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Abstract

In this thesis, we explore some aspects of quantum entanglement in quantum
gravity. In particular, we investigate the refined Rényi negativity in Jackiw-
Teitelboim (JT) gravity. The refined Rényi negativity is a one-parameter
generalization of the entanglement negativity which is a measure of entangle-
ment in general mixed states. The parameter introduced is called the replica
number. JT gravity is a two-dimensional toy model of quantum gravity and is
described by a certain double-scaled random matrix model. Several types of
“replica wormholes” contribute to the refined Rényi negativity, which plays
the essential role in our study.

The aim of our work is to provide a deeper understanding of the entan-
glement structure of the Hawking radiation. To this end, we consider the
matrix model of JT gravity with dynamical branes, which serves as a toy
model of an evaporating black hole. We identify the degrees of freedom of
the Hawking radiation with the branes in this model. The model provides
an effective method to investigate the back-reaction of the Hawking radia-
tion. The replica wormholes appear as the connected parts of the ensemble
average of the matrix integral. We compute the refined Rényi negativity for
a bipartite system of the Hawking radiation.

We find that the refined Rényi negativity monotonically decreases due to
the back-reaction at late time of the black hole evaporation. The decreasing
behavior is understood in the same way as the “Page curve” of the entangle-
ment entropy. Moreover, we define a novel quantity which we call “capacity
of negativity,” as a derivative of the refined Rényi negativity with respect
to the replica number. We find that the capacity of negativity exhibits two
peaks as a function of time. The peaks indicate the phase transitions of
the entanglement structure of the Hawking radiation, which comes from the

exchange of dominance of different types of replica wormholes.
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Chapter 1

Introduction

In this chapter, we explain the backgrounds of our work and give a brief
summary of this thesis. Our work is motivated by the recent progress in
the black hole information paradox and quantum gravity. In this thesis, we
particularly focus on the applications of the matrix model of JT gravity to
the black hole information paradox.

The black hole information paradox is a long-standing puzzle whether the
time evolution of black holes is unitary or not. Such a problem arises when
we consider the black holes with quantum effects, namely the Hawking radia-
tion. The information paradox is formulated by calculating the entanglement
entropy of the Hawking radiation. Recently, the information paradox is par-
tially resolved by applying novel computational methods developed in the
study of quantum gravity. The new findings include some important ingre-
dients such as “island” and “replica wormholes.” In particular, the replica
wormholes play the essential roles in our study.

On the other hand, JT gravity is a two-dimensional toy model of quantum
gravity. Recently, the matrix model description of JT gravity was discovered
and has been applied to many important problems in quantum gravity, such
as the quantum chaos, the factorization problem, and the black hole infor-
mation paradox. Our work is based on the recent developments of the matrix
model of JT gravity. Namely, the aspect of JT gravity as a specific example
of the two-dimensional topological gravity is essential.



Black hole information paradox

We first review the recent progress in the black hole information paradox.
See also [1] for a recent review and for further references. Black holes are
extremely massive objects and thought to be formed by the gravitational
collapse of massive stars [2]. Classically, black holes can only gain their
masses and the area of the event horizon can only increase [3]. However,
black holes lose their masses by emitting thermal radiation and will finally
evaporate out if we consider the quantum effects of matter on the classical
black hole background. This effect is called the Hawking radiation [4]. The
Hawking radiation consists of entangled pairs of particles, one of the pair
goes inside the black hole while the other escapes to infinity. If the black
hole completely evaporates, only the Hawking radiation outside the black
hole will remain. We show a schematic picture of the process of the black
hole evaporation in Figure 1.1.

Hawking [5] pointed out the possibility that the black hole evaporation
would violate the unitarity. This is the original black hole information para-
dox. If the time evolution is unitary, an initial pure state must evolve to a
final pure state. However, the final state of the black hole seems to be a ther-
mal mixed state even though we start from an initial pure state. The para-
dox is formulated by calculating the entanglement entropy of the Hawking
radiation. Hawking expected that the entanglement entropy of the Hawk-
ing radiation keeps growing until the black hole completely evaporates out
(shown as the green curve in Figure 1.2). This calculation indicates that the
final state of the total system is the thermal mixed state. Thus, the black
hole evaporation seems to violate the unitarity.

Page [6, 7] found a necessary condition for the time evolution of black
holes to be unitary. He found that the entanglement entropy follows the
“Page curve” as a function of time if the time evolution of black holes is
unitary. The entanglement entropy first increases and turns to decrease at a
time called the “Page time” (shown as the blue curve in Figure 1.2). As seen
from Figure 1.2, the entanglement entropy is bounded by the thermodynamic
entropy of the black hole after the Page time. The thermodynamic entropy is
called the Bekenstein-Hawking entropy [8] which is proportional to the area of
the event horizon of the black hole. The late time decreasing behavior comes
from the decreasing area of the event horizon as the black hole evaporates
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Figure 1.1: Schematic picture of black hole evaporation [1]. (a) Black hole
is formed by gravitational collapse. (b) Black hole creates entangled pairs of
particles. (c¢) Black hole evaporates out and Hawking radiation remains.

by emitting the Hawking radiation. This effect is called the “back-reaction”
of the Hawking radiation. However, Page’s discussion was limited in a non-
gravitational toy model which approximates the state of the total system by
a random pure state. How to obtain the Page curve in gravitating systems
has been a long-standing problem.

Island formula and replica wormholes

The recent studies revealed how to calculate the entanglement entropy follow-
ing the Page curve in semiclassically gravitating systems. The entanglement
entropy of the Hawking radiation at a constant time can be calculated by
the following “island formula” [9, 10, 11]

A1)
4G

S = min; {extf { + Smatter (I U R)} } , (1.1)

where I and R are subregions of the Cauchy surface at the time. The region
I is called the “island” which locates inside the black hole. The region R
is the “radiation” region where we collect the Hawking radiation outside
the black hole. The first term comes from the area of the codimension-two
surface which is the boundary of the island I. The second term comes from
the Hawking radiation in the region I U R. From the island formula (1.1),
the Page curve is reproduced as follows: (i) there is no island contribution at
early time, and the entanglement entropy is just given by the contribution
from the increasing Hawking radiation in the region R, (ii) the island covers a
large region inside the black hole at late time, and the first term approaches

the Bekenstein-Hawking entropy while the second term goes to zero. The
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Figure 1.2: A schematic picture of the Page curve [1]. If the time evolution of
the black hole is unitary, the entanglement entropy of the Hawking radiation
follows the Page curve described by the blue curve in the figure.

second term goes to zero at late time since the Hawking radiation in R is
purified by the interior partner in . The island formula is developed in recent
study of quantum gravity, in particular the AdS/CFT correspondence.

The recent studies also revealed the connection between the spacetime
topology and the quantum entanglement. The island formula can be obtained
by using the replica trick in gravitational systems [12]. It was found that
geometric objects called the “replica wormholes” play the essential role to
obtain the island formula [13, 14]. The replica trick is a trick to calculate
the entanglement entropy by preparing the copies of the original system.
The replica wormholes are geometric objects connecting the different copies.
They appear as the nontrivial saddles in the gravitational path integral. The
transition of the Page curve can be understood by the exchange of dominance
between the different types of replica wormholes. The “disconnected” saddle
dominates before the Page time while the “connected” one dominates after
the Page time. These two saddles are invariant under the exchange of the
replicas. This symmetry is called the replica symmetry.



This thesis

In this thesis, we investigate the entanglement negativity in a toy model of
an evaporating black hole. It was found by Dong, McBride, and Weng [15]
that the entanglement negativity can probe more elaborate entanglement
structure of the Hawking radiation than the entanglement entropy. Inter-
estingly, certain replica wormholes which break the replica symmetry can
dominate in the calculation of the entanglement negativity. The dominant
replica wormhole corresponds to a certain phase of the entanglement struc-
ture of the Hawking radiation. The aim of our work is to refine the previous
work and provide a deeper understanding of the relation between the replica
wormholes and the entanglement structure of the Hawking radiation.

In particular, we explore the refined Rényi negativity which is a one-
parameter generalization of the entanglement negativity. The parameter
introduced is called the replica number. We find that the refined Rényi neg-
ativity monotonically decreases at late time of the black hole evaporation.
This decreasing behavior is similar to the decreasing behavior of the Page
curve. Moreover, we define a novel quantity which we call “capacity of neg-
ativity” as a derivative of the refined Rényi negativity with respect to the
replica number. We find that the capacity of negativity exhibits two peaks as
a function of time, which comes from the exchange of dominance of different
types of replica wormholes. Thus, the capacity of negativity is a valuable
indicator of the phase transitions of the entanglement structure.

Summary and organization

In this section, we give a brief summary of the remainder of this thesis.

Chapter 2

We review the random matrix model of JT gravity [16] and its extension
[17] with dynamical Fateev-Zamolodchikov-Zamolodchikov-Teschner (FZZT)
anti-branes [18, 19]. The aim of this chapter is to obtain the leading eigen-
value density po(F) of the matrix model, which is deformed from the original
one by the insertion of the FZZT anti-branes. We call this effect the “back-
reaction of branes.” The eigenvalue density po(F) is related to the partition



function Z(B) of JT gravity by the following Laplace transformation

2) = [ dBe T pE) (1.2)
Eg

where Ej is the minimal energy such that py(F) is supported for E > Ej.
As we will review in section 2.2, JT gravity is a kind of two-dimensional
topological gravity which is described by a certain double-scaled random
matrix model with infinitely many couplings {¢x}. One can compute Z([3)
from a generating function F'({¢;}) defined in the topological gravity. In this
formalism, adding FZZT anti-branes amounts to the shift of the couplings
{tx} in (2.124), and one can compute Z(f) from F({tx}) with the resulting
couplings. Finally, po(F) is given by the following expression:

L (F et [E-E
PolE) </E WU E+e\ 2R +5>> 13

~ V2rg,

where ¢ denotes the 't Hooft coupling which is proportional to the number of

branes. It reduces to the original eigenvalue density p)*(E) by setting t = 0,

Ty sinh(2v/E)
Pt (B) = ~org.

In chapter 3 and 4, we investigate the back-reaction effects to the entan-

(1.4)

glement entropy and the refined Rényi negativity by using the deformed
eigenvalue density (1.3) rather than the original one (1.4).

Chapter 3

We review the recent progress in the black hole information paradox. The
aim of this chapter is to explain the methods employed in this study. In
particular, we focus on the Penington-Shenker-Stanford-Yang (PSSY) model
[14], a toy model of an evaporating black hole in JT gravity with the end
of the world (EOW) branes. In the PSSY model, the Page curve of the
entanglement entropy is calculated by summing over the several types of
replica wormholes. The sum is efficiently calculated by solving the Schwinger-
Dyson equation (3.53). The entanglement entropy approaches a constant
value at late time of the black hole evaporation since the back-reaction of

branes is not considered. Namely, the original eigenvalue density (1.4) is used
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to calculate the path integral of JT gravity. The constant value at late time
corresponds to the constant thermodynamic entropy. Thus, the black hole in
this model is approximated to be eternal, but emits the Hawking radiation.

On the other hand, we also review a generalized model [20] in the matrix
model of JT gravity with dynamical FZZT anti-branes. We can use the
similar methods to calculate the entanglement entropy as in the PSSY model.
Interestingly, the entanglement entropy monotonically decreases at late time
in the generalized model by considering the back-reaction of branes. This
decreasing behavior is the consequence of the deformed eigenvalue density
(1.3). Thus, the generalized model is useful to explore the effects of the
black hole evaporation. In chapter 4, we apply this model to the case of the

refined Rényi negativity to investigate the effects of the back-reaction.

Chapter 4

We investigate the refined Rényi negativity and the capacity of negativity
in JT gravity with dynamical FZZT anti-branes. We consider a bipartite
system of the Hawking radiation. The aim of this chapter is to discuss
our results [21]. We find that the refined Rényi negativity monotonically
decreases at late time of the black hole evaporation due to the back-reaction
of branes. The numerical result is shown in Figure 4.4. This decreasing
behavior is similar to that of the entanglement entropy. Moreover, we find
that the capacity of negativity exhibits two peaks as a function of time,
which comes from the exchange of dominance of different types of replica
wormholes. These peaks indicate the phase transitions of the entanglement
structure between the bipartite Hawking radiation system. The numerical
result is shown in Figure 4.6. Finally, we conclude this thesis and discuss

some open questions in Chapter 5.

11



Chapter 2

Matrix model of JT gravity

In this chapter, we review the matrix model of JT gravity with dynamical
branes. The aim of this chapter is to explain the formalisms used in later
chapters. In particular, we focus on the aspect of JT gravity as a specific
example of the two-dimensional topological gravity. The topological gravity
is an intersection theory on the moduli space of Riemann surfaces and is
also described by a certain double-scaled matrix model with infinitely many
couplings {tx}. JT gravity is related to the topological gravity in a particular
background t; = 7 in (2.52). In the topological gravity, the insertion of
branes amounts to the shift of the couplings t;, — #; in (2.123). We refer
this effect as the “back-reaction of branes.” Correspondingly, the eigenvalue
density of JT gravity is deformed as (2.127) from the original one (2.103)
due to the back-reaction of branes. This deformation of JT gravity plays the
essential role to model an evaporating black hole including the back-reaction
of the Hawking radiation in section 3.2 and section 4.3.

This chapter is organized as follows. In section 2.1, we briefly review
some known results in JT gravity. The path integral of JT gravity can
be computed by gluing the building blocks: the trumpet (2.24) and the
Weil-Petersson (WP) volume (2.22). In section 2.2, we review some basic
formalisms of the topological gravity. In the topological gravity, quantities
can be computed from a generating function F'({tx}) defined in (2.57). In
section 2.3, we review JT gravity with dynamical branes. We obtain the
deformed eigenvalue density (2.127) by using the formalisms explained in
section 2.2.

12



2.1 JT gravity and random matrix

We review some known results in JT gravity and the connection with the
random matrix model. See also [22] for a recent review and references therein.
JT gravity [23, 24, 25] is a two-dimensional solvable toy model of quantum
gravity. The path integral of JT gravity can be exactly computed by gluing
the building blocks: the trumpet (2.24) and the Weil-Petersson (WP) volume
(2.22). The trumpet comes from the path integral of the Schwarzian action
(2.20) which describes the boundary reparametrization degrees of freedom
while the WP volume comes from the path integral of the bulk metrics.
Moreover, JT gravity is also described by a certain double-scaled random
matrix model [16]. The path integral of JT gravity corresponds to the matrix
integral in the double-scaling limit.

2.1.1 Path integral of JT gravity

Let us review the path integral of JT gravity. The gravitational path integral
is defined by the sum over all possible topologies and the sum over all possible
geometries (i.e., metrics) on the manifold M of each topology. Namely, for
a given Eucledan action I[g, ¢] of the metric g and the other fields ¢, the
partition function is defined by

Z= > /M DygD¢ e 1991, (2.1)

topologies

where we include the dividing factor of the volume of the gauge symmetries in
the integration measure. In two dimensions, it is known that the topologies
of any surfaces are completely classified by the Euler characteristic. The
Euler characteristic for the surface X,, with genus g and n boundaries is
given by

X(Egn) =2—2g9—n. (2.2)

Thus, the sum over topologies in the partition function (2.1) becomes the
sum over Euler characteristics in two dimensions. Note that if we consider
the triangulation of the surface ¥, the Euler characteristic is given by the
alternating sum of the number of vertices V', edges F, and faces F' as

X&) =V-E+F (2.3)

13



Eucledean action of JT gravity

JT gravity is a model of two-dimensional gravity coupled to a scalar field
¢ called dilaton. The dilaton is introduced as an auxially field without the
kinetic term. The Euclidean action of JT gravity is given by

[JT [ga ¢] = gravity[g] + Idilaton [97 ¢]7 (24)

where the pure gravity term Igayity[g] is given by the sum of the Einstein-
Hilbert term and the Gibbons-Hawking-York [26, 27] boundary term

So (1 .
Igravity[g] - _ﬁ (5/ dzl’\/gR +/ dx\/ﬁK) R (25)
b )

and the interaction term Igjjaton|g, @] is given by

Tditaton[g, @] = —% /E d*z\/gp(R + 2) — /8 ] dzvVho(K —1). (2.6)

Here g,, and h denotes the bulk metric on the surface > and the induced
metric on the boundary 8%, respectively. R and K are the Ricci scalar and
the extrinsic curvature on the boundary, respectively. The extrinsic curvature
K is defined by

K = g"'V,n,, (2.7)
where n,, is a unit vector normal to the boundary. The pure gravity action

Lyravity[g] 1s topological (i.e., non-dynamical) since it gives the Euler charac-

teristic by the Gauss-Bonnet theorem, namely

So (1 N
- / d*r\/gR +/ devVhEK ) = —Sox(2). (2.8)
27T 2 » ax
Thus, the variation of Iyayity[g] With respect to the metric vanishes

8] ravi

lraviislo] _ (2.9)
09

which implies that any geometry is a solution. We impose the boundary

conditions for the dilaton ¢ and the induced metric h as

vy 1

Plos ==, hlox =, (2.10)
€ €

where v is a constant later fixed to v = 1/27% in our convention, and € is a
regulator introduced for the cutoff near the asymptotic boundary. We will
later take the limit e — 0.

14



Path integral of JT gravity

Let us consider the partition function (2.1) with the action (2.4). We consider
the path integral on Riemann surfaces > with fixed n boundaries as

o0

ZJT — Z 6(2_2g_n)50 DquS e_Idilaton[g)(zs]’ (211)

g:() Ega"

where we have replaced the sum over topologies by the sum over genus and
we have used (2.8) with the Euler characteristic (2.2). Here the path integral

of the dilaton can be computed as

Do e~ Laitaton[9,0) — S(R+2) e fdm(f(—l)? (2.12)

Sgon
where we have chosen the integration contour parallel to the imaginary axis
and imposed the boundary conditions for the dilaton and the boundary in-
duced metric in (2.10). Now the bulk geometry is fixed to the constant

negative curvature

R= -2, (2.13)
which implies that the bulk geometry is locally the two-dimensional anti-de
Sitter (AdS) space. Thus, we can locally adopt the Poincaré coordinate

, A2+ dt?
==

ds (2.14)

z

Note that this metric is not defined at z = 0 which corresponds to the
asymptotic boundary of the two-dimensional AdS space. Thus, we have to
cut off the spacetime near the asymptotic boundary as in Figure 2.1. At the
cutoff boundary we take [28]

2(1) = et'(7), (2.15)

where 7 denotes the coordinate along the cutoff boundary and ' denotes the
derivative with respect to 7. Then the metric (2.14) becomes

ds® = <(t”)2 - 12) dr?, (2.16)

€

which is consistent with the boundary condition for the boundary induced
metric in (2.10) as we take the limit € — 0.

