. For a bipartite quantum system with the Hilbert space

H = HA ⊗HB, the reduced density matrix on the subsytem A is defined by

ρA = TrBρ, (3.1)

where ρ is the density matrix on the total system AB. The entanglement

entropy of the subsytem A is defined by the von Neumann entropy of ρA as

SA = −TrρA log ρA. (3.2)

The entanglement entropy is hard to handle since it includes the logarithm

of the density matrix. It is useful to compute the entanglement entropy by

using the following replica trick

SA = lim
n→1

1

1− n
log (TrρnA) = lim

n→1
n2∂n

[
− 1

n
log (TrρnA)

]
, (3.3)

where the parameter n is called the replica number. Thus, the problem boils

down to compute TrρnA in the replica trick. From the middle quantity in

(3.3), the Rényi entropy [50, 51] is defined by

S
(n)
A =

1

1− n
log (TrρnA) . (3.4)

Similarly, the refined Rényi entropy [52] is defined by

S̃
(n)
A = n2∂n

[
− 1

n
log (TrρnA)

]
= (1− n∂n) log (Trρ

n
A) . (3.5)

Note that there is an analogy between the refined Rényi entropy S̃
(n)
A and

the thermodynamic entropy in statistical mechanics by identifying the replica

number n with the inverse temperature β. Using this analogy, the capacity

of entanglement [53] is defined by

C̃
(n)
A = −n∂nS̃(n)

A = n2∂2n log (Trρ
n
A) , (3.6)

which is an analogue of the heat capacity. The analogy with statistical me-

chanics is viewed in Table 4.1. We will define the “capacity of negativity” as

an analogue of the capacity of entanglement in section 4.1.

41



3.1 PSSY model

In this section, we review the relation between the Page curve and the replica

wormholes in the matrix model of JT gravity with end of the world (EOW)

branes proposed by Penington, Shenker, Stanford, and Yang (PSSY) [14].

We identify the degrees of freedom of the Hawking radiation with the EOW

branes. The transition of the Page curve can be understood as the exchange

of dominance between the disconnected and the totally connected saddles

in the gravitational path integral. The connected saddles are referred to as

the “replica wormholes.” However, several types of replica wormholes can

contribute around the Page time. Thus, we have to sum over the replica

wormholes to investigate the entire Page curve. As we review in subsec-

tion 3.1.3 and 3.1.4, the sum over the replica wormholes can be efficiently

computed by solving the Schwinger-Dyson equation (3.53). This method is

generalized in the case of negativities as we discuss in chapter 4.

3.1.1 Semiclassical description

We first review the semiclassical description of the PSSY model since it is

useful to explore which saddles dominate in the calculation of the entangle-

ment entropy. We will see that the disconnected saddle dominates at early

time while the totally connected replica wormhole dominates at late time.

The exchange of dominance of these saddles leads to the unitary Page curve.

Euclidean action

The PSSY model is defined by JT gravity with EOW branes. We identify

the degrees of freedom of the Hawking radiation with the EOW branes. The

EOW branes can be regarded as particles of mass µ and the Euclidean action

of the PSSY model is defined by

I = IJT + µ

∫

brane

ds, (3.7)

where the action of JT gravity IJT is given by

IJT = −S0

2π

(
1

2

∫

Σ

√
gR +

∫

∂Σ

√
hK̃

)
−
(
1

2

∫

Σ

√
gϕ(R + 2) +

∫

∂Σ

√
hϕK̃

)
.

(3.8)
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Figure 3.1: The disk geometry with EOW branes in (a) Euclidean and (b)

Lorentzian signatures [14].

The first term of (3.8) is equal to−S0χ(Σ) as we discussed in chapter 2. As we

will see later, we consider the gravitational path integral in the calculation of

the entanglement entropy. The contributions of surfaces in the gravitational

path integral are suppressed by e−2S0 for each additional genus. Thus, the

disk geometry gives the dominant contribution. We show the disk geometry

with the EOW brane in Figure 3.1. The black and blue curves correspond

to the asymptotic boundary and the EOW brane, respectively. We impose

different boundary conditions for the asymptotic boundary and the EOW

brane, respectively. For the asymptotic boundary of length β, we impose

ds2|∂Σ =
1

ϵ2
dτ 2, ϕ|∂Σ =

1

ϵ
, ϵ→ 0. (3.9)

Here τ is the imaginary time coordinate on the boundary. For the EOW

brane, we impose

∂nϕ = µ, K̃ = 0, µ ≥ 0, (3.10)

where we denotes the derivative normal to the EOW branes by ∂n.

Reduced density matrix

To model the Hawking radiation, we consider a bipartite quantum system

with the Hilbert space H = HBH ⊗ HR. The dimensions of the subsystems

are defined by

dimHBH = eS0 , dimHR = K, (3.11)

where we define dimHBH so that S0 = log(dimHBH). Here HR corresponds

to the auxially “radiation” system which is maximally entangled with the
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EOW branes. We will regard K as “time” since more Hawking radiation

are emitted as time goes. We are particularly interested in the entanglement

structure for large dimensions of the subsystems with the ratio t ≡ Ke−S0

fixed. We take the planar approximation in this limit. That is, we will ignore

the all higher-order corrections in e−S0 and K−1.

We assume that the interior and the exterior partners of the early Hawk-

ing radiation are maximally entangled. Thus, the state of the total system

is defined by the following pure state

|Ψ⟩ = N
K∑

i=1

|ψi⟩BH ⊗ |i⟩R, (3.12)

where |ψi⟩BH is regarded as the black hole microstate with the EOW brane

in state i, and {|i⟩R}Ki=1 forms a orthonormal basis of HR. The normalization

factor N is determined so that the norm ⟨Ψ|Ψ⟩ = 1. The reduced density

matrix ρR = TrBH|Ψ⟩⟨Ψ| on the radiation system is given by

ρR =
K∑

i=1

|j⟩⟨i|R⟨ψi|ψj⟩BH. (3.13)

Here we have included the normalization factor N in the definition of |ψi⟩BH

for notational simplicity. The amplitude ⟨ψi|ψj⟩BH can be calculated by the

gravitational path integral. As discussed above, the leading contributions

are given by the disk geometries. Thus, the amplitude ⟨ψi|ψj⟩BH at leading

order is represented by the following diagram [14],

𝑖 𝑗

(3.14)

where the black thick curve corresponds to the asymptotic boundary of the

two-dimensional spacetime with the length β, while the blue thick curve

corresponds to the EOW brane. The amplitude is proportional to δij since

the same EOW brane links the two indices i and j which are associated with

the orthonormal basis of HR.
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Dominant saddles

We are particularly interested in the n-th moment Tr(ρnR) to calculate the

entanglement entropy by using the replica trick (3.3). First let us consider

the second moment Tr(ρ2R) called “purity” as an example,

Tr(ρ2R) =
K∑

i,j=1

|⟨ψi|ψj⟩BH|2. (3.15)

In this case, there are two leading saddles which satisfy the boundary condi-

tions. As with (3.14), we can diagramatically represent the leading saddles

of |⟨ψi|ψj⟩BH|2 by the following diagrams [14],

or

𝑖 𝑖

𝑗 𝑗

𝑖 𝑖

𝑗 𝑗

𝑖 𝑖

𝑗 𝑗

+

(3.16)

where we call the first term “disconnected” saddle and the second term “con-

nected” saddle, respectively. The connected saddle is a kind of replica worm-

holes. Here the disconnected saddle gives δijδij = δij while the connected one

gives δiiδjj = 1 from the linking by the EOW branes. Thus, the disconnected

and the connected saddles give K and K2 contributions in (3.15), respec-

tively. This can be diagramatically represented by drawing the loops of the

blue dashed curves in (3.16). Each of the index loops gives K contribution.

Now the purity (3.15) is given by

Tr(ρ2R) =
KZ2

1 +K2Z2

(KZ1)2
=

1

K
+
Z2

Z2
1

, (3.17)

where Zn denotes the contribution of the disk surrounded by n asymptotic

boundaries and n EOW branes. Here we have restored the normalization

factor. We can roughly estimate the path intefral Zn ∼ eS0 since the topology

of Zn is the disk. Then the purity (3.17) can be estimated by

Tr(ρ2R) ∼
1

K
+ e−S0 . (3.18)
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or  . . .  or

(a) Boundary

or  . . .  or

(b) Dominant saddles

Figure 3.2: (a) The boundary condition and (b) the dominant saddles for

the n-th moment Tr(ρnR) with n = 6 as an example [14]. We only show the

completely disconnected and connected saddles here.

Thus, the disconnected saddle dominates for K ≪ eS0 while the connected

one dominates K ≫ eS0 . This exchange of dominance between the discon-

nected and the connected saddles is essential to obtain the Page curve.

Next we consider the general n-th moment Tr(ρnR). There are several

types of geometries which satisfies the boundary conditions. Here we show

the boundary condition and relevant saddles for Tr(ρnR) in Figure 3.2. The

circular diagrams in Figure 3.2 come from the trace over the index associated

to the radiation system. As with the purity, the completely disconnected

saddle dominates for K ≪ eS0 . The contribution is given by n disks of Z1

and single index loop K as

Tr(ρnR)|disconn. =
KZn

1

(KZ1)n
=

1

Kn−1
. (3.19)

On the other hand, the totally connected saddle dominates for K ≫ eS0 .

The contribution is given by single disk of Zn and n index loops Kn as

Tr(ρnR)|totally conn. =
KnZn
(KZ1)n

=
Zn
Zn

1

. (3.20)

Here (3.20) is purely gravitational and it gives the thermodynamic entropy

of the black hole. The entanglement entropy can be calculated by using the

replica trick (3.3) in these extreme limits as

SR =




logK (K ≪ eS0),

SBH (K ≫ eS0),
(3.21)
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Figure 3.3: Possible geometries which satisfy the boundary condition 3.2a

[14]. We will consider only the left diagram in the planar limit.

where we define the thermodynamic entropy of the black hole by

SBH ≡ lim
n→1

(
1

1− n
log

Zn
Zn

1

)
. (3.22)

Thus, we conclude that the Page curve comes from the exchange of dominance

between the completely disconnected saddle and the totally connected replica

wormhole in the path integral of JT gravity.

Other possible geometries

We have considered the dominant saddles only in the extreme limitsK ≪ eS0

and K ≫ eS0 . However, several partially connected replica wormholes can

dominate in the intermediate regime between K ≪ eS0 and K ≫ eS0 . In the

planar limit, we ignore the all higher order corrections in e−S0 andK−1. Then

the possible geometries are represented by the planar diagrams. To verify this

claim, we show some examples which satisfy the boundary condition in Figure

3.3. These are examples of n = 6 including Z1, Z2, Z3 configurations. As

discussed above, the middle diagram has an extra handle and the contribution

is suppressed by e−2S0 compared to the left one. The crossing in the right

diagram reduces the index loops, and the contribution is suppressed by K−2

compared to the left one. Thus, we only consider the planar diagrams at

leading order in the planar limit.