15



Figure 2.1: Poincaré coordinate in the two-dimensional AdS space [22]. We
have to cut off the spacetime near the asymptotic boundary since the metric
(2.14) is not defined at z = 0.

Let us go back to the partition function. By using (2.12), the partition
function Zyr in (2.11) becomes

Zyr = Z o(2=29—n)S0 Dg §(R +2) e J 4D, (2.17)
g=0 Zgn

Here we have to determine the dependence of the bulk metric g in the ex-

trinsic curvature K. The extrinsic curvature K can be computed explicitly

by using the metric (2.16) as

t/(tl2 + 2 + ZZ”) —
(22 + t’Q)%

K= =1+ € Sch(t, 1) + O(e*), (2.18)

where Sch(t, 7) is the Schwarzian derivative defined by

7 3 /¢ 2

Thus, the boundary action in the partition function is given by

Igen = —7/d7 Sch(t, 1), (2.20)

which is referred to as the Schwarzian action in the literature. Note that the
Schwarzian action (2.20) is independent of the bulk metric but it depends on
a field ¢(7) on the boundary. Namely, the Schwarzian action describes the
reparametrization t(7) as the dynamical degrees of freedom, which is referred

to as the boundary “wiggles” in the literature.

16
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Figure 2.2: The particular cases which we have to treat separately. (a) disk
for (g,n) = (0,1) and (b) trumpet for (g,n) = (0, 2).

Finally, the partition function Zyr in (2.17) can be computed by integrat-
ing over the bulk metric and over the boundary wiggles as

Zyr = Z e(2=29-m)% Dg D(wiggles) e~ Isen(wiggles) (2.21)
g=0 Egn

Here the integral over the bulk metric (implicitly divided by the volume of the
diffeomorphisms on X,,) gives the volume of the bulk moduli space M,,,,.
The volume of M,, with the boundary lengths b;,...,0b, is given by the
Weil-Petersson (WP) volume V. (b1, ..., b,) as

Vyn (b, . by) = vol (M (br, ..., bn)). (2.22)

Note that the WP volume is not defined for the particular cases (g,n) =
(0,1), (0,2) at which the dimension dim M, ,, = 3g—3+n becomes negative.
We have to treat these cases separately. The (g,n) = (0,1) case is the
hyperbolic disk shown in Figure 2.2a. The Schwarzian boundary is described
by the wiggly curve near the asymptotic boundary. As discussed in [16], the
disk partition function with the boundary length /3 is given by

eSoys  _ax2y
Zdisk(ﬁ)z(%)—zﬁge E (2.23)

The (g,n) = (0,2) case is the trumpet shown in Figure 2.2b. The trumpet
has two boundaries one of which is taken to be a geodesic. As discussed in
[16], the trumpet partition function is given by

b2
Ztrumpet (ﬁ; b) =4/ ﬁe_w- (224)

17
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b, connecting

Figure 2.3: Gluing pants with length b and relative twist 7.

Let us make some comments on the WP volume. Riemann surfaces can be
constructed by gluing the building blocks called “pants,” a hyperbolic surface
with genus zero and three boundaries as shown in Figure 2.3. Each boundary
connected with other pants is associated to two parameters, the length of the
connected boundary b and the relative twist between the pants 7. It is known
that the Riemann surface X, with genus g and n boundaries is divided by
39 + n — 3 geodesics into the set of pants. Thus, there is a set of parameters
{(bi, )}, (i =1,...,3g+n—3) associated to the pants decomposition. This
set of coordinates is known as the Fenchel-Nielsen coordinates. From the set
of coordinates the Weil-Petersson symplectic form is defined by

3g+n—3
w=a Z db; A dr;, (2.25)
i=1

and it defines the associated volume form on the moduli space of the Riemann
surface. The parameter « is a numerical constant and we set @« = 1 in
our convention. The WP volume V,,,(b1,...,b,) is given by integrating the
volume form over the fundamental region of the moduli space. However, the
integration is not easy to calculate directly. Instead, the WP volume can be
computed recursively by using Mirzakhani’s recursion relation [29]. The WP
volume can also be computed more efficiently by using the techniques in the
two-dimensional topological gravity [30] which was developed based on the
idea of [31].

To summarize, the partition function of JT gravity Z;r in (2.21) can
be computed by gluing the trumpet (2.24) and the WP volume (2.22) for
general geometry with n boundaries except for the disk and trumpet. If we
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Figure 2.4: The partition function of JT gravity with n boundaries.

define the genus g part of the partition function Z,, with n boundaries of
the lengthes (3, ..., 3, as

ZJT(Bh .. 7671) = Z 6(2_29_71)5029,71(617 v 7/871,)7 (226)
g=0
Zgn(Bi,. .., By) is given by gluing the trumpets and the WP volume as

Zg,n(ﬁla s aﬁn) = H/O bidbiZtrumpet(ﬁia bi)vgm(b)' (2'27)
=1

This prescription is shown in Figure 2.4. As seen from Figure 2.4, we can
cut off the Schwarzian boundaries by geodesics with lengthes by, ...,b, and
gluing them again. The integration measure comes from the Weil-Petersson
symplectic form (2.25) after integrating over the twist coordinate

00 b o)
/ db / dr = / balb. (2.28)
0 0 0

Our convention

In the following sections, we will use the convention in [30]. We set the
parameters v and g5 as

gs = (2126, (2.29)

1
,y 27T2 )

The parameter g, is referred to as the genus counting parameter as we will
see later. We also define the rescaled trumpet and the rescaled WP volume
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so that the partition function of JT gravity is given by
ZJT(ﬂla ] 7ﬁn) = Z ngfﬂn H/ bidbiZtrumpet (ﬁz, bz)%,n(b>, (230)
9=0 i=1 70

where the rescaled trumpet partition function Ziyumpet(3, ) is given by

b2
e 28

V2mB’

and the WP volume V,,,(b) is rescaled from the original one V, ,(b) as

Ztrumpet (ﬂa b) =

(2.31)

Vyn(b) = (20%)°7%97" V(D). (2.32)
Correspondingly, the disk partition function is given by

Zaisk(B) s (2.33)

2.1.2 Random matrix model

We briefly review some basic concepts of the random matrix model related
to the two-dimensional quantum gravities. The random matrix model is a
statistical model whose variables are matrices distributed in a certain prob-
ability distribution. Such a model was first introduced by Wishart [32] and
first applied to physical problem by Wigner [33] to calculate the energy spec-
trum of heavy nucleus. We particularly consider N x N Hermitian matrix
H which is regarded as the Hamiltonian of the system. In quantum gravity,
random matrix models have been considered since 1980s. See also [34, 35, 36]
for reviews and references therein. The basic idea comes from that the dis-
cretized path integral of the two-dimensional gravity in (2.1) is given by the
sum over the random triangulations of Riemann surfaces which corresponds

to the sum over the Feynman diagrams of random matrices:

Z / Dg discretize Z _ Z . (2 . 34)

topologies random Feynman diagrams
triangulations of random matrices

This picture is shown in Figure 2.5. To obtain the original continuous results
of gravity from the discretized theory, we have to take the double-scaling
limit. Namely, we take the limit of the size of the matrices N — oo and

fine-tune the couplings in the matrix potential V' (H) in a specific way.
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Matrix integral

Let us define the random matrix model. A random matrix model is defined by
the matrix integral which gives the probability distribution of the matrices.
We define the matrix integral for N x N Hermitian matrix H by

7 = / dHe V), (2.35)

where V' (H) is a polynomial of H, called the matrix potential. The matrix
potential is viewed as the action of the random matrix model. In this model,
we consider the ensemble average of operators depend on H. Namely, the
ensemble average of O(H) is defined by

(0) = % / dHe ™VHO(H). (2.36)

In the matrix model of JT gravity, we are particularly interested in the
following single-trace operator

Z(B) = Tre ?H, (2.37)

which is called the macroscopic loop operator in the matrix model. As proved
in [16], the partition function of JT gravity with single boundary of length /3
is equivalent to the ensemble average of the macroscopic loop operator (2.37)
in a certain double-scaling limit (DSL),

Zyr(B) = {Z(B))pst- (2.38)

Similarly, the partition function of JT gravity on Riemann surfaces with fixed
n boundaries of the lengthes f1,..., 8, corresponds to the n point connected

correlator of the macroscopic loop operators as

Zyr (B, -, Pn) = (Z(B1) -+ Z(Bn)) conn.- (2.39)

On the other hand, the partition function of JT gravity Zyr(f1,...,B,) is
also computed by gluing the trumpets and the WP volume as in (2.30). Thus,
the connected correlator (2.39) is given by

<H Z(ﬁi)> Y 1| /0 h bidb; Zirumpet (B, i) Vo (b).  (2.40)
1=1 conn. i=1
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Figure 2.5: Random triangulation of a surface and the Feynman diagram of

the random matrix model for three point interaction [34].

In the original paper [16], the duality between JT gravity and the random
matrix model was proved up to all orders in the genus expansion. The proof
was based on the correspondence between the Mirzakhani’s recursion relation
for the WP volume [29] and the Eynard-Orantin’s topological recursion for
the resolvent of the random matrix model [37, 38, 39]. In this thesis, we will
use these results for the applications of the matrix model of JT gravity. In
particular, we use the above results to evaluate the effects of the insertion of

branes to the matrix model of JT gravity in section 2.2.

Genus expansion

We briefly comment on a perturbative expansion, namely the genus expan-
sion of the matrix integral (2.35). We will see that the sum over Feynman
diagrams of random matrices corresponds to the sum over topologies and ge-
ometries in the two-dimensional gravitational path integral. First, the matrix
integral (2.35) is exactly solvable if the potential V' (H) is up to the second or-
der in H, which is called the Gaussian matrix model or the Gaussian unitary

ensemble (GUE) such as
H2
VGUE(H) == 7

As with the usual quantum field theory, the two point function in the Gaus-

(2.41)

sian matrix model can be computed as

(HijHy)cue = 0udj, (2.42)
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i//\A

(a) propagator (b) vertex (c) index loop

LR 4

Figure 2.6: Feynman diagrams for three point interaction of the matrix

model. Each double line corresponds to each propagator.

which is viewed as the propagator in the matrix model. The propagator
(2.42) can be represented by a double-line diagram 2.6a. Such a double-line
formalism is originally introduced by ’t Hooft [40] for the analysis of the
theory of strong interaction.

Let us consider a generalized matrix potential V' (H) including the inter-

action terms with couplings {c }x>3 as

1 (H? 3 4
where we have rescaled the matrix potential by a parameter g,. We refer
gs as the genus counting parameter so that the genus expansion becomes
manifest. In this model the propagator (2.42) is rescaled as

(HijHi) = 9500, (2.44)

since the propagator is proportional to the inverse of the coefficient of the
quadratic term of the action. We evaluate the matrix integral (2.35) with
the potential (2.43) by expanding around the Gaussian ensemble as

= 1 TN, m
Z—Z_Oﬁ/dﬂe w5 g [Ty (e HY 4---)]™. (245)

Now the matrix integral can be computed by using the Wick contraction and
this expansion gives the sum over Feynman diagrams. We show an example
of Feynman diagram for the three point interaction in Figure 2.5.

Let us read off the Feynman rules. As we see from (2.45), each interaction

vertex is weighted by g;'. We show an example of the interaction vertex for

23



the three point interaction in Figure 2.6b. From Figure 2.6c, index loops
will appear and each loop is weighted by d;; = N. Thus, the contribution of
a Feynman diagram with V' vertices, £ propagators, and F' index loops is
given by
gs "TENT = g7V (g N)E (2.46)
Here the power of g, is nothing but the Euler characteristic in (2.3) with
the appropriate identifications. Actually, if we define the genus ¢ for the
Feynman diagram by
2—-2g=V -FE+F, (2.47)
g corresponds to the genus of the surface on which we can draw the diagram.
For example, the genus g = 0 for all planar diagrams.
Similary, let us consider the insertion of a single-trace operator. For
example, let us consider the expectation value of TrH? as

(TrH?) ~ / dHe ™V T g3

N Z - /dHe_gsTr VT (e3P 4 )] TeH®,

where we have omltted the overall normalization factor. Now we can also

(2.48)

compute the matrix integral by using the Wick contraction. The operator
TrH? behaves like the vertex of the three point interaction but the vertex
associated to TrH? is not weighted by ¢g;'. Thus, the insertion of TrH?

—(V-1)

changes the weight of the diagram as gs In general, n insertion of

single-trace operators changes the weight of the diagram as ¢g29=2*".
Finally, we make a brief comment on the double-scaing limit of the matrix

model. If we take the following 't Hooft limit
N — o0, gs—0, with t=g,N fixed, (2.49)
the sum in (2.45) becomes the perturbative expansion in g, as

Z = Zggg_2Fg(t7 C3,Cy, . - -)7 (250)

g=0
where we denote the coefficients by F,(¢,cs,cq,...). By using t = g,N, this
small g, expansion can also be viewed as the N~! expansion

Z =Y N*F,(tcsca,...), (2.51)

9=0
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where we define F, = t*~2F,. From this expression, the higher genus con-
tributions seem to be suppressed in the large N limit. On the other hand,
all genus contributions should be summed over in the original gravitational
path integral in (2.34). As discussed in [34], all genus contributions can be
included in the genus expansion (2.51) if we tune the couplings of the matrix
potential in a specific way simultaneously with the large N limit. Such a
limit is called the double-scaling limit.

2.2 Two-dimensional topological gravity

In this section, we review the connection between JT gravity and the two-
dimensional topological gravity [41, 42] (see [43] for a recent review) following
[30]. The two-dimensional topological gravity is an intersection theory on the
moduli space of Riemann surfaces and is described by a certain double-scaled
random matrix model with infinitely many couplings {¢;}. As discussed in
[30], JT gravity is nothing but a specific example of the topological gravity
in a particular background t; = v, with

Yo=71=0, = = 1) (k> 2). (2.52)

The connection with the topological gravity provides some efficient compu-
tational methods such as the Korteweg-de Vries (KdV) equations and the
dynamical treatment of branes. The KdV equation is a useful tool to com-
pute the higher genus contributions in the path integral of JT gravity but
we will not review much about that (see [30] for the details). In this thesis,

we focus on the basic formalisms for the dynamical treatment of branes.

2.2.1 JT gravity as a topological gravity

Let us consider the two-dimensional Riemann surfaces ¥ with genus g and n

marked points pq, ..., p,. We are interested in the intersection numbers

(K™ Tay - Ta,)g = / /{m@/zfl = -wff", m,dy,...,d, € Zs, (2.53)
M

g,

which is viewed as the correlation function of the topological gravity. Here

M, ,, is the Deligne-Mumford compactification of the moduli space M,,, of
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the Riemann surface ¥ and k is the first Miller-Morita-Mumford class which
is proportional to the Weil-Petersson symplectic form (2.25) as

w = 21K, (2.54)

The integrand v; is the first Chern class of the complex line bundle whose
fiber is the cotangent space to the marked point p; and 74, = @Dldl Note that
(2.53) vanishes unless m +dy + -+ + d, = 3g — 3 + n. In this theory, the
Weil-Petersson (WP) volume is given by

V, u(b) = / et Bt = (iRt (2.55)
Mg.n 9

where this formula is valid except for Vj1, V2. We need to consider (g,n) =
(0,1), (0, 2) separately but we will not so much care about these cases unless
necessary. It is convenient to introduce the generating functions for the
intersection numbers (2.53) as

Gl {te}) = 3 g2 (e Sitatim) (2.50

9=0 g

Fifi)) = 3 g0 (ot 257)

It is known that these generating functions are related [43, 44] by

G(s, {ts}) = F({tx +ms"1}) (2.58)
with
(-1)*
Yo=1=0, %= m (k> 2). (2.59)
One can compute various quantities from the generating functions, in par-
ticular the partition function of JT gravity.

Partition function of JT gravity

Let us explore the connection between JT gravity and the topological grav-
ity by considering the partition function of JT gravity following [30]. As

discussed in section 2.1, the partition function of JT gravity with single
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boundary of length /5 is given by (2.38). It contains all genus contributions

in the genus expansion as

(Z(8)) = {Z(B))g=0 + (Z(8))g21- (2.60)

The genus-zero part is given by the disk partition function (2.33) as
1
V274,32

Let us consider the higher genus (¢ > 1) contribution. It is given by gluing
the trumpet partition function (2.31) and the WP volume (2.32) as

(Z(B))g=0 = e (2.61)

Dozt = 2929 1 / bdb Zewummper (5. )V (D). (2.62)

Here the WP volume is given by (2.55) as

39—2

b2 39—2—
V,1(b) = ; — 21_ - ( ) (o2t (2.63)

where we have expanded the exponential and used the following property

(k"1 =0 unless k+1=3g—2. (2.64)

Substituting (2.63) into (2.62) and integrating over b, the higher genus con-
tribution becomes

0o 3g—2 d+
(21 = 7= 3 3 @t P (),
g=1 =0 (2.65)
\/_;dz;ggg lﬁd—i— <€m¢d>

where we have used (2.64) to obtain the second equality. By using the gen-
erating functions (2.56) and (2.57), we have the following relations for g > 1

29— 2 e AN ad s=1,{ty =
Zg V), = 0uG(s = 1,{ty, = 0}) (2.66)

= 0aF ({tr = %}),
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where we define the derivative d; = 9/0t;. Thus, the higher genus contribu-
tion of the partition function is given by

\)q;—ﬁ ; BU20,F ({tk = w})- (2.67)

Finally, from the genus-zero part (2.61) and the higher genus part (2.67), the

(Z(B))g=1 =

full partition function of JT gravity is given by

( _2€ﬁ + Zﬁd+28d {tk = ﬁ%})) (268)

@6 = s

Therefore the partition function of JT gravity is written in terms of the
generating function of the topological gravity in a specific background ¢, = v
n (2.52). Here we comment on the differential operator

_iw d+1

which is acting on the generating function F'({tx}) in (2.67). This is noth-
ing but the boundary creation operator [45] which generates the connected
correlator of multiple boundaries

(Z(B1) -+ Z(Bn))conn. = B(B1) - - B(Bn) F'({tx})- (2.70)

The symbol “~" means that this equation holds up to an additional non-
universal part. Namely, we have to treat the disk (2.33) and the trumpet
(2.31) contributions separately as discussed in the previous section.