Actually, we have to sum over all planar diagrams since all of them can

contribute in the intermediate regime between K ≪ eS0 and K ≫ eS0 .

We can perform the sum efficiently by using the resolvent trick reviewed in

subsection 3.1.3. In the next subsection, we describe the PSSY model in

terms of the matrix model of JT gravity. We will see that the sum over the

replica wormholes comes from the ensemble average of the matrix integral.
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3.1.2 Matrix model description

In this subsection, we describe the PSSY model in terms of the matrix model

of JT gravity. As discussed in chapter 2, the path integral of JT gravity

corresponds to the matrix integral. We will see that the sum over the replica

wormholes comes from the ensemble average of the matrix integral. As we

discussed in section 2.3, the EOW brane corresponds to infinitely many FZZT

anti-branes with a particular set of parameters ξn = 1
2

(
µ+ n+ 1

2

)2
(n ≥ 0).

Thus, the matrix integral with K EOW branes is defined by

Z =

∫
dHe−TrV (H)

[
∞∏

n=0

det(ξn +H)−1

]K

=

∫
dHdQdQ†e−TrV (H)−TrQ†[

∏∞
n=0(ξn+H)]Q,

(3.23)

where H and Q are N ×N Hermitian and N ×K complex matrices, respec-

tively. We can introduce the genus counting parameter gs by rescaling the

matrix potential as
1

gs
V (H), (3.24)

so that the genus expansion is manifest. We consider the double-scaling limit

of this matrix integral. We further take the following ’t Hooft limit

K → ∞, gs → 0 with t ≡ gsK fixed. (3.25)

In this limit, we compute all quantities in the planar approximation. That

is, we will ignore all higher-order corrections in gs and K
−1.

Black hole microstates

Following the appendix D of [14], we define the microstates of the black hole.

We consider a bipartite quantum system of the black hole and the Hawking

radiation with the Hilbert space H = HBH ⊗HR with the dimensions of

dimHBH = N, dimHR = K. (3.26)

We assume that the total system is in a pure state |Ψ⟩ in which the black

hole microstates |ψi⟩ and the radiation states |i⟩ are maximally entangled

|Ψ⟩ = 1√
TrW

K∑

i=1

|ψi⟩ ⊗ |i⟩. (3.27)
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We omit the label BH and R of the states for notational simplicity. Here

we denote the “flavor” degrees of freedom for the interior partners of the

early Hawking radiation by the label i, j = 1, . . . , K, and {|i⟩}Ki=1 forms the

orthonormal basis of HR. The matrix W is defined by the overlap of the

black hole microstates

Wij ≡ ⟨ψi|ψj⟩. (3.28)

Note that |Ψ⟩ is normalized as ⟨Ψ|Ψ⟩ = 1. The reduced density matrix

ρ = TrBH|Ψ⟩⟨Ψ| of the Hawking radiation is defined by

ρ =
1

TrW

K∑

i,j=1

|i⟩⟨j|⟨ψj|ψi⟩. (3.29)

Then the matrix elements can be read off as

ρij =
Wji

TrW
. (3.30)

The microstates of the black hole can be approximated by the canonical

thermal pure quantum state [54, 55]

|ψi⟩ =
∑

a

e−
1
2
βH |a⟩Qai =

∑

a,b

|b⟩
(
e−

1
2
βH
)
ba
Qai, (3.31)

where the inverse temperature β is identified with the length of the asymp-

totic boundary of JT gravity. We define the matrix element Hab as

Hab = ⟨a|H|b⟩, (3.32)

where we denote the “color” degrees of freedom for the bulk gravity by the

label a, b = 1, . . . , N , and {|a⟩}Na=1 forms the orthonormal basis of HBH.

Ensemble average

Here we explain the ensemble average in the matrix integral (3.23). We will

see that the sum over replica wormholes comes from the ensemble average.

It is convenient to change the random variables Q as

Qai =

[
∞∏

n=0

(ξn +H)

]− 1
2

Cai = Γ(µ− 1
2
+ i

√
2H)Cai, (3.33)
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so that the new random variable C obeys the Gaussian distribution. The

Gamma function comes from the infinite product of the brane factor with an

appropriate regularization. Then the matrix integral (3.23) becomes

Z =

∫
dHdCdC†J(H)e−TrV (H)−TrC†C , (3.34)

where J(H) comes from the integration measure associated with the trans-

formation (3.33) as

J(H) =
[
|Γ(µ− 1

2
+ i

√
2H)|2

]K
. (3.35)

The ensemble average of an operator O is defined by

⟨O⟩ = 1

Z

∫
dHdCdC†J(H)e−TrV (H)−TrC†CO, (3.36)

where the angle bracket ⟨O⟩ represents the averaging over the color degrees of
freedom while the overline O represents the averaging over the flavor degrees

of freedom. In particular, the averaging over the flavor degrees of freedom

can be computed by the Wick contraction since C obeys the Gaussian distri-

bution. In the PSSY model, we take the “probe brane” approximation such

that we ignore J(H) in the matrix integral as

Z =

∫
dHdCdC†e−TrV (H)−TrC†C . (3.37)

On the other hand, the black hole microstates (3.31) also change by the

transformation (3.33) as

|ψi⟩ =
∑

a,b

|b⟩
[
e−

1
2
βHΓ(µ− 1

2
+ i

√
2H)

]
ba
Cai =

∑

a,b

|b⟩(
√
A)baCai, (3.38)

where A(H) is defined by

A(H) = e−βH |Γ(µ− 1
2
+ i

√
2H)|2. (3.39)

Let us consider the orverlaps such as

⟨ψi|ψj⟩ =
∑

a,b

AabC
∗
aiCbj,

|⟨ψi|ψj⟩|2 =
∑

a,b,a′,b′

AabAb′a′C
∗
aiCbjCa′iC

∗
b′j.

(3.40)
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𝑖 𝑗

(a) ⟨ψi|ψj⟩ = δijTrA

or

𝑖 𝑖

𝑗 𝑗

𝑖 𝑖

𝑗 𝑗

𝑖 𝑖

𝑗 𝑗

+

(b) |⟨ψi|ψj⟩|2 = δij(TrA)
2 +TrA2

Figure 3.4: Diagramatic representations of the averaged overlaps in (3.42).

(a) and (b) correspond to ⟨ψi|ψj⟩ and |⟨ψi|ψj⟩|2, respectively.

The averaging over C can be computed by the Wick contraction

C∗
aiCbj = δabδij,

C∗
aiCbjCa′iC

∗
b′j = δabδa′b′δij + δaa′δbb′ .

(3.41)

By using these formulas, the average of the overlaps (3.40) are given by

⟨ψi|ψj⟩ = δijTrA,

|⟨ψi|ψj⟩|2 = δij(TrA)
2 + TrA2.

(3.42)

As discussed in [14], one can visualize the above computations by drawing

diagrams. For instance, the overlap ⟨ψi|ψj⟩ in (3.40) can be represented by

the following diagram

⟨ψi|ψj⟩ = (C†AC)ij =
i j(C†)ia Aab Cbj . (3.43)

The black thick curve labeled by the color matrix Aab corresponds to the

asymptotic boundary of the two-dimensional spacetime while the blue dashed

curve labeled by the flavor matrix Cia corresponds to the flavor degrees of

freedom. The averaged overlaps in (3.42) are represented by the diagrams in

Figure 3.4. The blue thick cureves correspond to the EOW branes connect-

ing the same flavor indices. The gray disks correspond to TrAn which are

surrounded by n asymptotic boundaries and n EOW branes. As seen from

equation (3.42) and Figure 3.4b, the sum over replica wormholes comes from

the ensemble average in the matrix integral.
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3.1.3 Resolvent trick

We consider ⟨Trρn⟩ to compute the entanglement entropy by using the replica

trick. The reduced density matrix of the Hawking radiation is given by

(3.30). In the planar limit, we can take the average of the numerator and

the denominator independently

Trρn ≈ TrW n

(TrW )n
=

TrW n

(KTrA)n
. (3.44)

The numerator can be computed by the Wick contraction, and it boils down

to the sum over the all combinations of C† and C. In the diagramatic repre-

sentation, this corresponds to connecting the all combinations of the flavor

indices by the EOW branes. To compute this sum efficiently we can use the

resolvent trick [14]. First let us define the resolvent matrix by

Rij(λ) =

(
1

λ1− ρ

)

ij

=
1

λ
δij +

∞∑

n=1

1

λn+1
(ρn)ij. (3.45)

We also define the resolvent by the trace of the resolvent matrix

R(λ) = TrRij(λ) =
K

λ
+

∞∑

n=1

1

λn+1
Trρn. (3.46)

By above definition R(λ) is a generating function of the moment Trρn. Using

the diagramatic representation (3.43), Rij(λ) is represented by [14]

R = + + +     . . . .

(3.47)

Here each dashed blue line is weighted by 1/λ and carries the flavor index.

The average over the flavor degrees of freedom in the planar approximation

leads to the following Schwinger-Dyson equation [14]:

R = + +R R R

+ RR R +      .   .   . . (3.48)
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Each dashed blue loop associated to the flavor index gives K = Trδij contri-

bution. The gray disk surrounded by n asymptotic boundaries and n EOW

branes gives TrAn contribution. Thus, the diagramatic equation (3.48) is

equivalent to

Rij(λ) =
1

λ
δij +

1

λ

∞∑

n=1

TrAn

(KTrA)n
R(λ)n−1Rij(λ). (3.49)

Here we omit the overline which denotes the flavor average for simplicity.