2.2.2 Generalized partition function

Let us explore another expression of the partition function (Z(f)) for the
use to obtain the leading order eigenvalue density of JT gravity in the next
subsection. In the topological gravity, ef” with F in (2.57) is called the tau
function for the KdV hierarchy. This means that a function

u= g o F (2.71)
satisfies the (generalized) KdV equation

Gku = 00Rk+1, Gk = Q/Gtk, (2.72)
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where Ry, is the Gelfand-Dikki differential polynomials of w. It is known that
the Gelfand-Dikki polynomials satisfy the following recursion relation

1
(2k + 1) DyRyyr = ZDg’Rk +2uDgRy + (Dou)Ry, Dp = g0,  (2.73)

with the initial value Ry = 1. By integrating (2.72) over ¢, we also have a
constraint for F' as
GO F = Ry (2.74)

Let us consider a two-parameter generalization of F' from JT gravity back-
ground which is well-defined at least around (o, t1) = (0,0) as

F(to, t1) = F(to, t1, {tx = m}) (2.75)

Using this generalized function F', we also define a two-parameter deforma-
tion of the partition function (2.68) as

Zyr(to, t1) =

(93_2651 + 957 Bto+ Y BUTP04F (to, tl)) , (2.76)

d=0

N

which reproduces the original one at (¢, %) = (0,0), i.e., Z;1(0,0) = (Z(5)).
Here we introduce some rescaled variables for later use

1
\/ﬁg&

The derivative of (2.76) with respect to x gives the generating function of

h= r = h_lt[), T = h_ltl. (277)

the Gelfand-Dikki polynomials as

0z Zyr(to, 1) B Ra=W(B), (2.78)

)

where we have used Rg = 1 and the constraint (2.74). Let us consider the
Laplace transformation of W (f3) as

R = [ dse (), (2.79)
If we expand R(n) as
R(n) =Y n*iRy, (2.80)
k=0



the coefficients are also the Gelfand-Dikki polynomials

(2k — 1)l

Ry = iR (2.81)

This is same as the original Gelfand-Dikki polynomials [46] and it is known
that such R(n) is the “resolvent” for the Schrodinger equation

QY =¥, Q=0;+u. (2.82)

The “resolvent” means that R(n) satisfies

R(y) = <:c n_lQ x> (2.83)

where |x) is the coordinate eigenstate. By taking the inverse Laplace trans-

formation of (2.83) we obtain
W (8) = (wle*a). (2.84)
Thus, the partition function of JT gravity is given by integrating (2.78) with
W(p) in (2.84) as
Zyr = /w da' (x'|eP9|2’). (2.85)

If we introduce the projection operator

H:/m do! |/} (), (2.86)

—0o0

the partition function is also expressed as
Zyp = Tr(eP910), (2.87)

which is referred to as (the expectation value of) the macroscopic loop op-
erator in the matrix model of the topological gravity. Thus, JT gravity is
nothing but a specific example of the two-dimensional topological gravity.

2.2.3 Leading order eigenvalue density

Let us obtain the leading order (genus-zero) eigenvalue density po(E) of JT
gravity, which is defined by the Laplace transformation of the genus-zero part
of the partition function

2670 = [ dBe (B, (2.8)

Eo
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Here Ej is the threshold energy which we will determine later. The expression
(2.85) for the partition function is useful to obtain po(E). It is convenient to
define a function with couplings {t;} of general topological gravity

o0 uk
= (0k1 — 1) 0 (2.89)
k=0

This function is also expressed as

fu) =u— Io(u, {tx}), (2.90)

where I, (u, {tx}) is the Itzykson-Zuber variable [47] defined by

u, {th}) = Zthrk: o (2.91)

We also consider the expansion of u in (2.71) as

u = Zgzgum uy = 05 Fy, (2.92)
g=0
where [ is defined by
F, = <623°:o tdfd> , (2.93)

g9
in the genus expansion of F'in (2.57). It is known that g in (2.92) satisfies
the genus-zero “string equation” f(ug) = 0, or equivalently

— Io(ug, {ty}) = 0. (2.94)

This equation can be interpreted as the stationary condition dFy/0uy = 0 of
the genus-zero free energy

Fo=3 /0 dv (v — To(v, {t}))? (2.95)

One can confirm that this expression of F{ is consistent with uy defined in
(2.92) by differentiating Fy twice with respect to t,. Here not only Iy(v, {tx})
but also ug in the upper limit of the integration implicitly depends on .
Let us consider the leading order (genus-zero) contribution of the partition
function Zyr(f) in (2.85). By inserting the completeness relation for the
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momentum basis states, the leading order partition function becomes

_ / S / - @eﬁ(—p2+uo<x’>>

da:/eﬁUO(x (2.96)

~5m )
i 0

where we have used Q = 92 + u in (2.82) with p = —id, in the first equality.
Here x-dependence of ug is determined by the genus-zero string equation
(2.94) with the definition of the rescaled variable ty = Az in (2.77). The

genus-zero string equation (2.94) can be rewritten as

83: ﬂu

o0 k
u
hx = ug — Ztkk_(!)' (2.97)
k=1
From this relation we obtain
Jdr  10f(u)
i 2.
ou h Ou ’ (2.98)
where f(u) is the function defined in (2.89). Substituting this into (2.96)
and changing the integration variable as v = —u, the leading order partition
function becomes
_ 1 < Of(—v) _
7903 = —— | d b, 2.99
JT (ﬁ) QHW g v a(_v) € ( )
By using the following formula
oo BE
™ —Bv / e
—e = dE 2.100
\/; v V E — v ( )
we obtain -
26700) = | e (E), (2.101)
o
where po(E) can be identified as
1 Edv  9f(—v
pol ) = ey (2.102)

\/§7Tgs Eo VE —v 6<_U> ’

with the threshold energy Fy = —ug. The threshold energy FEj is also de-
termined by f(—Fy) = 0 since ug is determined by the genus-zero string
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equation f(ug) = 0 or equivalently (2.94). In particular, if we set the param-
eters t =y, of (2.52) for JT gravity, the threshold energy is determined as
Ey = 0 and the leading order eigenvalue density (2.102) reduces to

sinh(2v'E)
V2rg,

One can obtain the disk partition function (2.61) by substituting the eigen-
value density (2.103) into (2.88).

o (E) = (2.103)

2.3 JT gravity with dynamical branes

In this section, we review the leading order eigenvalue density of JT gravity
with dynamical branes following [17]. The eigenvalue density is deformed
from the original one (2.103) due to the back-reaction of the branes. Here
we particularly focus on the Fateev-Zamolodchikov-Zamolodchikov-Teschner
(FZZT) [18, 19] anti-branes which we consider to model an evaporating black
hole in section 3.2 and 4.3. The FZZT anti-brane appears as a boundary
condition of JT gravity [48] and corresponds to the determinant operator
(2.104) in the matrix model. The insertion of FZZT anti-branes amounts
to the shift of the couplings {¢;} of the topological gravity, which can be
obtained by considering the connected correlator of multiple boundaries. Fi-
nally, we obtain the deformed eigenvalue density (2.127) from (2.102) with
the couplings shifted by the branes.

2.3.1 Correlator with FZZT anti-branes

In the matrix model, the FZZT anti-brane corresponds to the determinant
operator det(§+ H) ™!, where H is the Hermitian random matrix variable and
¢ is a formal parameter. The insertion of the FZZT anti-brane introduces

the vector degrees of freedom in the matrix integral
det(¢ + H)™' = / dopdpe®ETH?, (2.104)

where ¢, ¢ are Grassmann-even (bosonic) vector variables. Let us prepare
some useful formulas to treat the FZZT anti-branes in the matrix integral.
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The determinant operator corresponds to the infinitely many single trace
operator —Trlog(é + H) as

o0

1
det(¢ + H) ™' = 7 TrlosleHID = 3 — [=Trlog(¢ + H)]". (2.105)
n=0

The single trace operator —Trlog(§ + H) can be represented by the integral
transformation of the macroscopic loop operator Z(3) = Tre ?H as

—Trlog(é+ H) = /OO %6_662(5) +log e+ O(e"), (2.106)

where € is a small regularization parameter. We can ignore the divergent
term log e by taking an appropriate normalization.

Let us introduce M(b) by the integral transformation (2.106) of the trum-
pet partition function (2.31) as

1 *ds
bM(b)— i 5

By using the integral representation of the Bessel function

—t— 2 -
dtt 2e7w = 22 (2.108)

the factor M(b) in (2.107) is given by

Ztrurnpet (ﬁ b) (2107)

wh—t

M(b) = e, (2.109)

where z is related to £ by
1
€= 522. (2.110)

Note that the integral representation (2.108) is valid for | arg(x)| < 7/4. This
implies that the equation (2.109) is valid only for Re(&) > 0.
Thus, the connected correlator with FZZT anti-brane is given by

<det£+H HZ @>

NS (T T
_ZEH A 1Tz6)125)
n=0 7 Jj=1 1 conn.

i=0 0 J j= =
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= i % ﬁ dﬁ§ —55’ 2929 2+n+m (2111)

X ]‘_[/0v b;'db;‘Ztrumpet 'R ] H/ bdb Ztrumpet(ﬁz; z) gn+m(b, b)

e 2g—2+n+m "
_ E : 95"

g,n=0

/ db, b, H/ bdb Ztrumpet(ﬁw z) gn—l-m(b/ b)

where we have used (2.106) in the first equality and (2.107) in the last equal-
ity. Note that the factor b of the integration measure bdb is canceled out
by 1/b in (2.107). To summarize, we can introduce the FZZT anti-brane
by gluing the factor M(b) along the geodesic boundary of the WP volume
and integrating over b with the integration measure db. The factor M(b) in
(2.109) has the form

M(b) = e Sparticle, (2.112)

where the “particle action” Sparticle 18 given by
Sparticle = 2b = (mass) x (length of worldline). (2.113)

Namely, M(b) can be interpreted as the contribution of a particle with mass
z running around the geodesic boundary with length b.

We can generalize the above formalisms to the multiple FZZT anti-branes.
Let us consider the multiple FZZT anti-branes

Hdet &+ H) =exp [Z/ dﬁ e P Z(B)

where we have used the integral transformation (2.106). The connected cor-
relator with the multiple FZZT anti-branes are given by (2.111) with M (b)
replaced by

(2.114)

M(b) =) e, (2.115)

where & = 22/2. In particular, the connected correlator (2.111) with the end
of the world (EOW) branes is obtained in [49], which is given by replacing
M(b) by

e Hb >

M) = 7 = D e, (2.116)
Sinn 5

n=0
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It can be interpreted as the insertion of infinitely many FZZT anti-branes
with a particular set of parameters z, = p+n+ % (n > 0). We will use this
relation in section 3.1. Note that the EOW brane factor (2.116) diverges at
b =0 and a certain regularization is required to define the EOW brane. On
the other hand, the factor of FZZT anti-brane (2.109) do not contain such a
pole and M (b) for the FZZT anti-brane is well-defined.

2.3.2 Back-reaction of branes

In this subsection, we explore the effects of the insertion of the FZZT anti-
branes in JT gravity. The insertion of FZZT anti-branes amounts to the shift
of the couplings {t;} of the topological gravity. We call this effect the “back-
reaction” of the branes. To see this, let us consider the connected correlator
of the multiple FZZT anti-branes without macroscopic loops in (2.111)

<Hdet(§i—|—H)> => f:ﬂn/j db; M(b;)Vyn (b, {t1}),

conn.  9,n=0 J=1
(2.117)
where M(b) is the brane factor in (2.115) and V,,,(b, {tx}) is the generalized
WP volume for general topological gravity. As discussed in [17], V., (b, {tx})
can be obtained by

Vo (b {tx}) = V(ba) - - V(bn) F({ti}), (2.118)

where the volume operator V' (b) is defined by
> p2k
V) => ik (2.119)

k=0

The volume operator V' (b) is related to the boundary creation operator B([3)
in (2.69) by the following integral transformation

B(B) = gs /O N bdb Zyrumpes (3, 6)V (). (2.120)

Here we have a relation

/Oo dbM(D)V (b) = i D 2k — D)z, (2.121)



which can be obtained by repeating the integration by parts. Using this
formula, the connected correlator (2.117) becomes

0o 1 0o n
<Hdet(§i + H)> = Z — <Z ng(% - 1)!!Zi_2k_lak> F({t})
i conn. n=0 ~ \k=0 1
= exp (Z > 9.2k - 1)!!z;2'f—1ak> F({tx})
k=0 i
= F({ts}),
(2.122)
where the couplings t; are defined by
b=t + go(2k — Y 2721 (2.123)

Thus, the insertion of FZZT anti-branes amounts to the shift of couplings
{tx} of the topological gravity. In particular, if we consider K FZZT anti-
branes with a common parameter &; = £, the couplings in (2.123) become

B =ty + t(2k — 1)IN(28)F 2, (2.124)

where we have used the relation £ = %,22 and denote t = g, which we refer
to as the 't Hooft coupling in later chapters. We will use this set of couplings
(2.124) to obtain the eigenvalue density of JT gravity with FZZT anti-branes.

Deformation of eigenvalue density

We will see that the leading order eigenvalue density po(F) in (2.102) is
deformed from the original one in (2.103) due to the shift of the couplings
(2.124). This deformation is crucial to obtain the late time decreasing be-
havior of the Page curve in section 3.2 and of the refined Rényi negativity in
section 4.3. The function f(u) in (2.89) for the shifted couplings (2.124) and
for the JT gravity background t; = 7 in (2.52) is given by

O

where J,(z) denotes the Bessel function and we have used the following

(2.125)

expression

€T ) 2k+a

% 1 k
Ju(z) = kzzo l<;'(/<:(+—a)+1)' (5 (2.126)
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Figure 2.7: The eigenvalue density po(F) in (2.127) for JT gravity with FZZT
anti-branes. We set g5 = 1/50,& = 50 in this figure.

Plugging (2.125) into (2.102), the leading order eigenvalue density of JT
gravity with FZZT anti-branes is given by

1 B Iy(2y/) t E — Ey
W) = Vg, (fE YVE—v Ere 2<Eo+£>) o e

where I (x) is the modified Bessel function of the first kind. The threshold
energy Fj is determined by the genus-zero string equation f(—E) = 0, or

equivalently
t
\ E0[1 (2 EO) + V= O (2128)

V2(Eo +§)

The threshold energy is the minimal energy such that po(E) is supported for
E > E,. Note that the eigenvalue density (2.127) reduces to the original
one (2.103) at ¢t = 0 which means that no branes are inserted. We show the
eigenvalue density po(E) in (2.127) for some values of ¢ in Figure 2.7. From
Figure 2.7, we can see that the threshold energy Ej, decreases as t increases
and the support of po(F) is shifted to the left. In particular, the original
eigenvalue density (2.103) is shown by the curve for ¢ = 0 with the threshold
energy Fy = 0.
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15F

Figure 2.8: The threshold energy E, determined by the genus-zero string
equation (2.128). We define Ej as the largest negative solution so that it is
continuously deformed from Ey = 0 for ¢ = 0. We set g = 1/50,& = 50 in
this figure. There is a critical value t. beyond which the equation (2.128) no
longer has any solution.

Phase transition

The threshold energy Ej is determined by the genus-zero string equation
(2.128). Here we show the functions in the equation (2.128) for some values
of t in Figure 2.8. The function \/Ell(Q\/E) oscillates for £ < 0 and mono-
tonically increases for £ > 0. The function —t/+/2(F + &) is always negative
for t > 0. We define E as the largest negative solution of (2.128) so that
it is continuously deformed from Ey = 0 for ¢ = 0. Then there is a critical
value ¢, beyond which the equation (2.128) no longer has any solution. It
implies a phase transition at t = t.. As discussed in [20], the critical value
t. corresponds to the value beyond which the corresponding dilaton gravity
theory no longer has any black hole solution. Thus, the phase transition at
t = t. can be viewed as the end of the black hole evaporation in the model

of an evaporating black hole which we review in section 3.2.
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Chapter 3

Black hole information paradox

In this chapter, we review the recent progress in the black hole information
paradox. It is formulated by calculating the entanglement entropy of the
Hawking radiation. The aim of this chapter is to explain the applications of
the matrix model of JT gravity to the literature and to prepare the model
setup which we use in chapter 4. In particular, we focus on a toy model
of an evaporating black hole in JT gravity with end of the world (EOW)
branes proposed by Penington, Shenker, Stanford, and Yang (PSSY) [14].
The entanglement entropy of the Hawking radiation follows the unitary Page
curve in the PSSY model. Several types of “replica wormholes” contribute
to the entropy, and the exchange of dominance of different types of replica
wormholes plays the essential role to obtain the Page curve. However, the
entanglement entropy approaches a constant value at late time of the black
hole evaporation in contrast to the decreasing behavior as shown in Figure
1.2. This result indicates that the back-reaction of the Hawking radiation
is not considered in the PSSY model. On the other hand, the late time de-
creasing behavior of the Page curve is reproduced in another toy model in JT
gravity with dynamical FZZT anti-branes, proposed by Okuyama and Sakai
[20]. The late time decreasing behavior comes from the deformed eigenvalue
density (2.127) due to the back-reaction of branes.

This chapter is organized as follows. Before exploring the applications of
the matrix model of JT gravity, we briefly review the entanglement entropy
and its Rényi generalizations. In section 3.1, we review the PSSY model and
the replica wormholes. In section 3.2, we review the Page curve in the matrix
model of JT gravity with dynamical FZZT anti-branes.

40



Entanglement entropy

For later use we recall the definitions of the entanglement entropy and its
Rényi generalizations. For a bipartite quantum system with the Hilbert space
H = Ha ® Hg, the reduced density matrix on the subsytem A is defined by

pa = Trpp, (3.1)

where p is the density matrix on the total system AB. The entanglement
entropy of the subsytem A is defined by the von Neumann entropy of ps as

Sa = —Trpalog pa. (3.2)

The entanglement entropy is hard to handle since it includes the logarithm
of the density matrix. It is useful to compute the entanglement entropy by
using the following replica trick

SA:hm
n—1 1 —n

1
log (Trph) = lim n?0, {——log (Trpg)} , (3.3)
n—1 n

where the parameter n is called the replica number. Thus, the problem boils
down to compute Trp} in the replica trick. From the middle quantity in
(3.3), the Rényi entropy [50, 51] is defined by

n 1 7
St = - log (Tip}) (3.4)

Similarly, the refined Rényi entropy [52] is defined by
~ 1
SXI) =n?0, {_ﬁ log (Trpg)} = (1 —nd,)log (Trp}) . (3.5)

Note that there is an analogy between the refined Rényi entropy Sf{‘) and
the thermodynamic entropy in statistical mechanics by identifying the replica
number n with the inverse temperature 3. Using this analogy, the capacity

of entanglement [53] is defined by
(Z*g”) = —n@nggn) =n?0log (Trp}) , (3.6)

which is an analogue of the heat capacity. The analogy with statistical me-
chanics is viewed in Table 4.1. We will define the “capacity of negativity” as

an analogue of the capacity of entanglement in section 4.1.
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3.1 PSSY model

In this section, we review the relation between the Page curve and the replica
wormbholes in the matrix model of JT gravity with end of the world (EOW)
branes proposed by Penington, Shenker, Stanford, and Yang (PSSY) [14].
We identify the degrees of freedom of the Hawking radiation with the EOW
branes. The transition of the Page curve can be understood as the exchange
of dominance between the disconnected and the totally connected saddles
in the gravitational path integral. The connected saddles are referred to as
the “replica wormholes.” However, several types of replica wormholes can
contribute around the Page time. Thus, we have to sum over the replica
wormholes to investigate the entire Page curve. As we review in subsec-
tion 3.1.3 and 3.1.4, the sum over the replica wormholes can be efficiently
computed by solving the Schwinger-Dyson equation (3.53). This method is
generalized in the case of negativities as we discuss in chapter 4.

3.1.1 Semiclassical description

We first review the semiclassical description of the PSSY model since it is
useful to explore which saddles dominate in the calculation of the entangle-
ment entropy. We will see that the disconnected saddle dominates at early
time while the totally connected replica wormhole dominates at late time.

The exchange of dominance of these saddles leads to the unitary Page curve.

Fuclidean action

The PSSY model is defined by JT gravity with EOW branes. We identify
the degrees of freedom of the Hawking radiation with the EOW branes. The
EOW branes can be regarded as particles of mass p and the Euclidean action
of the PSSY model is defined by

I:IJT—|—M/ dS, (37)
brane

where the action of JT gravity Ijr is given by

JJT:—S—;; (%/Z\/gR+/aE\/Ef() - (%/E\/E¢(R+2)+ az\/ﬁd)f().
(3.8)
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EOW brane
EOW brane

(a) Euclidean (b) Lorentzian

Figure 3.1: The disk geometry with EOW branes in (a) Euclidean and (b)
Lorentzian signatures [14].

The first term of (3.8) is equal to —Spx(X) as we discussed in chapter 2. As we
will see later, we consider the gravitational path integral in the calculation of
the entanglement entropy. The contributions of surfaces in the gravitational
path integral are suppressed by e 2% for each additional genus. Thus, the
disk geometry gives the dominant contribution. We show the disk geometry
with the EOW brane in Figure 3.1. The black and blue curves correspond
to the asymptotic boundary and the EOW brane, respectively. We impose
different boundary conditions for the asymptotic boundary and the EOW
brane, respectively. For the asymptotic boundary of length 3, we impose

1 1
d82|32 = —2d7'2, qﬁ‘ag = -, €— 0. (39)
€ €
Here 7 is the imaginary time coordinate on the boundary. For the EOW

brane, we impose

op=p, K=0, pn>0, (3.10)

where we denotes the derivative normal to the EOW branes by 0,.

Reduced density matrix

To model the Hawking radiation, we consider a bipartite quantum system
with the Hilbert space H = Hgg ® Hr. The dimensions of the subsystems

are defined by
dim Hpy = €, dimHg = K, (3.11)

where we define dim Hgy so that Sy = log(dim Hpy). Here Hg corresponds
to the auxially “radiation” system which is maximally entangled with the
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EOW branes. We will regard K as “time” since more Hawking radiation
are emitted as time goes. We are particularly interested in the entanglement
structure for large dimensions of the subsystems with the ratio t = Ke ™50
fixed. We take the planar approximation in this limit. That is, we will ignore
the all higher-order corrections in e™% and K.

We assume that the interior and the exterior partners of the early Hawk-
ing radiation are maximally entangled. Thus, the state of the total system
is defined by the following pure state

W) = NZ Vi) BE ® |i)R, (3.12)

where |1);)py is regarded as the black hole microstate with the EOW brane
in state 4, and {|i)r }/£, forms a orthonormal basis of Hg. The normalization
factor A is determined so that the norm (¥|W) = 1. The reduced density
matrix pg = Trp|¥) (V| on the radiation system is given by

PR = Z 17) R (ilh;)BH. (3.13)

Here we have included the normalization factor A in the definition of |¢;)py
for notational simplicity. The amplitude (;|1;)gn can be calculated by the
gravitational path integral. As discussed above, the leading contributions
are given by the disk geometries. Thus, the amplitude (¢;]1;)pn at leading
order is represented by the following diagram [14],

(3.14)

where the black thick curve corresponds to the asymptotic boundary of the
two-dimensional spacetime with the length (5, while the blue thick curve
corresponds to the EOW brane. The amplitude is proportional to ¢;; since
the same EOW brane links the two indices 7 and j which are associated with
the orthonormal basis of Hg.
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Dominant saddles

We are particularly interested in the n-th moment Tr(pf) to calculate the
entanglement entropy by using the replica trick (3.3). First let us consider
the second moment Tr(pg) called “purity” as an example,

K
Te(pR) = Y [l )enl* (3.15)
ij=1
In this case, there are two leading saddles which satisfy the boundary condi-
tions. As with (3.14), we can diagramatically represent the leading saddles
of [{(¥4]1;)su|* by the following diagrams [14],

ol ol

ol ol

R *J °J (3.16)
where we call the first term “disconnected” saddle and the second term “con-
nected” saddle, respectively. The connected saddle is a kind of replica worm-
holes. Here the disconnected saddle gives 6;;0;; = d;; while the connected one
gives 0;,0;; = 1 from the linking by the EOW branes. Thus, the disconnected
and the connected saddles give K and K? contributions in (3.15), respec-
tively. This can be diagramatically represented by drawing the loops of the
blue dashed curves in (3.16). Each of the index loops gives K contribution.
Now the purity (3.15) is given by

KA K2, 1 Z

Tr(p) = ==+ 1

where Z,, denotes the contribution of the disk surrounded by n asymptotic
boundaries and n EOW branes. Here we have restored the normalization
factor. We can roughly estimate the path intefral Z,, ~ e% since the topology
of Z, is the disk. Then the purity (3.17) can be estimated by

1
Tr(p3) ~ =+ e %, (3.18)
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Figure 3.2: (a) The boundary condition and (b) the dominant saddles for
the n-th moment Tr(pfk) with n = 6 as an example [14]. We only show the
completely disconnected and connected saddles here.

Thus, the disconnected saddle dominates for K < % while the connected
one dominates K > e°. This exchange of dominance between the discon-
nected and the connected saddles is essential to obtain the Page curve.
Next we consider the general n-th moment Tr(p}). There are several
types of geometries which satisfies the boundary conditions. Here we show
the boundary condition and relevant saddles for Tr(p}) in Figure 3.2. The
circular diagrams in Figure 3.2 come from the trace over the index associated
to the radiation system. As with the purity, the completely disconnected
saddle dominates for K < e°. The contribution is given by n disks of Z;

and single index loop K as

KZr 1

(KZ,)" = Joni (3.19)

Tr(pﬁ) |disconn. =

On the other hand, the totally connected saddle dominates for K >> %0,

The contribution is given by single disk of Z,, and n index loops K" as

K"Z, Zn
(KZyn 2y (3.20)

Tl"(pﬁ) ’totally conn. —

Here (3.20) is purely gravitational and it gives the thermodynamic entropy
of the black hole. The entanglement entropy can be calculated by using the
replica trick (3.3) in these extreme limits as

log K K < %),
A (3.21)
SBH (K > GSO),
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Figure 3.3: Possible geometries which satisfy the boundary condition 3.2a
[14]. We will consider only the left diagram in the planar limit.

where we define the thermodynamic entropy of the black hole by

: 1 Zn

Thus, we conclude that the Page curve comes from the exchange of dominance
between the completely disconnected saddle and the totally connected replica
wormbhole in the path integral of JT gravity.

Other possible geometries

We have considered the dominant saddles only in the extreme limits K < e%°
and K > e%. However, several partially connected replica wormholes can
dominate in the intermediate regime between K < % and K >> e%. In the
planar limit, we ignore the all higher order corrections in e=° and K~!. Then
the possible geometries are represented by the planar diagrams. To verify this
claim, we show some examples which satisfy the boundary condition in Figure
3.3. These are examples of n = 6 including 77, Z5, Z3 configurations. As
discussed above, the middle diagram has an extra handle and the contribution
is suppressed by e=2% compared to the left one. The crossing in the right
diagram reduces the index loops, and the contribution is suppressed by K2
compared to the left one. Thus, we only consider the planar diagrams at
leading order in the planar limit.

Actually, we have to sum over all planar diagrams since all of them can
contribute in the intermediate regime between K < €% and K > e%.
We can perform the sum efficiently by using the resolvent trick reviewed in
subsection 3.1.3. In the next subsection, we describe the PSSY model in
terms of the matrix model of JT gravity. We will see that the sum over the

replica wormholes comes from the ensemble average of the matrix integral.
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3.1.2 Matrix model description

In this subsection, we describe the PSSY model in terms of the matrix model
of JT gravity. As discussed in chapter 2, the path integral of JT gravity
corresponds to the matrix integral. We will see that the sum over the replica
wormholes comes from the ensemble average of the matrix integral. As we
discussed in section 2.3, the EOW brane corresponds to infinitely many FZZT
anti-branes with a particular set of parameters &, = % (,u +n+ %)2 (n >0).
Thus, the matrix integral with K’ EOW branes is defined by

ﬁ det (&, + H)_1]

n=0

Z:/dHe_TrV(H)

(3.23)
= / dHAQdQ e~V =T [ (&t 1))@

where H and () are N x N Hermitian and N x K complex matrices, respec-
tively. We can introduce the genus counting parameter g; by rescaling the

matrix potential as

1
—V(H), (3.24)
gs

so that the genus expansion is manifest. We consider the double-scaling limit

of this matrix integral. We further take the following 't Hooft limit
K — 00, gs — 0 with t=g,K fixed. (3.25)

In this limit, we compute all quantities in the planar approximation. That
is, we will ignore all higher-order corrections in g, and K 1.

Black hole microstates

Following the appendix D of [14], we define the microstates of the black hole.
We consider a bipartite quantum system of the black hole and the Hawking
radiation with the Hilbert space H = Hpg ® Hgr with the dimensions of

dimHpy = N, dimHp = K. (3.26)

We assume that the total system is in a pure state |¥) in which the black
hole microstates [1;) and the radiation states |i) are maximally entangled

R .

(3.27)
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We omit the label BH and R of the states for notational simplicity. Here
we denote the “flavor” degrees of freedom for the interior partners of the
early Hawking radiation by the label 4,5 = 1,..., K, and {|i)}X, forms the
orthonormal basis of Hr. The matrix W is defined by the overlap of the
black hole microstates

= (thilty). (3.28)

Note that |¥) is normalized as (\I/|\I/> 1. The reduced density matrix
p = Treg| V) (V| of the Hawking radiation is defined by

e Z DIFICOTE (329)
2,j=1
Then the matrix elements can be read off as
Wi

The microstates of the black hole can be approximated by the canonical
thermal pure quantum state [54, 55]

i) = > e 3a)Qu = Zlb( BH)ban, (3.31)

a

where the inverse temperature [ is identified with the length of the asymp-
totic boundary of JT gravity. We define the matrix element H,;, as

Hy,, = {(a|H|b), (3.32)

where we denote the “color” degrees of freedom for the bulk gravity by the
label a,b=1,..., N, and {|a)}"_, forms the orthonormal basis of Hpy.

Ensemble average

Here we explain the ensemble average in the matrix integral (3.23). We will
see that the sum over replica wormholes comes from the ensemble average.

It is convenient to change the random variables () as

_1
2

Qai = [H(€n+H) Coi = T(p— L +iV2H)C,, (3.33)

n=0
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so that the new random variable C' obeys the Gaussian distribution. The
Gamma function comes from the infinite product of the brane factor with an

appropriate regularization. Then the matrix integral (3.23) becomes
7z / AHACAC J(H e~V ID-T:CTC. (3.34)

where J(H) comes from the integration measure associated with the trans-
formation (3.33) as

K
J(H) = [|F(u— Ly iVeH)R| (3.35)
The ensemble average of an operator O is defined by
— 1
©) =~ / dHACACJ(H)e ™V I-TCIC o (3.36)

where the angle bracket (O) represents the averaging over the color degrees of
freedom while the overline O represents the averaging over the flavor degrees
of freedom. In particular, the averaging over the flavor degrees of freedom
can be computed by the Wick contraction since C obeys the Gaussian distri-
bution. In the PSSY model, we take the “probe brane” approximation such
that we ignore J(H) in the matrix integral as

7 = / dHdCAC e~ ™V -TCtC, (3.37)

On the other hand, the black hole microstates (3.31) also change by the
transformation (3.33) as

) = Ib) [e‘%ﬁHF +zx/_] Cli Z|b 0aCais  (3.38)

where A(H) is defined by
AH) =e|T(p—L+iv2H) (3.39)
Let us consider the orverlaps such as

(ily) ZAabc;cbj,

(3.40)
¢Z |¢] Z AabAb’a/ Cb] C(l,icl;k’j .

a,b,a’ b’
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(a) (Yilij) = 6y TrA (b) [{il4h;)|? = 0i;(TrA)? + TrA

Figure 3.4: Diagramatic representations of the averaged overlaps in (3.42).
(a) and (b) correspond to (1;]1;) and [(;|;)|?, respectively.

The averaging over C' can be computed by the Wick contraction

C.Cyi = Oap0ij,

oy (3.41)
O;icbjca’icl;k'j = 5ab5a’b’5ij + 5aa’ 6bb’-

By using these formulas, the average of the overlaps (3.40) are given by

(Vi) = 045 Tr A,

TR 3.42
| (ilthi)|? = (5ij(TrA)2 + TrA2. ( )

As discussed in [14], one can visualize the above computations by drawing
diagrams. For instance, the overlap (i;|1;) in (3.40) can be represented by
the following diagram

Wil) = (CTAC),; = L\l Ao T T (343

The black thick curve labeled by the color matrix A, corresponds to the
asymptotic boundary of the two-dimensional spacetime while the blue dashed
curve labeled by the flavor matrix C;, corresponds to the flavor degrees of
freedom. The averaged overlaps in (3.42) are represented by the diagrams in
Figure 3.4. The blue thick cureves correspond to the EOW branes connect-
ing the same flavor indices. The gray disks correspond to TrA™ which are
surrounded by n asymptotic boundaries and n EOW branes. As seen from
equation (3.42) and Figure 3.4b, the sum over replica wormholes comes from
the ensemble average in the matrix integral.
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3.1.3 Resolvent trick

We consider (Trp™) to compute the entanglement entropy by using the replica
trick. The reduced density matrix of the Hawking radiation is given by
(3.30). In the planar limit, we can take the average of the numerator and
the denominator independently

Triwn TrWn
Trphn ~ —— = ) 3.44
S My T (KTrA) (3.44)

The numerator can be computed by the Wick contraction, and it boils down
to the sum over the all combinations of Ct* and C'. In the diagramatic repre-
sentation, this corresponds to connecting the all combinations of the flavor
indices by the EOW branes. To compute this sum efficiently we can use the
resolvent trick [14]. First let us define the resolvent matrix by

1 1 = 1
R = (377) =3t L 6

We also define the resolvent by the trace of the resolvent matrix

K 1 .
R(\) = TrRy(\) = 5 + > S T (3.46)
n=1
By above definition R(\) is a generating function of the moment Trp™. Using
the diagramatic representation (3.43), R;;(\) is represented by [14]

(3.47)
Here each dashed blue line is weighted by 1/\ and carries the flavor index.
The average over the flavor degrees of freedom in the planar approximation
leads to the following Schwinger-Dyson equation [14]:

(3.48)



Each dashed blue loop associated to the flavor index gives K = Trd;; contri-
bution. The gray disk surrounded by n asymptotic boundaries and n EOW
branes gives TrA" contribution. Thus, the diagramatic equation (3.48) is

equivalent to

= TrA" 1
"R (A). A4

RZ]( )\ Z KTrA ) R’LJ( ) (3 9)
Here we omit the overline which denotes the flavor average for simplicity.

Taking the trace, we get the Schwinger-Dyson equation for the resolvent

”TrA”
=K 3.50

+ Z (K TrA ( )
Further we take the average over the color degrees of freedom. In the planar
approximation, we can take the average of the numerator and the denomi-
nator independently. The Schwinger-Dyson equation (3.50) becoms

= R(\)"Z,
ARN) =K+ Y —F—, 3.51
W =K+3 Tz (3.51)
where we define Z,, by
Z, = (TrA™) = / dEp)* (E)A(E)™. (3.52)
0

Here pT(E) is the original leading order eigenvalue density (2.103). Plugging
this into (3.51), we get

AR(N) =K+ (];(%);n /0 h dEpT(E)A(E)"

— K+ /0 " dEA(E) i [%’2@] : (3.53)

n=1

DT w(E)R(A)
= K+/0 0 B) = o BYRO
where w(FE) is defined by
Ww(E) = AéE). (3.54)

To summarize, the resolvent R(\) is a generating function of Trp"™ and obeys
the Schwinger-Dyson equation (3.53). Thus, we can compute the entangle-

ment entropy by solving (3.53) as we discuss in the next subsection.
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3.1.4 Entanglement spectrum

We compute the entanglement entropy by solving the Schwinger-Dyson equa-
tion (3.53) approximately. We define the eigenvalue density of p by

D) =) (A=), (3.55)

where \;’s are the eigenvalues of p. D(\) is also referred to as the entangle-
ment spectrum. Using D()), the entanglement entropy is computed by

S = —/ dAD(M)Alog . (3.56)
0

As one can immediately check, D(\) can be computed from R(\) by taking
the discontinuity across the real axis
D(A) = lim R(\ —i€e) — R(\ + ZE)' (3.57)

e—0 2

Following [14], let us solve the Schwinger-Dyson equation (3.53) approx-
imately. First we approximate the integral in (3.53) as

Ex RO\
~ K BT () —E) .
AR(N) —I—/0 dEpy” ( )K— (B)ROV + MR(N), (3.58)
where \g and Fx are defined by

1 [e.e]

N = | dBpT(Bw(E), (3.59)
K Jg,

Eg

K= / dEp)* (E). (3.60)

0

In the approximation, we have assumed K > |w(E)R()\)| for E > Ey since

w(F) is a decreasing function of E. Rewriting (3.58) as

K 1 Ex - w(E)R(\)
R(/\):A—A0+A—AO/O dEp; (E)K—w(E)R(A)’ (3.61)

we can solve R(A) by using the iteration starting from

R()\) = . (3.62)



Plugging this into R(A) in (3.61) and using (3.60), we obtain

1

RO =53 [/OEK dEpéT(EH/OEK 1B (B)—E)

)\—)\0 —’LU(E)

) (3.63)

Ex
= dEpIY(E .