Taking the trace, we get the Schwinger-Dyson equation for the resolvent

λR(λ) = K +
∞∑

n=1

R(λ)nTrAn

(KTrA)n
. (3.50)

Further we take the average over the color degrees of freedom. In the planar

approximation, we can take the average of the numerator and the denomi-

nator independently. The Schwinger-Dyson equation (3.50) becoms

λR(λ) = K +
∞∑

n=1

R(λ)nZn
(KZ1)n

, (3.51)

where we define Zn by

Zn ≡ ⟨TrAn⟩ =
∫ ∞

0

dEρJT0 (E)A(E)n. (3.52)

Here ρJT0 (E) is the original leading order eigenvalue density (2.103). Plugging

this into (3.51), we get

λR(λ) = K +
∞∑

n=1

R(λ)n

(KZ1)n

∫ ∞

0

dEρJT0 (E)A(E)n

= K +

∫ ∞

0

dEρJT0 (E)
∞∑

n=1

[
R(λ)A(E)

KZ1

]n

= K +

∫ ∞

0

dEρJT0 (E)
w(E)R(λ)

K − w(E)R(λ)
,

(3.53)

where w(E) is defined by

w(E) =
A(E)

Z1

. (3.54)

To summarize, the resolvent R(λ) is a generating function of Trρn and obeys

the Schwinger-Dyson equation (3.53). Thus, we can compute the entangle-

ment entropy by solving (3.53) as we discuss in the next subsection.
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3.1.4 Entanglement spectrum

We compute the entanglement entropy by solving the Schwinger-Dyson equa-

tion (3.53) approximately. We define the eigenvalue density of ρ by

D(λ) =
∑

i

δ(λ− λi), (3.55)

where λi’s are the eigenvalues of ρ. D(λ) is also referred to as the entangle-

ment spectrum. Using D(λ), the entanglement entropy is computed by

S = −
∫ ∞

0

dλD(λ)λ log λ. (3.56)

As one can immediately check, D(λ) can be computed from R(λ) by taking

the discontinuity across the real axis

D(λ) = lim
ϵ→0

R(λ− iϵ)−R(λ+ iϵ)

2πi
. (3.57)

Following [14], let us solve the Schwinger-Dyson equation (3.53) approx-

imately. First we approximate the integral in (3.53) as

λR(λ) ≈ K +

∫ EK

0

dEρJT0 (E)
w(E)R(λ)

K − w(E)R(λ)
+ λ0R(λ), (3.58)

where λ0 and EK are defined by

λ0 =
1

K

∫ ∞

EK

dEρJT0 (E)w(E), (3.59)

K =

∫ EK

0

dEρJT0 (E). (3.60)

In the approximation, we have assumed K ≥ |w(E)R(λ)| for E ≥ EK since

w(E) is a decreasing function of E. Rewriting (3.58) as

R(λ) =
K

λ− λ0
+

1

λ− λ0

∫ EK

0

dEρJT0 (E)
w(E)R(λ)

K − w(E)R(λ)
, (3.61)

we can solve R(λ) by using the iteration starting from

R(λ) =
K

λ− λ0
. (3.62)
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Plugging this into R(λ) in (3.61) and using (3.60), we obtain

R(λ) =
1

λ− λ0

[∫ EK

0

dEρJT0 (E) +

∫ EK

0

dEρJT0 (E)
w(E)

λ− λ0 − w(E)

]

=

∫ EK

0

dEρJT0 (E)
1

λ− λ0 − w(E)
.

(3.63)

By taking the discontinuity (3.57), the entanglement spectrum is given by

D(λ) =

∫ EK

0

dEρJT0 (E)δ(λ− λ0 − w(E)). (3.64)

Note that D(λ) obeys the correct normalization conditions

∫ ∞

0

dλD(λ) =

∫ EK

0

dEρJT0 (E) = K, (3.65)

∫ ∞

0

dλD(λ)λ =

∫ EK

0

dEρJT0 (E)(λ0 + w(E)) = 1, (3.66)

where we have used (3.59) and (3.60). The latter condition (3.66) corresponds

to Trρ = 1. Finally, the entanglement entropy (3.56) can be computed by

S = −
∫ EK

0

dEρJT0 (E)(λ0 + w(E)) log(λ0 + w(E)). (3.67)

We can numerically compute the entanglement entropy as a function of K

by using this result. One can find that the entanglement entropy follows the

Page curve by regardingK as “time.” See also Figure 7 of [14] for the original

result. However, it approaches a constant value at late time of the black hole

evaporation in contrast to the decreasing behavior in Figure 1.2. This result

indicates that the back-reaction of the Hawking radiation is not considered

in the PSSY model. In the next section, we review a slightly generalized

model in JT gravity with dynamical FZZT anti-branes, in which the late

time decreasing behavior of the Page curve is reproduced by including the

back-reaction of branes based on the formalisms discussed in section 2.3.

3.2 Page curve from dynamical branes

In this section, we review a generalized model in the matrix model of JT

gravity with dynamical FZZT anti-branes [20]. As we discussed in section
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2.3, the eigenvalue density of JT gravity is deformed by the the back-reaction

of branes. Then, the entanglement entropy monotonically decreases at late

time of the black hole evaporation in contrast to the PSSY model.

3.2.1 Matrix integral with FZZT anti-branes

We consider the matrix integral with K FZZT anti-branes instead of the

EOW branes of (3.23) in the PSSY model such as

Z =

∫
dHe−TrV (H) det(ξ +H)−K

=

∫
dHdQdQ†e−TrV (H)−TrQ†(ξ+H)Q,

(3.68)

where we set the parameter ξ to be common to all K branes for simplicity.

We also describe the black hole microstates by (3.31), but change the random

variable Q differently from (3.33) as

Q = (ξ +H)−
1
2C. (3.69)

Then the matrix integral (3.68) becomes

Z =

∫
dHdCdC† det(ξ +H)−Ke−TrV (H)−TrC†C , (3.70)

where the determinant factor comes from the integration measure associated

with the transformation (3.69). The ensemble average over C can be com-

puted by using the Wick contraction since C obeys the Gaussian distribution.

In this case, the black hole microstates (3.31) become

|ψi⟩ =
∑

a,b

|b⟩
[
e−

1
2
βH(ξ +H)−

1
2

]
ba
Cai =

∑

a,b

|b⟩(
√
A)baCai, (3.71)

where A(H) is defined by

A(H) =
e−βH

ξ +H
. (3.72)

As in section 3.1, we can compute the entanglement spectrum by using

the resolvent trick. The resolvent obeys almost the same Schwinger-Dyson

equation as (3.53) in the PSSY model. The essential difference from the
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PSSY model is to consider the back-reaction of branes instead of the probe

brane approximation (3.37). Namely, Zn is defined by the full matrix integral

(3.70) which includes the determinant factor as

Zn ≡ ⟨TrAn⟩ =
∫
dH det(ξ +H)−Ke−TrV (H)TrAn. (3.73)

In the planar approximation, Zn can be computed by using the deformed

eigenvalue density ρ0(E) in (2.127) as

Zn =

∫ ∞

E0

dEρ0(E)A(E)
n, (3.74)

where E0 is the threshold energy determined by the genus-zero string equa-

tion (2.128). Thus, the Schwinger-Dyson equation (3.53) becomes

λR(λ) = K +

∫ ∞

E0

dEρ0(E)
w(E)R(λ)

K − w(E)R(λ)
, (3.75)

where w(E) ≡ A(E)/Z1 for (3.72) and (3.74). In a similar manner as in

section 3.1, we can solve this Schwinger-Dyson equation by using iteration.

The results are summarized as follows:

R(λ) =

∫ EK

E0

dEρ0(E)
1

λ− λ0 − w(E)
, (3.76)

D(λ) =

∫ EK

E0

dEρ0(E)δ(λ− λ0 − w(E)), (3.77)

S = −
∫ EK

E0

dEρ0(E)(λ0 + w(E)) log(λ0 + w(E)), (3.78)

where λ0 and EK are defined instead of (3.59) and (3.60) by

λ0 =
1

K

∫ ∞

EK

dEρ0(E)w(E), (3.79)

K =

∫ EK

E0

dEρ0(E). (3.80)

We can also take the probe brane approximation in this model. In that case

we just set E0 = 0 and use the original eigenvalue density ρJT0 (E). We can

numerically compute the Page curve by using the above results. One can

find that the entanglement entropy monotonically decreases at late time in
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the dynamical treatment of the branes while it approaches a constant value

in the probe brane approximation. See also Figure 3 of [20] for the original

results. Thus, we conclude that this is a useful model to investigate the back-

reaction of the Hawking radiation. In section 4.3, we will apply this model

to investigate the effect of the back-reaction to the refined Rényi negativity

for a bipartite Hawking radiation system.

3.2.2 Analytic proof of monotonicity

As with the entanglement entropy, the Rényi entropies for general n > 1 also

monotonically decrease at late time. We review the analytic proof of the

monotonicity in the large ξ limit following [20]. To prove the monotonicity,

we consider only the totally connected replica wormhole which dominates at

late time. We define the “black hole Rényi entropy” by

S
(n)
BH =

1

1− n
log

Zn
Zn

1

. (3.81)

This is the Rényi entrpy (3.4) with TrρnR given by the totally connected

contribution (3.20). We also define the “thermodynamic entropy” by

S
(n)
thrmo = n2∂n

(
− 1

n
log

Zn
Zn

1

)
. (3.82)

This is the refined Rényi entropy (3.5) with TrρnR given by (3.20). Note that

these quantities are equivalent at n = 1 limit,

lim
n→1

S
(n)
BH = lim

n→1
S
(n)
thrmo. (3.83)

We want to prove the monotonicity with respect to the ’t Hooft coupling

∂tS
(n)
BH < 0 for n > 1, 0 < t < tc, (3.84)

where tc is the critical value discussed in the last part of subsection 2.3.2.

From the definition (3.81) it is sufficient to prove

∂tZn
nZn

>
∂tZ1

Z1

for n > 1, (3.85)

or equivalently,

∂n
∂tZn
nZn

> 0 for n > 1. (3.86)
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Note that the derivative of the thermodynamic entropy (3.82) with respect

to the ’t Hooft coupling is given by

∂tSthermo = −n2∂n
∂tZn
nZn

. (3.87)

Thus, the thermodynamic entropy (3.82) also monotonically decreases if the

condition (3.86) holds. We now prove (3.86) in the large ξ limit.

First let us evaluate ∂tZn in (3.86) as

∂tZn =

∫ ∞

E0

dE∂tρ0(E)A(E)
n, (3.88)

where E0 and ρ0(E) depend on t, and we have used ρ0(E0) = 0. To eval-

uate ∂tρ0(E0), it is convenient to use the Itzykson-Zuber variables In(u) ≡
In(u, {tk}) in (2.91). In terms of In(u), the leading eigenvalue density of the

topological gravity (2.102) becomes

ρ0(E) =
1√
2πgs

∫ E

E0

dv
1− I1(−v)√

E − v
. (3.89)

Note that the derivative ∂tIn(u) is independent of what kind of topological

gravity {tk} we consider, since t-dependence in (2.124) is not related to tk.

It is explicitly calculated as

∂tIn(u) =
(2n− 1)!!