By taking the discontinuity (3.57), the entanglement spectrum is given by

D(\) = /OEK dEp)T (E)S(A — Xo — w(E)). (3.64)

Note that D(\) obeys the correct normalization conditions
00 Ex
/ dA\D()\) = / dEp)Y(E) = K, (3.65)
0 0

/ T IADO)A = / BT (E) O 4 w(E)) = 1. (3.66)

where we have used (3.59) and (3.60). The latter condition (3.66) corresponds
to Trp = 1. Finally, the entanglement entropy (3.56) can be computed by

S = —/0 } dEpy" (E) (N +w(E))log(Xo + w(E)). (3.67)

We can numerically compute the entanglement entropy as a function of K
by using this result. One can find that the entanglement entropy follows the
Page curve by regarding K as “time.” See also Figure 7 of [14] for the original
result. However, it approaches a constant value at late time of the black hole
evaporation in contrast to the decreasing behavior in Figure 1.2. This result
indicates that the back-reaction of the Hawking radiation is not considered
in the PSSY model. In the next section, we review a slightly generalized
model in JT gravity with dynamical FZZT anti-branes, in which the late
time decreasing behavior of the Page curve is reproduced by including the

back-reaction of branes based on the formalisms discussed in section 2.3.

3.2 Page curve from dynamical branes

In this section, we review a generalized model in the matrix model of JT

gravity with dynamical FZZT anti-branes [20]. As we discussed in section
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2.3, the eigenvalue density of JT gravity is deformed by the the back-reaction
of branes. Then, the entanglement entropy monotonically decreases at late
time of the black hole evaporation in contrast to the PSSY model.

3.2.1 DMatrix integral with FZZT anti-branes

We consider the matrix integral with K FZZT anti-branes instead of the
EOW branes of (3.23) in the PSSY model such as

7 = / dHe ™) det(¢ + H) K
(3.68)
:/deQdQTe—TrV(H)—TrQT(E—l—H)Q’

where we set the parameter ¢ to be common to all K branes for simplicity.
We also describe the black hole microstates by (3.31), but change the random
variable @) differently from (3.33) as

Q= (E+H):C. (3.69)

Then the matrix integral (3.68) becomes
7 = / dHACACT det(€ 4+ H) K e MV I)-TCIC. (3.70)

where the determinant factor comes from the integration measure associated
with the transformation (3.69). The ensemble average over C' can be com-
puted by using the Wick contraction since C' obeys the Gaussian distribution.

In this case, the black hole microstates (3.31) become

i) = Zw g+ m) ] C Z|b wCaiy (371

where A(H) is defined by

e BH

E+H

A(H) = (3.72)

As in section 3.1, we can compute the entanglement spectrum by using
the resolvent trick. The resolvent obeys almost the same Schwinger-Dyson
equation as (3.53) in the PSSY model. The essential difference from the
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PSSY model is to consider the back-reaction of branes instead of the probe
brane approximation (3.37). Namely, Z, is defined by the full matrix integral

(3.70) which includes the determinant factor as
Z, = (TrA") = / dH det(¢ + H) K TVUDTR A", (3.73)

In the planar approximation, Z, can be computed by using the deformed
eigenvalue density po(E) in (2.127) as

Z,= [ dEp(BIAEY, (3.74)
Eq

where FEj is the threshold energy determined by the genus-zero string equa-

tion (2.128). Thus, the Schwinger-Dyson equation (3.53) becomes
* w(E)R(A)

AR(N) = K + /E AB(E) BV ROV

(3.75)

where w(E) = A(E)/Z, for (3.72) and (3.74). In a similar manner as in
section 3.1, we can solve this Schwinger-Dyson equation by using iteration.

The results are summarized as follows:

RO\ = [EOK ABpo(E) 3 — Aol_ T (3.76)
D) = /E B (B — o — w(E)). (3.77)
§—— [E " dEpo(E) (o + w(E)) log(Ao + w(E)), (3.78)

where A\g and Ex are defined instead of (3.59) and (3.60) by

1 o0
o= [ dEpy(B)uw(E), (3.79)
K Jg,
Eg
K = dEpy(E). (3.80)
Ey
We can also take the probe brane approximation in this model. In that case
we just set Ey = 0 and use the original eigenvalue density p*(E). We can
numerically compute the Page curve by using the above results. One can

find that the entanglement entropy monotonically decreases at late time in
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the dynamical treatment of the branes while it approaches a constant value
in the probe brane approximation. See also Figure 3 of [20] for the original
results. Thus, we conclude that this is a useful model to investigate the back-
reaction of the Hawking radiation. In section 4.3, we will apply this model
to investigate the effect of the back-reaction to the refined Rényi negativity
for a bipartite Hawking radiation system.

3.2.2 Analytic proof of monotonicity

As with the entanglement entropy, the Rényi entropies for general n > 1 also
monotonically decrease at late time. We review the analytic proof of the
monotonicity in the large ¢ limit following [20]. To prove the monotonicity,
we consider only the totally connected replica wormhole which dominates at
late time. We define the “black hole Rényi entropy” by
L log é

24

Sy — (3.81)

1—n

This is the Rényi entrpy (3.4) with Trp} given by the totally connected
contribution (3.20). We also define the “thermodynamic entropy” by

S 2, <_ﬁ log Z—?) . (3.82)

This is the refined Rényi entropy (3.5) with Trp} given by (3.20). Note that
these quantities are equivalent at n = 1 limit,

lim Sy = lim ;) (3.83)
n—

ol hrmo-

We want to prove the monotonicity with respect to the 't Hooft coupling
S5 <0 for n>1, 0<t<t, (3.84)

where t. is the critical value discussed in the last part of subsection 2.3.2.
From the definition (3.81) it is sufficient to prove

8th 82521
f 1 )
nZ. > 2 or n>1, (3.85)
or equivalently,
0,220 20 for n>1 (3.86)
"nz, ' '
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Note that the derivative of the thermodynamic entropy (3.82) with respect
to the 't Hooft coupling is given by
8th

atSthermo - _n2an nZn . (387)

Thus, the thermodynamic entropy (3.82) also monotonically decreases if the
condition (3.86) holds. We now prove (3.86) in the large ¢ limit.
First let us evaluate 0,7, in (3.86) as

0,2, = / dEd,po( E)A(E)", (3.88)
Eo

where Ey and po(E) depend on t, and we have used po(Ey) = 0. To eval-
uate Oppo(Ep), it is convenient to use the Itzykson-Zuber variables Z,(u) =
L (u, {tx}) in (2.91). In terms of Z,(u), the leading eigenvalue density of the
topological gravity (2.102) becomes

1 Ed 1 —T,(—v)
= V.
\/§7l'gS Eq \/E—’U

Note that the derivative 9;Z,(u) is independent of what kind of topological

PO(E)

(3.89)

gravity {tx} we consider, since t-dependence in (2.124) is not related to ty.

It is explicitly calculated as

o (2n=D)
0., (u) = o6 —aurT (3.90)

From the genus-zero string equation (2.94), we obtain

(OEo)(Ti (—Eo) — 1) - ﬁ 0. (3.91)

By using (3.90) and (3.91), we can calculate Oypo(E) as

1 E th'l(—v)
Oipo(E) = (0 Eg)0 E) — dv———=>
tpO( ) (t 0) EOIOO( ) \/571_98 £ U\/E——U
. atEO Il(—Eo) — 1 _ 1 Edvatzl(—1)>
\/iﬂ'gs \/E — Eg \/éﬂ'gs Eo \/E — v

_ 1 ¢+ Ey
- 2mg(E+ E) VE_—E,

39

(3.92)




Now we know all the dependence of £ in 0,7,. Plugging (3.92) into (3.88),
01 Z, can be evaluated in the large £ limit as

e—n,BEO

~ 2y/nmBys

Next we evaluate (3.86) in the large ¢ limit. By using (2.127) in which
the dependence of £ is manifest, Z,, can be evaluated as

0,2, £ 4 0(ETR), (3.93)

& / = - N
Zy=——— [ dvIy(2v/0)e ™ 4+ 0. 3.94)
Vv 277/77'/898 Eo ‘ ) (
Thus, we obtain
(9th BinﬁEO 3

Lo ). (3.95)

nZ, n\/%f;: dvly(24/v)e=npv

Note that 0,7, /nZ, is positive since Ip(24/v) in the denominator is always
positive for v > Ey > ES. Here we define the minimal threshold enegy E
determined by (2.128) at the critical point ¢ = t.. We can see the positivity of
Io(24/v) in Figure 2.8 as the slope of the oscillating function for v > Ej, which
comes from the derivative Iy(2v/v) = 9,[\/vI1(24/v)]. Since 0,Z,/nZ, > 0,
to prove (3.86) is equivalent to prove

O
Ny,

The left hand side is calculated as
07, Ja d0Io(2v/0)[nf (v — Eg) — 1]e™
nZn [, dvlo(2y/v)e=mP

The denominater is positive as discussed above. The numerator can be cal-

O log >0 for n>1 (3.96)

0, log

(3.97)

culated by changing the variable u = v — Ej, and integrating by part,

< L(2v E
(numerator) :/ duwue’”ﬁu. (3.98)
0

Vu+ Ey
Here the integrand is always positive for any Ej satistying E§ < Ey < 0 as
seen from the graph of \/vI;(2y/v) = (I1(2y/v)/+/v) X v in Figure 2.8. Thus,
we have proved (3.96). Hence, the monotonicity (3.84) has been proved in the
large & limit. As discussed above, the monotonicity of the thermodynamic
entropy (3.82) has also been proved.
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Chapter 4
Negativity in JT gravity

In this chapter, we investigate the refined Rényi negativity and the capacity
of negativity in JT gravity with dynamical FZZT anti-branes. The aim
of this chapter is to discuss our results [21]. The entanglement negativity
was previously studied in the PSSY model by Dong, McBride, and Weng
[15], and it was found that the entanglement negativity can probe more
elaborate entanglement structure than the entanglement entropy. However,
the back-reaction of the Hawking radiation was not considered. We explore
the back-reaction effects to the negativity by treating the branes as dynamical
objects. We find that the refined Rényi negativity monotonically decreases at
late time due to the back-reaction of branes. We also find that the capacity
of negativity exhibits two peaks as a function of time, which comes from
the exchange of dominance of different types of replica womholes. Thus, we
conclude that the capacity of negativity is a valuable indicator of the phase
transitions of the entanglement structure.

This chapter is organized as follows. In section 4.1, we review the basics
of the entanglement negativity and its Rényi generalizations. By using the
analogy with the capacity of entanglement (3.6), we define a novel quantity,
the “capacity of negativity.” The relation is summarized in Table 4.1. In
section 4.2, we review the negativity spectrum which is analogous to the en-
tanglement spectrum discussed in subsection 3.1.4. All quantities considered
are computed by the negativity spectrum. In section 4.3, we investigate the
refined Rényi negativity and find the late time monotonically decreasing be-
havior. In section 4.4, we explore the capacity of negativity and find that
the capacity of negativity exhibits two peaks as a function of time.
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4.1 Basics of entanglement negativity

In this section, we briefly review the entanglement negativity and its Rényi
generalizations. The entanglement negativity is computed from the eigenval-
ues of a partially transposed density matrix. In particular, we focus on the
refined Rényi negativity as an analogue of the refined Rényi entropy (3.5).
We also define a novel quantity, which we call “capacity of negativity,” as
an analogue of the capacity of entanglement (3.6). The relations among the
statistical mechanical quantities, the refined Rényi entropies, and the refined
Rényi negativities, are summarized in Table 4.1.

4.1.1 Partial transpose

The entanglement negativity [56] is a measure of entanglement in general
mixed states, which is computed from a partially transposed density matrix
[57, 58] of a bipartite quantum system with the Hilbert space H = Ha ®
Hg. For a given density matrix pap of the total system AB, the partially
transposed density matrix p}% is defined by

(a,b\p}%|a’,b’> = <avb/‘pAB|a/>b>7 (4'1)

where Ty denotes the transposition only on the subsytem B. Recall that a
quantum state is said to be separable if the density matrix factorizes as

pas = Pupl” @ o8 Y pm=1, pm > 0. (4.2)

In this case, all eigenvalues of p}g => pmpgm) ® (p}(gm))T are non-negative

since every (pl(gm))T is non-negative by definition of the density matrix p}gm).l
However, pi% can have negative eigenvalues for entangled states. For exam-
ple, it has eigenvalues {%, %, %, —%} for Bell states. This fact suggests that
one can define useful measures of entanglement from the eigenvalues of pg%.
For instance, the entanglement negativity is defined by the sum over the ab-

solute values of the negative eigenvalues of the partially transposed density

LAs proven in [58], for 2 x 2 and 2 x 3 matrices, the non-negativity of ,0},33 is both
necessary and sufficient condition for the state to be separable. However it is not sufficient
for more larger matrices.
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matrix as

N = Z'M E=) (4.3)

<0

where \;’s are the eigenvalues of p A%. Similarly, the logarithmic negativity
is defined by

= log <Z |\i |> log(2N +1). (4.4)

In the last equatlity we have used the relation
Z Ai = Trp\B = Trpap = 1. (4.5)

Note that A/ and £ vanish if all )\;’s are non-negative. In particular, for a
separable state N = £ = 0. This implies that when A and £ are non-zero
the system is not in a separable state. Thus, we can definitely say that the
system A and the system B are entangled when A and £ are non-zero.

4.1.2 Rényi generalization

Let us consider the Rényi generalizations of the entanglement negativity.
The refined Rényi negativity and the capacity of negativity are defined as
analogues of the refined Rényi entropy (3.5) and the capacity of entanglement
(3.6), respectively. First the n-th Rényi negativity is defined by

ZTs() — Ty [(/ﬁ%)n} - Z(Az)n (4.6)

Since the entanglement negativity N in (4.3) and the logarithmic negativity
E in (4.4) are defined by the absolute values of the eigenvalues, we take

different analytic continuations for even and odd replica number n

ZTB (2m,even) __ Z |/\ |2m (47)

ZTB(Qm l,0dd) __ ngn ‘)\ |2m 1 (48)

Then the logarithmic negativity (4.4) is obtained by the following limit

€ = lim log 75 (2m even), (4.9)

m—3
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Stat. Mechanics Rényi Entropy Rényi Negativity

8 n n
" Ha = —logpa H™ = —logp}

Z(B) ="Tr [e_ﬁ H} ZX’) = Trp [e—”HA] ZTe(n) — Ty {G*n HTB}
F(B) = —B 'log Z(B) F[g") — —ntlog Z(n) FTB0) — _p=1]og 7T
E(B) = —0slog Z(B) EM = 8, 10g Z(n) ET0) — g, Jog 2100
S(B) = B> 9sF(B) S =n209,F™ §Te(n) — 2 5 FTe(n)
C(B) = =B 955(8) ) = —nd,5" O = _p g, §TB(M)

Table 4.1: The correspondence among the statistical mechanical quantities,
the Rényi entropic quantities, and the Rényi negativities. Here [ is the
inverse temperature, and n is the replica number, pa is the reduced density
matrix and H, is the modular Hamiltonian. In the third column, H'®
denotes the partially transposed version of the modular Hamiltonian and

we ignored the difference between even n and odd n for simplicity.

In this paper, we focus on the refined Rényi negativities * [15]
1
STB(n,even) — _nzan <_ log ZTB(n,even)> , (410)
n
STe(nodd) — _ 29 <l log ZTB(nyodd)) , (4.11)
n

which are defined in analogy with the refined Rényi entropy (3.5). In section
4.3, we consider the refined Rényi negativities in JT gravity and study the
effect of the back-reaction of branes to these quantities.

Note that there is a natural correspondence among the statistical me-
chanical quantities, the Rényi entropic quantities, and the Rényi negativities
under the appropriate identifications [52, 53, 61] (see Table 4.1). By using
the correspondence in Table 4.1, we define novel quantities which we call the

2Note that STB = lim,,_,; ST8(Zm—10dd) ig called the “odd entanglement entropy”
or the “partially transposed entropy” [59, 60] since its definition is the same as the von
Neumann entropy with pap replaced by pE%.
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“capacity of negativities” as analogues of the capacity of entanglement

(/T (n.even) _ _nanSTB(”,e"en)7 (4.12)
O T(no0dd) _ _n(’)nSTB(nxodd)’ (4.13)

As shown in [62, 63], the capacity of entanglement exhibits a peak around
the Page time, which comes from the exchange of dominance between the
disconnected saddle and the totally connected replica wormhole. Around the
Page time, several types of replica wormholes including partially connected
ones can also contribute. The capacity of entanglement is sensitive to these
contributions, which is the physical origin of the peak. On the other hand,
there is another dominant saddle which breaks the replica symmetry in the
case of the entanglement negativity [15], as we review later. Thus, we expect
that the capacity of negativity exhibits several peaks around each phase
transition. In section 4.4 we will see that this is indeed the case.

Before closing this section, we present the explicit forms of the refined
Rényi negativity and the capacity of negativity for later use:

CTBm)_Z Mi)n ] [ Ai]" 2_(5TB<n>)2 (4.15)
= ‘ s () og () . .

Note that these formulas are valid for both even and odd n. By using the

cigenvalue density D()\) of p,% (also known as the negativity spectrum),
the sum in the above equations can be replaced by the integral [ dAD(A). In
section 4.3 and 4.4, we will study the refined Rényi negativity in the canonical
ensemble and the capacity of negativity in the microcanonical ensemble using
the negativity spectrum, respectively.

4.2 Negativity spectrum in JT gravity

In this section, we investigate the entanglement negativity in a toy model
of an evaporating black hole. In particular, we consider the entanglement
negativity between a bipartite Hawking radiation system. The Hilbert space
is given by ‘H = Hpuy ® Hgr where the radiation subspace is further divided
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into two pieces Hg = H1 ® Ho. The entanglement negativity between H;
and Hs is computed from the partially transposed reduced density matrix

pgf on the radiation system:

partial trace partial transpose Ty

p=[U)(¥| pr =Trgnp —— pg’,  (4.16)

where the state of the total system |¥) € H is defined by

K1 K

W) = NZ Z [Viyiy)BH @ |11, 72)R- (4.17)

i1=1142=1

We denote the dimensions of the radiation subsystems by K; = dim H; and
Ky = dim H,, respectively. The dimension of the total radiation system is
given by K = K K,. The normalization factor A is determined so that the
norm (W|W¥) = 1. The aim of this section is to obtain the negativity spectrum
in JT gravity with dynamical FZZT anti-branes. Most computations are
parallel to those of the previous study in the PSSY model [15]. The essential
difference is that we use the deformed eigenvalue density (2.127) to calculate
the path integral of JT gravity.