(2ξ − 2u)n+
1
2

. (3.90)

From the genus-zero string equation (2.94), we obtain

(∂tE0)(I1(−E0)− 1)− 1√
2(ξ + E0)

= 0. (3.91)

By using (3.90) and (3.91), we can calculate ∂tρ0(E) as

∂tρ0(E) = (∂tE0)∂E0ρ0(E)−
1√
2πgs

∫ E

E0

dv
∂tI1(−v)√
E − v

=
∂tE0√
2πgs

I1(−E0)− 1√
E − E0

− 1√
2πgs

∫ E

E0

dv
∂tI1(−v)√
E − v

=
1

2πgs(ξ + E)

√
ξ + E0

E − E0

.

(3.92)
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Now we know all the dependence of ξ in ∂tZn. Plugging (3.92) into (3.88),

∂tZn can be evaluated in the large ξ limit as

∂tZn =
e−nβE0

2
√
nπβgs

ξ−n−
1
2 +O(ξ−n−

3
2 ). (3.93)

Next we evaluate (3.86) in the large ξ limit. By using (2.127) in which

the dependence of ξ is manifest, Zn can be evaluated as

Zn =
ξ−n√
2nπβgs

∫ ∞

E0

dvI0(2
√
v)e−nβv +O(ξ−n−1). (3.94)

Thus, we obtain

∂tZn
nZn

=
e−nβE0

n
√
2ξ
∫∞
E0
dvI0(2

√
v)e−nβv

+O(ξ−
3
2 ). (3.95)

Note that ∂tZn/nZn is positive since I0(2
√
v) in the denominator is always

positive for v > E0 ≥ Ec
0. Here we define the minimal threshold enegy Ec

0

determined by (2.128) at the critical point t = tc. We can see the positivity of

I0(2
√
v) in Figure 2.8 as the slope of the oscillating function for v > E0, which

comes from the derivative I0(2
√
v) = ∂v[

√
vI1(2

√
v)]. Since ∂tZn/nZn > 0,

to prove (3.86) is equivalent to prove

∂n log
∂tZn
nZn

> 0 for n > 1. (3.96)

The left hand side is calculated as

∂n log
∂tZn
nZn

=

∫∞
E0
dvI0(2

√
v)[nβ(v − E0)− 1]e−nβv∫∞

E0
dvI0(2

√
v)e−nβv

. (3.97)

The denominater is positive as discussed above. The numerator can be cal-

culated by changing the variable u = v − E0 and integrating by part,

(numerator) =

∫ ∞

0

du
I1(2

√
u+ E0)√

u+ E0

ue−nβu. (3.98)

Here the integrand is always positive for any E0 satisfying Ec
0 < E0 < 0 as

seen from the graph of
√
vI1(2

√
v) = (I1(2

√
v)/

√
v)× v in Figure 2.8. Thus,

we have proved (3.96). Hence, the monotonicity (3.84) has been proved in the

large ξ limit. As discussed above, the monotonicity of the thermodynamic

entropy (3.82) has also been proved.
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Chapter 4

Negativity in JT gravity

In this chapter, we investigate the refined Rényi negativity and the capacity

of negativity in JT gravity with dynamical FZZT anti-branes. The aim

of this chapter is to discuss our results [21]. The entanglement negativity

was previously studied in the PSSY model by Dong, McBride, and Weng

[15], and it was found that the entanglement negativity can probe more

elaborate entanglement structure than the entanglement entropy. However,

the back-reaction of the Hawking radiation was not considered. We explore

the back-reaction effects to the negativity by treating the branes as dynamical

objects. We find that the refined Rényi negativity monotonically decreases at

late time due to the back-reaction of branes. We also find that the capacity

of negativity exhibits two peaks as a function of time, which comes from

the exchange of dominance of different types of replica womholes. Thus, we

conclude that the capacity of negativity is a valuable indicator of the phase

transitions of the entanglement structure.

This chapter is organized as follows. In section 4.1, we review the basics

of the entanglement negativity and its Rényi generalizations. By using the

analogy with the capacity of entanglement (3.6), we define a novel quantity,

the “capacity of negativity.” The relation is summarized in Table 4.1. In

section 4.2, we review the negativity spectrum which is analogous to the en-

tanglement spectrum discussed in subsection 3.1.4. All quantities considered

are computed by the negativity spectrum. In section 4.3, we investigate the

refined Rényi negativity and find the late time monotonically decreasing be-

havior. In section 4.4, we explore the capacity of negativity and find that

the capacity of negativity exhibits two peaks as a function of time.
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4.1 Basics of entanglement negativity

In this section, we briefly review the entanglement negativity and its Rényi

generalizations. The entanglement negativity is computed from the eigenval-

ues of a partially transposed density matrix. In particular, we focus on the

refined Rényi negativity as an analogue of the refined Rényi entropy (3.5).

We also define a novel quantity, which we call “capacity of negativity,” as

an analogue of the capacity of entanglement (3.6). The relations among the

statistical mechanical quantities, the refined Rényi entropies, and the refined

Rényi negativities, are summarized in Table 4.1.

4.1.1 Partial transpose

The entanglement negativity [56] is a measure of entanglement in general

mixed states, which is computed from a partially transposed density matrix

[57, 58] of a bipartite quantum system with the Hilbert space H = HA ⊗
HB. For a given density matrix ρAB of the total system AB, the partially

transposed density matrix ρTB
AB is defined by

⟨a, b|ρTB
AB|a′, b′⟩ = ⟨a, b′|ρAB|a′, b⟩, (4.1)

where TB denotes the transposition only on the subsytem B. Recall that a

quantum state is said to be separable if the density matrix factorizes as

ρAB =
∑

m

pmρ
(m)
A ⊗ ρ

(m)
B ,

∑

m

pm = 1, pm ≥ 0. (4.2)

In this case, all eigenvalues of ρTB
AB =

∑
m pmρ

(m)
A ⊗ (ρ

(m)
B )T are non-negative

since every (ρ
(m)
B )T is non-negative by definition of the density matrix ρ

(m)
B .1

However, ρTB
AB can have negative eigenvalues for entangled states. For exam-

ple, it has eigenvalues
{

1
2
, 1
2
, 1
2
,−1

2

}
for Bell states. This fact suggests that

one can define useful measures of entanglement from the eigenvalues of ρTB
AB.

For instance, the entanglement negativity is defined by the sum over the ab-

solute values of the negative eigenvalues of the partially transposed density

1As proven in [58], for 2 × 2 and 2 × 3 matrices, the non-negativity of ρTB

AB is both

necessary and sufficient condition for the state to be separable. However it is not sufficient

for more larger matrices.
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matrix as

N =
∑

i

|λi| − λi
2

=
∑

λi<0

|λi|, (4.3)

where λi’s are the eigenvalues of ρTB
AB. Similarly, the logarithmic negativity

is defined by

E = log

(∑

i

|λi|
)

= log(2N + 1). (4.4)

In the last equatlity we have used the relation

∑

i

λi = TrρTB
AB = TrρAB = 1. (4.5)

Note that N and E vanish if all λi’s are non-negative. In particular, for a

separable state N = E = 0. This implies that when N and E are non-zero

the system is not in a separable state. Thus, we can definitely say that the

system A and the system B are entangled when N and E are non-zero.

4.1.2 Rényi generalization

Let us consider the Rényi generalizations of the entanglement negativity.

The refined Rényi negativity and the capacity of negativity are defined as

analogues of the refined Rényi entropy (3.5) and the capacity of entanglement

(3.6), respectively. First the n-th Rényi negativity is defined by

ZTB(n) = Tr
[(
ρTB
AB

)n]
=
∑

i

(λi)
n. (4.6)

Since the entanglement negativity N in (4.3) and the logarithmic negativity

E in (4.4) are defined by the absolute values of the eigenvalues, we take

different analytic continuations for even and odd replica number n

ZTB(2m,even) =
∑

i

|λi|2m, (4.7)

ZTB(2m−1,odd) =
∑

i

sgn(λi)|λi|2m−1. (4.8)

Then the logarithmic negativity (4.4) is obtained by the following limit

E = lim
m→ 1

2

logZTB(2m,even). (4.9)
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Stat. Mechanics Rényi Entropy Rényi Negativity

β

H

Z(β) = Tr
[
e−β H

]

F (β) = −β−1 logZ(β)

E(β) = −∂β logZ(β)

S(β) = β2 ∂βF (β)

C(β) = −β ∂βS(β)

n

HA = − log ρA

Z
(n)
A = TrA

[
e−nHA

]

F
(n)
A = −n−1 logZ(n)

E
(n)
A = −∂n logZ(n)

S̃
(n)
A = n2 ∂nF

(n)
A

C̃
(n)
A = −n∂nS̃(n)

A

n

HTB = − log ρTB

AB

ZTB(n) = Tr
[
e−nHTB

]

FTB(n) = −n−1 logZTB(n)

ETB(n) = −∂n logZTB(n)

STB(n) = n2 ∂nF
TB(n)

CTB(n) = −n∂nSTB(n)

Table 4.1: The correspondence among the statistical mechanical quantities,

the Rényi entropic quantities, and the Rényi negativities. Here β is the

inverse temperature, and n is the replica number, ρA is the reduced density

matrix and HA is the modular Hamiltonian. In the third column, HTB

denotes the partially transposed version of the modular Hamiltonian and

we ignored the difference between even n and odd n for simplicity.

In this paper, we focus on the refined Rényi negativities 2 [15]

STB(n,even) = −n2∂n

(
1

n
logZTB(n,even)

)
, (4.10)

STB(n,odd) = −n2∂n

(
1

n
logZTB(n,odd)

)
, (4.11)

which are defined in analogy with the refined Rényi entropy (3.5). In section

4.3, we consider the refined Rényi negativities in JT gravity and study the

effect of the back-reaction of branes to these quantities.

Note that there is a natural correspondence among the statistical me-

chanical quantities, the Rényi entropic quantities, and the Rényi negativities

under the appropriate identifications [52, 53, 61] (see Table 4.1). By using

the correspondence in Table 4.1, we define novel quantities which we call the

2Note that STB = limm→1 S
TB(2m−1,odd) is called the “odd entanglement entropy”

or the “partially transposed entropy” [59, 60] since its definition is the same as the von

Neumann entropy with ρAB replaced by ρTB

AB.
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“capacity of negativities” as analogues of the capacity of entanglement

CTB(n,even) = −n∂nSTB(n,even), (4.12)

CTB(n,odd) = −n∂nSTB(n,odd), (4.13)

As shown in [62, 63], the capacity of entanglement exhibits a peak around

the Page time, which comes from the exchange of dominance between the

disconnected saddle and the totally connected replica wormhole. Around the

Page time, several types of replica wormholes including partially connected

ones can also contribute. The capacity of entanglement is sensitive to these

contributions, which is the physical origin of the peak. On the other hand,

there is another dominant saddle which breaks the replica symmetry in the

case of the entanglement negativity [15], as we review later. Thus, we expect

that the capacity of negativity exhibits several peaks around each phase

transition. In section 4.4 we will see that this is indeed the case.

Before closing this section, we present the explicit forms of the refined

Rényi negativity and the capacity of negativity for later use:

STB(n) = −
∑

i

(λi)
n

ZTB(n)
log

|λi|n
ZTB(n)

, (4.14)

CTB(n) =
∑

i

(λi)
n

ZTB(n)

(
log

|λi|n
ZTB(n)

)2

−
(
STB(n)

)2
. (4.15)

Note that these formulas are valid for both even and odd n. By using the

eigenvalue density D(λ) of ρTB
AB (also known as the negativity spectrum),

the sum in the above equations can be replaced by the integral
∫
dλD(λ). In

section 4.3 and 4.4, we will study the refined Rényi negativity in the canonical

ensemble and the capacity of negativity in the microcanonical ensemble using

the negativity spectrum, respectively.

4.2 Negativity spectrum in JT gravity

In this section, we investigate the entanglement negativity in a toy model

of an evaporating black hole. In particular, we consider the entanglement

negativity between a bipartite Hawking radiation system. The Hilbert space

is given by H = HBH ⊗HR where the radiation subspace is further divided
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into two pieces HR = H1 ⊗ H2. The entanglement negativity between H1

and H2 is computed from the partially transposed reduced density matrix

ρT2
R on the radiation system:

ρ = |Ψ⟩⟨Ψ| partial trace−−−−−−−→ ρR = TrBHρ
partial transpose−−−−−−−−−→ ρT2

R , (4.16)

where the state of the total system |Ψ⟩ ∈ H is defined by

|Ψ⟩ = N
K1∑

i1=1

K2∑

i2=1

|ψi1i2⟩BH ⊗ |i1, i2⟩R. (4.17)

We denote the dimensions of the radiation subsystems by K1 = dimH1 and

K2 = dimH2, respectively. The dimension of the total radiation system is

given by K = K1K2. The normalization factor N is determined so that the

norm ⟨Ψ|Ψ⟩ = 1. The aim of this section is to obtain the negativity spectrum

in JT gravity with dynamical FZZT anti-branes. Most computations are

parallel to those of the previous study in the PSSY model [15]. The essential

difference is that we use the deformed eigenvalue density (2.127) to calculate

the path integral of JT gravity.

4.2.1 Dominant saddles

Before calculating the negativity spectrum, we review the dominant sad-

dles which contribute to the entanglement negativity following [15]. The

entanglement negativity has more elaborate phase structure than that of the

entanglement entropy. See also appendix A of [15] for more details. First the

reduced density matrix ρR is calculated from the state (4.17) as

ρR =

K1∑

i1,j1=1

K2∑

i2,j2=1

|j1, j2⟩⟨i1, i2|R⟨ψi1i2|ψj1j2⟩BH, (4.18)

where we have included the normalization factor N in the definition of

|ψi1i2⟩BH for notational simplicity. From the reduced density matrix, we take

the partial transpose on the second subsystem H2 as

ρT2
R =

K1∑

i1,j1=1

K2∑

i2,j2=1

|j1, i2⟩⟨i1, j2|R⟨ψi1i2|ψj1j2⟩BH. (4.19)
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The amplitude ⟨ψi1i2 |ψj1j2⟩BH will be calculated by the gravitational path

integral. As with the case of the entanglement entropy, the n-th moment

Tr(ρT2
R )n is given by the sum over all possible configurations which satisfy the

appropriate boundary conditions. Following [15], the n-th moment Tr(ρT2
R )n

is expressed as the sum over the permutation group Sn

Tr(ρT2
R )n =

1

(KZ1)n

∑

g∈Sn



χ(g)∏

i=1

Z|ci(g)|


K

χ(g−1X)
1 K

χ(g−1X−1)
2 , (4.20)

where χ(g) is the number of disjoint cycles of the permutation g, |ci(g)| is the
length of the i-th disjoint cycle of g, X(X−1) is the (anti-)cyclic permutation

of length n, and Zn is the disk partition function of JT gravity surrounded

by n asymptotic boundaries and n branes as in chapter 3.

To find the dominant saddles, we approximate Zn ∼ eS0 and take the

planar approximation in the large parameter regime eS0 , K ≫ 1. There are

four types of dominant saddles each of which corresponds to a certain element

of the permutation group:

g = 1 for eS0 ≫ K1K2,

g = X for K1 ≫ K2e
S0 ,

g = X−1 for K2 ≫ K1e
S0 ,

g = τ for K1K2 ≫ eS0 , e−S0 ≪ K1/K2 ≪ eS0 ,

(4.21)

where τ denotes the non-crossing pairings. A non-crossing pairing consists

of a certain set of transpositions. The “crossing” or “non-crossing” for an

element of Sn is defined by drawing a corresponding diagram. For example,

let us consider the n = 6 case. An element (13)(24)(56) ∈ S6 is a crossing

pairing represented by the following diagram

1 2 3 4 5 6 , (4.22)

where each pair of numbers transposed is connected by each line. This is a

crossing pairing since the diagram includes a crossing of lines. On the other

hand, an element (12)(36)(45) ∈ S6 is a non-crossing pairing represented by

the following diagram

1 2 3 4 5 6 . (4.23)
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g = 1 g = X g = X−1 g = τ

Figure 4.1: The four dominant saddles [15]. These are the examples of n = 3.

The sums over the first and second flavor indices correspond to the blue

dashed and red dotted loops, respectively. The gravitational path integral

Zn is represented by the gray shaded disks.

This is a non-crossing pairing since the diagram does not include any crossing

of lines. Note that the “crossing” or “non-crossing” is also defined for odd

n, but a pairing for odd n includes a remnant. In general, it is known that

the number of non-crossing pairings in Sn is given by




Cm for n = 2m,

(2m− 1)Cm−1 for n = 2m− 1,
(4.24)

where Cm is the Catalan number

Cm =
1

m+ 1

(
2m

m

)
. (4.25)

As with the Rényi entropy discussed in chapter 3, the n-th moment

Tr(ρT2
R )n can be represented by drawing diagrams as in Figure 4.1. Each

element of the permutation group in (4.20) corresponds to the way to con-

nect the asymptotic boundaries with the branes, whileK1 andK2 correspond

to the index loops. The four dominant saddles g = 1, X,X−1, τ are referred

to as disconnected, cyclically connected, anti-cyclically connected, pairwise

connected saddles, respectively. As seen from Figure 4.1, the pairwise con-

nected saddles are not invariant under the exchange of the replicas while the

other dominant saddles are invariant. Thus, the pairwise connected saddles

spontaneously break the replica symmetry. This is an interesting property

not seen in the case of the entanglement entropy.
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Figure 4.2: Anti-cyclically connected saddle X−1 becomes a planar diagram

by reversing the orientation of the asymptotic boundaries [15].

The contributions of the four saddles for (4.20) before divided by (KZ1)
n

are schematically evaluated as

g = 1 → (eS0)nK,

g = X → eS0Kn
1K

f(n)
2 ,

g = X−1 → eS0K
f(n)
1 Kn

2 ,

g = τ → (eS0)⌈
n
2
⌉K⌊n

2
⌋+1,

(4.26)

where ⌈n
2
⌉ and ⌊n

2
⌋ are ceiling and floor function, and f(n) is defined by

f(n) ≡ χ(X−2) =




1, n odd,

2, n even.
(4.27)

As seen from Figure 4.1, the anti-cyclically connected saddle g = X−1 looks

like a non-planar diagram but it becomes a planar diagram by reversing the

orientation of the asymptotic boundaries (see Figure 4.2). Thus, it does

dominate in a certain parameter regime.

We show a schematic phase diagram among the four dominant saddles

in Figure 4.3. In our study, we particularly focus on a parameter regime

K2 < eS0 where K2 and S0 are fixed. This regime corresponds to a hor-

izontal line with logK2 < S0 in Figure 4.3. Thus, we expect two phase

transitions as variating K1 along the horizontal line. First, a phase transi-

tion occurs between the disconnected and pairwise connected saddles, and

next a transition occurs between the pairwise connected to cyclically con-

nected saddles. Note that several types of planar diagrams other than the

dominant ones can contribute around the phase transitions. As summarized

in (4.20), these contributions can also be described by certain elements of Sn.
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log K1

log K2

Figure 4.3: The phase diagram of the entanglement structure probed by the

entanglement negativity [15].

In particular, elements on the “geodesic” between 1 and X contribute in the

parameter regime which we consider here. It is known that there is a one-to-

one correspondence between such elements and the all planar diagrams. See

also appendix A of [15] and [64] for more details.

4.2.2 Ensemble average

We study the negativity spectrum in the matrix model of JT gravity with

dynamical FZZT anti-branes. The sum over the replica wormholes comes

from the ensemble average in the matrix integral. The matrix integral is

again given by (3.68)

Z =

∫
dHe−TrV (H) det(ξ +H)−K

=

∫
dHdQdQ†e−TrV (H)−TrQ†(ξ+H)Q.

(4.28)

To study the entanglement negativity we divide K into two parts: K =

K1K2. In other words, we consider a bipartite system of the Hilbert space

HR = H1 ⊗H2 with

dimH1 = K1, dimH2 = K2. (4.29)

We denote the components of H,Q by Hab, Qai1i2 , where a, b = 1, . . . , N are

color indices and i1, j1 = 1, . . . , K1, i2, j2 = 1, . . . , K2 are flavor indices. The
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subscript of the flavor indices 1 and 2 correspond to H1 and H2, respectively.

As in chapter 3, the black hole microstates are given by the canonical thermal

pure states

|ψi1i2⟩ =
∑

a

e−
1
2
βH |a⟩Qai1i2 =

∑

a,b

|b⟩
(
e−

1
2
βH
)
ba
Qai1i2 . (4.30)

By changing the variable Q = (ξ +H)−
1
2C, the matrix integral becoms

Z =

∫
dHdCdC† det(ξ +H)−Ke−TrV (H)−TrC†C . (4.31)

Again we can calculate the average over C by using the Wick contraction.