4.2.1 Dominant saddles

Before calculating the negativity spectrum, we review the dominant sad-
dles which contribute to the entanglement negativity following [15]. The
entanglement negativity has more elaborate phase structure than that of the
entanglement entropy. See also appendix A of [15] for more details. First the
reduced density matrix pg is calculated from the state (4.17) as

K1 K>

pr=D > i) (i dale (Wi 9,0 mu, (4.18)

11,j1=1142,j2=1

where we have included the normalization factor N in the definition of
|9i,4,)BH for notational simplicity. From the reduced density matrix, we take

the partial transpose on the second subsystem H, as

K1 Ko

pEQZ Z Z |j1,i2><i1,j2|R<¢i1i2|77Z)j1j2>BH- (419)

i1,j1=1142,j2=1
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The amplitude (¥;i,|%j,j,)Ba Will be calculated by the gravitational path
integral. As with the case of the entanglement entropy, the n-th moment
Tr(pgf)” is given by the sum over all possible configurations which satisfy the
appropriate boundary conditions. Following [15], the n-th moment Tr(pg?)"
is expressed as the sum over the permutation group S,

(9)
" 1 X -1y —1y-1
(o) = Gezgn 2o | 11 Zien | G259 a20)
geSn \ i=1

where x(g) is the number of disjoint cycles of the permutation g, |c;(g)| is the
length of the i-th disjoint cycle of g, X (X 1) is the (anti-)cyclic permutation
of length n, and Z, is the disk partition function of JT gravity surrounded
by n asymptotic boundaries and n branes as in chapter 3.

To find the dominant saddles, we approximate Z, ~ e% and take the
planar approximation in the large parameter regime €%, K > 1. There are
four types of dominant saddles each of which corresponds to a certain element
of the permutation group:

g=1 for % > KK,
g=X for K, >>ngs°7
g=X"1 for K,> Kleso,
g=T for K Ky> e, ¢ <<K1/K2<<€SO,

(4.21)

where 7 denotes the non-crossing pairings. A non-crossing pairing consists
of a certain set of transpositions. The “crossing” or “non-crossing” for an
element of .S, is defined by drawing a corresponding diagram. For example,
let us consider the n = 6 case. An element (13)(24)(56) € Sg is a crossing

pairing represented by the following diagram

1 2 3 4 5 6, (4.22)
—t |
where each pair of numbers transposed is connected by each line. This is a
crossing pairing since the diagram includes a crossing of lines. On the other
hand, an element (12)(36)(45) € Sp is a non-crossing pairing represented by
the following diagram

1 2 3 4 5 6, (4.23)
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Figure 4.1: The four dominant saddles [15]. These are the examples of n = 3.
The sums over the first and second flavor indices correspond to the blue
dashed and red dotted loops, respectively. The gravitational path integral
Z, is represented by the gray shaded disks.

This is a non-crossing pairing since the diagram does not include any crossing
of lines. Note that the “crossing” or “non-crossing” is also defined for odd
n, but a pairing for odd n includes a remnant. In general, it is known that
the number of non-crossing pairings in S,, is given by

Cn for n = 2m,

4.24)
(2m —1)Cy,—y  forn=2m—1, (

where C,, is the Catalan number

1 2m

As with the Rényi entropy discussed in chapter 3, the n-th moment
Tr(pg?)" can be represented by drawing diagrams as in Figure 4.1. Each
element of the permutation group in (4.20) corresponds to the way to con-
nect the asymptotic boundaries with the branes, while K; and K5 correspond
to the index loops. The four dominant saddles g = 1, X, X!, 7 are referred
to as disconnected, cyclically connected, anti-cyclically connected, pairwise
connected saddles, respectively. As seen from Figure 4.1, the pairwise con-
nected saddles are not invariant under the exchange of the replicas while the
other dominant saddles are invariant. Thus, the pairwise connected saddles
spontaneously break the replica symmetry. This is an interesting property
not seen in the case of the entanglement entropy.
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Figure 4.2: Anti-cyclically connected saddle X! becomes a planar diagram
by reversing the orientation of the asymptotic boundaries [15].

The contributions of the four saddles for (4.20) before divided by (K Z;)"
are schematically evaluated as

g=1 - (eM)"K,

g=X = SKIK{™, (4.36)
g=X" = eMK{"MKy,

g=T1 —  (eMBIRLEIH

where [5] and | 5] are ceiling and floor function, and f(n) is defined by

Fy = x(x2 = et (1.27)

2, n even.

As seen from Figure 4.1, the anti-cyclically connected saddle ¢ = X ! looks
like a non-planar diagram but it becomes a planar diagram by reversing the
orientation of the asymptotic boundaries (see Figure 4.2). Thus, it does
dominate in a certain parameter regime.

We show a schematic phase diagram among the four dominant saddles
in Figure 4.3. In our study, we particularly focus on a parameter regime
Ky < e% where K, and S, are fixed. This regime corresponds to a hor-
izontal line with log Ky < Sy in Figure 4.3. Thus, we expect two phase
transitions as variating K; along the horizontal line. First, a phase transi-
tion occurs between the disconnected and pairwise connected saddles, and
next a transition occurs between the pairwise connected to cyclically con-
nected saddles. Note that several types of planar diagrams other than the
dominant ones can contribute around the phase transitions. As summarized
in (4.20), these contributions can also be described by certain elements of .S,,.
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logK, 4

So

> log K,

Figure 4.3: The phase diagram of the entanglement structure probed by the
entanglement negativity [15].

In particular, elements on the “geodesic” between 1 and X contribute in the
parameter regime which we consider here. It is known that there is a one-to-
one correspondence between such elements and the all planar diagrams. See
also appendix A of [15] and [64] for more details.

4.2.2 Ensemble average

We study the negativity spectrum in the matrix model of JT gravity with
dynamical FZZT anti-branes. The sum over the replica wormholes comes
from the ensemble average in the matrix integral. The matrix integral is
again given by (3.68)

Z = / dHe ™ H) det(¢ + H) K
(4.28)
— / dHAQAQ e~ TV (H)-TrQI(+H)Q

To study the entanglement negativity we divide K into two parts: K =
K1 K5. In other words, we consider a bipartite system of the Hilbert space

Hr = Hi1 ® Ho with
dim Hl = Kl, lelHQ = KQ. (429)

We denote the components of H, Q) by Hgup, Quiyip, Where a,b=1,..., N are
color indices and 41,51 = 1,..., Ky, 19,52 = 1,..., Ky are flavor indices. The
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subscript of the flavor indices 1 and 2 correspond to H; and Hs, respectively.
As in chapter 3, the black hole microstates are given by the canonical thermal

pure states

|wi1i2> = Ze QBH‘ Qazllz Z|b (6 25H) aQailiQ' (430)

a

By changing the variable Q = (£ + H )’%C, the matrix integral becoms
= / dHACACT det(€ + H) K e MV I)-TCIC, (4.31)

Again we can calculate the average over C' by using the Wick contraction.
The black hole microstates (4.30) becomes

|Wiia) Z|b< ) wizis (4.32)

where A(H) is defined by (3.72). The reduced density matrix is defined by
the overlap (¢,:,[1;,j,) which is given by

Wiria juje = ¢2122|¢J1J2 ZAGJ) azllzcbjle' (433>

To consider the partially transposed density matrix, we take the partial trans-
pose Ty of W on the second flavor factor Hs

(WT2)Z'”‘27]‘1]2 = Wiija iz ZAab Cir i Chiia - (4.34)

By using the Wick contraction, the average over the flavor degrees of freedom
can be computed as

Witizgujs = Oirj1Oinjo TTA, (4.35)
VT2), - = 6;.5,6,, TrA. (4.36)

1112,J1J2

Note that the flavor average of W2 is equal to that of W. As discussed in
[15], one can visualize the above computation by the following diagrams:

. (OT)hiza Aap ijljz
11 -~ -

Wiizjijo = (CTAO)hizleé = . e S




. (CNivioa Awy Chjri j
1= =N
(WT2>ili2,j1j2 = (CTAO)ileJIiZ = . CTem— "

7/2 B L LT P 0 j2 . (438)
Here the black thick curve corresponds to the asymptotic boundary. The blue
dashed curves and the red dotted cureves carry the first and the second flavor
indices, respectively. The reduced density matrix of the radiation system is
again given by (3.30) as

Pivig,j1j2 = %M/}Q (439)
Thus, the partially transposed density matrix is written as
T (WTQ)jU'Q 1112
2 . ,2112
(P )i1i27j1j2 B TrW (440)

To compute the negativities, we consider the n-th moment Tr (pTQ)n. In the
planar approximation, we can take the average of the numerator and the
denominator independently

—— Tr(WT2)"
Tr (pT2 " — 4.41

™~ = (4.41)
The numerator can be computed by using the Wick contraction, and it boils
down to the sum over the all possible combinations of CT and C. Finally

Tr (pT2)" is expressed as a sum over the permutation group in (4.20)

(9)
- 1 X —1 1y -1
Tr(pT2) e — — § | | TrAlc@l | gxto™ X) grxtg™ X7 4.49
T (p ) (KTI‘A)” 5 11 I 1 2 ( )

We also take the average over the color degrees of freedom. Again, in the
planar approximation, we can take the average of the numerator and denom-

inater independently

(9)
_— 1 X o -1 —1y-1
(™)~ ey o | LA | 2 0mye
geSy \ =1
(4.43)
where (TrA") is defined by
(TrA™) = / dH det(¢& + H) Ke VI T A(H)" (4.44)
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g 1 T X x-1
ZT;(Qm,even) 1 CmZgL Zom Zom
K2m71 Km—lZEm K22m72 Zl2m K%'m72Z%m
7 T2(2m—1,0dd) 1 (2m — 1)Cr 123" Zoam—1 Zom—1
K2m—2 Km— 1ZQm 2 K%m—Qme—l K12m—2 Z12m—1

Table 4.2: The values of Rényi negativities in each dominant saddle [15].
Here (), is the Catalan number (4.25) which comes from the number of

non-crossing pairings.

In the planar approximation, it is given by Z,, in (3.74). If we further take
the probe brane approximation, it is given by (3.52). The values of the
Rényi negativities in each dominant saddle are summarized in Table 4.2.
Around the phase transitions, several types of replica wormholes other than
the dominant ones can contribute to the negativities. Thus, we need to
sum over all possible geometries to study negativities beyond the dominant
phases. However, the sum over the permutation group (4.43) is not useful
to handle. In the next subsection, we invoke the resolvent method which is
useful to sum over the possible geometries in the palanar approximation.

4.2.3 Resolvent trick

To compute the sum (4.43) efficiently in the planar approximation, we use
the resolvent trick discussed in [15]. Let us define the resolvent matrix for
the partially transposed density matrix by

1 111
111 _
Rl2]2<)\) B (/\1 - IOT2 ) 12]2
- (4.45)

- 1 "
= X521315i2j2 + Z A\l ((pTQ) )Z:j; .
n=1

We denote the flavor indeces associated to H; as the upper indices and those
associated to Hs as the lower indices for later diagrammatic representations.
We also define the resolvent by

12]2

K & %
R(\) = TrR™M (X )=+ Z T : (4.46)
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where we have traced over the both radiation systems H; and H,. As with
the entanglement spectrum, we can obtain the negativity spectrum D(\)
by taking the discontinuity of R(A) across the real axis (3.57). From the
negativity spectrum D(A), the Rényi negativities in (4.6) are computed by

70 =Ty (p™2)" = / dAD(A)A™. (4.47)
Similarly, the refined Rényi negativity S in (4.14) and the capacity of
negativity C2(") in (4.15) are computed by

) XA
To(n) __
GTaln) _ /_ DO 08 Sy (4.48)
N o A" |>\|n 2 N2

Thus, the problem boils down to obtain the negativity spectrum D(A) from
the resolvent R(A). To this end, we will write down the Schwinger-Dyson
equation for R(A) and solve it approximately. Using the diagramatic repre-
sentation (4.38), R'(\) in (4.45) is represented by [17]

122

............. TR T ) (450)

where each pair of dashed blue line and dotted red line is weighted by 1/A
and carries the flavor indices. Averaging over the flavor degrees of freedom
leads to the following Schwinger-Dyson equation [15]:

(4.51)

Here the blue thick curve represents the FZZT anti-branes (EOW branes
in the case of the PSSY model). Each dashed blue loop associated to the
flavor index of H; gives K = Trd;,;, contribution, and each dotted red loop

associated to the flavor index of H, gives Ky = Trd,,;, contribution. The
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gray disk surrounded by n asymptotic boundaries and n branes gives Z,
contribution. For instance, we write down the first few terms of (4.51) in

terms of the powers of R as

w1 1 7 1 ;
Rz;;; :Xé 10445, + XKZl z;ﬁ \(K z;ﬁ
(4.52)
22k2R211J;2 SN
k Jka=1

where the matrix Ry is defined by the partial trace over the flavor degrees
of freedom associated to H; as

Ki

Ru=> Ry (4.53)

i=1
In general, the Schwinger-Dyson equation (4.52) is expressed as

R%; = ;52”15@]‘2 + ; Z (KZTnl)annlkl Risky Rpeykes - - Rkn,gkn,lRZfiﬂy

"~ (4.54)
where we omit the sum associated to the products of Rkl’s for notational
simplicity. As seen from (4.51) or (4.54), the flavor indices associated to H;
are simply self-contracted while the indices associated to Hs are contracted
between the skipped pairs except for the both ends of R. As discussed in
[15], the complicated contractions of the second flavor indices are simplified
by using the iteration starting from RI! oc §%916,,;,/A. Plugging this into

1272

(4.54), one can find that R/’! is proportional to §%714,,;, to all orders in 1/\.

1272

Thus, Rgﬁ can be expressed as

RZ1J1 — R<)\> 52'1]'15,

1272 K 12729

(4.55)

where R(A) denotes the trace of the resolvent matrix over the both flavor

indices. By using this expression, the products of the resolvent matrices in
(4.54) becomes

12727

> D > 11J1 _
Rknflkl Ri2k‘2Rk1k3 T Rk”nfSknflen_Q‘jg - P\ 1 ;
Ky (E) R p even.

12727
(4.56)

n—1 . .
(%) R n oodd,
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The factor K5 for even n comes from an extra flavor loop associated to Hs.
By using this and taking the trace over the both flavor indices, the Schwinger-
Dyson equation (4.54) becomes

oo

AR:K+KQZ

m=1

o
Zom—1 Zam

Rmel K2
(KKng)Qm_l + 15 Z (KK221>2m

m=1

R*™. (4.57)

Plugging Z,, in (3.74) into this equation leads to geometric series, and the
resulting Schwinger-Dyson equation is given by

AR(\) = K + K /Oo dEpO<E)W(E)R(A) (K +w(E)R()\))

. RPR:—w(BRROE Y

where Ey and w(FE) are defined by (2.128) and (3.54), respectively. Note
that this equation reduces to (3.75) at Ky = 1, which corresponds to the
horizontal axis of the phase diagram in Figure 4.3. This equation is valid for
the parameter regime K, < K;e* in which three types of saddles g = 1,7, X
can dominate. See also [15] for other parameter regime K; < K¢ in which
other three types of saddles ¢ = 1,7, X ! can dominate. The Schwinger-
Dyson equations for the two parameter regimes are equivalent by exchanging
K, and K,. In this thesis, we only focus on the former parameter regime
K, < Kie®. In the next subsection, we obtain the negativity spectrum by
solving (4.58) approximately.

4.2.4 Negativity spectrum

In a similar manner as in section 3.1, we compute the negativity spectrum
D(X) by solving the Schwinger-Dyson equation (4.58). Let us approximate
the integral in (4.58) as

P w(E)R(\) (K 4+ w(E)R(\))
AR\ =~ K + K2 dEpo(E Ao R(A
W~ K+ K3 [ dmm(E) S - RO
(4.59)
where Fx and )y are defined by
Eg
K = K%/ dEpy(E), (4.60)
Eo
1 oo
Ao = 17 dEpo(E)w(E). (4.61)
Ex
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In the approximation, we have assumed KKy > |w(E)R(\)| for E > Ex
since w(F) is a decreasing function of E. Rewriting (4.59) as

K K2 [Px w(E)R(\) (K +w(E)R(\))
A) = - dEpo(E 4.62
we can solve R(A) by using the iteration starting from
K
R(\) = . 4.63
N =15 (1.63)

Plugging this into (4.62) and using (4.60), we obtain

2
A— X Eo Eo (A= Xo)? — (%f))

B /EK 0Epo(E) Koy(Ky +1) N Ky (Ky — 1)

o 0 w(FE w(E

Note that this solution is consistent with the large A\ behavior of the resolvent
R(\) = K/X + O(A\?). By taking the discontinuity (3.57), the negativity
spectrum is given by

D) = / " dEpo(E) {@51(A,E)+%52()\,E)],

Eo
(4.65)
where we define 0, (A, E') and dy(\, E) by

E
51\, E) zé(A—)\O— wl >), (4.66)

Ky
So(N\E) =0 ()\ ~ o+ w<E)) . (4.67)

K

One can check that the negativity spectrum D(\) satisfies the correct nor-
malization conditions

/OO IAD(\) = K, /oo dAD(VA = 1, (4.68)

which correspond to Trl = K and Tr (pTQ) = 1, respectively. In the next
section, we will numerically study the refined Rényi negativity by using the
negativity spectrum (4.65).
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4.3 Refined Rényi negativity

In this section we study the refined Rényi negativity ST2(™ by including the
back-reaction of branes. We discuss one of the main results of our study [21].
We consider ST2(" as a function of K with fixed K, and g,. We particularly
focus on the parameter regime log Ky < g;'. This regime corresponds to
a horizontal line of the phase diagram with log Ky < Sy in Figure 4.3. We
expect the phase transitions between different saddles labeled by ¢ = 1, 7, X.
We find numerically that ST2(") decreases monotonically at late time of the
black hole evaporation. It turns out that this decreasing behavior of ST2("
can be proved analytically in the large £ limit by using the relation (4.70)
with the refined Rényi entropy.

Let us study the behavior of ST2(™ for n = 2 as a typical example.
By using (4.47) and (4.48) with (4.65), we can compute the refined Rényi
negativity ST2(™ numerically. Here we use the deformed eigenvalue density
(2.127) to consider the back-reaction of branes. As a comparison, we also
compute ST with the original eigenvalue density (2.103) in the probe
brane approximation. The results are shown in Figure 4.4. As we can see
from Figure 4.4, in the dynamical brane case (orange crve) ST2(") exhibits a
monotonically decreasing behavior at late time of the black hole evaporation,
while ST2(") approaches a constant value in the probe brane approximation
(blue curve).

As advertised above, we can analytically prove the decreasing behavior
of ST2(™ in the large ¢ limit by using the result of section 3.2. To capture
the late time behavior, we define the “thermodynamic negativity” by the
cyclically connected saddle g = X since it gives a dominant contribution to
ST=(") at late time. As shown in Table 4.2, the cyclically connected part of
ZT2(") ig given by

Zn f(n) = L, nodd, (4.69)

ZTQ(H)' ,
Ky () 2, n even.

g=X =

Thus, by using the definitions (4.10) and (4.11), the thermodynamic nega-
tivity is given by

Sthermo = Sthrmo + /(1) l0g Ko, (4.70)
where nggrmo is the “thermodynamic entropy” in (3.82). As analytically
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Figure 4.4: Plot of the refined Rényi negativity (4.48) for n = 2 as a func-
tion of log K. The solid orange and blue curves are dynamical and probe
brane cases, respectively. We set & = 50,5 = 4,95 = 1/50, K3 = 2 in this
figure. The “thermodynamic negativity” (4.70) for the dynamical and the
probe brane cases are represented by the orange and the blue dashed curves,
respectively.

proved in section 3.2, St(ggrmo

in the large ¢ limit. From (4.70), this immediately implies that 52 ono-

thermo

monotonically decreases as a function of t = g, K

tonically decreases as a function of K; with fixed K5 and g,. Thus, we con-
clude that ST2(™ monotonically decreases at late time since nge(rgo gives the
dominant contribution at late time. In Figure 4.4, the thermodynamic nega-
tivity StTth(rﬁzo

ST2(n) (solid orange curve) at late time.

is plotted by the dashed orange curve, which clearly approaches

We comment on an interesting observation about (4.70) related to the
bulk entanglement wedge cross section [65, 66] which is defined by the mini-
mal cross section of the entanglement wedge in the semiclassical picture? As

3In two-dimensional gravities such as JT gravity, the area of the entanglement wedge
cross section is not well defined since a constant time-slice of the bulk is one-dimensional
and the entanglement wedge cross section becomes a point. In JT gravity, the area of a
point is replaced by the value of dilaton at that point.
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discussed in [59], a quantitiy defined by

Ew = S"2(paB) — Sux(pas) (4.71)

can be identified with the bulk entanglement wedge cross section Ey, in the
semiclassical limit. Here ST2(pap) and Syn(pap) denote the n — 1 limit of
the refined Rényi negativity and the von Neumann entropy, respectively. It is
known that the entanglement wedge cross section Ey, and the entanglement
entropies Sy, Sp satisfy the following inequalities [65]

Ew(pap) < min{Sa, Sp} < log min{dim H A, dim Hp}. (4.72)

In our case we consider a bipartite radiation system Hr = H; ® Hs. At late
time the cyclically connected part of &y is dominant and it is given by the
n — 1 limit of (4.70)

thermo thermo

Ewlg—x = lim | S} — (1) ]zlogK2, (4.73)

which saturates the bound in (4.72). This means that the radiation system
Hr = Hi1 ® Hs is maximally entangled at late time. We have obtained this
result in a toy model of JT gravity with branes. However, we speculate that
this is a general feature of black holes in arbitrary dimensions: Hawking
quanta becomes maximally entangled at late time of the evaporation.

As we can see from Figure 4.4, the refined Rényi negativity does not
exhibit clear signal of the phase transitions between different saddles labeled
by ¢ = 1,7, X. It turns out that the capacity of negativity is a better
indicator of the phase transitions, as we will see in the next section.

4.4 Capacity of negativity

In this section we study the capacity of negativity CT2(" in the microcanoni-
cal ensemble. We discuss another main result of our study [21]. We find that
the capacity of negativity exhibits two peaks around the phase transitions as
a function of K, with fixed K,

4The capacity of negativity does not exhibit any peaks in the approximation (4.65).
Here we instead consider the microcanonical ensemble in which the Schwinger-Dyson equa-
tion (4.58) for the resolvent can be solved analytically.
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4.4.1 Microcanonical ensemble

To compute the capacity of negativity (4.49), we first review the negativ-
ity spectrum D(A) and its phase transitions in the microcanonical ensemble
[15]. We focus on some small energy window [E, E + AE] and introduce the

microcanonical variables as

¢S = p(E)AE, Z, = p(E)A(E)"AE, w(E) = AéE) _ e S (47)

This corresponds to consider Hpy with dim Hpy = €°. Then the Schwinger-
Dyson equation (4.58) reduces to a qubic equation

Sr2 28 773 172
e (#) R+ KK (% - K) R+ # —0. (4.75)

This equation can be simplified as
2G(2)P + (B - 1)G(2)* + (a — 2)G(2) +1 =0, (4.76)

where we define the rescaled variables,

e SR(\) e’ eS K,
Ve = = , 4.77
KKy '’ “ Ky’ P K (4.77)

=K%\, G(2) =

This cubic equation can be solved analytically [67]

G = — () + vPE) 2
(@) +vPE)
where § = 7/3 and,
Qu(z) = o= Zé; (B-1° (4.79)
Qa(2) = 92(f ~ la 2)54;3272 —26 -1 (4.80)
P(2) = Qu(2)* + Qal2)™ (481)

From the solution of G(z) in (4.78), we can compute the negativity spec-
trum D(\) by taking the discontinuity of G(z) as in (3.57). In what follows,
we will consider D(\) as a function of K with fixed Ky and S. As we vary
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Figure 4.5: Plot of the negativity spectrum obtained from the discontinuity
of G(z) in (4.78). Here we set the parameters S = 12, Ky = 50. (a), (b), (¢)
correspond to the dominant saddles g = 1, 7, X, respectively.

K, there appear three phases for D(\) corresponding to three saddles la-
beled by g = 1,7, X [15]. Let us take a closer look at the behavior of D(\)
in each phase. As shown in Figure 4.5a, when the saddle labeled by ¢ = 1
is dominant, D(A) has a support on the positive A axis. In the phase where
the g = 7 saddle is dominant (see Figure 4.5b), D()\) has a support on the
negative A\ axis as well. This means that the partially transposed density
matrix p'2 has negative eigenvalues and the two systems H; and H; become
entangled. If we further increase K, we land on the phase where the g = X
saddle is dominant (see Figure 4.5¢). In this case, the support of D()) is a
disjoint union of a negative A region and a positive A region.

Now let us consider the conditions to determine the support of D(\)
and its phase transition points. The negativity spectrum D(\) behaves as a
fractional power in A\ near the edges of the support and hence its derivative
diverges there. Thus, we can determine the edges of the support of D())
from singularities of dR/d\, since D()\) is obtained from the discontinuity
(3.57) of R(\). From (4.78), we find the support of D()) is determined by
the condition P(z) > 0, and the zeros of P(z) correspond to the edges of
D()). To find the transition points, it is convenient to define the polynomial
part of P(z) by f(z) = 2*P(z). The transition between ¢ = 1 and g = 7
occurs when the left edge of the support of D(\) approaches A = 0. This
condition is given by f(0) = 0, from which K is determined as

s (Ko~ VAKZ 1)

Klz 2

(4.82)

The transition between ¢ = 7 and g = X corresponds to a point where the
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support of D(\) starts to split into two disjoint regions. This is determined
by the condition that f(z) has a double root. In other words, the discriminant
of f(z) becomes zero at this transition point. From the discriminant of f(z),
we find that the critical value of K; is determined by the following cubic
equation

64K} — 485 Ko K7 — (15K3 — 27) * Ky — ¥ K} = 0. (4.83)

In the next subsection, we compute the capacity of negativity and show that

it exhibits two peaks around these transition points.

4.4.2 Capacity of negativity

Let us consider the capacity of negativity C™™ in the microcanonical en-
semble using the result of D(A) in the previous subsection. First we evaluate
CT2( in each dominant saddle. From the definition of CT2(™ in the third
column of Table 4.1, one can show that CT2(" is written as

O™ = 292 log 72, (4.84)

This is valid for both even and odd n. In each phase, we can replace Z 72 by
each saddle-point value summarized in Table 4.2. In general, the saddle-point
values of ZT2(™ in Table 4.2 take the form

Z2() — q(n)bnte, (4.85)

where b and ¢ are n-independent constants. Plugging (4.85) into (4.84), we
find
C2() = n29% log a(n). (4.86)
Namely, b and ¢ in (4.85) do not contribute to CT2().
From the first column of Table 4.2, ZT2(") = 1/K"™! for the disconnected
saddle ¢ = 1, which implies that CT2(™ vanishes when the disconnected

saddle ¢ = 1 is dominant. From the second column of Table 4.2, CT2( for

the pairwise connected saddle g = 7 is given by

2
Tg(n,even):n_ (1) n+1 _ 1) 2
C : [w ( . " (2+2> , (4.87)
2
To(modd) _ 4 ™ [y (MY _ ) (nt3
C 1+4[¢ (2) b (2 , (4.88)

83



where ¥(™(z) is the polygamma function of order m, which comes from
the derivative of the Catalan number C,, or C,,_1. The first term —1 in
(4.88) comes from the derivatives of the factor (2m — 1) in ZT2(2m—ledd)
Interestingly, the values of CT2( in (4.87) and (4.88) depend only on the
replica number n and they are independent of the other parameters K;, K>
and S. This property comes from the fact that the parameter dependence is
contained in the factor 6"*¢ in (4.85) which does not contribute to CT2(") as
we saw in (4.86). From the third column of Table 4.2, C™2(" for the cyclically
connected saddle g = X is given by

O = 292 log Z,,. (4.89)

In the microcanonical ensemble, CT2(™ in (4.89) vanishes since Z, in (4.74)
takes the form of b"*¢. Thus, the capacity of negativity takes a nontrivial
values only in the phase where the saddle ¢ = 7 is dominant.

Now let us compute the capacity of negativity CT2(™ in the microcanon-
ical ensemble using the definitions in (4.47), (4.48) and (4.49) with the neg-
ativity spectrum calculated by the discontinuity of G(z) in (4.78). In Figure
4.6 we show the plot of CT2("™ for n = 1 as a function of K; with fixed K and
S. As we see from Figure 4.6, the capacity of negativity (blue curve) exhibits
two peaks around the transition points determined by the conditions (4.82)
and (4.83) (dashed vertical lines). Between the two peaks, CT2(™) approaches
a saddle-point value for g = 7 (dashed orange line) given by (4.88). The loca-
tions of peaks do not exactly match the transition points of D()) determined
by the conditions (4.82) and (4.83) since the capacity of negativity CT2(™ is
an integrated function of D(A). However, we have checked that (4.82) and
(4.83) give a qualitatively good approximation of the locations of peaks for
various values of K5, S and n. From Figure 4.6, we also observe that C'T2(")
approaches zero in the small and large K limits. This is consistent with the
fact that the saddle-point values of C™2(™ vanish for g = 1 and g = X.

Near the transition points, the saddle-point approximation breaks down
and we cannot ignore the sub-leading corrections in (4.43) coming from the
general elements ¢ in the permutation group .S, other than the dominant
saddles g = 1,7, X. This is the physical origin of the peaks of CT2(" we ob-
served in Figure 4.6. This is in contrast to the behavior of the refined Rényi
negativity ST2(" (see Figure 4.4) which does not exhibit a clear signal of the
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Figure 4.6: Plot of the capacity of negativity (4.49) for n = 1 as a function
of log K;. We set Ky = 50,8 = 12 in this figure. The two vertical dashed
blue lines are the transition points determined by (4.82) and (4.83). The
horizontal dashed orange line is the value of (4.88) at n = 1.

phase transitions. In CT2(") the phase transitions manifest itself as two peaks,
which suggests that CT2(") is a better indicator of the phase transitions than
ST2(") Indeed, in many physical systems it is useful to consider the suscep-
tibility defined by a second derivative of the free energy with respect to an
external field in order to search for possible phase transitions. In our case, the
capacity of negativity CT2(" plays the role of the susceptibility of entangle-
ment in the bipartite system H; ® H,. In fact, CT2(™ in (4.84) represents the
variance of the partially transposed modular Hamiltonian H'2? = —log p*?

O = (™)), — (H™2),

= ((H" = (H"),)°),.

(4.90)

where (O),, is defined by

_ Tr((’)e_”HTQ)

(e i o

(O)n

Near the phase transition the fluctuation of H'2 becomes large, which is
observed as the peak of CT2(").
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Chapter 5

Discussion

In this chapter, we summarize our results and discuss open questions. We
studied the refined Rényi negativity and the capacity of negativity in JT
gravity with dynamical FZZT anti-branes, which serves as a toy model of
an evaporating black hole. The new original results are summarized by the
plots in Figure 4.4 and Figure 4.6.

First, we considered the refined Rényi negativity with dynamical FZZT
anti-branes. The deformation of the eigenvalue density of JT gravity by the
branes played the essential role in the computation. As seen from Figure
4.4, we find that the refined Rényi negativity monotonically decreases at
late time of the evaporation due to the back-reaction of branes, while it
approaches a constant value in the probe brane approximation. We can easily
understand the decreasing behavior by using the relation (4.70) between the
totally connected part of the refined Rényi negativity and the refined Rényi
entropy. The n — 1 limit of the refined Rényi negativity is related to the
bulk entanglement wedge cross section in the semiclassical picture, which
saturates the inequality (4.72) at late time of the evaporation. This means
that the Hawking quanta become maximally entangled at late time of the
black hole evaporation.

Next, we considered the capacity of negativity in the microcanonical en-
semble, in which the Schwinger-Dyson equation can be exactly solved. As
seen from Figure 4.6, we find that the capacity of negativity exhibits two
peaks around the phase transitions, reflecting the fact that the entanglement
negativity can probe more elaborate entanglement structure than the entan-
glement entropy. Moreover, in the pairwise connected phase which arises
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in-between the two peaks, the capacity of negativity approaches a universal
constant value which only depends on the replica number. We conclude that
the capacity of negativity is an valuable inidicator of the phase transitions

among the different entanglement phases in general mixed states.

Open questions

There are many interesting open questions. We studied the refined Rényi
negativity and the capacity of negativity in the planar approximation. How-
ever, near the end of the evaporation the black hole becomes very small and
we cannot ignore the quantum corrections. It would be interesting to study
the higher genus corrections to the entanglement negativities in JT gravity.
To this end we need to develop a method of computing the non-planar cor-
rections to the resolvent of p'2. Moreover, it would be very interesting to
compute the entanglement negativities non-perturbatively in g,.

It would be interesting to study the capacity of negativity in the canonical
ensemble. We expect that the qualitative feature will also hold in the canoni-
cal ensemble: the capacity of negativity exhibits two peaks around the phase
transitions. The main difference between the microcanonical and canonical
ensembles is the late time behavior (4.70). One of the advantages of the
canonical ensemble is that we can study the quantities using the density of
states in JT gravity with the effect of the backreaction of branes.

Actually we tried to compute the capacity of negativity in the canonical
ensemble. However, it does not exhibit any peaks around the phase tran-
sitions by using the negativity spectrum (4.65). On the other hand, there
is a trick to find a peak of the capacity of entanglement in the canonical
ensemble [62]. Namely, we need to determine the minimal eigenvalue Ay of
the entanglement spectrum by solving the derivative of the Schwinger-Dyson
equation dA/dR = 0 numerically. We studied the capacity of negativity in
a similar manner. However, it was difficult to find a solution of dA\/dR = 0
because the Schwinger-Dyson equation for the negativity resolvent is more
complicated than that of the entanglement entropy. We leave the computa-
tion of the capacity of negativity in the canonical ensemble as an interesting
future problem.

We introduced the capacity of negativity as a natural analogue of the
capacity of entanglement. The authors of [61] studied the capacity of entan-
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glement in a two-dimensional dilaton gravity coupled to conformal matter
with a large central charge. This is a useful model where the island for-
mula [9, 10, 11] for the entanglement entropy of the Hawking radiation was
explicitly tested for the first time. Also, the island contributions to the en-
tanglement negativity was studied in [68]. It would be interesting to consider
the capacity of negativity in such a model and to study the contributions of
the island along the line of these studies.

It is also interesting to consider the holographic dual of the capacity of
negativity. As discussed in [69, 70], the holographic dual of the capacity of
entanglement is described by the graviton fluctuation around the minimal
surface associated with holographic refined Rényi entropy. As we mentioned
in section 4.3, the refined Rényi negativity is related to the bulk entanglement
wedge cross section which is the minimal cross section of the entanglement
wedge in the semiclassical picture. We speculate that the holographic dual
of the capacity of negativity is described by the graviton fluctuation around
the entanglement wedge cross section. Furthermore, the entanglement wedge
cross section is also related to the reflected entropy [71]. It would be interest-
ing to consider “refined Rényi reflected entropy” and its capacity. We expect
that we can extract more detailed information about the entanglement struc-

ture by using these generalization of quantum information quantities.

88



Bibliography

[1] A. Almbheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and
A. Tajdini, “The entropy of Hawking radiation,” Rev. Mod. Phys. 93
(2021) 035002, arXiv:2006.06872 [hep-th].

[2] J. R. Oppenheimer and H. Snyder, “On Continued gravitational
contraction,” Phys. Rev. 56 (1939) 455-459.

[3] S. W. Hawking, “Black holes in general relativity,” Commun. Math.
Phys. 25 (1972) 152-166.

[4] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math.
Phys. 43 (1975) 199-220. [Erratum: Commun.Math.Phys. 46, 206
(1976)].

[5] S. W. Hawking, “Breakdown of Predictability in Gravitational
Collapse,” Phys. Rev. D 14 (1976) 2460-2473.

[6] D. N. Page, “Average entropy of a subsystem,” Phys. Rev. Lett. 71
(1993) 1291-1294, arXiv:gr-qc/9305007.

[7] D. N. Page, “Information in black hole radiation,” Phys. Rev. Lett.
71 (1993) 3743-3746, arXiv:hep-th/9306083.

[8] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7 (1973)
2333-2346.

[9] G. Penington, “Entanglement Wedge Reconstruction and the
Information Paradox,” JHEP 09 (2020) 002, arXiv:1905.08255
[hep-th].