The black hole microstates (4.30) becomes

|ψi1i2⟩ =
∑

a,b

|b⟩
(√

A
)
ba
Cai1i2 , (4.32)

where A(H) is defined by (3.72). The reduced density matrix is defined by

the overlap ⟨ψi1i2|ψj1j2⟩ which is given by

Wi1i2,j1j2 ≡ ⟨ψi1i2 |ψj1j2⟩ =
∑

a,b

AabC
∗
ai1i2

Cbj1j2 . (4.33)

To consider the partially transposed density matrix, we take the partial trans-

pose T2 of W on the second flavor factor H2

(
WT2

)
i1i2,j1j2

= Wi1j2,j1i2 =
∑

a,b

AabC
∗
ai1j2

Cbj1i2 . (4.34)

By using the Wick contraction, the average over the flavor degrees of freedom

can be computed as

Wi1i2,j1j2 = δi1j1δi2j2TrA, (4.35)

(WT2)i1i2,j1j2 = δi1j1δi2j2TrA. (4.36)

Note that the flavor average of WT2 is equal to that of W . As discussed in

[15], one can visualize the above computation by the following diagrams:

Wi1i2,j1j2 = (C†AC)i1i2,j1j2 =
i1

i2

j1

j2

(C†)i1i2a Aab Cbj1j2

, (4.37)
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(
WT2

)
i1i2,j1j2

= (C†AC)i1j2,j1i2 =
i1

i2

j1

j2

(C†)i1j2a Aab Cbj1i2

. (4.38)

Here the black thick curve corresponds to the asymptotic boundary. The blue

dashed curves and the red dotted cureves carry the first and the second flavor

indices, respectively. The reduced density matrix of the radiation system is

again given by (3.30) as

ρi1i2,j1j2 =
Wj1j2,i1i2

TrW
. (4.39)

Thus, the partially transposed density matrix is written as

(
ρT2
)
i1i2,j1j2

=

(
WT2

)
j1j2,i1i2

TrW
. (4.40)

To compute the negativities, we consider the n-th moment Tr
(
ρT2
)n
. In the

planar approximation, we can take the average of the numerator and the

denominator independently

Tr (ρT2)n ≈ Tr (WT2)n(
TrW

)n . (4.41)

The numerator can be computed by using the Wick contraction, and it boils

down to the sum over the all possible combinations of C† and C. Finally

Tr (ρT2)n is expressed as a sum over the permutation group in (4.20)

Tr (ρT2)n ≈ 1

(KTrA)n

∑

g∈Sn



χ(g)∏

i=1

TrA|ci(g)|


K

χ(g−1X)
1 K

χ(g−1X−1)
2 . (4.42)

We also take the average over the color degrees of freedom. Again, in the

planar approximation, we can take the average of the numerator and denom-

inater independently

⟨Tr (ρT2)n⟩ ≈ 1

(K⟨TrA⟩)n
∑

g∈Sn



χ(g)∏

i=1

⟨TrA|ci(g)|⟩


K

χ(g−1X)
1 K

χ(g−1X−1)
2 ,

(4.43)

where ⟨TrAn⟩ is defined by

⟨TrAn⟩ =
∫
dH det(ξ +H)−Ke−TrV (H)TrA(H)n. (4.44)
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g 1 τ X X−1

ZT2(2m,even)

ZT2(2m−1,odd)

1

K2m−1

1

K2m−2

CmZ
m
2

Km−1Z2m
1

(2m− 1)Cm−1Z
m−1
2

Km−1Z2m−2
1

Z2m

K2m−2
2 Z2m

1

Z2m−1

K2m−2
2 Z2m−1

1

Z2m

K2m−2
1 Z2m

1

Z2m−1

K2m−2
1 Z2m−1

1

Table 4.2: The values of Rényi negativities in each dominant saddle [15].

Here Cm is the Catalan number (4.25) which comes from the number of

non-crossing pairings.

In the planar approximation, it is given by Zn in (3.74). If we further take

the probe brane approximation, it is given by (3.52). The values of the

Rényi negativities in each dominant saddle are summarized in Table 4.2.

Around the phase transitions, several types of replica wormholes other than

the dominant ones can contribute to the negativities. Thus, we need to

sum over all possible geometries to study negativities beyond the dominant

phases. However, the sum over the permutation group (4.43) is not useful

to handle. In the next subsection, we invoke the resolvent method which is

useful to sum over the possible geometries in the palanar approximation.

4.2.3 Resolvent trick

To compute the sum (4.43) efficiently in the planar approximation, we use

the resolvent trick discussed in [15]. Let us define the resolvent matrix for

the partially transposed density matrix by

Ri1j1
i2j2

(λ) =

(
1

λ1− ρT2

)i1j1

i2j2

=
1

λ
δi1j1δi2j2 +

∞∑

n=1

1

λn+1

((
ρT2
)n)i1j1

i2j2
.

(4.45)

We denote the flavor indeces associated to H1 as the upper indices and those

associated to H2 as the lower indices for later diagrammatic representations.

We also define the resolvent by

R(λ) = TrRi1j1
i2j2

(λ) =
K

λ
+

∞∑

n=1

1

λn+1
Tr
(
ρT2
)n
, (4.46)
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where we have traced over the both radiation systems H1 and H2. As with

the entanglement spectrum, we can obtain the negativity spectrum D(λ)

by taking the discontinuity of R(λ) across the real axis (3.57). From the

negativity spectrum D(λ), the Rényi negativities in (4.6) are computed by

ZT2(n) = Tr
(
ρT2
)n

=

∫ ∞

−∞
dλD(λ)λn. (4.47)

Similarly, the refined Rényi negativity ST2(n) in (4.14) and the capacity of

negativity CT2(n) in (4.15) are computed by

ST2(n) = −
∫ ∞

−∞
dλD(λ)

λn

ZT2(n)
log

|λ|n
ZT2(n)

, (4.48)

CT2(n) =

∫ ∞

−∞
dλD(λ)

λn

ZT2(n)

(
log

|λ|n
ZT2(n)

)2

−
(
ST2(n)

)2
. (4.49)

Thus, the problem boils down to obtain the negativity spectrum D(λ) from

the resolvent R(λ). To this end, we will write down the Schwinger-Dyson

equation for R(λ) and solve it approximately. Using the diagramatic repre-

sentation (4.38), Ri1j1
i2j2

(λ) in (4.45) is represented by [15]

,
(4.50)

where each pair of dashed blue line and dotted red line is weighted by 1/λ

and carries the flavor indices. Averaging over the flavor degrees of freedom

leads to the following Schwinger-Dyson equation [15]:

.
(4.51)

Here the blue thick curve represents the FZZT anti-branes (EOW branes

in the case of the PSSY model). Each dashed blue loop associated to the

flavor index of H1 gives K1 = Trδi1j1 contribution, and each dotted red loop

associated to the flavor index of H2 gives K2 = Trδi2j2 contribution. The
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gray disk surrounded by n asymptotic boundaries and n branes gives Zn
contribution. For instance, we write down the first few terms of (4.51) in

terms of the powers of R as

Ri1j1
i2j2

=
1

λ
δi1j1δi2j2 +

1

λ

Z1

KZ1

Ri1j1
i2j2

+
1

λ

Z2

(KZ1)2

K2∑

k=1

R̃kkR
i1j1
i2j2

+
1

λ

Z3

(KZ1)3

K2∑

k1,k2=1

R̃k2k1R̃i2k2R
i1j1
k1j2

+ · · · ,
(4.52)

where the matrix R̃kl is defined by the partial trace over the flavor degrees

of freedom associated to H1 as

R̃kl ≡
K1∑

i=1

Rii
kl. (4.53)

In general, the Schwinger-Dyson equation (4.52) is expressed as

Ri1j1
i2j2

=
1

λ
δi1j1δi2j2 +

1

λ

∞∑

n=1

Zn
(KZ1)n

R̃kn−1k1R̃i2k2R̃k1k3 · · · R̃kn−3kn−1R
i1j1
kn−2j2

,

(4.54)

where we omit the sum associated to the products of R̃kl’s for notational

simplicity. As seen from (4.51) or (4.54), the flavor indices associated to H1

are simply self-contracted while the indices associated to H2 are contracted

between the skipped pairs except for the both ends of R̃. As discussed in

[15], the complicated contractions of the second flavor indices are simplified

by using the iteration starting from Ri1j1
i2j2

∝ δi1j1δi2j2/λ. Plugging this into

(4.54), one can find that Ri1j1
i2j2

is proportional to δi1j1δi2j2 to all orders in 1/λ.

Thus, Ri1j1
i2j2

can be expressed as

Ri1j1
i2j2

=
R(λ)

K
δi1j1δi2j2 , (4.55)

where R(λ) denotes the trace of the resolvent matrix over the both flavor

indices. By using this expression, the products of the resolvent matrices in

(4.54) becomes

R̃kn−1k1R̃i2k2R̃k1k3 · · · R̃kn−3kn−1R
i1j1
kn−2j2

=





(
R
K2

)n−1

Ri1j1
i2j2
, n odd,

K2

(
R
K2

)n−1

Ri1j1
i2j2
, n even.

(4.56)
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The factor K2 for even n comes from an extra flavor loop associated to H2.

By using this and taking the trace over the both flavor indices, the Schwinger-

Dyson equation (4.54) becomes

λR = K +K2

∞∑

m=1

Z2m−1

(KK2Z1)2m−1
R2m−1 +K2

2

∞∑

m=1

Z2m

(KK2Z1)2m
R2m. (4.57)

Plugging Zn in (3.74) into this equation leads to geometric series, and the

resulting Schwinger-Dyson equation is given by

λR(λ) = K +K2
2

∫ ∞

E0

dEρ0(E)
w(E)R(λ) (K + w(E)R(λ))

K2K2
2 − w(E)2R(λ)2

, (4.58)

where E0 and w(E) are defined by (2.128) and (3.54), respectively. Note

that this equation reduces to (3.75) at K2 = 1, which corresponds to the

horizontal axis of the phase diagram in Figure 4.3. This equation is valid for

the parameter regimeK2 ≪ K1e
S0 in which three types of saddles g = 1, τ,X

can dominate. See also [15] for other parameter regime K1 ≪ K2e
S0 in which

other three types of saddles g = 1, τ,X−1 can dominate. The Schwinger-

Dyson equations for the two parameter regimes are equivalent by exchanging

K1 and K2. In this thesis, we only focus on the former parameter regime

K2 ≪ K1e
S0 . In the next subsection, we obtain the negativity spectrum by

solving (4.58) approximately.