89


https://doi.org/10.1103/RevModPhys.93.035002
https://doi.org/10.1103/RevModPhys.93.035002
https://arxiv.org/abs/2006.06872
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1007/BF01877517
https://doi.org/10.1007/BF01877517
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevLett.71.1291
https://arxiv.org/abs/gr-qc/9305007
https://doi.org/10.1103/PhysRevLett.71.3743
https://doi.org/10.1103/PhysRevLett.71.3743
https://arxiv.org/abs/hep-th/9306083
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/JHEP09(2020)002
https://arxiv.org/abs/1905.08255
https://arxiv.org/abs/1905.08255

[10] A. Almbheiri, N. Engelhardt, D. Marolf, and H. Maxfield, “The entropy
of bulk quantum fields and the entanglement wedge of an evaporating
black hole,” JHEP 12 (2019) 063, arXiv:1905.08762 [hep-th].

[11] A. Almbheiri, R. Mahajan, J. Maldacena, and Y. Zhao, “The Page
curve of Hawking radiation from semiclassical geometry,” JHEP 03
(2020) 149, arXiv:1908.10996 [hep-th].

[12] A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,”
JHEP 08 (2013) 090, arXiv:1304.4926 [hep-th].

[13] A. Almbheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and
A. Tajdini, “Replica Wormholes and the Entropy of Hawking
Radiation,” JHEP 05 (2020) 013, arXiv:1911.12333 [hep-th].

[14] G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, “Replica
wormholes and the black hole interior,” JHEP 03 (2022) 205,
arXiv:1911.11977 [hep-th].

[15] X. Dong, S. McBride, and W. W. Weng, “Replica wormholes and
holographic entanglement negativity,” JHEP 06 (2022) 094,
arXiv:2110.11947 [hep-th].

[16] P. Saad, S. H. Shenker, and D. Stanford, “JT gravity as a matrix
integral,” arXiv:1903.11115 [hep-th].

[17] K. Okuyama and K. Sakai, “FZZT branes in JT gravity and
topological gravity,” JHEP 09 (2021) 191, arXiv:2108.03876
[hep-th].

[18] V. Fateev, A. B. Zamolodchikov, and A. B. Zamolodchikov, “Boundary
Liouville field theory. 1. Boundary state and boundary two point
function,” arXiv:hep-th/0001012.

[19] J. Teschner, “Remarks on Liouville theory with boundary,” PoS
tmr2000 (2000) 041, arXiv:hep-th/0009138.

[20] K. Okuyama and K. Sakai, “Page curve from dynamical branes in JT
gravity,” JHEP 02 (2022) 087, arXiv:2111.09551 [hep-th].

90


https://doi.org/10.1007/JHEP12(2019)063
https://arxiv.org/abs/1905.08762
https://doi.org/10.1007/JHEP03(2020)149
https://doi.org/10.1007/JHEP03(2020)149
https://arxiv.org/abs/1908.10996
https://doi.org/10.1007/JHEP08(2013)090
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://doi.org/10.1007/JHEP05(2020)013
https://arxiv.org/abs/1911.12333
https://doi.org/10.1007/JHEP03(2022)205
https://arxiv.org/abs/1911.11977
https://doi.org/10.1007/JHEP06(2022)094
https://arxiv.org/abs/2110.11947
https://arxiv.org/abs/1903.11115
https://doi.org/10.1007/JHEP09(2021)191
https://arxiv.org/abs/2108.03876
https://arxiv.org/abs/2108.03876
https://arxiv.org/abs/hep-th/0001012
https://doi.org/10.22323/1.006.0041
https://doi.org/10.22323/1.006.0041
https://arxiv.org/abs/hep-th/0009138
https://doi.org/10.1007/JHEP02(2022)087
https://arxiv.org/abs/2111.09551

[21] K. Okuyama and T. Tachibana, “Negativity and its capacity in JT
gravity,” JHEP 02 (2024) 183, arXiv:2312.11860 [hep-th].

[22] T. G. Mertens and G. J. Turiaci, “Solvable models of quantum black
holes: a review on Jackiw-Teitelboim gravity,” Living Rev. Rel. 26
(2023) 4, arXiv:2210.10846 [hep-th].

[23] C. Teitelboim, “Gravitation and Hamiltonian Structure in Two
Space-Time Dimensions,” Phys. Lett. B 126 (1983) 41-45.

[24] R. Jackiw, “Lower Dimensional Gravity,” Nucl. Phys. B 252 (1985)
343-356.

[25] A. Almbheiri and J. Polchinski, “Models of AdS, backreaction and
holography,” JHEP 11 (2015) 014, arXiv:1402.6334 [hep-th].

[26] G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition
Functions in Quantum Gravity,” Phys. Rev. D 15 (1977) 2752 2756.

[27] J. W. York, Jr., “Role of conformal three geometry in the dynamics of
gravitation,” Phys. Rev. Lett. 28 (1972) 1082-1085.

[28] J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its
breaking in two dimensional Nearly Anti-de-Sitter space,” PTEP
2016 (2016) 12C104, arXiv:1606.01857 [hep-th].

[29] M. Mirzakhani, “Simple geodesics and Weil-Petersson volumes of
moduli spaces of bordered Riemann surfaces,” Invent. Math. 167
(2006) 179-222.

[30] K. Okuyama and K. Sakai, “JT gravity, KdV equations and
macroscopic loop operators,” JHEP 01 (2020) 156,
arXiv:1911.01659 [hep-th].

[31] P. Zograf, “On the large genus asymptotics of Weil-Petersson
volumes,” arXiv:0812.0544 [math.AG].

[32] J. Wishart, “The Generalised Product Moment Distribution in
Samples from a Normal Multivariate Population,” Biometrika 20A
(1928) 32 52.

91


https://doi.org/10.1007/JHEP02(2024)183
https://arxiv.org/abs/2312.11860
https://doi.org/10.1007/s41114-023-00046-1
https://doi.org/10.1007/s41114-023-00046-1
https://arxiv.org/abs/2210.10846
https://doi.org/10.1016/0370-2693(83)90012-6
https://doi.org/10.1016/0550-3213(85)90448-1
https://doi.org/10.1016/0550-3213(85)90448-1
https://doi.org/10.1007/JHEP11(2015)014
https://arxiv.org/abs/1402.6334
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1093/ptep/ptw124
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://doi.org/10.1007/s00222-006-0013-2
https://doi.org/10.1007/s00222-006-0013-2
https://doi.org/10.1007/JHEP01(2020)156
https://arxiv.org/abs/1911.01659
https://arxiv.org/abs/0812.0544
https://doi.org/10.2307/2331939
https://doi.org/10.2307/2331939

[33]

[34]

[35]

[42]

[43]

E. P. Wigner, “On the statistical distribution of the widths and
spacings of nuclear resonance levels,” Mathematical Proceedings of
the Cambridge Philosophical Society 47 (1951) 790-798.

P. H. Ginsparg and G. W. Moore, “Lectures on 2-D gravity and 2-D
string theory,” in Theoretical Advanced Study Institute (TASI 92):
From Black Holes and Strings to Particles, pp. 277-469. 10, 1993.
arXiv:hep-th/9304011.

P. Di Francesco, P. H. Ginsparg, and J. Zinn-Justin, “2-D Gravity and
random matrices,” Phys. Rept. 254 (1995) 1-133,
arXiv:hep-th/9306153.

B. Eynard, T. Kimura, and S. Ribault, “Random matrices,”
arXiv:1510.04430 [math-ph].

B. Eynard, “Topological expansion for the 1-Hermitian matrix model
correlation functions,” JHEP 11 (2004) 031, arXiv:hep-th/0407261.

B. Eynard and N. Orantin, “Invariants of algebraic curves and
topological expansion,” Commun. Num. Theor. Phys. 1 (2007)
347-452, arXiv:math-ph/0702045.

B. Eynard and N. Orantin, “Weil-Petersson volume of moduli spaces,
Mirzakhani’s recursion and matrix models,” arXiv:0705.3600
[math-ph].

G. 't Hooft, “A Planar Diagram Theory for Strong Interactions,”
Nucl. Phys. B 72 (1974) 461.

E. Witten, “Two-dimensional gravity and intersection theory on
moduli space,” Surveys Diff. Geom. 1 (1991) 243-310.

M. Kontsevich, “Intersection theory on the moduli space of curves and
the matrix Airy function,” Commun. Math. Phys. 147 (1992) 1-23.

R. Dijkgraaf and E. Witten, “Developments in Topological Gravity,”
Int. J. Mod. Phys. A 33 (2018) 1830029, arXiv:1804.03275
[hep-th].

92


https://doi.org/10.1017/S0305004100027237
https://doi.org/10.1017/S0305004100027237
https://arxiv.org/abs/hep-th/9304011
https://doi.org/10.1016/0370-1573(94)00084-G
https://arxiv.org/abs/hep-th/9306153
https://arxiv.org/abs/1510.04430
https://doi.org/10.1088/1126-6708/2004/11/031
https://arxiv.org/abs/hep-th/0407261
https://doi.org/10.4310/CNTP.2007.v1.n2.a4
https://doi.org/10.4310/CNTP.2007.v1.n2.a4
https://arxiv.org/abs/math-ph/0702045
https://arxiv.org/abs/0705.3600
https://arxiv.org/abs/0705.3600
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.4310/SDG.1990.v1.n1.a5
https://doi.org/10.1007/BF02099526
https://doi.org/10.1142/S0217751X18300296
https://doi.org/10.1142/S0217751X18300296
https://arxiv.org/abs/1804.03275
https://arxiv.org/abs/1804.03275

[44]

[45]

[46]

[47]

[48]

[49]

M. Mulase and B. Safnuk, “Mirzakhani’s recursion relations, Virasoro
constraints and the KdV hierarchy,” arXiv:math/0601194.

K. Okuyama and K. Sakai, “Multi-boundary correlators in JT
gravity,” JHEP 08 (2020) 126, arXiv:2004.07555 [hep-th].

I. M. Gelfand and L. A. Dikii, “Asymptotic behavior of the resolvent
of Sturm-Liouville equations and the algebra of the Korteweg-De Vries
equations,” Russ. Math. Surveys 30 (1975) 77-113.

C. Itzykson and J. B. Zuber, “Combinatorics of the modular group. 2.
The Kontsevich integrals,” Int. J. Mod. Phys. A 7 (1992) 56615705,
arXiv:hep-th/9201001.

A. Goel, L. V. Iliesiu, J. Kruthoff, and Z. Yang, “Classifying boundary
conditions in JT gravity: from energy-branes to a-branes,” JHEP 04
(2021) 069, arXiv:2010.12592 [hep-th].

P. Gao, D. L. Jafferis, and D. K. Kolchmeyer, “An effective matrix
model for dynamical end of the world branes in Jackiw-Teitelboim
gravity,” JHEP 01 (2022) 038, arXiv:2104.01184 [hep-th].

"in Proceedings

A. Rényi, “On measures of entropy and information,’
of the fourth Berkeley symposium on mathematical statistics and
probability, volume 1: contributions to the theory of statistics, vol. 4,

pp. 547-562, University of California Press. 1961.

A. Rényi, “On the foundations of information theory,” Revue de
I'Institut International de Statistique (1965) 1-14.

X. Dong, “The Gravity Dual of Renyi Entropy,” Nature Commun. 7
(2016) 12472, arXiv:1601.06788 [hep-th].

H. Yao and X.-L. Qi, “Entanglement entropy and entanglement
spectrum of the Kitaev model,” Phys. Rev. Lett. 105 (2010) 080501,
arXiv:1001.1165 [cond-mat.str-el].

S. Sugiura and A. Shimizu, “Canonical Thermal Pure Quantum
State,” Phys. Rev. Lett. 111 (2013) 010401, arXiv:1302.3138

[cond-mat.stat-mech].

93


https://arxiv.org/abs/math/0601194
https://doi.org/10.1007/JHEP08(2020)126
https://arxiv.org/abs/2004.07555
https://doi.org/10.1070/RM1975v030n05ABEH001522
https://doi.org/10.1142/S0217751X92002581
https://arxiv.org/abs/hep-th/9201001
https://doi.org/10.1007/JHEP04(2021)069
https://doi.org/10.1007/JHEP04(2021)069
https://arxiv.org/abs/2010.12592
https://doi.org/10.1007/JHEP01(2022)038
https://arxiv.org/abs/2104.01184
https://doi.org/10.1038/ncomms12472
https://doi.org/10.1038/ncomms12472
https://arxiv.org/abs/1601.06788
https://doi.org/10.1103/PhysRevLett.105.080501
https://arxiv.org/abs/1001.1165
https://doi.org/10.1103/PhysRevLett.111.010401
https://arxiv.org/abs/1302.3138
https://arxiv.org/abs/1302.3138

[55]

[60]

[61]

[62]

K. Goto, Y. Kusuki, K. Tamaoka, and T. Ugajin, “Product of random
states and spatial (half-)wormholes,” JHEP 10 (2021) 205,
arXiv:2108.08308 [hep-th].

G. Vidal and R. F. Werner, “Computable measure of entanglement,”
Phys. Rev. A 65 (2002) 032314, arXiv:quant-ph/0102117.

A. Peres, “Separability criterion for density matrices,” Phys. Rev.
Lett. 77 (1996) 1413-1415, arXiv:quant-ph/9604005.

M. Horodecki, P. Horodecki, and R. Horodecki, “On the necessary and
sufficient conditions for separability of mixed quantum states,” Phys.
Lett. A 223 (1996) 1, arXiv:quant-ph/9605038.

K. Tamaoka, “Entanglement Wedge Cross Section from the Dual
Density Matrix,” Phys. Rev. Lett. 122 (2019) 141601,
arXiv:1809.09109 [hep-th].

X. Dong, X.-L. Qi, and M. Walter, “Holographic entanglement
negativity and replica symmetry breaking,” JHEP 06 (2021) 024,
arXiv:2101.11029 [hep-th].

K. Kawabata, T. Nishioka, Y. Okuyama, and K. Watanabe, “Replica
wormholes and capacity of entanglement,” JHEP 10 (2021) 227,
arXiv:2105.08396 [hep-th].

K. Kawabata, T. Nishioka, Y. Okuyama, and K. Watanabe, “Probing
Hawking radiation through capacity of entanglement,” JHEP 05
(2021) 062, arXiv:2102.02425 [hep-th].

K. Okuyama, “Capacity of entanglement in random pure state,” Phys.
Lett. B 820 (2021) 136600, arXiv:2103.08909 [hep-th].

A. Nica and R. Speicher, Lectures on the Combinatorics of Free
Probability. London Mathematical Society Lecture Note Series.
Cambridge University Press, 2006.

T. Takayanagi and K. Umemoto, “Entanglement of purification
through holographic duality,” Nature Phys. 14 (2018) 573-577,
arXiv:1708.09393 [hep-th].

94


https://doi.org/10.1007/JHEP10(2021)205
https://arxiv.org/abs/2108.08308
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://arxiv.org/abs/quant-ph/0102117
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.77.1413
https://arxiv.org/abs/quant-ph/9604005
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://arxiv.org/abs/quant-ph/9605038
https://doi.org/10.1103/PhysRevLett.122.141601
https://arxiv.org/abs/1809.09109
https://doi.org/10.1007/JHEP06(2021)024
https://arxiv.org/abs/2101.11029
https://doi.org/10.1007/JHEP10(2021)227
https://arxiv.org/abs/2105.08396
https://doi.org/10.1007/JHEP05(2021)062
https://doi.org/10.1007/JHEP05(2021)062
https://arxiv.org/abs/2102.02425
https://doi.org/10.1016/j.physletb.2021.136600
https://doi.org/10.1016/j.physletb.2021.136600
https://arxiv.org/abs/2103.08909
https://doi.org/10.1017/CBO9780511735127
https://doi.org/10.1017/CBO9780511735127
https://doi.org/10.1038/s41567-018-0075-2
https://arxiv.org/abs/1708.09393

[66] P. Nguyen, T. Devakul, M. G. Halbasch, M. P. Zaletel, and B. Swingle,
“Entanglement of purification: from spin chains to holography,”
JHEP 01 (2018) 098, arXiv:1709.07424 [hep-th].

[67] H. Shapourian, S. Liu, J. Kudler-Flam, and A. Vishwanath,
“Entanglement Negativity Spectrum of Random Mixed States: A
Diagrammatic Approach,” PRXQuantum 2 (2021) 030347,
arXiv:2011.01277 [cond-mat.str-el].

[68] J. Kumar Basak, D. Basu, V. Malvimat, H. Parihar, and G. Sengupta,
“Islands for entanglement negativity,” SciPost Phys. 12 (2022) 003,
arXiv:2012.03983 [hep-th].

[69] Y. Nakaguchi and T. Nishioka, “A holographic proof of Rényi entropic
inequalities,” JHEP 12 (2016) 129, arXiv:1606.08443 [hep-th].

[70] J. De Boer, J. Jéarveld, and E. Keski-Vakkuri, “Aspects of capacity of
entanglement,” Phys. Rev. D 99 (2019) 066012, arXiv:1807.07357
[hep-th].

[71] C. Akers, T. Faulkner, S. Lin, and P. Rath, “The Page curve for
reflected entropy,” JHEP 06 (2022) 089, arXiv:2201.11730
[hep-th].

95


https://doi.org/10.1007/JHEP01(2018)098
https://doi.org/10.1007/JHEP01(2018)098
https://arxiv.org/abs/1709.07424
https://doi.org/10.1103/PRXQuantum.2.030347
https://arxiv.org/abs/2011.01277
https://doi.org/10.21468/SciPostPhys.12.1.003
https://arxiv.org/abs/2012.03983
https://doi.org/10.1007/JHEP12(2016)129
https://arxiv.org/abs/1606.08443
https://doi.org/10.1103/PhysRevD.99.066012
https://arxiv.org/abs/1807.07357
https://arxiv.org/abs/1807.07357
https://doi.org/10.1007/JHEP06(2022)089
https://arxiv.org/abs/2201.11730
https://arxiv.org/abs/2201.11730

	Introduction
	Matrix model of JT gravity
	JT gravity and random matrix
	Path integral of JT gravity
	Random matrix model

	Two-dimensional topological gravity
	JT gravity as a topological gravity
	Generalized partition function
	Leading order eigenvalue density

	JT gravity with dynamical branes
	Correlator with FZZT anti-branes
	Back-reaction of branes


	Black hole information paradox
	PSSY model
	Semiclassical description
	Matrix model description
	Resolvent trick
	Entanglement spectrum

	Page curve from dynamical branes
	Matrix integral with FZZT anti-branes
	Analytic proof of monotonicity


	Negativity in JT gravity
	Basics of entanglement negativity
	Partial transpose
	Rényi generalization

	Negativity spectrum in JT gravity
	Dominant saddles
	Ensemble average
	Resolvent trick
	Negativity spectrum

	Refined Rényi negativity
	Capacity of negativity
	Microcanonical ensemble
	Capacity of negativity


	Discussion
	Bibliography