4.2.4 Negativity spectrum

In a similar manner as in section 3.1, we compute the negativity spectrum

D(λ) by solving the Schwinger-Dyson equation (4.58). Let us approximate

the integral in (4.58) as

λR(λ) ≈ K +K2
2

∫ EK

E0

dEρ0(E)
w(E)R(λ) (K + w(E)R(λ))

K2K2
2 − w(E)2R(λ)2

+ λ0R(λ),

(4.59)

where EK and λ0 are defined by

K = K2
2

∫ EK

E0

dEρ0(E), (4.60)

λ0 =
1

K

∫ ∞

EK

dEρ0(E)w(E). (4.61)
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In the approximation, we have assumed KK2 ≥ |w(E)R(λ)| for E ≥ EK
since w(E) is a decreasing function of E. Rewriting (4.59) as

R(λ) =
K

λ− λ0
+

K2
2

λ− λ0

∫ EK

E0

dEρ0(E)
w(E)R(λ) (K + w(E)R(λ))

K2K2
2 − w(E)2R(λ)2

, (4.62)

we can solve R(λ) by using the iteration starting from

R(λ) =
K

λ− λ0
. (4.63)

Plugging this into (4.62) and using (4.60), we obtain

R(λ) ≈ 1

λ− λ0


K2

2

∫ EK

E0

dEρ0(E) +

∫ EK

E0

dEρ0(E)
w(E) (λ− λ0 + w(E))

(λ− λ0)2 −
(
w(E)
K2

)2




=

∫ EK

E0

dEρ0(E)


 K2(K2 + 1)

2
(
λ− λ0 − w(E)

K2

) +
K2(K2 − 1)

2
(
λ− λ0 +

w(E)
K2

)


 .

(4.64)

Note that this solution is consistent with the large λ behavior of the resolvent

R(λ) = K/λ + O(λ−2). By taking the discontinuity (3.57), the negativity

spectrum is given by

D(λ) =

∫ EK

E0

dEρ0(E)

[
K2(K2 + 1)

2
δ1(λ,E) +

K2(K2 − 1)

2
δ2(λ,E)

]
,

(4.65)

where we define δ1(λ,E) and δ2(λ,E) by

δ1(λ,E) = δ

(
λ− λ0 −

w(E)

K2

)
, (4.66)

δ2(λ,E) = δ

(
λ− λ0 +

w(E)

K2

)
. (4.67)

One can check that the negativity spectrum D(λ) satisfies the correct nor-

malization conditions
∫ ∞

−∞
dλD(λ) = K,

∫ ∞

−∞
dλD(λ)λ = 1, (4.68)

which correspond to Tr1 = K and Tr
(
ρT2
)
= 1, respectively. In the next

section, we will numerically study the refined Rényi negativity by using the

negativity spectrum (4.65).
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4.3 Refined Rényi negativity

In this section we study the refined Rényi negativity ST2(n) by including the

back-reaction of branes. We discuss one of the main results of our study [21].

We consider ST2(n) as a function of K1 with fixed K2 and gs. We particularly

focus on the parameter regime logK2 < g−1
s . This regime corresponds to

a horizontal line of the phase diagram with logK2 < S0 in Figure 4.3. We

expect the phase transitions between different saddles labeled by g = 1, τ,X.

We find numerically that ST2(n) decreases monotonically at late time of the

black hole evaporation. It turns out that this decreasing behavior of ST2(n)

can be proved analytically in the large ξ limit by using the relation (4.70)

with the refined Rényi entropy.

Let us study the behavior of ST2(n) for n = 2 as a typical example.

By using (4.47) and (4.48) with (4.65), we can compute the refined Rényi

negativity ST2(n) numerically. Here we use the deformed eigenvalue density

(2.127) to consider the back-reaction of branes. As a comparison, we also

compute ST2(n) with the original eigenvalue density (2.103) in the probe

brane approximation. The results are shown in Figure 4.4. As we can see

from Figure 4.4, in the dynamical brane case (orange crve) ST2(n) exhibits a

monotonically decreasing behavior at late time of the black hole evaporation,

while ST2(n) approaches a constant value in the probe brane approximation

(blue curve).

As advertised above, we can analytically prove the decreasing behavior

of ST2(n) in the large ξ limit by using the result of section 3.2. To capture

the late time behavior, we define the “thermodynamic negativity” by the

cyclically connected saddle g = X since it gives a dominant contribution to

ST2(n) at late time. As shown in Table 4.2, the cyclically connected part of

ZT2(n) is given by

ZT2(n)|g=X =
Zn

K
n−f(n)
2 (Z1)n

, f(n) ≡




1, n odd,

2, n even.
(4.69)

Thus, by using the definitions (4.10) and (4.11), the thermodynamic nega-

tivity is given by

S
T2(n)
thermo = S

(n)
thermo + f(n) logK2, (4.70)

where S
(n)
thermo is the “thermodynamic entropy” in (3.82). As analytically
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Figure 4.4: Plot of the refined Rényi negativity (4.48) for n = 2 as a func-

tion of logK1. The solid orange and blue curves are dynamical and probe

brane cases, respectively. We set ξ = 50, β = 4, gs = 1/50, K2 = 2 in this

figure. The “thermodynamic negativity” (4.70) for the dynamical and the

probe brane cases are represented by the orange and the blue dashed curves,

respectively.

proved in section 3.2, S
(n)
thermo monotonically decreases as a function of t = gsK

in the large ξ limit. From (4.70), this immediately implies that S
T2(n)
thermo mono-

tonically decreases as a function of K1 with fixed K2 and gs. Thus, we con-

clude that ST2(n) monotonically decreases at late time since S
T2(n)
thermo gives the

dominant contribution at late time. In Figure 4.4, the thermodynamic nega-

tivity S
T2(n)
thermo is plotted by the dashed orange curve, which clearly approaches

ST2(n) (solid orange curve) at late time.

We comment on an interesting observation about (4.70) related to the

bulk entanglement wedge cross section [65, 66] which is defined by the mini-

mal cross section of the entanglement wedge in the semiclassical picture.3 As

3In two-dimensional gravities such as JT gravity, the area of the entanglement wedge

cross section is not well defined since a constant time-slice of the bulk is one-dimensional

and the entanglement wedge cross section becomes a point. In JT gravity, the area of a

point is replaced by the value of dilaton at that point.
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discussed in [59], a quantitiy defined by

EW = ST2(ρAB)− SvN(ρAB) (4.71)

can be identified with the bulk entanglement wedge cross section EW in the

semiclassical limit. Here ST2(ρAB) and SvN(ρAB) denote the n → 1 limit of

the refined Rényi negativity and the von Neumann entropy, respectively. It is

known that the entanglement wedge cross section EW and the entanglement

entropies SA, SB satisfy the following inequalities [65]

EW (ρAB) ≤ min{SA, SB} ≤ logmin{dimHA, dimHB}. (4.72)

In our case we consider a bipartite radiation system HR = H1 ⊗H2. At late

time the cyclically connected part of EW is dominant and it is given by the

n→ 1 limit of (4.70)

EW |g=X = lim
n→1

[
S
T2(n)
thermo − S

(n)
thermo

]
= logK2, (4.73)

which saturates the bound in (4.72). This means that the radiation system

HR = H1 ⊗H2 is maximally entangled at late time. We have obtained this

result in a toy model of JT gravity with branes. However, we speculate that

this is a general feature of black holes in arbitrary dimensions: Hawking

quanta becomes maximally entangled at late time of the evaporation.

As we can see from Figure 4.4, the refined Rényi negativity does not

exhibit clear signal of the phase transitions between different saddles labeled

by g = 1, τ,X. It turns out that the capacity of negativity is a better

indicator of the phase transitions, as we will see in the next section.

4.4 Capacity of negativity

In this section we study the capacity of negativity CT2(n) in the microcanoni-

cal ensemble. We discuss another main result of our study [21]. We find that

the capacity of negativity exhibits two peaks around the phase transitions as

a function of K1 with fixed K2.
4

4The capacity of negativity does not exhibit any peaks in the approximation (4.65).

Here we instead consider the microcanonical ensemble in which the Schwinger-Dyson equa-

tion (4.58) for the resolvent can be solved analytically.
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4.4.1 Microcanonical ensemble

To compute the capacity of negativity (4.49), we first review the negativ-

ity spectrum D(λ) and its phase transitions in the microcanonical ensemble

[15]. We focus on some small energy window [E,E +∆E] and introduce the

microcanonical variables as

eS = ρ(E)∆E, Zn = ρ(E)A(E)n∆E, w(E) =
A(E)

Z1

= e−S. (4.74)

This corresponds to consider HBH with dimHBH = eS. Then the Schwinger-

Dyson equation (4.58) reduces to a qubic equation

R3 +

(
eSK2

2 −K

λ

)
R2 + e2SKK2

2

(
1

λ
−K

)
R +

e2SK3K2
2

λ
= 0. (4.75)

This equation can be simplified as

zG(z)3 + (β − 1)G(z)2 + (α− z)G(z) + 1 = 0, (4.76)

where we define the rescaled variables,

z = K2e
Sλ, G(z) =

e−SR(λ)

KK2

, α =
eS

K1

, β =
eSK2

K1

. (4.77)

This cubic equation can be solved analytically [67]

G(z) =
e−iθQ1(z)(

Q2(z) +
√
P (z)

)1/3 − eiθ
(
Q2(z) +

√
P (z)

)1/3
+

1− β

3z
, (4.78)

where θ = π/3 and,

Q1(z) =
3z(α− z)− (β − 1)2

9z2
, (4.79)

Q2(z) =
9z(β − 1)(α− z)− 27z2 − 2(β − 1)3

54z3
, (4.80)

P (z) = Q1(z)
3 +Q2(z)

2. (4.81)

From the solution of G(z) in (4.78), we can compute the negativity spec-

trum D(λ) by taking the discontinuity of G(z) as in (3.57). In what follows,

we will consider D(λ) as a function of K1 with fixed K2 and S. As we vary
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Figure 4.5: Plot of the negativity spectrum obtained from the discontinuity

of G(z) in (4.78). Here we set the parameters S = 12, K2 = 50. (a), (b), (c)

correspond to the dominant saddles g = 1, τ,X, respectively.

K1, there appear three phases for D(λ) corresponding to three saddles la-

beled by g = 1, τ,X [15]. Let us take a closer look at the behavior of D(λ)

in each phase. As shown in Figure 4.5a, when the saddle labeled by g = 1
is dominant, D(λ) has a support on the positive λ axis. In the phase where

the g = τ saddle is dominant (see Figure 4.5b), D(λ) has a support on the

negative λ axis as well. This means that the partially transposed density

matrix ρT2 has negative eigenvalues and the two systems H1 and H2 become

entangled. If we further increase K1, we land on the phase where the g = X

saddle is dominant (see Figure 4.5c). In this case, the support of D(λ) is a

disjoint union of a negative λ region and a positive λ region.

Now let us consider the conditions to determine the support of D(λ)

and its phase transition points. The negativity spectrum D(λ) behaves as a

fractional power in λ near the edges of the support and hence its derivative

diverges there. Thus, we can determine the edges of the support of D(λ)

from singularities of dR/dλ, since D(λ) is obtained from the discontinuity

(3.57) of R(λ). From (4.78), we find the support of D(λ) is determined by

the condition P (z) ≥ 0, and the zeros of P (z) correspond to the edges of

D(λ). To find the transition points, it is convenient to define the polynomial

part of P (z) by f(z) = z4P (z). The transition between g = 1 and g = τ

occurs when the left edge of the support of D(λ) approaches λ = 0. This

condition is given by f(0) = 0, from which K1 is determined as

K1 =
eS
(
K2 −

√
K2

2 − 1
)

2
. (4.82)

The transition between g = τ and g = X corresponds to a point where the
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support of D(λ) starts to split into two disjoint regions. This is determined

by the condition that f(z) has a double root. In other words, the discriminant

of f(z) becomes zero at this transition point. From the discriminant of f(z),

we find that the critical value of K1 is determined by the following cubic

equation

64K3
1 − 48eSK2K

2
1 −

(
15K2

2 − 27
)
e2SK1 − e3SK2

2 = 0. (4.83)

In the next subsection, we compute the capacity of negativity and show that

it exhibits two peaks around these transition points.

4.4.2 Capacity of negativity

Let us consider the capacity of negativity CT2(n) in the microcanonical en-

semble using the result of D(λ) in the previous subsection. First we evaluate

CT2(n) in each dominant saddle. From the definition of CT2(n) in the third

column of Table 4.1, one can show that CT2(n) is written as

CT2(n) = n2∂2n logZ
T2(n). (4.84)

This is valid for both even and odd n. In each phase, we can replace ZT2(n) by

each saddle-point value summarized in Table 4.2. In general, the saddle-point

values of ZT2(n) in Table 4.2 take the form

ZT2(n) = a(n)bn+c, (4.85)

where b and c are n-independent constants. Plugging (4.85) into (4.84), we

find

CT2(n) = n2∂2n log a(n). (4.86)

Namely, b and c in (4.85) do not contribute to CT2(n).

From the first column of Table 4.2, ZT2(n) = 1/Kn−1 for the disconnected

saddle g = 1, which implies that CT2(n) vanishes when the disconnected

saddle g = 1 is dominant. From the second column of Table 4.2, CT2(n) for

the pairwise connected saddle g = τ is given by

CT2(n,even) =
n2

4

[
ψ(1)

(
n+ 1

2

)
− ψ(1)

(n
2
+ 2
)]

, (4.87)

CT2(n,odd) = −1 +
n2

4

[
ψ(1)

(n
2

)
− ψ(1)

(
n+ 3

2

)]
, (4.88)
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where ψ(m)(z) is the polygamma function of order m, which comes from

the derivative of the Catalan number Cm or Cm−1. The first term −1 in

(4.88) comes from the derivatives of the factor (2m − 1) in ZT2(2m−1,odd).

Interestingly, the values of CT2(n) in (4.87) and (4.88) depend only on the

replica number n and they are independent of the other parameters K1, K2

and S. This property comes from the fact that the parameter dependence is

contained in the factor bn+c in (4.85) which does not contribute to CT2(n) as

we saw in (4.86). From the third column of Table 4.2, CT2(n) for the cyclically

connected saddle g = X is given by

CT2(n) = n2∂2n logZn. (4.89)

In the microcanonical ensemble, CT2(n) in (4.89) vanishes since Zn in (4.74)

takes the form of bn+c. Thus, the capacity of negativity takes a nontrivial

values only in the phase where the saddle g = τ is dominant.

Now let us compute the capacity of negativity CT2(n) in the microcanon-

ical ensemble using the definitions in (4.47), (4.48) and (4.49) with the neg-

ativity spectrum calculated by the discontinuity of G(z) in (4.78). In Figure

4.6 we show the plot of CT2(n) for n = 1 as a function of K1 with fixed K2 and

S. As we see from Figure 4.6, the capacity of negativity (blue curve) exhibits

two peaks around the transition points determined by the conditions (4.82)

and (4.83) (dashed vertical lines). Between the two peaks, CT2(n) approaches

a saddle-point value for g = τ (dashed orange line) given by (4.88). The loca-

tions of peaks do not exactly match the transition points of D(λ) determined

by the conditions (4.82) and (4.83) since the capacity of negativity CT2(n) is

an integrated function of D(λ). However, we have checked that (4.82) and

(4.83) give a qualitatively good approximation of the locations of peaks for

various values of K2, S and n. From Figure 4.6, we also observe that CT2(n)

approaches zero in the small and large K1 limits. This is consistent with the

fact that the saddle-point values of CT2(n) vanish for g = 1 and g = X.

Near the transition points, the saddle-point approximation breaks down

and we cannot ignore the sub-leading corrections in (4.43) coming from the

general elements g in the permutation group Sn other than the dominant

saddles g = 1, τ,X. This is the physical origin of the peaks of CT2(n) we ob-

served in Figure 4.6. This is in contrast to the behavior of the refined Rényi

negativity ST2(n) (see Figure 4.4) which does not exhibit a clear signal of the
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Figure 4.6: Plot of the capacity of negativity (4.49) for n = 1 as a function

of logK1. We set K2 = 50,S = 12 in this figure. The two vertical dashed

blue lines are the transition points determined by (4.82) and (4.83). The

horizontal dashed orange line is the value of (4.88) at n = 1.

phase transitions. In CT2(n) the phase transitions manifest itself as two peaks,

which suggests that CT2(n) is a better indicator of the phase transitions than

ST2(n). Indeed, in many physical systems it is useful to consider the suscep-

tibility defined by a second derivative of the free energy with respect to an

external field in order to search for possible phase transitions. In our case, the

capacity of negativity CT2(n) plays the role of the susceptibility of entangle-

ment in the bipartite system H1⊗H2. In fact, CT2(n) in (4.84) represents the

variance of the partially transposed modular Hamiltonian HT2 = − log ρT2

1

n2
CT2(n) =

〈
(HT2)2

〉
n
−
〈
HT2

〉2
n

=
〈
(HT2 −

〈
HT2

〉
n
)2
〉
n
,

(4.90)

where ⟨O⟩n is defined by

⟨O⟩n =
Tr(Oe−nHT2 )

Tr(e−nH
T2 )

. (4.91)

Near the phase transition the fluctuation of HT2 becomes large, which is

observed as the peak of CT2(n).
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Chapter 5

Discussion

In this chapter, we summarize our results and discuss open questions. We

studied the refined Rényi negativity and the capacity of negativity in JT

gravity with dynamical FZZT anti-branes, which serves as a toy model of

an evaporating black hole. The new original results are summarized by the

plots in Figure 4.4 and Figure 4.6.

First, we considered the refined Rényi negativity with dynamical FZZT

anti-branes. The deformation of the eigenvalue density of JT gravity by the

branes played the essential role in the computation. As seen from Figure

4.4, we find that the refined Rényi negativity monotonically decreases at

late time of the evaporation due to the back-reaction of branes, while it

approaches a constant value in the probe brane approximation. We can easily

understand the decreasing behavior by using the relation (4.70) between the

totally connected part of the refined Rényi negativity and the refined Rényi

entropy. The n → 1 limit of the refined Rényi negativity is related to the

bulk entanglement wedge cross section in the semiclassical picture, which

saturates the inequality (4.72) at late time of the evaporation. This means

that the Hawking quanta become maximally entangled at late time of the

black hole evaporation.

Next, we considered the capacity of negativity in the microcanonical en-

semble, in which the Schwinger-Dyson equation can be exactly solved. As

seen from Figure 4.6, we find that the capacity of negativity exhibits two

peaks around the phase transitions, reflecting the fact that the entanglement

negativity can probe more elaborate entanglement structure than the entan-

glement entropy. Moreover, in the pairwise connected phase which arises
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in-between the two peaks, the capacity of negativity approaches a universal

constant value which only depends on the replica number. We conclude that

the capacity of negativity is an valuable inidicator of the phase transitions

among the different entanglement phases in general mixed states.

Open questions

There are many interesting open questions. We studied the refined Rényi

negativity and the capacity of negativity in the planar approximation. How-

ever, near the end of the evaporation the black hole becomes very small and

we cannot ignore the quantum corrections. It would be interesting to study

the higher genus corrections to the entanglement negativities in JT gravity.

To this end we need to develop a method of computing the non-planar cor-

rections to the resolvent of ρT2 . Moreover, it would be very interesting to

compute the entanglement negativities non-perturbatively in gs.

It would be interesting to study the capacity of negativity in the canonical

ensemble. We expect that the qualitative feature will also hold in the canoni-

cal ensemble: the capacity of negativity exhibits two peaks around the phase

transitions. The main difference between the microcanonical and canonical

ensembles is the late time behavior (4.70). One of the advantages of the

canonical ensemble is that we can study the quantities using the density of

states in JT gravity with the effect of the backreaction of branes.

Actually we tried to compute the capacity of negativity in the canonical

ensemble. However, it does not exhibit any peaks around the phase tran-

sitions by using the negativity spectrum (4.65). On the other hand, there

is a trick to find a peak of the capacity of entanglement in the canonical

ensemble [62]. Namely, we need to determine the minimal eigenvalue λ0 of

the entanglement spectrum by solving the derivative of the Schwinger-Dyson

equation dλ/dR = 0 numerically. We studied the capacity of negativity in

a similar manner. However, it was difficult to find a solution of dλ/dR = 0

because the Schwinger-Dyson equation for the negativity resolvent is more

complicated than that of the entanglement entropy. We leave the computa-

tion of the capacity of negativity in the canonical ensemble as an interesting

future problem.

We introduced the capacity of negativity as a natural analogue of the

capacity of entanglement. The authors of [61] studied the capacity of entan-
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glement in a two-dimensional dilaton gravity coupled to conformal matter

with a large central charge. This is a useful model where the island for-

mula [9, 10, 11] for the entanglement entropy of the Hawking radiation was

explicitly tested for the first time. Also, the island contributions to the en-

tanglement negativity was studied in [68]. It would be interesting to consider

the capacity of negativity in such a model and to study the contributions of

the island along the line of these studies.

It is also interesting to consider the holographic dual of the capacity of

negativity. As discussed in [69, 70], the holographic dual of the capacity of

entanglement is described by the graviton fluctuation around the minimal

surface associated with holographic refined Rényi entropy. As we mentioned

in section 4.3, the refined Rényi negativity is related to the bulk entanglement

wedge cross section which is the minimal cross section of the entanglement

wedge in the semiclassical picture. We speculate that the holographic dual

of the capacity of negativity is described by the graviton fluctuation around

the entanglement wedge cross section. Furthermore, the entanglement wedge

cross section is also related to the reflected entropy [71]. It would be interest-

ing to consider “refined Rényi reflected entropy” and its capacity. We expect

that we can extract more detailed information about the entanglement struc-

ture by using these generalization of quantum information quantities.
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